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Abstract:
Jeffrey’s rule of conditioning has been proposed in
order to revise a probability measure by another
probability function. We generalize it within the
framework of the models based on belief
functions. We show that several forms of Jeffrey’s
conditionings can be defined that correspond to the
geometrical rule of conditioning and to
Dempster’s rule of conditioning, respectively.

1. Jeffrey’s rule in probability theory.

In probability theory conditioning on an event is
classically obtained by the application of Bayes’ rule.  Let
(Ω, A , P) be a probability space where P(A) is the
probability of the event A∈ A  where A  is a Boolean
algebra defined on a finite2 set Ω.  P(A) quantified the
degree of belief or the objective probability, depending on
the interpretation given to the probability measure, that a
particular arbitrary element ϖ of Ω which is not a priori
located in any of the sets of A  belongs to a particular set
A∈ A.  Suppose it is known that ϖ belongs to B∈ A  and
P(B)>0. The probability measure P must be updated into
PB that quantifies the same event as previously but after
taking in due consideration the knowledge that ϖ∈ B. PB
is obtained by Bayes’ rule of conditioning:

PB(A) = P(A | B) =  
P(A∩B)

P(B)
.

This rule can be obtained by requiring that:

B1:  ∀ B∈ A ,   PB(B) = 1

B2:  ∀ B∈ A , ∀ X,Y∈ A  such that X,Y”B,
PB(X)
PB(Y)

 =  
P(X)
P(Y)

  if P(Y)>0

and PB(Y) = 0 if P(Y) = 0.

Jeffrey (1965) has considered a generalization of Bayes’
rule where the updating information does not  correspond

1 This work has been partially funded by the CEC-ESPRIT III
Basic Research Project 6156 (DRUMS II), and the
Communauté Française de Belgique, ARC 92/97-160
(BELON).
2 For simplicity sake, we only consider finite spaces.

to the knowledge that ϖ∈ B, which implies that the
updated probability should give a probability 1 to B (see
B1), but to the weaker requirement that there is a new
probability measure on a sub-algebra B of A , and the
updated probability should give these probability weights
to the elements of B .

Let (Ω, A , P1) be the initial probability space. Let B be
a subalgebra of A . Let (Ω, B , P2 ) be the new
probability space. P2 corresponds to the updating
information that in fact ϖ  belongs to X∈ B  with
probability P2(X).  The problem is to update P1 into
some P3 defined on A  and such that P3(X) = P2(X)
∀ X∈ B. P3 is the result of revising P1 by the probability
measure P2, adopting P2 wherever P2 is defined.

Bayes’ rule corresponds to the limiting case where one of
the atoms3 of B receives a probability one, i.e. there is
one atom B of B  with P2(B) = 1. Bayes’ rule tells
nothing on how to build P3 from P1 and P2 in the
generalized case. Let b  = {B1, B2...Bn} be the set of
atoms on B. Jeffrey requires that P3 should satisfy two
requirements:

R1: ∀ X∈ B,   P3(X) = P2(X)

R2: ∀ B∈ b, ∀ X,Y∈ A  such that X,Y”B,
P3(X)
P3(Y)

 =  
P1(X)
P1(Y)

 if P1(Y)>0

and P3(Y) = 0 if P1(Y) = 0.

These two requirements lead to Jeffrey’s rule of
conditioning:

P3(A) = ∑
B∈ b

  P1(A|B) P2(B)

= ∑
B∈ b

 
P1(A∩B)

 P1(B)
 P2(B)

where P1(A|B) = 0 if P1(B) = 0.

3 An atom of an algebra is a non empty element of the
algebra which intersection with the other elements of the
algebra equals itself or is empty. When the algebra is a power
set, the atoms are the singletons.
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In this paper, we generalize this rule in a context where
beliefs are quantified by belief functions. Before
introducing the generalized Jeffrey rules of conditioning,
we present the concepts of revision and focusing.
Depending on the type of conditioning event, revision
leads to several rules, in particular the geometrical rule
and Dempster's rule of conditioning. Both admit a
generalization in the spirit of Jeffrey’s rules of
conditioning. Multiplicity of conditioning rules was
already presented in Smets (1991). Previous attempts to
generalize Jeffrey’s rules of conditioning are discussed in
the conclusions.

2. Revision versus focusing.

1. Dubois and Prade (1991a) have introduced beautifully
the difference between two types of conditioning :

Case 1. A die has been tossed. You assess the
probability that the outcome is ‘Six’. Then a reliable
witness says that the outcome is an even number. How do
you update the probability that the outcome is ‘six’
taking in due consideration the new piece of information.

Case 2. Hundred dice have been tossed. You assess the
proportion of ‘six’. Then you decide to focus your interest
on the dice with an even outcome. How do you compute
the proportion of ‘six’ among the dice with an even
outcome.

Case 1 corresponds to a revision4  as the probability is
modified to take in account a new piece of information.
Case 2 corresponds to a focusing : no new piece of
information is introduced, we just consider another
reference class by focusing our attention on a given subset
of the original set.

In probability theory, the distinction is more conceptual
than practical as both cases are solved by Bayes’ rule of
conditioning. It might explain the lack of interest for such
a distinction. We restrict ourselves to the revision case
and study what happens when probability measures are
replaced by belief functions like in the Transferable Belief
Model (Smets, 1988, Smets and Kennes, 1990), in
Dempster-Shafer Model (Shafer, 1976a) and in the Hints
Model (Kohlas and Monney, 1990).

2. We consider first the probability of provability
(deductibility) approach (Pearl 1988, Ruspini 1986).  It is
not different from the original Dempsterian approach

4 In Dubois and Prade (1991), they called it an ‘updating’ but
they prefer to call it now (Dubois and Prade 1992) a revision
in harmony with the Alchouroron, Gärdenfors and Makinson
approach (Gärdenfors, 1988) where revision concerns the
beliefs held by an agent. They reserve ‘updating’ for the case
considered by Katsuno and Mendelzon (1991) that concerns
the update of an evolving world.

(Dempster 1967) but it provides a nice framework. It can
be described as follows.

Let H  be a finite Boolean algebra of propositions. These
propositions are called the hypothesis. Let L be another
finite Boolean algebra of propositions. We assume that
for every hypothesis H∈ H  there is a set l (H) = {Li:
Li∈ L, i=1, 2..r} of propositions Li provable under H.
Let M(H) = L1&L2...&Lr be the conjunction of all these
propositions in l(H). M(H)∈ L as L  is a Boolean
algebra. M is a function from H  to L.

So: ∀ H∈ H, ∃ M(H)∈ L such that
HL for every L∈ L  such that M(H)L.

Suppose there is a probability measure PH :2H→[0,1] on
2H and let pH :H→ [0,1] be the related probability
function on H  with pH (H) = PH ({H}) for every H∈ H .
Note that H  is already an algebra, usually the power set
of some set. As ⊥∈ H , pH (⊥ ) may be positive.

Given the function M:H → L , we can define the
probability PL that L∈ L is provable (deductible) and ¬L

is not provable, denoted PL ( >L). We use the symbol

> in H>L to mean HL and H/¬L, and in PL ( >L) to
enhance the fact that those H that would also prove ¬L are
not included in it. PL ( >L) is the probability that an
hypothesis selected randomly in H  (according to the
probability measure PH) proves L and does not prove ¬L
(thus eliminating the hypothesis equivalent to the
contradiction, denoted ⊥ ):

PL ( >L) = PH ({H : H∈ H , H>L}) = ∑
H |->L

  pH (H)

Let bel:L→[0,1] be the belief function5 on L induced by
a basic belief assignment m on L. By definition bel(L) is
the sum of the basic belief masses given to the
propositions that imply L without implying ¬L (thus
excluding ⊥ ):

bel(L) =  \i\su(X:X∈ L , X  |\ D \ B A 2 ( )-
>L,,      m(X))

It can be shown that PL ( >L), L∈ L is equal to the belief
function belL  on L  induced by the basic belief
assignment mL :L→[0,1] with:

mL (L) = ∑
H:M(H)=L

    pH (H) 

and mL(L) = 0 if the sum is taken over an empty set.

5 bel is an unnormalized belief function as we do not require
m(⊥ )=0 (Smets 1988, 1992a). When m(⊥ )>0, then bel(T) =

pl(T) <1.
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One has: 
PL ( >L) = ∑

H:H |->L
  pH (H)  = ∑

H:M(H) |->L
     pH (M(H))

=  ∑
Li |->L

    ∑
H:M(H)=Li

     pH (H))=  ∑
Li |->L

  mL (Li)

So: PL ( >L) =  belL (L).

Similarly the plausibility function plL is:

plL (L) = belL(T) - belL(¬L) = ∑
X&L≠⊥

    mL (X)

where T is the maximal element of L.

This model is not different from Dempster’s model
(Dempster 1967) and Shafer’s translator model (Shafer and
Tversky 1985, Dubois et al. 1991). Both models consider
an X domain (the translator-source domain) endowed with
a probability measure, a Y domain (the message-data
domain) and a one-to-many mapping from X to Y. The H
space corresponds to the X domain, the L to the Y, the
M mapping to the one-to-many mapping, and PH  to the
probability on X space.

3. We proceed by considering two revision processes that
correspond to some data-conditioning and some source-
conditioning, i.e. conditioning on an information relative
to the data or the source (Moral 1993)

3.1. The data-conditioning fits to the scenario where we
learn that a particular proposition L* of L is true. In that
case, the hypothesis H that was proving all the
propositions in L proved by M(H) now proves all
propositions in L proved by M(H)&L*. The basic belief
assignment mL  is updated into mL* with:

mL*(L) =  ∑
H:M(H)&L*=L

      pH (H)

As ∀ LL*, L&L*=L , one has:

plL*(L) = ∑
X&L≠⊥

    mL *(X))

=  ∑
X:X&L≠⊥

     ∑
H:M(H)&L*=X

      pH (H))

=  ∑
H:M(H)&L&L*≠⊥

       pH (H)    =    plL (L)

This relation corresponds to the unnormalized rule of
conditioning (Dempster's rule of conditioning without
normalization (Smets 1993a)). Normalization is achieved
by further conditioning on L being not equivalent to a
contradiction.

3.2. The source-conditioning fits with the following
scenario. Given L*∈ L , we consider only those
hypothesis H that prove L* (without proving ¬L*) and

ask what is then the probability that L is provable for all
L∈ L that prove L*. Therefore we restrict our attention to
those H∈ H such that HL*, H/¬L*. Let PL * * (>L) be
the probability that L is provable by one of those
hypothesis that prove L*. Then:

PL * * (>L) = PH(H: H>L | HL * )

= 
PH( H :  H>L&L*)

PH ( H :  H>L*)

= 
PH ( H :  H>L)

PH ( H :  H>L*)

= 
belL(L&L*)

belL(L*)

This is known as the geometrical rule of conditioning
(Shafer 1976b, Suppes and Zanotti, 1977).

3.3. When M(H) is an atom of L for every H∈ H , the
whole model collapses into a classical probability model
and the two conditionings (after appropriate
normalization) degenerate into the classical Bayes’ rule of
conditioning.  Identically if whenever HL ∨ L* then
either HL or HL*, then belL  is a probability function
(Smets 1993b).

4. Note : This derivation based on the probability of
provability covers the cases generally considered by
Dempster-Shafer theory (Dempster 1967), but not all
those considered by the transferable belief model (TBM)
where the probability measure on a hypothesis space is
not necessarily assumed.

Dempster-Shafer theory has been criticized by the
Bayesians as inappropriate: they claim that the
conditioning by Dempster's rule of conditioning is
inadequate. A strict Bayesian will claim the existence of a
probability measure PH xL on the product space H xL

and ask for the application of Bayes’ rule of conditioning
on PH xL, and then the marginalization of the result on
L. Of course, the available information consists only on
the marginalization of PH xL on H . The conditioning
process cannot be achieved in general by lack of
appropriate information. Only upper and lower conditional
probabilities can be computed (Fagin and Halpern, 1990,
Jaffray, 1992). Dempster's rule of conditioning is then
inappropriate (Levi, 1983).

The only way to avoid the Bayesian criticisms consists in
rejecting the probability measure on the product space
HxL i.e. not accepting the Bayesian dogma that there
exists a probability measure on ANY and EVERY space.
Rejecting that probability measure on H xL   is what is
achieved explicitly in the Hints’ model of Kohlas (and
sometimes implicitly in Dempster-Shafer theory).  In the
TBM we even go further by not requiring the existence of
any hypothesis space H  and considering ONLY the L
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space by itself, cutting therefore all links with Dempster-
Shafer model.

In the TBM, one considers only the basic belief
assignment mL  and its related belief function belL  and
plausibility function plL . No concept of some H  space
endowed with a probability measure is needed. The
meaning of mL (L) for L∈ L is such that mL (L) is the
part of belief allocated to L and that could be allocated to
any propositions L’ that prove L if further information
justifies such transfer. The Dempster's rule of
conditioning is directly introduced as it is part of the
overall description of the transferable belief model. The
geometrical rule is derived if one ask for the proportion of
the beliefs that support L∈ L given they support L*∈ L.
Both rules have also been derived axiomatically in Smets
(1992b) while looking for quantitative representations of
credibility in general.

3. Jeffrey’s rule applied to belief
functions.

Let (Ω, A , m1) be a credibility space, where Ω is a finite
set of worlds (the frame of discernment),  A is a Boolean
algebra of subsets built on Ω and m1 is a basic belief
assignment defined on A . m1:A →[0,1] and its related
evidential functions (the belief functions, possibility
functions, communality functions... built from m1)
represent the agent initial belief about which world
corresponds to the actual world.

Suppose the agent receives a new piece of evidence that
tells him that his belief on the elements of a subalgebra
B (with b its set of atoms) should be represented by the
basic belief assignment m2:B→[0,1].  m2 is not defined
on A  but on B .  The agent wants to update his initial
basic belief assignment m1 into a new basic belief
assignment m3 on A  that combines the information
represented by m1 and m2.  The first constraint is
equivalent to constraint R1.

C1: ∀ X∈ B, bel3(X) = bel2(X)

For every A∈ A , let B(A)∈ B be the smallest element of
B such that A”B(A) and there is no other B’∈ B such
that A”B’”B(A). B(A) is the upper approximation of A
in B in the sense of the rough sets theory (Pawlak 1982).
Let b(A) be the set of A∈ A  that share the same B(A).

The constraint C1 implies that the basic belief
assignment m3 is such that:

m3(A) =  
c(A,B(A))

∑
X:X∈ b(A)

   c(X,B(A))
  m2(B(A)) ∀ A∈ A,

where c(A,B(A))≥0. The proof is based on the fact that the
constraint C1 imposes that the basic belief masses
m2(B(A)) be allocated only to the elements C∈ b(A).  The
way it is distributed among these C is arbitrary except the
coefficients c(A,B(A)) must be positive so that m3 is non
negative.

The equivalent of constraint R2 is not immediate. In R2,
we only had to consider the atoms of B , as we were
dealing with probability functions.  Now, we must
generalize the R2 requirement to every element of B.

a. Source-conditioning.

C2F: ∀ B∈ b, ∀ X,Y∈ A  such that X,Y”B,
bel3(X)
bel3(Y)

 =  
bel1(X||B)
bel1(Y||B)

if bel1(Y) > 0

and bel3(Y) = 0 if bel1(Y) = 0,

where ||B in bel1(.||B) denotes conditioning according to
the geometrical rule of conditioning, in which case: 

bel1(X||B)
bel1(Y||B)

 =   
bel1(X)
bel1(Y)

 .

The requirement C2F deals only with the elements of A
that are subsets of the atoms of B .  For the other
elements of A , we propose:

C3F: ∀ X,Y∈ A  such that B(X) = B(Y),

\f(\i\su(Z\S\UP1(”)X,B(Z)=B(X),,
m3(Z)),\i\su(Z\S\UP1(”)Y,B(Z)=B(Y),,    m3(Z))) =
\f(\i\su(Z\S\UP1(”)X,B(Z)=B(X),,
m1(Z||B(X))),\i\su(Z\S\UP1(”)Y,B(Z)=B(Y),,
m1(Z||B(Y))))

(where the left denominator is zero is the right one is
zero).

C2F is the particular case of C3F that matches the R2
requirement. C3F has to be added as belief functions must
be defined on all the elements of A, not only on the
atoms of A.

It is straightforward to show that C1F and C3F are
satisfied iff:

m 3(A) =  
m1(A)

∑
X:X∈ b(A)

   m1( X )
  m2(B(A)) ∀ A ∈ A  if the

denominator is positive and m3(A) = 0 otherwise.

We propose to call this rule the Jeffrey geometric
rule of conditioning.  Indeed, if there is only one
B∈ B, such that m2(B) = 1, then m3 is the basic belief
assignment obtained from m1 by conditioning on B with
the geometric rule of conditioning.
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b. Data-conditioning.

The constraints corresponding to C2F and C3F are:

C2R: ∀ B∈ b, ∀ X,Y∈ A  such that X,Y”B,
bel3(X)
bel3(Y)

 =  
bel1(X|B)
bel1(Y|B)

if bel1(Y|B) > 0

and bel3(Y) = 0 if bel1(Y|B) = 0,

where |B in bel1(.|B) denotes conditioning according to
Dempster's rule of conditioning.

C3R: ∀ X,Y∈ A  such that B(X) = B(Y),

\f(\i\su(Z\S\UP1(”)X,B(Z)=B(X),,
m3(Z)),\i\su(Z\S\UP1(”)Y,B(Z)=B(Y),,    m3(Z))) =
\f(\i\su(Z\S\UP1(”)X,B(Z)=B(X),,
m1(Z|B(X))),\i\su(Z\S\UP1(”)Y,B(Z)=B(Y),,
m1(Z|B(Y))))

(where the left denominator is zero is the right one is
zero).

It is straightforward to show that C1R and C3R are
satisfied iff:

m3(A) =  
m1(A|B(A))

∑
X:X∈ b(A)

   m1 (X|B(A))
  m2(B(A)) ∀ A∈ A

if the denominator is positive and m3(A) = 0 otherwise.

We propose to call this rule the Jeffrey-Dempster
rule of conditioning.  Indeed, if there is only one
B∈ B, such that m2(B) = 1, then m3 is the basic belief
assignment obtained from m1 by conditioning on B with
Dempster’s rule of conditioning.

The justification of C2F and C2R are quite
straightforward.  They are the same as with Jeffrey
original case.  In every atom of B , the ratio of the
probabilities P3 given to two elements of B∈ b is equal
to the ratio of the conditional probabilities P1 given to
these elements after conditioning on B. For the belief
function generalization, we have the choice between
conditioning by the geometrical rule of conditioning or
the unnormalized rule of conditioning, therefore the two
cases. Unfortunately C2R and C2F are not sufficient to
derive both Jeffrey’s rules. The C3F and C3R are
proposed as the generalization of C2F and C2R to those
elements of A  that intersect several elements of B.

The C3F and C3R rules are less obvious. Their meaning
is as follows.  Each sum is the part of belief related to the
basic belief masses given to the elements of A  that were
not yet allocated to some of its subsets by requirement
C1.  That their ratio should be equal is the extension of
the requirement used in C2F and C2R.  Indeed, C3F and
C3R correspond to the case C2F and C2R when B(X)∈ b.

It could of course be arguable but they seem to be the
most natural requirements to propose to generalize the
C2F and C2R requirements.

4. Conclusions.

Shafer (1981) has studied Jeffrey’s rule. He considers its
generalization can be found in Dempster’s rule of
combination. Let bel12 = bel1 ⊕ bel2. Shafer notes that:

∀ B∈ b, ∀ A”B,  bel12(A|B)= bel1(A|B)

He considers that this relation fits with Jeffrey’s aims.
His proposal does not fit with C1 and we feel C1 is more
in the spirit of Jeffrey’s updating then Shafer’s proposal.
As noted by Dubois and Prade (1986, 1992), the
characteristic of Jeffrey’s rule is its asymmetry. bel2 is
‘more important’ than bel1 in that bel3 must be equal to
bel2 for all X∈ B whatever bel1 (requirement C1). In the
limiting case where B  = A , bel3 = bel2 and bel1 is
completely ignored. Of course Dempster's rule of
combination does  not satisfy this idea. Fundamentally, it
is a symmetrical rule.

In Dubois and Prade (1991b, 1992), the authors suggest
another generalization.

bel3(A) = ∑
B:B∈ B

       
bel1(A|B)

pl1(B)
 m2(B)   ∀ A∈ A   (4.1)

The normalization factor pl1(B) is essential in their
formulation. If it were not introduced, the rule would be
equivalent to the unnormalized Dempster's rule of
combination what is exactly what they want to avoid.
Unfortunately, their proposal fails also to satisfy C1.

Ichihashi and Tanaka (1989) have suggested the following
three generalizations of Jeffrey’s rule (se also Wagner
1992):

bel3(A) = ∑
B:B∈ B

      f(A,B) m2(B) ∀ A∈ A

where f(A,B) = 
bel1(A∨ B)-bel1( B)

pl1(B)

f(A,B) = 
bel1(A∧ B)

bel1(B)

f(A,B) = 
bel1(A)-bel1(A∧ B)

pl1(B)

These proposals fail to satisfy C1 (the first is 4.1).

Wagner (1992) solves the case where bel1   is a
probability function in a context of upper and lower
probabilities. His solution is covered by our solutions.
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In conclusion, we have presented what we feel is the
fundamental meaning of Jeffrey’s rule and how it
generalizes within the belief functions framework. The
applicability of the generalized Jeffrey’s rules of
conditioning resides in the case where the updating
information corresponds to some constraints that must be
satisfied by the updated belief function after combination
of the updating information with the initial state of belief,
but where the updating information induces a belief
function only on a subalgebra of the algebra on which the
initial belief function is defined. It does not covered the
case of an updating on an unreliable information (what
Dubois and Prade claim as being appropriately modeled by
4.1). It requires that the updating information characterized
by bel2 be such that our revised belief bel3 must be equal
to bel2 wherever bel2 is defined. Should bel2 be defined
on the same algebra as bel1 (i.e., A  = B), the updating
would result into adopting bel2 as the revised belief. That
requirement fits with the idea of a revision by readaptation
(or correction) of bel1 by bel2. In a certain sense, it
satisfies the ‘success rule’ described for revision (A∈ K*A,
Gardenfors 1988).

The nature of the atoms of B  is important in order to
apply Jeffrey’s rules. In practice, bel2 is provided by a
source of evidence that specifies bel2 values on some
elements of A . B is then the coarsest Boolean subalgebra
of A  that contains all the elements of A on which bel2
is known.
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