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Abstract

The mathematics of belief functions can be handled with the use of
the matrix notation. This representation helps greatly the user thanks to
its notational simplicity and its efficiency for proving theorems. We show
how to use them for several problems related to belief functions and the
transferable belief model.
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1 Introduction

The mathematics of belief functions is often cumbersome because of the many
summations symbols and all its subscripts. The equations are often hard to read
and might discourage potential readers for their complexity (just as combina-
torial calculus can discourage newcomers in probability theory). Most of the
operations encountered in belief function theory happen to be linear operations
and can be represented using the matrix notation (Smets, 1998; Monney, 2001).
As usual with matrices, it helps greatly for the readability of the equations and
the easiness in their manipulations. We present how matrix calculus can be used
to help those working with belief functions. This matrix representation seems
to be poorly known, even among belief function specialists, so we feel useful to
present it. No result is really new, but we feel the content of this paper can be
very useful for future work in belief function theory. Elementary knowledge of
matrix calculus is required. Proofs are trivial but tedious. Most are obtained
recursively.

1.1 Ordering the Elements of the Vectors

The belief function belΩ defined on the finite frame of discernment Ω, as well
as its related basic belief assignment (bba) mΩ, plausibility function plΩ, com-
monality function qΩ, implicability functions bΩ, can be seen as vectors in R|Ω|.
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position c b a Ω m bel pl
1 000 ∅ m(∅) bel(∅) pl(∅)
2 001 a m(a) bel(a) pl(a)
3 010 b m(b) bel(b) pl(b)
4 011 ab m(ab) bel(ab) pl(ab)
5 100 c m(c) bel(c) pl(c)
6 101 ac m(ac) bel(ac) pl(ac)
7 110 bc m(bc) bel(bc) pl(bc)
8 111 abc m(abc) bel(abc) pl(abc)

Table 1: Order of the elements of the vectors m, bel and pl when Ω = {a, b, c}.
We write ab for {a, b}, etc. . .

The order of their elements can be arbitrary, but one particular order turns out
to be extremely practical, and helps enormously in discovering the underlying
patterns encountered in the many relations we present. Furthermore it leads to
very efficient algorithms in MatLab or similar programming languages.

For pedagogical purpose, many examples are presented on the frames Ω =
{a, b, c} or Ω = {a, b}. Generalizations are immediate. In the matrices, dots
replace zeros as it enhances the matrix structure.

Let mΩ be a bba defined on the frame of discernment Ω = {a, b, c}. The
elements of mΩ are put in binary order. It means that the first element of mΩ

is the empty set, the next is {a}, the next is {b}, the next is {a, b}, etc. . . Table
1 presents what are the vectors for Ω = {a, b, c}. In general, the i-th element
of the vector v = [vi] corresponds to the set which elements are those indicated
by a 1 in the binary representation of i − 1. Suppose Ω = {ω1, ω2, . . . , ωn}.
Consider the element v14. The binary representation of 14− 1 is 1101 and the
set is thus {ω1, ω3, ω4}: so v14 = v({ω1, ω3, ω4}).

We use the following notations and conventions.

1. Matrices and vectors are written in bold types, and their elements in
normal types, like in A = [Ai,j ]. By default, the lengths of the vectors
and matrices are 2|Ω|. Vectors are column vectors.

2. 0 and 1 denote the two scalars.

3. 0 denotes the column vector of length 2|Ω| which components are 0.

4. 1 denotes the column vector of length 2|Ω| which components are 1.

5. 1A denotes the column vector of length 2|Ω| which components are 0 except
the component corresponding to A ⊆ Ω which value is 1.

6. m′ and M′ denote the transpose of the vector m and the matrix M,
respectively.

7. Diag(v) is the diagonal matrix which diagonal elements are the elements
of the v vector.

8. For two vectors u and v on the same domain, we write u ≥ v to mean
that ui ≥ vi, ∀i, and symmetrically for u ≤ v.
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J =



. . . . . . . 1

. . . . . . 1 .

. . . . . 1 . .

. . . . 1 . . .

. . . 1 . . . .

. . 1 . . . . .

. 1 . . . . . .
1 . . . . . . .


Table 2: The J matrix for |Ω| = 3. Dots replace zeros.

9. For notational simplicity sake, we write a for {a}, ab for {a, b}, abc for
{a, b, c}, etc. . . , thus a list made of some of the symbols of the elements
of Ω denotes the set that contains exactly these elements.

10. I denotes the unitary matrix, i.e., its elements are zeros except those on
the main diagonal that are ones.

11. J denotes the square matrix which elements are zeros except those on the
secondary diagonal that are ones (see Table 2). J equals its own transpose
and its own inverse: J·J = I, or equivalently J = J−1. Its major properties
are that it inverses the order of the rows of a matrix when placed before it,
the first becoming the last, etc. . . , and it inverses the order of the columns
of a matrix when placed behind it.

1.2 Belief Functions

This work in presented in the transferable belief model framework (Smets &
Kennes, 1994; Smets & Kruse, 1997; Smets, 1998). It means in particular that
belief functions are not necessarily normalized. That is, we accept that positive
masses may be given to the empty set and that bel(Ω) and pl(Ω) may be smaller
than 1, as encountered among others under the open world assumption (Smets,
1988).

Let bel be a belief function defined on a finite frame of discernment Ω (Shafer,
1976). Several functions can be defined from bel, which are all in one to one
correspondence. They are the basic belief assignment m (denoted bba), the
implicability function b, the commonality function q and the plausibility function
pl. In order to get all these relations easily accessible, we present them here.
Except when specifically mentioned by an extra line, all these relations hold for
all A ⊆ Ω.
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m− b : m(A) =
∑
B⊆A

(−1)|A|−|B|b(B) b(A) =
∑
B⊆A

m(B)

m− q : m(A) =
∑
A⊆B

(−1)|B|−|A|q(B) q(A) =
∑
A⊆B

m(B)

m− bel : m(A) =
∑
B⊆A

(−1)|A|−|B|bel(B) bel(A) =
∑

∅6=B⊆A

m(B)

m(∅) = 1− bel(Ω) bel(∅) = 0

m− pl : m(A) =
∑
B⊆A

(−1)|A|−|B|+1pl(B) pl(A) =
∑

B∩A 6=∅

m(B)

m(∅) = 1− pl(Ω) pl(∅) = 0

b− q : b(A) =
∑
B⊆A

(−1)|B|q(B) q(A) =
∑
B⊆A

(−1)|B|b(B)

b− bel : b(A) = bel(A) + m(∅) bel(A) = b(A)−m(∅)
b− pl : b(A) = 1− pl(A) pl(A) = 1− b(A)

q − bel : q(A) =
∑
B⊆A

(−1)|B|bel(B) bel(A) =
∑
B⊆A

(−1)|B|q(B)

q(∅) = 1 bel(∅) = 0

q − pl : q(A) =
∑
B⊆A

(−1)|B|+1pl(B) pl(A) =
∑

∅6=B⊆A

(−1)|B|+1q(B)

q(∅) = 1 pl(∅) = 0

bel − pl : bel(A) = pl(Ω)− pl(A) pl(A) = bel(Ω)− bel(A)

Often the domain of these functions must be made explicit, a notation maybe
cumbersome but that avoids confusions. When useful, we put the domain in
superscript as in mΩ.

1.3 The Least Commitment Principle

If a belief function is not fully defined, and the actual one belongs to a family
of belief functions, we choose the belief function that belongs to the family
and that is as least committed as possible. This principle is called the least
commitment principle (LCP). The issue is to decide what criteria must be used
to order belief functions according to their degree of ‘commitment’.

Dubois and Prade (1987) have made three proposals to order belief functions.
Let m1 and m2 be two bba’s on Ω. The statement that m1 is at least as
committed as m2 is denoted m1 vx m2 corresponding to some x-ordering where
the subscript x can take three values. One of them is based on the concept of
specialization which is explained in section 7. Then m2 is said to be x-less
committed than m1.

The proposed orderings are:

• pl-ordering. If pl1(A) ≤ pl2(A) for all A ⊆ Ω, we write m1 vpl m2

• q-ordering. If q1(A) ≤ q2(A) for all A ⊆ Ω, we write m1 vq m2
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• s-ordering. If m1 is a specialization of m2, we write m1 vs m2

where pl denotes the plausibility function and q denotes the commonality func-
tion.

Among all belief functions on Ω, the least committed belief function is the
vacuous belief function (i.e. its bba is 1Ω).

The concept of ’least commitment’ permits the construction of a partial
order on the set of belief functions (Yager, 1986; Dubois & Prade, 1986).

The Principle of Minimal Commitment consists in selecting the least com-
mitted belief function in a set of equally justified belief functions. The principle
formalizes the idea that one should never give more support than justified to
any subset of Ω. It satisfies a form of scepticism, of noncommitment, of con-
servatism in the allocation of our belief. In its spirit, it is not far from what
the probabilists try to achieve with the maximum entropy principle (Dubois &
Prade, 1987; Hsia, 1991).

1.4 The Negation of a Belief Function

Dubois and Prade (1986) defined the concept of the negation of a belief function
defined on Ω and which bba is m. The bba of the negation of m, denoted m, is
defined by:

m(A) = m(A), ∀A ⊆ Ω.

In that case, we have:

b(A) = q(A), q(A) = b(A), ∀A ⊆ Ω

where b and q denote, respectively, the implicability and the commonality
function corresponding to m.

These relations become:

m = J ·m b = J · q q = J · b

2 The Möbius Transforms

The bba is in fact the so-called Möbius transform of the belief function. All
other transformations between the m, b, q and pl functions can be put in that
family.

Suppose a bba m on Ω = {a, b, c}. The classical relation between m and b

b(A) =
∑
B⊆A

m(B), ∀A ⊆ Ω

can be represented by:
b = BfrM ·m

where m is the bba (a 2|Ω| column vector), b is the implicability function
(a 2|Ω| column vector), and BfrM is a 2|Ω| × 2|Ω| matrix which values are
BfrM(A,B) = 1 iff B ⊆ A and 0 otherwise. The full matrix is presented in
Table 3, where Ω = {a, b, c}. Thanks to the order used for the vector elements,

the pattern becomes clear. The matrix is build from the
[
1 0
1 1

]
building block.
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∅ a b a, b c a, c b, c a, b, c
∅ 1 . . . . . . .
a 1 1 . . . . . .
b 1 . 1 . . . . .

a, b 1 1 1 1 . . . .
c 1 . . . 1 . . .

a, c 1 1 . . 1 1 . .
b, c 1 . 1 . 1 . 1 .

a, b, c 1 1 1 1 1 1 1 1

Table 3: Matrix BfrM when Ω = {a, b, c}

This block would be what the BfrM would be if |Ω| = 1. To get the matrix
when |Ω| = 2, we reproduce the same block at the upper left, lower left, lower
right corner, and fill the last corner with zeros. To get the matrix when |Ω| = 3,
we use the matrix we have built at the previous step, and proceed identically.
This construction pattern is clearly indicated by the borders in Table 3. In fact,
going from a set with i elements to a set with i + 1 elements consists in mul-

tiplying the initial block
[
1 0
1 1

]
by the matrix obtained with i elements using

Kronecker multiplication.

BfrMi+1 = kron(
[
1 0
1 1

]
,BfrMi) BfrM1 = 1

or equivalently

BfrMi+1 =
[
BfrMi 0
BfrMi BfrMi

]
, BfrM0 = [1].

The code of the MatLab program that builds BfrM is given by:

BfrM =[1];
for i=1:cardinalΩ

BfrM = [BfrM zeros(2i−1);BfrM BfrM];
end

For practical purpose, the transformation matrix that transforms the Y
vector into the X vector is denoted XfrY. This order simplifies the control of the
order used for matrix multiplication, as the last letter of first term must be equal
to the first of the second term like in XfrY ·YfrZ = XfrZ, a valid relation for
all the transformations considered in this paper. In particular XfrY ·YfrX = I.

The transformations matrices between m,b and q satisfy:

BfrM : BfrM(A,B) = 1 if B ⊆ A = 0 otherwise (1)

MfrB : MfrB(A,B) = (−1)|A|−|B| if B ⊆ A = 0 otherwise (2)
QfrM : QfrM(A,B) = 1 if A ⊆ B = 0 otherwise (3)

MfrQ : MfrQ(A,B) = (−1)|B|−|A| if A ⊆ B = 0 otherwise (4)

BfrQ : BfrQ(A,B) = (−1)|B| if B ⊆ A = 0 otherwise (5)

QfrB : QfrB(A,B) = (−1)|B| if A ⊆ B = 0 otherwise (6)
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BfrM = MfrB =

1 . . . . . . .
1 1 . . . . . .
1 . 1 . . . . .
1 1 1 1 . . . .
1 . . . 1 . . .
1 1 . . 1 1 . .
1 . 1 . 1 . 1 .
1 1 1 1 1 1 1 1





1 . . . . . . .
−1 1 . . . . . .
−1 . 1 . . . . .
1 −1 −1 1 . . . .
−1 . . . 1 . . .
1 −1 . . −1 1 . .
1 . −1 . −1 . 1 .
−1 1 1 −1 1 −1 −1 1


Table 4: The matrices between m and b for |Ω| = {a, b, c}.

QfrM = MfrQ =

1 1 1 1 1 1 1 1
. 1 . 1 . 1 . 1
. . 1 1 . . 1 1
. . . 1 . . . 1
. . . . 1 1 1 1
. . . . . 1 . 1
. . . . . . 1 1
. . . . . . . 1





1 −1 −1 1 −1 1 1 −1
. 1 . −1 . −1 . 1
. . 1 −1 . . −1 1
. . . 1 . . . −1
. . . . 1 −1 −1 1
. . . . . 1 . −1
. . . . . . 1 −1
. . . . . . . 1


Table 5: The matrices between m and q for |Ω| = {a, b, c}.

All transformation can be build using one matrix, like BfrM. Given J and
BfrM that we denote hereafter B for simplicity sake, we get:

m− b : MfrB = B−1 (7)

m− q : QfrM = J ·B · J MfrQ = J ·B−1·J (8)

b− q : BfrQ = B · J ·B−1·J QfrB = J ·B · J ·B−1 (9)

In Tables 4, 5 and 6, we present these matrices when |Ω| = 3.

Just to enhance to simplicity achieved by the use of the matrix notation, we
can show, in one line, the next relation.

BfrQ = BfrM · J ·BfrM−1 · J = BfrM · J ·MfrB · J

Just think about the difficulty one would face when trying to prove it using only
detailed summations.

2.1 The Other Transformations

The bba is the pivotal function in belief function theory. The b and the q
functions are also essential, they are highly symmetrical in that b is the sum of
the masses ‘below’ and q of those ‘above’, what is a short cut to express that
b(A) is the sum of all the masses given to subsets of A and symmetrically q(A)
is the sum of all the masses given to supersets of A.

The other two functions bel and pl are mathematically less convenient as
one must always handle the empty set case. They could have been neglected if
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BfrQ = QfrB =

1 −1 −1 1 −1 1 1 −1
1 . −1 . −1 . 1 .
1 −1 . . −1 1 . .
1 . . . −1 . . .
1 −1 −1 1 . . . .
1 . −1 . . . . .
1 −1 . . . . . .
1 . . . . . . .





. . . . . . . 1

. . . . . . −1 1

. . . . . −1 . 1

. . . . 1 −1 −1 1

. . . −1 . . . 1

. . 1 −1 . . −1 1

. 1 . −1 . −1 . 1
−1 1 1 −1 1 −1 −1 1


Table 6: The matrices between b and q for |Ω| = {a, b, c}.

it where not for the fact that they represent what common sense considers as
beliefs and plausibilities.

bel = b− b(∅)1

pl = 1− J · b

so BELfrM = BfrM− b(∅)1 · 1′

2.2 Matrix Patterns

The major transforms are all based on a Kronecker multiplication based on a
2 × 2 matrix with one zero, and the other elements being 1 or -1, with the
further property that vectors with positive terms can be mapped into vector
with positive terms. Let PM be that family of matrices.

So
[
0 1
1 −1

]
is included in PM whereas

[
0 −1
1 −1

]
and

[
0 1
−1 −1

]
are not

included in PM as they always map vectors with positive terms into vectors
with at least one negative term.

The family of possible matrices in PM must satisfy:

• on the row with 0, the other term is 1

• on the row with no 0, at most one term is -1.

We list the 12 possible matrices of PM in Table 7. In fact all of them can be
derived from the BfrM = B matrix. The relation is listed atop of the matrices
in Table 7, using relations 7, 8 and 9.

3 The Fast Möbius Transform

Just as the Fourier transform is computed today using the FFT (Fast Fourier
Transform) algorithm of Cooley-Tuckey, the Möbius transform can similarly
be executed by a Fast Möbius Transform (FMT). It has been presented in
(Kennes & Smets, 1991, 1990; Kennes, 1992). It is based on the discovery that
the implicability function b can be computed from its bba m by the algorithm
presented graphically in Figure 1. Suppose a bba m on a three element frame Ω.
The column m lists the indexes of the bba vector. In fact, the index denotes the
value of the vector element corresponding to the index. So ab denotes m(a, b).
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BfrM · J MfrB · J QfrB
0 1 0 1 0 1
1 1 1 −1 −1 1
BfrM QfrB · J MfrB

1 0 1 0 1 0
1 1 1 −1 −1 1
QfrM MfrQ BfrQ · J

1 1 1 −1 −1 1
0 1 0 1 0 1
QfrM · J BfrQ MfrQ · J
1 1 1 −1 −1 1
1 0 1 0 1 0

Table 7: The possible patterns of matrices in PM .

We iteratively build vectors vi, i = 1, . . . , n of length 2|Ω|. The ‘trick’ consists
in drawing the lines in Figure 1 for n = 3. A link is drawn from every element
of vi−1 to vi (with v0 = m).

Then another link is drawn from elements 1,3,5,7 of m to the elements 2,4,6,8
of v1, from elements 1 2, 5,6 of v1 to elements 3 4,7,8 of v2, and from elements
1,2,3,4 of v2 to elements 5,6,7,8 of v3. The detailed algorithm is given in (Kennes,
1992) These links are then used as follow. The value of the element j of the next
vector is the sum of the values of those elements of the previous one connected
to j. It means in practice that there are ‘sums’ of one term and sums of two
terms.

We illustrate the computation in Figure 1. We compute the vector v1. The
values of the components of v1 are obtained by adding those values of the m
vectors that are linked to v1 by a line. So v1(∅) = m(∅), v1(a) = m(∅) + m(a),
v1(b) = m(b), v1(a, b) = m(a) + m(a, b),. . . The symbols listed in the v1 vector
indicate the subsets of m which masses are included in the v1 value. Then we
build the vector v2 by a similar method, adding the values of the v1 vectors
that are linked by a line. So v2(a, b) is obtained by adding v1(a) and v1(a, b)
hence the masses added in v2(a, b) are m(∅)+m(a)+m(b)+m(a, b) as indicated
by the labels of v2. The v3 vector is built similarly. For instance, v3(a, c) =
v2(a) + v2(a, c) = m(∅) + m(a) + m(c) + m(a, c) which is b(a, c).

The MatLab code of the transformation from m to b is given for illustrative
purpose.

v = m’;
for i = 1 : n

k = 2(n−i);
v = reshape(v,2(i−1),2(n+1−i));
v(:,(1:k)*2) = v(:,(1:k)*2) + v(:,(1:k)*2 - 1);

end
b = reshape(v,1,2n)’;

Table 8 shows the matrix decomposition that underlies the FMT, the right
most matrix performs the task of the left transformation in Figure 1, and so on.
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m v1 v2 v3

∅ ∅ ∅ ∅
a ∅+ a ∅+ a ∅+ a
b b ∅+ b ∅+ b
ab b + ab ∅+ a + b + ab ∅+ a + b + ab
c c c ∅+ c
ac c + ac c + ac ∅+ a + c + ac
bc bc c + bc ∅+ b + c + bc
abc bc + abc c + ac + bc + abc ∅+ a + b + ab + c + ac + bc + abc

ZZ

ZZ

ZZ

ZZ

e
e

ee
e

e

e
e

ee
e

e

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

Figure 1: Detail of the FMT when Ω = {a, b, c}. The symbol a denotes m(a),
ab denotes m(a, b) etc. . .

BfrM = M3 ·M2 ·M1 where

M3 =



1 . . . . . . .
. 1 . . . . . .
. . 1 . . . . .
. . . 1 . . . .
1 . . . 1 . . .
. 1 . . . 1 . .
. . 1 . . . 1 .
. . . 1 . . . 1


M2 =



1 . . . . . . .
. 1 . . . . . .
1 . 1 . . . . .
. 1 . 1 . . . .
. . . . 1 . . .
. . . . . 1 . .
. . . . 1 . 1 .
. . . . . 1 . 1



M1 =



1 . . . . . . .
1 1 . . . . . .
. . 1 . . . . .
. . 1 1 . . . .
. . . . 1 . . .
. . . . 1 1 . .
. . . . . . 1 .
. . . . . . 1 1


Table 8: Decomposition of BfrM into the matrices that underlies the FMT
when Ω = {a, b, c}. v1 = M1 ·m, v2 = M2 · v1, v3 = M3 · v2 and b = v3.

The other transformations from any of m, b, q, bel, pl into any of m, b, q, bel, pl
are obtained similarly. All details are given in (Kennes, 1992). Their MatLab
codes are available on http://iridia.ulb.ac.be/˜psmets

4 The Pignistic Transformation

When beliefs are represented by a belief function and a decision must be taken,
we show that the transformation requires to build the needed probability func-
tion consists in building the so-called pignistic probability function. The justi-
fication of this transformation is presented in (Smets & Kennes, 1994; Smets,
2002). The equation of the pignistic transformation is given by:

BetP (A) =
∑
B⊆Ω

|A ∩B|
|B|

m(B)
1−m(∅)
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We consider the matrix notation for Ω = {a, b, c}. The computation is done
as if m was normalized. If it is not the case, proceed with the computation as
such and normalize the results at the end.

We present both the relations to compute all the propositions at once, or only
those on the singletons, the other probabilities being computed from these last.
Obviously the second is computationaly more efficient. The first representation
is given in order to be complete.

The pignistic transformation becomes:

BetP = BetPfrM ·m

where BetP is the column vector which elements are BetP (A), A ⊆ Ω, and

BetPfrM =



. . . . . . . .

. 1/1 . 1/2 . 1/2 . 1/3

. . 1/1 1/2 . . 1/2 1/3

. 1/1 1/1 2/2 . 1/2 1/2 2/3

. . . . 1/1 1/2 1/2 1/3

. 1/1 . 1/2 1/1 2/2 1/2 2/3

. . 1/1 1/2 1/1 1/2 2/2 2/3

. 1/1 1/1 2/2 1/1 2/2 2/2 3/3


BetPfrM can be also represented as: BetPfrM = CardAB ·D where

CardAB =



. . . . . . . .

. 1 . 1 . 1 . 1

. . 1 1 . . 1 1

. 1 1 2 . 1 1 2

. . . . 1 1 1 1

. 1 . 1 1 2 1 2

. . 1 1 1 1 2 2

. 1 1 2 1 2 2 3



D =



. . . . . . . .

. 1 . . . . . .

. . 1 . . . . .

. . . 1/2 . . . .

. . . . 1 . . .

. . . . . 1/2 . .

. . . . . . 1/2 .

. . . . . . . 1/3


,CardA =



0
1
1
2
1
2
2
3


D = Diag(CardA−) where CardA− is the column vector which elements

are the inverse of the elements of CardA and where by definition 1/0 = 0.
The matrix CardAB and the vector CardA can be build iteratively as follows.
The i index denotes their value after having included i elements. The algorithm
proceeds for i = 1 to i = |Ω| − 1.

CardABi+1 =
[
CardABi CardABi

CardABi 1 · 1′ + CardABi

]
CardAB1 =

[
0 0
0 1

]

CardAi+1 =
[

CardAi

1 · 1′ + CardAi

]
CardA1 =

[
0
1

]
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This approach is of course computationally inefficient. It is enough to com-
pute BetP on the elements of Ω and to compute BetP (A) for A ⊆ Ω by adding
its values on the elements of A. Let betP be the column vector of length |Ω| and
which elements betP (x) are BetP ({x}) for x ∈ Ω. Then betP = betPfrM ·m
with:

betPfrM =

. 1 . 1/2 . 1/2 . 1/3
. . 1 1/2 . . 1/2 1/3
. . . . 1 1/2 1/2 1/3


The construction of betPfrM can be achieved using betPfrM = SupS ·D

where:

SupS =

. 1 . 1 . 1 . 1
. . 1 1 . . 1 1
. . . . 1 1 1 1


and SupS is built iteratively as:

SupSi+1 =
[
SupSi SupSi

0′ 1′

]
SupS1 =

[
0 1

]
where 0′ and 1′ are the line vector of appropriate length which values are all 0
or 1, respectively.

It might be worth looking if one could describe operators to build betP
directly from b or q. The matrix for betP = betPfrB · b given below does not
seem to be easily synthesized. On the contrary, the matrix betPfrQ in betP =
betPfrQ · q is very simple. betPfrQ is obtained directly from betPfrM by
multiplying by -1 the coefficients of the columns of betPfrM which index B
had an even cardinality.

betPfrB = 1/6 ·

−2 2 −1 1 −1 1 −2 2
−2 −1 2 1 −1 −2 1 2
−2 −1 −1 −2 2 1 1 2


betPfrQ =

. 1 . −1/2 . −1/2 . 1/3
. . 1 −1/2 . . −1/2 1/3
. . . . 1 −1/2 −1/2 1/3



5 The Interaction Indices Iω

Grabisch (1996) introduces the concept of interaction indices Iω for ω ⊆ Ω in
the belief function framework. Let the bba mΩ, then the interaction indices are
defined as:

Iω =
∑
A⊆ω

mΩ(ω ∪A)
|A|+ 1

∀ω ⊆ Ω. (10)

Note that when ω is a singleton of Ω and mΩ is normalized, Iω = BetPΩ(ω)
(see section 4). The pignistic transformation produces the interaction index
on the singletons, and these are just the so-called Shapley values described in
cooperative games.

Let I be the vector of the interaction indices. The matrix representation of
relation (10) is I = IfrM ·m. When |Ω| = 3, IfrM is:
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IfrM =



1/1 1/2 1/2 1/3 1/2 1/3 1/3 1/4
. 1/1 . 1/2 . 1/2 . 1/3
. . 1/1 1/2 . . 1/2 1/3
. . . 1/1 . . . 1/2
. . . . 1/1 1/2 1/2 1/3
. . . . . 1/1 . 1/2
. . . . . . 1/1 1/2
. . . . . . . 1/1


The coefficient IfrM(A,B) of IfrM is given by 1/(1 + |B ∩ A|) if A ⊆ B

and 0 otherwise. Inverse formulas are given in (Grabisch, 1996). The vectors
mΩ and I are in one to one correspondence as IfrM is not singular.

6 Transformations of bba into bba

Let MΩ be the set of bba defined on Ω. For any m1,m2 ∈ MΩ, we can define
a matrix M so that

m2 = M ·m1.

One solution is M = m2 · 1′. Indeed 1′ ·m1 = 1 and m2 · 1′ ·m1 = m2.

Definition 6.1 A stochastic matrix A = [aij ] is a square matrix with aij ≥ 0
and ∑

i

aij = 1, ∀j.

Let SMΩ denote the set of 2|Ω| × 2|Ω| stochastic matrices.

Theorem 6.1 The set of matrices that maps every element of MΩ into an
element of MΩ is SMΩ.

Proof. 1. If M ∈ SMΩ, then for all m ∈MΩ, one has M ·m ∈MΩ as all its
values are non negative and 1′ ·M ·m = 1′ ·m = 1.

2. If M /∈ SMΩ, then there is at least one column of M, let it be the A
column, where at least one element is negative, or where the sum of the elements
is not 1. Then take the bba 1A. It belongs to MΩ, and M · 1A is the A column
of M. This column vector is not a bba as either an element is negative, or their
sum is not 1. 2

Two special families of stochastic matrices are the specialization and gener-
alization matrices.

7 Specializations and Generalizations

Definition 7.1 A specialization matrix S = [s(A,B)], A, B ⊆ Ω is a stochastic
matrix which coefficients s(A,B) = 0, ∀A * B.

Definition 7.2 A generalization matrix G = [g(A,B)], A, B ⊆ Ω is a stochastic
matrix which coefficients g(A,B) = 0, ∀B * A.
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S =



1 .3 .2 .4 .4 .2 .1 .1
. .7 . .1 . .1 . .1
. . .8 .2 . . .3 .2
. . . .3 . . . .1
. . . . .6 .4 .3 .2
. . . . . .3 . .1
. . . . . . .3 .1
. . . . . . . .1


,G =



.1 . . . . . . .

.1 .3 . . . . . .

.1 . .3 . . . . .

.2 .3 .4 .6 . . . .

.1 . . . .3 . . .

.2 .3 . . .2 .8 . .

.1 . .1 . .1 . .7 .

.1 .1 .2 .4 .4 .2 .3 1


Table 9: Example of a specialization matrix S (left) and of a generalization
matrix G (right) where G = J · S · J.

These definitions result from the property that if m1 ∈MΩ and m2 = S ·m1,
then the masses of m1 ‘flow down’ into m2, by what is meant that for each
A ⊆ Ω, the mass m1(A) is distributed among the subsets of A when building
m2. An important consequence of this property is that b2 ≥ b1 and q2 ≤ q1.

The generalization is doing just the reverse, masses ‘flow up’. Table 9
presents a specialization matrix and a generalization matrix.

Theorem 7.1 Let m1 ∈ MΩ, S be a specialization matrix and G be a gener-
alization matrix. Let m2 = S ·m1 and m3 = G ·m1. Then: b2 ≥ b1,q2 ≤ q1

and b3 ≤ b1,q3 ≥ q1.

Proof. This theorem is proved in (Dubois & Prade, 1987). We only prove the
first inequality using the matrix notation.

Let m1 ∈ MΩ, S be a specialization matrix and m2 = S · m1. One has
b2 = BfrM ·m2 = BfrM · S ·m1. We must prove b2 ≥ b1 = BfrM ·m1.

The colums of S are bba’s which masses are given only to the subsets of the
column index. Let mB be the B column of S. The B column of BfrM · S is
the implicabilty function bB built from the bba’s mB with the property that
bB(B) = 1.

The elements of BfrM satisfy BfrM(A,B) = 1 if B ⊆ A and 0 otherwise
(see relation 1). As bB(B) = 1, we also have bB(A) = 1 whenever B ⊆ A. Hence
for every X ⊆ Ω, we have bB(A) ≥ BfrM(A,B).

In that case, b2(A) =
∑

B⊆Ω bB(A)m1(B) ≥
∑

B⊆Ω BfrM(A,B)m1(B) =
b1(A), proving thus the first inequality. The others are proved similarly. 2

Given any pair m1,m2 ∈MΩ, we can always find a specialization matrix S
and a generalization matrix G such that m2 = S ·G ·m1. For instance let all
columns of G be made of vector 1Ω, the Ω column of S be m2, and the other
columns be the vector 1∅. With Ω = {a, b}, it becomes:

m2 =


1 1 1 m2(∅)
. . . m2(a)
. . . m2(b)
. . . m2(Ω)

 ·


. . . .

. . . .

. . . .
1 1 1 1

 ·m1

Similarly for any pair m1,m2 ∈ MΩ, we can always find a specialization
matrix S and a generalization matrix G such that m2 = G ·S ·m1. For instance
let all columns of S be made of vector 1∅, and the ∅ column of G be m2, and
the other columns be the vector 1Ω. With Ω = {a, b}, it becomes:
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m2 =


m2(∅) . . .
m2(a) . . .
m2(b) . . .
m2(Ω) 1 1 1

 ·


1 1 1 1
. . . .
. . . .
. . . .

 ·m1

As we can see, the transformation of any bba can thus be achieved either by
a stochastic matrix or by a pair of specialization and generalization matrices.

7.1 Iterations

It is easy to prove that the specialization of a specialization is a specialization,
and the same with generalizations. This results from the fact that both matrices
are triangular matrices.

Theorem 7.2 Let S1 and S2 be two specialization matrices on Ω, then S1 · S2

is a specialization matrix on Ω.

Theorem 7.3 Let G1 and G2 be two generalization matrices on Ω, then G1·G2

is a generalization matrix on Ω.

Other interesting theorems are listed below.

Theorem 7.4 If S is a specialization matrix on Ω, then J · S · J is a general-
ization matrix on Ω. If G is a generalization matrix on Ω, then J ·G · J is a
specialization matrix on Ω.

Theorem 7.5 The set of specialization and generalization matrices on Ω are
in one-to-one correspondence.

Theorem 7.6 The determinants of a specialization and of a generalization ma-
trix are the product of their diagonal terms, respectively.

Theorem 7.7 If S = J ·G · J or G = J · S · J, then the determinants of S and
G are equal.

Sketches of the proofs are as follows. Theorem 7.4 results from the double
mirror inversion that corresponds to the double J operation. Theorem 7.5 results
from the previous one as J is not singular. Theorem 7.6 is a property of any
triangular matrix. Theorem 7.7 results from the fact that the determinant of J
is 1.

8 Revision

The revision of a bba m1 by a new piece of evidence Ev can always be repre-
sented by a stochastic matrix M(Ev,m1) that transforms m1 into m1[Ev]:

m1[Ev] = M(Ev,m1) ·m1.

If the value of the matrix depend only on Ev and not on m1, we can write:

m1[Ev] = M(Ev) ·m1.
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In that case we say that the piece of evidence that induced m1 and Ev are
‘distinct’pieces of evidence. We think this is indeed what was meant by the
‘distinctness’ requirement encountered in belief function theory.

In some cases M(Ev) is a specialization or a generalization matrix.
When the revision is a specialization (generalization) we call it a conjunctive

(disjunctive) revision as beliefs become more concentrated, (more diffused). The
terms come from the analogy with the AND that create ‘smaller’ sets and the
OR that create ‘larger’ sets.

We say that m2 is a specialization of m1 if there exists a specialization
matrix S so that m2 = S ·m1.

We say that m2 is a generalization of m1 if there exists a generalization
matrix G so that m2 = G ·m1.

9 Dempster’s Rule of Conditioning

Suppose a bba m1 and let S(m1) be the set of bba that are specializations of m1:
S(m1) = {m : ∃ a specialization S,m = S ·m1}. In that set consider the bba
m2 that are specializations of m1 such that pl2(A) = 0, and among them select
the least committed element m∗. Thus b∗ ≤ b, ∀m ∈ S(m1) with pl(A) = 0.

The solution m∗ is unique and well known (Klawonn & Smets, 1992): it is
what is produced by Dempster’s rule of conditioning (without the normalization)
when conditioning on A. We have:

m∗(B) = m1[A](B) =
∑
C⊆A

m1(B ∪ C), ∀B ⊆ A.

The other masses are 0. Note that we write the conditioning event between [
and ] (for any of m,b,q,bel,pl). This helps as m[X] is thus a vector, whereas
with classical notation we would have had to write m(.|X) or m(|X), what we
feel inaesthetical and sometimes confusing.

The corresponding specialization matrix is given for Ω = {a, b, c} and A =

{a, b} by



1 . . . 1 . . .
. 1 . . . 1 . .
. . 1 . . . 1 .
. . . 1 . . . 1
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .


This shows that the revision achieved by Dempster’s rule of conditioning

corresponds to generating the least committed belief function that is a special-
ization of the initial bba and so that the plausibility of A becomes 0. These
are exactly what conditioning on A is about, A being impossible, its plausibility
must become 0, and the conditioning event being all we know we select the least
committed solution.

The dual of this ‘conditioning’ operator is obtained by the next generaliza-
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tion matrix



. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .
1 . . . 1 . . .
. 1 . . . 1 . .
. . 1 . . . 1 .
. . . 1 . . . 1


This corresponds to a form of deconditioning on {a, b}. The masses m1(X)

for X ⊆ {a, b} are transferred to X∪{c}. This is what we get if we start by con-
ditioning on c, then decide to backtrack, to cancel the conditioning revision, but
all we can do it to take the least committed bba among all the generalizations
of m1 that satisfy pl2(c) = 1. This deconditioning process is not often encoun-
tered in probability theory as in that context, it cannot be realized without
introducing some further assumptions.

Some properties are easily expresses and proved. Let CA (DA) be the matrix
representing the conditioning (deconditioning) on A :

• CA ·CB = CA∩B

• CA ·CA = CA

• DA ·DB = DA∪B

• DA ·DA = DA

• CA ·DA = CA

• DA ·CA = DA

• CA ·DA ·CA = CA

• DA ·CA ·DA = DA

The last two equalities show that CA and DA are each other generalized inverses.

10 Conjunctive and Disjunctive Rules of Com-
bination

Conjunctive revision of a bba by a distinct piece of evidence is achieved by a
specialization matrix. Suppose we have several pieces of evidence and each is
represented by a specialization matrix. A really conjunctive combination rule
should satisfy commutativity and associativity requirements, the order under
which the revisions are applied does not change the results.

The family of commutative and associative specialization matrices that con-
tains the set of conditioning specialization is called the set of Dempsterian spe-
cialization matrix. In (Klawonn & Smets, 1992), we derive its structure.

Let m1,m2 ∈ MΩ, and let the specialization matrix Sm2 be such that
sm2(A,B) = m2[B](A). Then Sm2 ·m1 = m2 ∩©m1 hence what is obtained by
conjunctive combination rule (which is equal to Dempster’s rule of combination
except for the normalization).
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S =



1.0 .70 .50 .37 .50 .30 .15 .10
. .30 . .13 . .20 . .05
. . .50 .33 . . .35 .20
. . . .17 . . . .15
. . . . .50 .40 .35 .27
. . . . . .10 . .08
. . . . . . .15 .13
. . . . . . . .02



G =



.10 . . . . . . .

.05 .15 . . . . . .

.20 . .30 . . . . .

.15 .35 .20 .50 . . . .

.27 . . . .37 . . .

.08 .35 . . .13 .50 . .

.13 . .40 . .33 . .70 .

.02 .15 .10 .50 .17 .50 .30 1.0


Table 10: Example of a dempsterian specialization matrix S and a dempsterian
generalization matrix G.

S = MfrQ ·



1.0 . . . . . . .
. .30 . . . . . .
. . .50 . . . . .
. . . .17 . . . .
. . . . .50 . . .
. . . . . .10 . .
. . . . . . .15 .
. . . . . . . .02


·QfrM

Table 11: The eigenvalues-eigenvectors decomposition of S of Table 10.

So we can justify the conjunctive combination rule from the commutativity
and associativity requirements, assuming that conditioning is a special form of
conjunctive combination rule.

Similar results are derived for the disjunctive combination rule: we just
replace specialization by generalization, and conditioning by deconditioning.

Table 10 presents the dempsterian specialization and generalization matrices
built from m ∈M{a,b,c}, where m is the Ω column of S and the ∅ column of G.

10.1 Eigenvalues and Eigenvectors

Let Sm be the dempsterian specialization matrix generated by m ∈ MΩ. The
matrix with the eigenvectors of Sm is the QfrM matrix (that does not depend
on m), and the eigenvalues of Sm are the elements of the commonality function
q related to m (Klawonn & Smets, 1992). The q values happens also to be the
elements of the diagonal of Sm. This results from the equality q(A) = m[A](A).
This of course explains the importance of the commonality functions when con-
junctive combination rules are involved. Table 11 presents the decomposition
for the S matrix of Table 10.
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G = MfrB ·



.10 . . . . . . .
. .15 . . . . . .
. . .30 . . . . .
. . . .50 . . . .
. . . . .37 . . .
. . . . . .50 . .
. . . . . . .70 .
. . . . . . . 1.0


·BfrM

Table 12: The eigenvalues-eigenvectors decomposition of G in Table 10.

The matrix representation of the conjunctive combination rule becomes:

q1 ∩©2 = QfrM ·m1 ∩©2

= QfrM · Sm1 ·m2

= QfrM ·MfrQ ·Diag(q1) ·QfrM ·m2

= Diag(q1) · q2

The same holds with the dempsterian generalization matrix generated by
m ∈ MΩ. The matrix with the eigenvectors of Gm is the BfrM matrix, and
the eigenvalues of Gm are the elements of the implicability functions b related
to m (Klawonn & Smets, 1992). The b values happens to be the elements of
the diagonal of Gm. This explains the importance of the implicability func-
tions when disjunctive combination rules are involved. Table 12 presents the
decomposition for the G matrix of Table 10.

The matrix representation of the disjunctive combination rule becomes:

b1 ∪©2 = BfrM ·m1 ∪©2

= BfrM ·Gm1 ·m2

= BfrM ·MfrB ·Diag(b1) ·BfrM ·m2

= Diag(b1) · b2

10.2 De Morgan Algebra

Theorem 10.1 Let m1,m2 ∈MΩ. Then:

m1 ∩©m2 = m1 ∪©m2

and
m1 ∪©m2 = m1 ∩©m2,

where the overline indicates the negation operator.
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Proof.

m1 ∩©m2 = J ·m1 ∩©m2

= J · Sm1 ·m2

= J ·MfrQ ·Diag(q1) ·QfrM ·m2

= J ·MfrQ · J · J ·Diag(q1) · J · J · q2

= MfrB ·Diag(b1) · b2

= MfrB · b1 ∪©b2

= m1 ∪©m2

as J ·Diag(q1) · J = Diag(b1), J · q2 = b2, and J ·MfrQ · J = MfrB. The
second part is proved similarly. 2

The use of the matrix notation really simplifies the proof.

11 Canonical Representations

A simple support function is a belief function which masses are all 0 except for
one subset of Ω and for Ω itself, the last two masses being positive and adding
to 1. The non Ω set is called the focal set of the simple support function. A
simple support function with focal set X ⊆ Ω and weight wX which is the mass
given to Ω is denoted as XwX .

A separable bba is defined as a bba that can be represented as the result of
the conjunctive combination of simple support functions.

A non-dogmatic bba is a bba so that m(Ω) > 0.
The inverse of the ∩© operator, denoted ∩© is defined for non-dogmatic bba

m2 as follows:
q1 ∩©2(X) = q1(X)/q2(X), ∀X ⊆ Ω

In (Smets, 1995), we prove that any non-dogmatic bba can be represented
as follows:

m = mC ∩©mD

where mC and mD are separable bba and their underlying simple support func-
tions are defined on different focal sets:

mC = ∩©X⊆Ω+
XwX

mD = ∩©X⊆Ω−
XwX

and Ω+,Ω− ⊆ 2Ω with Ω+ ∩ Ω− = ∅.
The algorithm to compute the wX happens to be a Möbius transform applied

to the logarithm of the commonality function. Let lq(X) = log(q(X)), ∀X ⊆ Ω.
As the bba is non-dogmatic, q > 0, and thus lq is well defined. Then the vector
lw which elements are the logarithm of the wX is given by:

lw = −MfrQ · lq.

They can thus be computed using the FMT.
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The theory can be extended to dogmatic bba, but it requires subtleties out
of focus here. The idea is to put an epsilon on Ω, to work with it and to take
limits for epsilon going to 0.

Similar results are obtained with disjunctive decompositions, and even with
α-junctive decompositions.

12 The α-junctions

In (Smets, 1997), we study the set of possible linear fusion - aggregation oper-
ators.

Let m1 and m2 be two bba on Ω. We want to build a bba m12 such that
m12 = f(m1,m2), thus m12 depends only of m1 and m2. Thus we want to
determine what are the operators that map MΩ×MΩ to MΩ and that satisfy
the next requirements.

1. Linearity: f(m, pm1 + qm2) = pf(m,m1) + qf(m,m2), p ∈ [0, 1], q =
1− p

2. Commutativity: f(m1,m2) = f(m2,m1).

3. Associativity: f(f(m1,m2),m3) = f(m1, f(m2,m3)).

4. Existence of a belief function mvac such that f(m,mvac) = m for any m.

5. Anonymity: relabeling the elements of Ω does not affect the results.

6. Context preservation: if pl1(X) = pl2(X) = 0 for some X ⊆ Ω, then
pl12(X) = 0.

The origin of these requirements is as follows.

1. Linearity: with probability p, You are in context C1, in which case Your
belief is represented by m1, and with probability q = 1 − p, You are in
context C2, in which case Your belief is represented by m2. Your belief
before knowing the context You are in is pm1 + qm2 (proved in (Smets
& Kennes, 1994)). You can then combine this belief with m. But You
can also consider that with probability p (q) You are in context C1 (C2)
in which case the result of the combination is f(m,m1), (f(m,m2)), and
You can then take their weighted average. The two results should be the
same. The consequence is that we will end up with matrices.

2. Commutativity: the order of the combination is irrelevant.

3. Associativity: the order under which bba’s are combined is irrelevant.
Thus the family of acceptable matrices is strongly limited.

4. The belief function mvac is a bba which combination with any other bba
leaves Your beliefs unchanged. We thus have a zero element.

5. Anonymity: the results do not depend on the label given to the elements.
Hence combination and permutation commute.

6. Context preservation: if X is not plausible for both bba’s, X remains not
plausible after their combination. This implies many zeros in the matrices.
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The solutions are stochastic matrices and the operation is called an α-
junction (as, among others, it will cover both conjunctions and disjunctions).
We have (for proofs; see (Smets, 1997)):

m12 = K(m1) ·m2

where
K(m1) =

∑
X⊆Ω

m1(X) ·KX

.
The structure of the 2|Ω| × 2|Ω| matrices KX depends on mvac and of one

parameter α ∈ [0, 1]. We prove that there are only two solutions for mvac:
either mvac = 1Ω or mvac = 1∅. So there are only two sets of solutions, which
will even satisfy De Morgan’s laws.

The eigenvalues - eigenvectors decomposition of KX is given by KX = G−1 ·
VX ·G where interestingly the G matrix does not depend on X. If we define
g = G · m, then g12(X) = g1(X)g2(X) for all X ⊆ Ω. This is the analogous
of the pointwise product rule used with the commonality functions and the
implicability functions to compute the conjunctive combination rule and the
disjunctive combination rule, respectively.

We present the two sets of solutions.

12.1 The Conjunctive Case: mvac = 1Ω

The only matrices that satisfy all the above requirements with mvac = 1Ω are
given below, where α ∈ [0, 1] and is constant for all KX and VX . Their formal
definitions are quite laborious, so we present them in the example 12.1. Their
patterns are in fact quite simpler than what the equations might lead to think.

KΩ = I VΩ = I

K{x} = [kx(A,B)] V{x} = [vx(A,B)] ∀x ∈ Ω

KX =
∏
x/∈X

K{x} VX =
∏
x/∈X

V{x} ∀X ⊆ Ω

where

kx(A,B) vx(A,B)
= 1 if x /∈ A,B = A ∪ {x} = 1 if x /∈ A,A = B

= α if x /∈ B,B = A = α− 1 if x ∈ A,A = B

= 1− α if x /∈ B,A = B ∪ {x} = 0 if A 6= B

= 0 otherwise

The X column of the 2|Ω| × 2|Ω| G matrix is VX · 1.
We denote by K∩,α(m) the matrix K(m) computed above. When α = 1,

K∩,1(m) become the dempsterian specialization matrix and K∩,1(m1) ·m2 =
m1 ∩©m2. This is why we use the ∩ index.

The case α = 0 corresponds to the combination rule

m12(Z) =
∑

Z=(X∩Y )∪(X∩Y )

m1(X)m2(Y ).

22



This would be the combination rule to be used when combining two distinct
pieces of evidence such that all You know is that either both are reliable or
none are reliable.

Example 12.1. : We present the various matrices when Ω = {a, b} where
α = 1− α.

K{a} =


α 1 . .
α . . .
. . α 1
. . α .

 ,K{b} =


α . 1 .
. α . 1
α . . .
. α . .

 ,K∅ =


α2 α α 1
αα . α .
αα α . .
α2 . . .



V{a} =


1 . . .
. −α . .
. . 1 .
. . . −α

 ,V{b} =


1 . . .
. 1 . .
. . −α .
. . . −α



V∅ =


1 . . .
. −α . .
. . −α .
. . . α2

 ,G =


1 1 1 1
−α 1 −α 1
−α −α 1 1
α2 −α −α 1


In particular we have:

m12 = m1(∅)


α2 α α 1
αα . α .
αα α . .
α2 . . .

m2 + m1(a)


α . 1 .
. α . 1
α . . .
. α . .

m2

+m1(b)


α 1 . .
α . . .
. . α 1
. . α .

m2 + m1(Ω)I ·m2

12.2 The Disjunctive Case: mvac = 1∅

The only matrices that satisfy all the above requirements with mvac = 1∅ are
given below, where α ∈ [0, 1] and is constant for all KX and VX .

K∅ = I V∅ = I

K{x} = [kx(A,B)] V{x} = [vx(A,B)] ∀x ∈ Ω

KX =
∏
x∈X

K{x} VX =
∏
x∈X

V{x} ∀X ⊆ Ω
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where

kx(A,B) vx(A,B)
= 1 if x /∈ B,A = B ∪ {x} = 1 if x /∈ A,A = B

= α if x ∈ B,B = A = α− 1 if x ∈ A,A = B

= 1− α if x /∈ A,B = A ∪ {x} = 0 if A 6= B

= 0 otherwise

The X column of G is VX · 1.
We denote by K∪,α(m) the matrix K(m) computed above. When α = 1,

K∪,1(m) become the dempsterian generalization matrix and K∪,1(m1) ·m2 =
m1 ∪©m2. This is why we use the ∪ index.

The case α = 0 corresponds to the combination rule

m12(Z) =
∑

Z=X∪Y

m1(X)m2(Y )

where ∪ is the exclusive OR. This would be the combination rule to be used
when combining two distinct pieces of evidence such that all You know is that
one is reliable and the other is not, but You don’t know which one is the reliable
one.

Example 12.2. : We present the various matrices when Ω = {a, b} where
α = 1− α.

K{a} =


. α . .
1 α . .
. . . α
. . 1 α

 ,K{b} =


. . α .
. . . α
1 . α .
. 1 . α

 ,KΩ =


. . . α2

. . α αα

. α . αα
1 α α α2



V{a} =


1 . . .
. −α . .
. . 1 .
. . . −α

 ,V{b} =


1 . . .
. 1 . .
. . −α .
. . . −α

 ,

VΩ =


1 . . .
. −α . .
. . −α .
. . . α2

 ,G =


1 1 1 1
1 −α 1 −α
1 1 −α −α
1 −α −α α2


12.3 De Morgan Laws

The De Morgan laws can be applied to the α-junction operators, where J plays
the role of the negation.

Theorem 12.1 For m ∈MΩ, α ∈ [0, 1],

K∩,α(m) = J ·K∪,α(J ·m) · J.
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Theorem 12.2 Suppose mi = m[Evi], for i = 1, 2, m[Evi∩αEv2] = K∩,α(m1)·
m2, and m[Evi ∪α Ev2] = K∪,α(m1) ·m2, then

m[¬(Ev1 ∩α Ev2)] = m[¬Ev1 ∪α ¬Ev2]

and
m[¬(Ev1 ∪α Ev2)] = m[¬Ev1 ∩α ¬Ev2]

Proof.

m[¬(Ev1 ∩α Ev2)] = J ·m[Ev1 ∩α Ev2]
= J ·K∩,α(m1) ·m2

= J · J ·K∪,α(J ·m1) · J ·m2

= m[¬Ev1 ∪α ¬Ev2]

The second property is proved similarly.
2

This theorem enhances the De Morgan duality between negated pieces of
evidence and the conjunctive and disjunctive forms of the α-junctions.

12.4 Interpretation

The cases K∪,α and K∩,α for α = 0 or 1 have a meaning as already explained.
The practical meaning of these operators for the other α values in unclear.

13 Conclusions

We have presented how to handle the belief functions computations using matrix
notations. As usual, this method greatly simplifies representation and compu-
tation. The order we use to represent basic belief assignment as vectors is in
fact very important as it really simplifies matters.

Using this matrix notation, we show how classical relations described in be-
lief function theory and in the transferable belief model are represented, that
is to say, the Möbius transforms, the Fast Möbius transform, the specializa-
tion and generalization, the conditioning, the conjunctive combination rule and
disjunctive combination rule, the pignistic transformation, the canonical decom-
position, the α-junctions. We think researchers in belief functions will be helped
by this notation and by the theorems presented here under this highly efficient
form.
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