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1. Introduction.

Inappropriate use of Dempster's rule of combination has led some authors to reject the
Dempster-Shafer model, arguing that it leads to supposedly unacceptable conclusions when
defaults are involved. A most classic example is about the penguin Tweety. This paper will
successively present:

1. the origin of the miss-management of the Tweety example,
2. two types of default,
3. the correct solution for both types based on the transferable belief model (our

interpretation of the Dempster-Shafer model (Shafer 1976, Smets 1988)),

Except when explicitly stated, all belief functions used in this paper are simple support
functions, i.e. belief functions for which only one proposition (the focus) of the frame of
discernment receives a positive basic belief mass with the remaining mass being given to the
tautology. Each belief function will be described by its focus and the weight of the focus (e.g.
m(A)=.9). Computation of the basic belief masses are always performed by vacuously
extending each belief function to the product space built from all variables involved, combining
them on that space by Dempster's rule of combination, and projecting the result to the space
corresponding to each individual variable.

2. The Miss-Managment of Tweety

Users of the Dempster-Shafer mode have sometimes treated the Tweety example do the
following (as the first step):
- create two propositional primitives B and F (for Bird and Fly).
- introduce the implication B⊃F ("if bird then fly").
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- give a less than one basic belief mass (e.g. .9) to this material implication, i.e. m1(B⊃F) = .9

Of course the aim of this implication formula is to translate the assertion "generally birds fly",
"typically birds fly", "usually birds fly", "most birds fly"…into the belief function framework.
When one learns that Tweety is a bird, another belief function m(B)=1 can be added and the
system will deduce a combined belief with m(F) = .9.

Then one learns that Tweety is in fact a penguin. Penguins are birds and they usually do not fly.
So one does the following, as a second step:
- create a third proposition P (for Penguin)
- introduce a categorical belief m(P⊃B) = 1.
- introduce a non-categorical belief such that m2(P⊃¬F)=.95.

When a fourth belief function m(P)=1 is added, two belief functions are induced on F, one
derived from the birdness of Tweety (m(F)=.9) and the other derived from the penguinness of
Tweety (m(¬F)=.95). By applying Dempster's rule of combination, one obtains the overall belief
function with m(F) = .31, m(¬F) = .66 and m(F∨¬F) = .03.

Of course the expected solution is m(¬F) = .95 and m(F∨¬F) = .05, as Tweety is a penguin and
the belief that Tweety flies given it is a penguin is .95. The origin of this error results from the
non-applicability of Dempster's rule of combination.

Dempster's rule of combination can only be applied when the two pieces of evidence that induce
the two belief functions m1(B⊃F) and m2(P⊃¬F) are distinct. In the present case, distinctness is
not satisfied, because birds and penguins are related: birds are either penguin-birds (P) or non-
penguin-birds (NPB): B = P∨NPB. Hence bel(F|B) = bel(F|P∨NPB), so bel(F|B) results from
the disjunctive combination of two belief functions - bel(F|P) and bel(F|NPB) - induced by the
two distinct pieces of evidence (P and NPB).

Recall that Dempster's rule of combination is concerned with the conjunctive combination of two
belief functions induced by two distinct pieces of evidence as in:

bel(F|X&Y) = bel(F|X)⊕bel(F|Y)

In the present case, we are facing the problem of disjunctive combination of distinct pieces of
evidence. We have shown in Smets (1978) that if bel(F|P) and bel(F|NPB) are induced by two
distinct pieces of evidence, then

bel(F|B) = bel(F|P∨NPB) = bel(F|P).bel(F|NPB)

Even when this specific rule does not apply, bel(F|B) is related to bel(F|P). Hence Dempster's
rule of combination is not applicable in the above case, as the two basic belief assignments  
m1(B⊃F) and m2(P⊃¬F) are actually related. We develop a more correct analysis below.



3. Two types of default.

A default may be written as A:B/C (Reiter 1980) where A, B and C are formulae. It is read "if A
is true and B is consistent, then C is true". A is the prerequisite, B is the justification and C is the
consequence of the default (Besnard 1989). A normal default (A:B/B) is a default in which the
justification and the consequence are the same. It could also be written as A:A⊃B/A⊃B. Both
forms of default yield the same results, while normal defaults without prerequisite  :A⊃B/A⊃B
give different results. A:B/B is called a standard normal default (Touretzky 1984), whereas
:A⊃B/A⊃B is called a normal default without prerequisite (Poole 1985). The question as to
which of the two types of default is appropriate depends, in fact, on the context. The difference
between the two types of default can be seen in the case of modus tollens and case reasoning
(Besnard 1989).
- With  :A⊃B/A⊃B, modus tollens is applicable. From ¬B, one deduces ¬A if the default can

be applied. This is not the case with A:B/B.
- With  :A⊃X/A⊃X and  :B⊃X/B⊃X one infers X from A∨B. This is not the case with A:X/X

and B:X/X.

Sometimes modus tollens should be avoided, as in the following example: if a person is kind,
then he is popular and if a person is fat, then he is not popular. If John is fat, he is indeed not
popular. But one would like to avoid the inference that John is not kind. Therefore standard
normal defaults should be used in this case. There are also cases in which defaults without
prerequisite seem to be more appropriate, as in the following example: birds fly, bats fly, Coco is
either a bird or a bat, hence Coco flies.

The question as to which type of default is more appropriate is not discussed here. We only
show how both types of default may be represented using belief functions.

4. Normal Defaults without Prerequisites ( :B⊃F/B⊃F).

Normal Defaults without Prerequisites is formulated by introducing auxiliary variables (as is
done in McCarthy's anomaly theory). Let B, P and F represent Bird, Penguin and Fly
respectively. We introduce the auxiliary binary variable TB which represents the concept of
Typical-Bird. The default  :B⊃F/B⊃F is represented by B&TB⊃F. The network in Figure 1 is
the screen dump extracted from MacEvidence (Hsia and Shenoy 1989). In the innermost
rectangular area, there are three nodes B, TB and F and a link among them. This link represents
our belief on the joint BxTBxF space. It is characterized here by the simple support function
m(B&TB⊃F)=1. Furthermore, the fact that things are usually typical (in this case birds are
usually typical) is encoded by the belief m(TB) = .9 (fed into MacEvidence through the pTB
box).

Suppose we first learn that Tweety is a bird. So we put m(B) = 1, and the system deduces m(F)
= .9. Then we learn about penguin P. We must create new nodes and links that represent the



new pieces of information we have about penguins (see the rectangular area in the centre of
Figure 1). A penguin is a bird: m(P⊃B)=1. It is an atypical bird: m(P⊃¬TB)=1. Let us accept
that "usually penguiness do not fly" (for the sake of generality, we assume the existence of
SuperPenguin which flies), so m(P&TP⊃¬F)=1 and m(TP)=.95, where TP means Typical-
Penguin and the "usuality" level is quantified by .95. Since Tweety is a penguin, we put m(P)=1.
The system deduces m(B)=1 and m(¬F)=.95 as required. The inference from B to F is blocked,
because TB is no longer true (m(¬TB)=1)

Later, we learn that Tweety is a SuperPenguin, and we add a new layer (outer rectangular area in
Figure 1) with variable S (SuperPenguin), TS (Typical-SuperPenguin) and links m(S⊃P)=1,
m(S⊃¬TP)=1, m(S&TS⊃F) =1 and m(TS)= .99 (since a SuperPenguin may have a broken
wing). Table 1 summarizes some of the results the system derives according to different
instantiations of selected variables (by giving a belief mass 1 in the variables).
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S->-TP
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Figure 1: Analysis of the Tweety example with normal defaults without prerequisites. Oval
nodes represent variables, six-sided polygons represent links (characterized by logical
constraints).

As can be seen from Table 1, many back propagations occur. This is due to the fact that the
prior beliefs about typicalities are fixed and cannot be modified. In the first line of Table 1, the
m(¬P)=.9 corresponds to the fact that usually birds are typical, hence by the link P⊃¬TB, one
gets the back propagation of .9 from TB to ¬P (a result that might justify the rejection of this



formulation). A nice result is that the truth of B (second line) does not modify our belief in P.
Modus tollens is observed, as can be seen from the fifth line, where ¬F leads to ¬B. Modus
tollens also explains why ¬S get a value 1 (i.e. it is not SuperPenguin since it cannot fly). Our
belief in P remains unchanged in this case (¬F).

B P S F
? ? ¬P .9 ¬S .995 ?
B B 1. ¬P .9 ¬S .995 F .9
P B 1. P 1. ¬S .95 ¬F .95
S B 1. P 1. S 1. F .99
¬F ¬B .9 ¬P .9 ¬S 1. ¬F 1.

B    F B 1. ¬P .995 ¬S .995 F 1.
B ¬F B 1. ? ¬S .999 ¬F 1.
P    F B 1. P 1. ? F 1.
B ¬P B 1. ¬P 1. ¬S 1. F .9

Table 1: Normal defaults without prerequisites. Content of this table describes the simple
support functions induced on propositions B, P, S and F according to the instantiated variables
(left column). Each pair corresponds to the focus and its weight. '?' represents the vacuous belief
function.

The three rectangular areas in Figure 1 demonstrate the modular nature of our constructions.
That is, whenever a new concept is introduced, previous variables and beliefs are kept
unmodified,  only new variables and new beliefs are added.

5. Standard Normal Defaults (B:F/F)

We now introduce the binary variables InB ("I learn that it is a bird"), TB (Typical-Bird), B
(Bird) and F (Fly). When InB is instantiated (m(InB)=1), we deduce that it is indeed a bird
(m(InB⊃B)=1) and it is "probably" a typical bird (m(InB⊃TB)=.9). We know that typical bird
flies (m(B&TB⊃F)=1). The inner box of Figure 2 presents this model. After instantiating InB
(m(InB)=1), we get m(B)=1, m(TB)=.9 and m(F)=.9. To know whether it is a bird, we check
variable B (not InB, as the latter represents the learning of the fact that it is a bird). To show the
difference between B and InB, suppose you are worried about the fact that birds lay eggs. So we
create the variable "Eggs" and the link m(B⊃Eggs)=1. (and of course not m(InB⊃Eggs)=1: we
don't get eggs because we learn that it is a bird, rather we get eggs because it is a bird).
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Figure 2: Analysis of the Tweety example with standard normal defaults. Oval nodes represent
variables. Six-sided polygons represent links: those that include a number are weighted links
(i.e. the implication receives the weight indicated), the others are logical links. Grey boxes are
instantiating nodes (i.e. nodes through which the beliefs given to the variables can be initiated).

Modus tollens is blocked in this formulation as m(¬F)=1 induces m(B∨¬B)=1, m(TB∨¬TB)
=1 and m(¬InB)=.9. So one does not get any belief in ¬B from ¬F.

The general interpretation of the diagram presented in Figure 2 is: if you tell me that Tweety is a
bird, I will conclude that it is a bird and probably a typical (.9) bird. I know that typical birds fly.
So I believe at level .9 that Tweety flies.

Next, we introduce the concept of penguin (middle box in Figure 2). So we introduce the
variables InP ("I learn that it is a penguin"), TP (Typical-Penguin as far as flying is concerned),
XP (an auxiliary variable used to stop back propagation of TB to ¬P), and P (Penguin). The
constraints are m(InP⊃TP)=.95, m(InP⊃P)=1, m(InP⊃XP)=1, m(P⊃B)=1, m(P&XP⊃¬TB)=1
and m(P&TP⊃¬F)=1. Instantiating InP by m(InP)=1, we get m(¬F)=.95, m(B)=1 (even if
m(InB)=1 had been instantiated).



When SuperPenguin is introduced, we create nodes and links in a way that is similar to what we
did for Penguin. However, we also create S&XS⊃XP. It is needed in order to block a belief in
TB when InB is instantiated. InS instantiates S, hence P by the link S⊃S. But the variable XP
must also be instantiated to block the relation B to F at TB through the link P&XP⊃¬TB.

Table 2 summarizes some of the results one could derive according to which variables are
instantiated after the introduction of SuperPenguin (which may have a broken wing). Note the
difference between the ninth and tenth lines of Table 2. In the case of InB and ¬P, (i.e.we learn
that Tweety is a bird and we know that Tweety is not a penguin), no back propagation occurs.
Also note that both InB and InB&¬P lead to m(F) = .9. That is, ¬P does not modify our belief
about F once B is learned. This would not have been the case if we had specified the rule that the
only non typical birds are penguins (by adding m(¬TB⊃P)=1)). In fact, if we had added
m(¬TB⊃P)=1, InB&¬P would have led to m(F)=1 (i.e., we know that it is a bird and that it is
not a penguin, hence it is a typical bird, and therefore it certainly flies, as the only exception is
now impossible).

B P S F
? ? ? ? ?

InB B 1. ? ? F .9
InP B 1. P 1. ? ¬F .95
InS B 1. P 1. S 1. F .99
¬F ? ? ? ¬F 1.

InB    F B 1. ? ? F 1.
InB ¬F B 1. ? ? ¬F 1.
InP    F B 1. P 1. ? F 1.
InB ¬P B 1. ¬P 1. ¬S 1. F .9
InB InP B 1. P 1. ? ¬F .95
InB InS B 1. P 1. S 1. F .99

Table 2: Standard normal defaults. Content of this table describes the simple support functions
induced on propositions B, P, S and F according to the instantiated variables (left hand column).
Each pair corresponds to the focus and its weight. '?' represents the vacuous belief function.

The network in Figure 2 is cumbersome, but an auxiliary variable must be created each time we
want to introduce a 'unidirectional implication', i.e. a rule that will propagate beliefs in one
direction only.  Should bidirectional propagations be acceptable, many auxiliary variables and
links can be removed (the resulting network would then resemble Figure 1). That is, if we accept
that the instantiation m(InB)=1 leads to m(¬P)=.9, etc, then the network becomes much simpler.
We developed our formulation in order to show that it is possible to block all undesirable
modus tollens. For instance, InB induces a belief in TB but leaves a vacuous belief on P, even
though "usually P⊃¬TB". Furthermore when both InB and InP (or InS) are instantiated, the
flieness of Tweety is related only to its P (or S) status. Therefore our formulation satisfies the
"preference by specificity" requirement (Moinard 1990).



6. Clyde Greyness.

As a further illustration of the capacity of our construction, we now analyze the Clyde example.
One has the standard normal defaults: Circus-Elephants are Royal-Elephants, Royal-Elephants
are Elephants,  Elephants are Grey, Royal-Elephants are not Grey, Clyde is an Circus-Elephant.
What colour is he (with or without the link Circus-Elephants are Elephants)? Figure 3 presents
the implementation of this problem in MacEvidence. It concludes that Clyde is not grey
independently of the rule Circus-Elephants are Elephants. If one instantiates both InE and
Clyde, the result is still Not Grey.

InE
TE

E
G

InRE

TRE

RE

XRE

InCE

TCECE

Clyde

InCE->TCE.7InCE->CE

RE&TRE->-G

E&TE->G

CE&TCE->InRE
InRE->TRE.8

InRE->RE

InRE->XRE
RE->E

CE->E

InE->TE.9

InE->E

RE&XRE->-TE

Circue-Elephants are 
Royal-Elephants

Royal-Elephants are not Grey

Elephant are Grey

Figure 3: Clyde example.

7. Conclusions.

We have developed two formulations that correspond respectively to two forms of normal
defaults:  :A⊃B/A⊃B and A:B/B. Both formulations can be implemented in MacEvidence, a
programme that computes belief functions for any network (subject to memory capacity). The
differences between the two formulations can be found in their behaviour in back propagations.
Modus tollens applies to the first formulation, but not to the second. The choice between the two
formulations must be based on the requirements that must be satisfied in a specific application.



It is worth mentioning that our formulations might break down if used blindly. More
specifically, both formulations do not work if one tries to derive the solutions in binary logic, i.e.
by using only 0 and 1 weights. We now show that in fact the solutions found in binary logic are
the limits of our solutions as the weights given to the 'typicality' variables tend to 1.

If we specify m(TB)=1 in section 4, then by instantiating m(P)=1, we get two strictly
contradictory beliefs at the node TB: one comes from the prior m(TB)=1 and the other from P
which induces m(¬TB)=1. Nevertheless, if we initiate the pTB and pTP such that m(TB)=x and
m(TP)=y, then for all x<1 and y<1, m(B)=1 induces  m(F)=x and m(P)=1 induces m(¬F)=y. So
the limits for x and y approaching 1 are such that m(B)=1 induces m(F)=1 and m(P)=1 induces
m(¬F)=1.

Suppose that in our formulation for the standard normal defaults (see section 5), we give all the
'typicality' the weight 1. Deductions based on instantiations of InB, InP or InS are unaffected,
except inasmuch as the deduced beliefs on F will have weights equal to 1. Problems appear, for
instance, when both InB and ¬F are instantiated, as the normalization phase of Dempster's rule
of combination will not be possible at the F node. Nevertheless, for all values x = m(InB⊃TB) <
1, one gets m(F) = x. Hence the limit of m(F) for x approaching 1 is also 1.

Our two formulations are also capable of handling both hard and weak exceptions. Suppose x is
A and usually A implies B and x is an exception. With hard exceptions, the implication link
A⊃B is blocked and we have ¬B. With weak exceptions, only the implication link A⊃B is
blocked. In Figures 1 and 2, we considered  hard exceptions. To get weak exceptions, we simply
remove the links S&TS⊃F, P&TP⊃¬F.   

Finally, the modularity of our formulations is clear. Generalization is easy for other cases, e.g.
the introduction of concepts such as 'strong wings' (in which case birds are more typical and the
belief that they fly will be increased) or 'colibri' (in which case the non-typicality does not
apply). The full power of the transferable belief model can be seen when the whole structure is
generalized through the use of belief functions more elaborate than those used here. Imagine
that when I learn InB, I am not sure that B is true as the source that told me InB might be
unreliable. Many other generalizations can be described in a similar manner.
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