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Abstract

We generalize the Bayes’ theorem within the transferable belief model
framework. The Generalized Bayesian Theorem (GBT) allows us to com-
pute the belief over a space Θ given an observation x ⊆ X when one
knows only the beliefs over X for every θi ∈ Ω. We also discuss the Dis-
junctive Rule of Combination (DRC) for distinct pieces of evidence. This
rule allows us to compute the belief over X from the beliefs induced by
two distinct pieces of evidence when one knows only that one of the pieces
of evidence holds. The properties of the DRC and GBT and their uses for
belief propagation in directed belief networks are analysed. The use of the
discounting factors is justfied. The application of these rules is illustrated
by an example of medical diagnosis.

Keywords. Belief functions, Bayes’ theorem, disjunctive rule of combination.

1 Introduction

This paper presents the Disjunctive Rule of Combination (DRC) and the Gen-
eralized Bayesian Theorem (GBT) within the framework of the transferable
belief model, a model for quantifying beliefs using belief functions. Their use
is illustrated by a typical application in the domain of the medical diagnostic
process.

Suppose bel1 : 2Ω → [0, 1] is a belief function induced on the frame of
discernment Ω by a piece of evidence E1. Suppose bel2 : 2Ω → [0, 1] is a
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Intelligence.
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belief function induced on the same frame of discernment Ω by another piece of
evidence E2. Suppose E1 and E2 are distinct pieces of evidence (Shafer 1976,
Smets 1988, Smets 1992c). Shafer introduced Dempster’s rule of combination
to compute:

bel12 = bel1 ⊕ bel2

where bel12 is the belief function induced on Ω by the conjunction ’E1 and E2’.
We present a combination rule, the DRC, that permits the derivation of the

belief function induced on Ω by the disjunction of two pieces of evidence. It
corresponds to a situation where you could assess your belief on Ω if E1 were
true, your belief on Ω if E2 were true, but you only know that the disjunction
’E1 or E2’ is true.

As an example of an application of the DRC, consider the medical diagnosis
process. Let X be the domain of symptoms, each x ∈ X being a particular
symptom. Let Θ be the domain of diseases, each θi in Θ being a particular
disease. The diseases θi are so defined that they are mutually exclusive and
exhaustive. Suppose we have assessed our belief over the symptoms for every
disease θi and we want to assess our belief over the symptoms knowing only
that the patient has either disease θ1 or disease θ2. This is the case when it
is known that all the diseases excepting θ1 and θ2 can be excluded. The DRC
provides the solution when the a priori belief over θ1 and θ2 is vacuous. Its
extension to the case where there is a non-vacuous a priori over θ1 and θ2 can
also be obtained.

Simultaneously with the DRC, we derive the GBT. Bayes’ theorem is central
for probabilistic inference. In the medical diagnostic process considered, let
P (x|θi) be the probability of the symptoms given each diagnostic θi ∈ Θ, and let
our a priori belief over Θ be quantified by the probability distribution function
P0. After observing the symptom x ⊆ X, the probability distribution on Θ
is updated into P (θi|x), the a posteriori probability distribution on Θ, by the
application of Bayes’ theorem:

P (θi|x) =
P (x|θi)P0(θi)∑
j P (x|θj)P0(θj)

∀θi ∈ Θ.

In other words, from the probability over X given each θi ∈ Θ (and the a prior
probability on Θ), Bayes’ theorem allows us to derive the probability over Θ
given any x ⊆ X .

The GBT is a generalization of Bayes’ theorem where all conditional proba-
bilities are replaced by belief functions and the a priori belief function on Θ is
vacuous. A further generalization for non-vacuous a priori belief on Θ is also
presented.

The use of the GBT for medical diagnosis resolves the problem of how to
select uncommitted a priori probabilities on Θ that can represent the absence
of any a priori commitment towards any disease. The vacuous belief that
characterizes a state of total ignorance is used on the disease space Θ. Such a
state of ignorance cannot be represented within probability theory; indeed total
ignorance means that any strict subset of the disease set Θ should receive the
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same degree of belief. No probability function can describe such a belief state
once |Θ| > 2, as the same probability should be given to every θi, but also to
every θi ∪ θj ....(any strict subset of Θ)

1.1 Belief propagation in directed networks

Belief networks described by Shafer et al (1987) are undirected hyper-graphs.
Hyper-nodes represent sets of variables (e.g., the symptoms and the diseases)
and hyper-edges are weighted with belief functions defined on the product space
of the variables represented by the nodes attached to the hyper-edges. In Pearl’s
approach (Pearl, 1988) - concerning only probability functions - the edges are
directed and weighted by the conditional probabilities over (the variables repre-
sented by) the child node given (the variables represented by) the parent nodes.

In this paper, we provide the tools necessary to use belief functions (instead
of probability functions) in directed graphs similar to those considered by Pearl.
An edge between a parent node Θ and a child node X will be weighted by
conditional belief functions over X for each value θi of Θ. Our approach is
less general than Shafer’s, but we feel that in practice the loss of generality
is not important. Indeed we agree with Pearl (1988) who argues that it is
more “natural” and “easier” to assess conditional probabilities (and conditional
beliefs) over X given θi than the joint probabilities (and beliefs) over the space
X×Θ, and that in most real life cases only conditional beliefs will be collected.

The DRC can be used for forward propagation in directed networks. Con-
sider two parent nodes, Θ and Ψ, of node X and the conditional belief functions
belX(.|θi) and belX(.|ψj) on X given each θi ∈ Θ and given each ψj ∈ Ψ. The
conjunctive rule of combination provides the belief function on X given “θi and
ψj”. The disjunctive rule of combination provides the belief function on X given
“θi or ψj”.

The GBT can be used for backward propagation of beliefs in directed net-
works between a child node X and its parent node Θ. Given the conditional
belief over X given each θi ∈ Θ, the GBT computes the belief induced on Θ for
any x ⊆ X .

1.2 Content

In section 2, we define the Principle of Minimal Commitment, the Generalized
Likelihood Principle and the concept of Conditional Cognitive Independence.
The first formalizes the idea that one should never give more belief to something
than is justified. The second formalizes the idea that the belief induced by a
disjunction of several pieces of evidence is a function of the beliefs induced by
each piece of evidence. The third extends the idea of stochastic independence
to belief functions.

In section 3, we derive the DRC and the GBT. In section 4, we show that
they can also be derived through constructive approaches based on the Principle
of Minimal Commitment. In section 5, we present some properties of the GBT
and some of its limitations. We show in particular that the GBT becomes the
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classical Bayes’ theorem when all the belief functions happen to be probability
functions. In section 6, we present the use of the DRC and the GBT for the
propagation of beliefs in directed belief networks. In section 7, we present an
example of the use of the DRC and GBT for a medical diagnosis problem. In
section 8, we summarize the major results and conclude.

1.3 Historical notes

Smets (1978) derived initially both the DRC and the GBT by the technique
presented in section 4. Most theorems described here are proved in Smets
(1978). The GBT was also presented in Smets (1981, 1986, 1988), discussed at
full length in Shafer (1982). The DRC was presented in Moral (1985), Dubois
and Prade (1986a, 1988), Smets (1988) and Cohen et al. (1987). The present
paper not only details both rules and many of their properties, but it also
provides normative requirements that justify them.

2 Belief functions

We present some necessary material concerning belief functions and proceed to
expound the following three principles: the Principle of Minimal Commitment,
the Generalized Likelihood Principle and the Conditional Cognitive Indepen-
dence. Belief functions are used to quantify someone’s beliefs. They cover the
same domain as subjective probabilities, but do not use the additivity axiom
required for probability measures. The existence of ‘basic belief masses’ (bbm)
allocated to subsets of a frame of discernment Ω is postulated. For A ⊆ Ω, the
bbm m(A) quantifies the portion of belief that supports A without supporting
any strict subset of A, and that could be transferred to subsets of A if further
information justifies it. This model is at the core of the transferable belief
model, our interpretation of Dempster-Shafer theory (Smets, 1988, 1990, Smets
and Kennes 1990, Smets 1991). Our results can be easily transferred to other
interpretations of Dempster-Shafer theory, like the hints theory (Kohlas, 1990)
or the context model (Gebhardt and Kruse, 1990)

2.1 Background

Let Ω be a finite non empty set called the frame of discernment. The mapping
bel : 2Ω → [0, 1] is an (unnormalized) belief function iff there exists a basic
belief assignment (bba) m : 2Ω → [0, 1] such that:∑

A⊆Ω

m(A) = 1

and
bel(A) =

∑
B⊆A;B 6=∅

m(B).
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Note that bel(∅) = 0. The values of m(A) for A in Ω are called the basic belief
masses (bbm). m(∅) may be positive; when m(∅) = 0 (hence bel(Ω) = 1), bel
is called a normalized belief function. In Shafer’s presentation, he asserts that
m(∅) = 0, or equivalently that bel(Ω) = 1, and consequently, belief combination
and conditioning are normalized by dividing the results by appropriate scaling
factors. The difference between Shafer’s definition and ours was introduced
when we considered the difference between the open-world and closed-world
assumptions (Smets 1988). The nature of m(∅) > 0 is fully discussed in Smets
(1992b).

Our presentation is developed under the open-world assumption, as de-
scribed in the transferable belief model. However the whole presentation is
still valid under the more restrictive assumption of a closed-world.

Belief functions are in one-to-one correspondence with plausibility func-
tions pl : 2Ω → [0, 1] and commonality functions q : 2Ω → [0, 1] where for
all A ⊆ Ω, A 6= ∅,

pl(A) = bel(Ω)− bel(A) and pl(∅) = 0

q(A) =
∑
A⊆B

m(B) and q(∅) = 1

where A is the complement of A relative to Ω.
A vacuous belief function is a normalized belief function such that bel(A) =

0, ∀A 6= Ω. It quantifies our belief in a state of total ignorance as no strict subset
of Ω receives any support.

Suppose bel quantifies our belief about the frame of discernment Ω and we
learn that A ⊆ Ω is false. The resulting conditional belief function bel(. p

pA) is
obtained through the unnormalized rule of conditioning (see remark 1 for
the use of p

p for the unnormalized conditioning. bel(B p
p
A) can be read as the

(degree of) belief of B given A or the belief of B in a context where A holds):

m(B p
pA) =

∑
X⊆A

m(B ∪X) if B ⊆ A ⊆ Ω 2.1

= 0 otherwise

bel(B p
p
A) = bel(B ∪A)− bel(A) ∀B ⊆ Ω

pl(B p
p
A) = pl(A ∩B) ∀B ⊆ Ω

The origin of this relation is to be found in the nature of the transferable
belief model itself. A mass m(B) given to B is transferred by conditioning
on A to A ∩ B. Other justifications can also be advanced. bel(. p

pA) is the
minimal commitment specialization of bel, such that pl(A p

pA) = 0 (Klawonn
and Smets 1992). It can also be derived as the minimal commitment solution
where bel(“B p

p
A”) is considered to be the belief in the conditional object “B p

p
A”

(Nguyen and Smets, 1993). Note that these derivations are obtained without
ever considering the concept of ‘combination of distinct pieces of evidence’, hence
without requiring any definition of the notions of distinctness, combination and
probability).
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Consider two belief functions bel1 and bel2 induced by two distinct pieces of
evidence on Ω. The belief function bel12 that quantifies the combined impact of
the two pieces of evidence is obtained through the conjunctive rule of com-
bination: bel12 = bel1 ∩©bel2 where ∩© represents the conjunctive combination
operator. Its computation is based on the basic belief assignment m12:

m12(A) =
∑

B∩C=A

m1(B)m2(C) ∀A ⊆ Ω. 2.2

Expressed with the commonality functions, it becomes:

q12(A) = q1(A)q2(A).

It can also be represented as: (Dubois and Prade (1986b) proved the relation
for m12.)

m12(A) =
∑
B⊆Ω

m1(A p
pB)m2(B)

bel12(A) =
∑
B⊆Ω

bel1(A p
pB)m2(B) 2.3

pl12(A) =
∑
B⊆Ω

pl1(A p
pB)m2(B)

q12(A) =
∑
B⊆Ω

q1(A p
pB)m2(B)

Note that no normalization factor appears in these rules.
Remark 1: Definitions and symbols. Almost all authors working with

belief functions consider only normalized belief functions, whereas we consider
mainly unnomalized belief functions. In order to avoid confusion, we propose to
keep the names of Dempster’s rule of conditioning and Dempster’s rule of com-
bination for the normalized forms of conditioning and conjunctive combination,
as was introduced by Shafer (1976). For the unnormalized rules, we propose to
use the names of unnormalized rule of conditioning for 2.1, conjunctive rule of
combination for 2.2 and disjunctive rule of combination for the rule introduced
in section 3.

We also propose to use the following symbols to represent these operations.

Dempster’s rule of conditioning: | bel(A|B)
unnormalized rule of conditioning: p

p bel(A p
pB)

Dempster’s rule of combination: ⊕ bel12 = bel1 ⊕ bel2
conjunctive rule of combination: ∩© bel12 = bel1 ∩©bel2
disjunctive rule of combination: ∪© bel12 = bel1 ∪©bel2

The difference betwen the elements of the two pairs (|, p
p ) and ( ⊕, ∩©) re-

sults only from the normalization factors applied in | and ⊕. ∪© does not have a
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specific counterpart in Shafer’s presentation (indeed once bel1 and bel2 are nor-
malized, bel1 ∪©bel2 is also normalized). Note that bel(. p

pB) could be a normalized
belief function. In fact p

p is a generalization of |.
Remark 2: Notation. Given two spaces Θ and X, we write belX(. p

p θ) and
plX(. p

p θ) to represent the belief and plausibility functions induced on space X
in a context where θ ⊆ Θ is the case, and belX×Θ, plX×Θ to represent belief
and plausibility functions on the space X × Θ. We write x ∩ θ as a shorthand
for the intersection of the cylindrical extensions of x ⊆ X and θ ⊆ Θ over the
product space X ×Θ (i.e., x ∩ θ means cyl(x) ∩ cyl(θ)). Similarly x ∪ θ means
cyl(x)∪cyl(θ)... Subscripts of bel and pl represent their domain and are omitted
when there is no ambiguity as in bel(x p

p θ), bel(θ),...
Remark 3: Our notation will not distinguish between elements like θi

where θi ∈ Θ and their corresponding singleton {θi} ⊆ Θ. The context should
always made it clear which is intended, and the notation is seriously lightened.

The following lemmas will be useful:

Lemma 1: If pl : 2Ω → [0, 1] is a plausibility function, then the corresponding
commonality function q is q(A) =

∑
B⊆A(−1)|B|+1pl(B).

Proof : immediate by replacing bel(B) by pl(Ω)−pl(B) in the relation between
q and bel given in Shafer 1976, page 41. QED

Lemma 2. ∀x ⊆ X , ∀θ ⊆ Θ, ∀θi ∈ θ: pl(x p
p
θ) ≥ pl(x p

p
θi).

Proof: Let cyl(x) and cyl(θ) be the cylindrical extensions of x and θ on the
spaceX×Θ. Then plX(x p

p
θ) = plX×Θ(cyl(x) p

p
cyl(θ)) = plX×Θ(cyl(x)∩cyl(θ)) ≥

plX×Θ(cyl(x) ∩ cyl(θk)) = plX(x p
p θk) where θk ∈ θ. QED

2.2 The Principle of Minimal Commitment

We introduce the Principle of Minimal Commitment. Given a belief function
derived on Ω, this principle induces the construction of new belief functions 1)
on refined spaces Ω’ where every element of Ω is split into several elements of
Ω’ and 2) on extended spaces Ω”, where Ω” contains all the elements of Ω and
some new elements. These two processes are called the vacuous extension and
the ballooning extension, respectively. In this paper, the vacuous extension
transforms a belief function over Θ into a belief function over X × Θ and the
ballooning extension transforms a conditional belief function belX(. p

p θi) defined
on X for θi ∈ Θ into a new belief function over X ×Θ.

In order to understand the Principle of Minimal Commitment, we must
consider the meaning of bel(A) and pl(A). Within the transferable belief model,
the degree of belief bel(A) given to a subset A quantifies the amount of justified
specific support to be given to A, and the degree of plausibility pl(A) given to
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a subset A quantifies the maximum amount of potential specific support that
could be given to A.

bel(A) =
∑

∅6=X⊆Ω

m(X) pl(A) =
∑

A∩X 6=∅

m(X) = bel(Ω)− bel(A).

We say specific because m(∅) is neither included in bel(A) nor in pl(A). The
bbms m(X) included in bel(A) are only those given to the subsets of A that are
not subsets of A. m(∅) is not included because ∅ is a subset of both A and A.

We say justified because we include in bel(A) only the bbms given to subsets
of A. For instance, consider two distinct elements x and y of Ω. The bbm
m({x, y}) given to {x, y} could support x if further information indicates this.
However given the available information the bbm can only be given to {x, y}.

We say potential because the bbm included in pl(A) could be transferred to
non empty subsets of A if some new information could justify such a transfer.
It would be the case if we learn that A is impossible. After conditioning on
A, note that bel(A p

pA) = pl(A). Large plausibilities given to all subsets reflect
the lack of commitment of our belief; we are ready to give a large belief to any
subset.

Consider now the case where there is ambiguity about the amount of plausi-
bility that should be given to the subsets of Ω. The ambiguity could be resolved
by giving the largest possible plausibility to every subsets.

The Principle of Minimal Commitment formalizes this idea: one should never
give more support than justified to any subset of Ω. It satisfies a form of scepti-
cism, noncommitment, or conservatism in the allocation of belief. In spirit, it is
not far from what probabilists attempt to achieve with the maximum entropy
principle. The concept of commitment was already introduced to create an or-
dering on the set of belief functions defined on a frame of discernment Ω (see
Moral 1986, Yager 1986, Dubois and Prade 1986a, 1987, Delgado and Moral
1987, Kruse and Schwecke 1990, Hsia 1991).

To define the principle, let pl1 and pl2 be two plausibility functions on Ω
such that:

pl1(A) ≤ pl2(A) ∀A ⊆ Ω. 2.4

We say that pl2 is no more committed than pl1 (and less committed if there
is at least one strict inequality). The same qualification is extended to the
related bbas and belief functions. The least committed belief function is the
vacuous belief function (m(Ω) = 1). The most committed belief function is the
contradictory belief function (m(∅) = 1).

The principle of minimal commitment indicates that, given two equally
supported beliefs, only one of which can apply, the most appropriate is the least
committed.

For unnormalized belief functions, the principle is based on the plausibility
function. The inequalities 2.4 expressed in terms of belief functions become:

bel1(A) +m1(∅) ≥ bel2(A) +m2(∅) ∀A ⊆ Ω. 2.5
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To define the principle by requiring that:

bel1(A) ≥ bel2(A) ∀A ⊆ Ω 2.6

is inappropriate as seen in the following example. Let: bel1(A) = 0,∀A 6= Ω,
and bel1(Ω) = .7. If bel2 is a vacuous belief function, it is less committed than
bel1. It is not the case that bel2(A) ≤ bel1(A),∀A ⊆ Ω. However, one has
pl1(A) = .7 ≤ pl2(A) = 1,∀A ⊆ Ω as required.

Under the closed-world assumption, the principle can be similarly defined
with plausibility inequalities 2.4 or belief function inequalities 2.6. The last
definition is historically the oldest. This explains why we maintain the “Minimal
Commitment” name even though it could be argued that the principle would be
better named the principle of “maximal plausibility” or “maximal scepticism”.

The Principle of Minimal Commitment is not used to derive the DRC and the
GBT in section 3. However during the constructive derivations of the GBT in
section 4, we will encounter plausibility functions pl whose values are known only
for a set F of subsets of Ω. In most cases, one can build a plausibility function
pl∗ such that pl∗(A) = pl(A),∀A ⊆ F and pl∗ is nevertheless known everywhere
on Ω. This is achieved by committing the largest possible plausibility to every
subset of Ω that is not an element of F . This application of the principle of
minimal commitment is translated into the following property.

The Principle of Minimal Commitment for partially defined plau-
sibility functions. Let F be a set of subsets of a frame of discernment Ω, and
let pl be a plausibility function whose value is known only for those subsets of
Ω in F . Let P be the set of all the plausibility functions pl′ on Ω such that
pl′(A) = pl(A) for all A in F . The maximal element pl∗ of P, when it exists, is
the plausibility function pl∗ such that ∀pl′ in P: pl∗(B) ≥ pl′(B), ∀B ⊆ Ω.

Two special cases of the principle will be used here: the vacuous extension
and the ”ballooning” extension.

1) Let Ω be a frame of discernment and let pl be defined for every subset of Ω.
Let Ω’ be a refinement1 R of Ω. The plausibility function pl′ on Ω’ induced by pl
that satisfies the Principle of Minimal Commitment is the vacuous extension
of pl on Ω via R. Its bbms are defined as follows (Shafer 1976, pg 146 et seq.). Let
m and m′ be the bbas underlying pl and pl′. Then m′(R(A)) = m(A),∀A ⊆ Ω,
and m′(B) = 0 otherwise.

2) Let Θ andX be two finite spaces, belX(. p
p
θ) be a conditional belief function

on X given some θ ∈ Θ and Bel∗ be the set of belief functions belX×Θ over space
X×Θ such that their conditioning given θ is equal to belX(. p

p θ). The element of
Bel∗ that satisfies the Principle of Minimal Commitment is the belief function
bel∗X×Θ such that:

bel∗X×Θ((cyl(x) ∩ cyl(θ)) ∪ cyl(θ))− bel∗X×Θ(cyl(θ)) = belX(x p
p
θ)

1The mapping R from Ω to Ω’ is a refinement if every element of Ω is mapped by R into
one or more elements of Ω’ and the images R(ω) of the elements ω of Ω under the refinement
R partition Ω’.
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where cyl(x) and cyl(θ) are the cylindrical extensions of x and θ on the space
X ×Θ, and bel∗X×Θ(cyl(θ)) = mX(∅ p

p
θ). It can be informally rewritten as:

bel∗X×Θ(x ∪ θ) = belX(x p
p θ) +mX(∅ p

p θ).

We call this transformation between bel and bel∗ the deconditionalization
process (Smets 1978). bel∗ is called the “ballooning extension” of bel(x p

p θ)
on X×Θ as each mass m(x p

p θ) is given after deconditionalization to the largest
subset of X × Θ so that its intersection with cyl(θ) is the set cyl(x) ∩ cyl(θ)
(Shafer (1982) called bel∗ the ‘conditional embedding’ of bel(x p

p
θ)) (Note the

similarity between this ballooning extension and the passage from a conjunction
cyl(x) ∩ cyl(θ) to a material implication cyl(x) → cyl(θ).)

Figure 1: Ballooning of the bbm m(x2∪x3 p
p
θ2) (dark area) onto X×Θ (shaded

area). The white dots correspond to the 16 elements of X ×Θ.

2.3 Conditional Cognitive Independence

In our derivation of the GBT and the DRC, we need to determine the belief
induced by two ‘independent’ observations given the belief induced by each
observation. The concept of ‘independence’ is defined as follow. Let X and Y
be two spaces from which we collect observations (pieces of evidence). The two
variables X and Y are said to be ’independent’ if the knowledge of the particular
value taken by one of them does not change our belief about the value that the
second could take, i.e. belX(A p

p
y) = belX(A p

p
y′),∀A ⊆ X,∀y, y′ ∈ Y, y 6= y′ and

belY (B p
px) = belY (B p

px′), ∀B ⊆ Y,∀x, x′ ∈ X,x 6= x′.
We use this concept of independent observations in order to derive the DRC

and the GBT as we claim that two independent observations induce two belief
functions that can be combined by the conjunctive rule of combination. More
specifically, suppose a set Θ = {θi : i = 1...n} of contexts θi. Suppose we
collect two observations that are independent whatever the context θi. Such
two observations are said to be conditionally independent. Each observation
induces a belief on Θ and constitutes thus a piece of evidence relative to Θ.
We claim that two observations that are conditionally independent constitute
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two pieces of evidence relative to Θ that are distinct. The satisfaction of that
claim was often asked for, it motivated the development of the GBT in Smets
(1978), and authors complain of its non satisfaction by other attempts to define
an equivalent of the GBT (e.g. see Halpern and Fagin, 1990).

Once that claim is admitted, the properties underlying the concept of Cog-
nitive Independence, detailled here below, are deduced as a spin-off of the DRC.
But in fact the concept of independent observations is already sufficient to de-
duce the properties underlying the concept of Cognitive Independence within
the TBM, therefore without regard to the DRC and the GBT.

In the transferable belief model framework, the concept of two independent
variables X and Y translates as follows: the ratio of the plausibilities on X
should not depend on y ⊆y :

plX(x1 p
p y)

plX(x2 p
p y)

=
plX(x1)
plX(x2)

∀x1, x2 ⊆ X,∀y ⊆ Y. 2.7

As plX(x p
p y) = plX×Y (x ∩ y), the independence requirement becomes:

plX×Y (x1 ∩ y)
plX×Y (x2 ∩ y)

=
plX(x1)
plX(x2)

∀x1, x2 ⊆ X,∀y ⊆ Y.

These ratio constraints imply that (the proof is given under lemma 3 in the
appendix):

plX×Y (x ∩ y) = plX(x)plY (y) ∀x ⊆ X,∀y ⊆ Y. 2.8

Two variables (X and Y ) that satisfy this requirement are said to satisfy the
Cognitive Independence property. This definition was introduced in Shafer
(1976, pg 150). It extends the classical stochastic independence.

The Cognitive Independence concept can be extended in a straighforward
manner when the plausibility functions are conditonal plausibility functions. If
the two variables X and Y are independent in each context θi, for all θi ∈ Θ,
then they satisfy the Conditional Cognitive Independence (CCI) property
if:

plX×Y (x ∩ y p
p
θi) = plX(x p

p
θi)plY (y p

p
θi) ∀x ⊆ X,∀y ⊆ Y,∀θi ∈ Θ 2.9

The previous independence definitions are based on plausibility functions.
They could have been based as well on belief functions. Two variables X and
Y are CCI iff the ratio of their belief functions satisfy the dual of (2.7)

belX(x1 p
p y)

belX(x2 p
p y)

=
belX(x1)
belX(x2)

∀x1, x2 ⊆ X,∀y ⊆ Y. 2.10

In fact, both definitions are equivalent as (2.7) is equivalent to (2.10). A
proof is given in the appendix (see lemma 4).
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2.4 The Generalized Likelihood Principle

In order to derive the DRC and the GBT, we need to generalize the likelihood
principle within the transferable belief model. It simply postulates that the
belief function induced by the disjunction of two pieces of evidence is only a
function of the belief functions induced by each piece of evidence. We will build
plX(. p

p
θ) on X for any subset θ of Θ, even though we only know the conditional

plausibility functions plX(. p
p θi) over X, ∀θi ∈ Θ.

To help in understanding the principle, we present the likelihood principle
as described in probability theory. The likelihood l(θi|x) (sometimes called
the relative plausibility) of the “single” hypothesis θi, ∀θi ∈ Θ, given the data
x ⊆ X is defined as being equal to the conditional probability p(x|θi) of the
data x given the single hypothesis θi (Edwards, 1972)

l(θi|x) = p(x|θi)

The likelihood of the disjunction θ ⊆ Θ of several single hypotheses θi, i =
1, 2...k where θ = {θ1, θ2, . . . , θk} is defined as a function of the likelihoods of
the single hypothesis θi ∈ θ:

l(θ|x) = f({l(θi|x) : θi ∈ θ})

where f is the maximum operator ( f(a, b, ..) = max(a, b, ...) ). The link between
the likelihood functions extended to disjunction of hypothesis and possibility
functions (Zadeh, 1978, Dubois and Prade, 1985) was shown in Smets (1982).

A form of this principle was already proposed in Shafer (1976, page 239)
when he studied statistical inference in the context of belief functions. He
proposed to define pl(θ|x) = maxθi∈θ pl(θi|x). This solution is not satisfactory
for statistical inference, as it does not satisfy Requirement R1 in section 3,
a requirement which satisfaction is often asked for (Smets 1978, Halpern and
Fagin, 1990).

The likelihood principle is defined for probability functions. We broaden it
into the Generalized Likelihood Principle applicable to plausibilty function
within the transferable belief model:

∀θ ⊆ Θ,∀x ⊆ X, pl(x p
p θ) depends only on {pl(x p

p θi), pl(x p
p θi) : θi ∈ θ}.

The maximum operator is not assumed. The need of both pl(x p
p
θi) and

pl(x p
p θi) reflects the non additivity of the plausibility functions.

The origin of the Principle can be justified by requiring that:

1. pl(x p
p θ) is the same after the frame X has been transformed by coarsening

into the frame with only two elements: x and x. This explains why only
those values of pl(. p

p
θi) for x and x are used.

2. the values of pl(x p
p θj) for θj /∈ θ are irrelevant to the values of pl(x p

p θ).
Hence only the θi ∈ θ are used.
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3 The Disjunctive Rule of Combination and the
Generalized Bayesian Theorem

We proceed with the derivation of the DRC and the GBT. Let X and Θ be
two finite non empty sets. Suppose all we know about X is represented initially
by the set {belX(. p

p
θi) : θi ∈ Θ} of belief functions belX(. p

p
θi) on X. We only

know the beliefs on X when we know which element of Θ holds. We do not
know these beliefs on X when we only know that the prevailing element of Θ
belongs to a given subset θ of Θ. The DRC permits to build the belief function
belX(. p

p θ) on X for any θ ⊆ Θ.
Simultaneously we derive the GBT that permits to build belΘ(. p

p
x) for any

x ⊆ X from the conditional belief functions belX(. p
p
θi), as the DRC and the

GBT are linked through the relation:

plX(x p
p
θ) = plΘ(θ p

p
x), ∀θ ⊆ Θ,∀x ⊆ X.

The derivation of the DRC and the GBT is based on the following ideas. Let
X and Y be two frames of discernment. For each θi ∈ Θ, let belX(. p

p
θi) quantify

our belief on X given θi, and belY (. p
p θi) quantify our belief on Y given θi. θi

can be interpreted as a context. We assume there is no other knowledge about
X and Y except these conditional belief functions on X and Y known for each
θi ∈ Θ. It implies among others that we do not have any a priori belief on Θ,
i.e. we have the vacuous a priori belief function bel0 on Θ (this condition will
be relaxed in section 5).

Suppose we learn then that x0 ⊆ X holds. What is the belief function
belΘ(. p

px0) on Θ induced by the knowledge of the conditional belief functions
belX(. p

p θi), ∀θi ∈ Θ, and of the fact that x0 holds? As we assume that every
state of knowledge induces a unique belief on any variable, the belief function
belΘ(. p

p
x0) on Θ exists and is unique. Hence belΘ(. p

p
x0) is a function F of x0

and the belX(. p
p θi) for θi ∈ Θ:

belΘ(. p
p
x0) = F (x0, {belX(. p

p
θi) : θi ∈ Θ}).

Similarly if we learn that y0 ⊆ Y holds, the belief function belΘ(. p
p y0) on Θ

is a function F of y0 and the belY (. p
p
θi) for θi ∈ Θ:

belΘ(. p
p y0) = F (y0, {belY (. p

p θi) : θi ∈ Θ}).

Finaly, if we learn that the joint observation (x0, y0) ⊆ X×Y , x0 ⊆ X, y0 ⊆
Y , is the case, we could build the belief function belΘ(. p

px0, y0) on Θ based on
(x0, y0) if we knew the conditional belief functions belX×Y (. p

p
θi) for θi ∈ Θ:

belΘ(. p
px0, y0) = F ((x0, y0), {belX×Y (. p

p θi) : θi ∈ Θ}).

Suppose the observations x0 ⊆ X and y0 ⊆ Y are conditionaly independent
whatever context θi ∈ Θ holds. The conditional independence of X and Y im-
plies that the observations x0 and y0 are two distinct pieces of evidence relative
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to Θ. Each piece of evidence induces a belief on Θ: belΘ(. p
p
x0) and belΘ(. p

p
y0).

The belief belΘ(. p
px0, y0) that x0 and y0 jointly induce on Θ can be obtained by

the conjunctive rule of combination: belΘ(. p
px0, y0) = belΘ(. p

px0) ∩©belΘ(. p
p y0).

In Requirement R, we ask that the belief function belΘ(. p
px0, y0) induced

on Θ by two pieces of evidence x0 and y0 that corespond to two indepen-
dent observations x0 ⊆ X and y0 ⊆ Y is the same as the belief function
belΘ(. p

p
x0) ∩©belΘ(. p

p
y0) on Θ computed by the conjunctive combination of the

individual belief functions belΘ(. p
px0) and belΘ(. p

p y0). We also ask that plX(. p
p θ),

plY (. p
p θ) and plX×Y (. p

p θ), θ ⊆ Θ, satisfy the Generalized Likelihood Principle.

Requirement R. Given

• three frames of discernment X, Y and Θ.

• our knowledge on X, Y and Θ is represented by belX(. p
p
θi) and belY (. p

p
θi),

∀θi ∈ Θ.

• X and Y are conditionaly independent given θi, ∀θi ∈ Θ

• ∀x ⊆ X and ∀y ⊆ Y , there is a function F such that

belΘ(. p
px) = F (x, {belX(. p

p θi) : θi ∈ Θ})
belΘ(. p

p y) = F (y, {belY (. p
p θi) : θi ∈ Θ})

belΘ(. p
px, y) = F ((x, y), {belX×Y (. p

p θi) : θi ∈ Θ})

Then:

Requirement R1:

belΘ(. p
p
x, y) = belΘ(. p

p
x) ∩©belΘ(. p

p
y).

Requirement R2:

plX(x p
p θ) = g({plX(x p

p θi), plX(x p
p θi) : θi ∈ θ}) ∀x ⊆ X,∀θ ⊆ Θ

plY (y p
p θ) = g({plY (y p

p θi), plY (y p
p θi) : θi ∈ θ}) ∀y ⊆ Y,∀θ ⊆ Θ

plX×Y (w p
p θ) = g({plX×Y (w p

p θi), plX×Y (w p
p θi) : θi ∈ θ}) ∀w ⊆ X × Y,∀θ ⊆ Θ.

The functions F and g will be deduced from Requirement R in Theorems 1
to 4. This allows us to build:

1. belX(. p
p
θ) and belY (. p

p
θ), θ ⊆ Θ, (the DRC)

2. belΘ(. p
px) and belΘ(. p

p y), (the GBT) and

3. belX×Y (. p
p θ), θ ⊆ Θ, (the CCI),
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from the set of conditional belief functions belX(. p
p
θi), and belY (. p

p
θi), θi ∈ Θ.

The derivation of the DRC and the GBT are presented successively, first
when the belief functions belX(.|θi), and belY (.|θi), θi ∈ Θ, are normalized (i.e.
belX(X|θi) = 1 and belY (Y |θi) = 1), then when they are not. The CCI is a
by-product of the DRC derivation. All proofs are given in the appendix. We
present only the formulas for belX(. p

p
θ), θ ⊆ Θ, and belΘ(. p

p
x), x ⊆ X, (and

their related pl,m and q functions). The same formulas can be written for
belY (. p

p θ), θ ⊆ Θ and belΘ(. p
p y), y ⊆ Y .

Theorem 1. The Disjunctive Rule of Combination, normalized beliefs.
Given the Requirement R and its antecedents.

Given belX(X|θi) = 1 and belY (Y |θi) = 1, ∀θi ∈ Θ. Then ∀θ ⊆ Θ, ∀x ⊆ X,

belX(x|θ) = belX(x p
p
θ) =

∏
θi∈θ

belX(x|θi) 3.1

plX(x p
p θ) = plX(x p

p θ) = 1−
∏
θi∈θ

(1− plX(x|θi) 3.2

mX(x p
p θ) = mX(x p

p θ) =
∑

(∪i:θi∈θxi)=x

∏
i:θi∈θ

mX(xi|θi) 3.3

The relation 3.3 shows the dual nature of the conjunctive and disjunctive
rules of combination (Dubois and Prade, 1986a). Suppose two belief functions
with their basic belief assignments m1 and m2 on Ω. When combined, the
product m1(A)m2(B), A ⊆ Ω, B ⊆ Ω, is allocated to A ∩B in the conjunctive
rule of combination, and to A ∪ B in the disjunctive rule of combination. One
has ∀C ⊆ Ω:

1) conjunctive rule of combination (CRD)

m1 ∩©m2(C) =
∑

A∩B=C

m1(A)m2(B)

q1 ∩©q2(C) = q1(C)q2(C)

2) disjunctive rule of combination (DRC)

m1 ∪©m2(C) =
∑

A∪B=C

m1(A)m2(B)

bel1 ∪©bel2(C) = bel1(C)bel2(C)

The ∩ and ∪ operators encountered in the relations for the basic belief
assignments explain the origin of the symbols ∩© and ∪©. These relations shows
also the dual role of bel and q. Indeed bel(C) is the sum of the basic belief
masses given to the subsets of C and q(C) as the sum of the basic belief masses
given to the supersets of C (beware of the comments after theorem 3).
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Once the DRC is known, the GBT is derived thanks to the relation:

plΘ(θ p
px) = plX(x p

p θ) ∀θ ⊆ Θ,∀x ⊆ X

as confirmed by the equality between 3.2 and 3.5.

Theorem 2. The Generalized Bayesian Theorem, normalized beliefs.
Given the Requirement R and its antecedents. Given belX(X|θi) = 1 and
belY (Y |θi) = 1, ∀θi ∈ Θ. Then ∀θ ⊆ Θ, ∀x ⊆ X,

belΘ(θ p
px) =

∏
θi∈θ

belX(x|θi)−
∏

θi∈Θ

belX(x|θi) 3.4

belΘ(θ|x) = K.belΘ(θ p
px)

plΘ(θ p
p
x) = 1−

∏
θi∈θ

(1− plX(x|θi)) 3.5

plΘ(θ|x) = K.plΘ(θ p
p
x)

qΘ(θ p
px) =

∏
θi∈θ

plX(x|θi) 3.6

qΘ(θ|x) = K.qΘ(θ p
px)

where

K−1 = 1−
∏

θi∈Θ

belX(x|θi) = 1−
∏
θi∈θ

(1− plX(x|θi)).

As announced the CCI is derived as a by-product of the DRC. Note that 3.2
and 3.5 are identical, reflecting the equality between plX(x p

p
θ) and plΘ(θ p

p
x).

Lemma 5. the Conditional Cognitive Independence. Under theorem 1
conditions:

plX×Y (x ∩ y p
p
θi)) = plX(x p

p
θi)plY (y p

p
θi) ∀x ⊆ X,∀y ⊆ Y, θi ∈ Θ.

We proceed with the derivation of the DRC and the GBT when the initial
conditional belief functions are not normalized. Given a belief function bel :
2Ω → [0, 1], we define a function b : 2Ω → [0, 1] such that b(A) = bel(A) +
m(∅). This b function is the real dual of the commonality function q. The real
difference between theorems 1-2 and 3-4 concerns the computation of belX(x p

p θ)
and belΘ(θ p

px).

16



Theorem 3. The Disjunctive Rule of Combination, general case.
Given the Requirement R and its antecedents. Then ∀θ ⊆ Θ, ∀x ⊆ X,

bX(x p
p
θ) =

∏
θi∈θ

bX(x p
p
θi) 3.7

belX(x p
p
θ) = bX(x p

p
θ)− bX(∅ p

p
θ) 3.8

plX(x p
p θ) = 1−

∏
θi∈θ

(1− plX(x p
p θi)) 3.9

mX(x p
p θ) =

∑
(∪i:θi∈θxi)=x

∏
i:θi∈θ

mX(xi p
p θi) 3.10

The real dual of q is b, not bel: indeed in the disjunctive rule of combination
one multiplies the b functions, not the bel functions. b(C) is the sum of the basic
belief masses given to the subsets of C, including ∅. Another way to see the
dual nature of the DRC and CRC consists in building the ‘complementary’ basic
belief assignment m : 2Ω → [0, 1] of a basic belief assignment m : 2Ω → [0, 1]
with m(A) = m(A) for every A ⊆ Ω. Then b(A) = q(A) (Dubois and Prade,
1986a).

Theorem 4. The Generalized Bayesian Theorem, general case. Given
the Requirement R and its antecedents. Then ∀θ ⊆ Θ, ∀x ⊆ X,

bΘ(θ p
p
x) =

∏
θi∈θ

bX(x|θi)

belΘ(θ p
px) = bΘ(θ p

px)− bΘ(∅ p
px) 3.11

plΘ(θ p
p
x) = 1−

∏
θi∈θ

(1− plX(x p
p
θi)) 3.12

qΘ(θ p
px) =

∏
θi∈θ

plX(x|θi) 3.13

4 Constructive derivations of Theorems 3 and 4
results

In theorems 3 and 4 we derive the DRC and the GBT from general principles
(see (Smets 1978)). These relations can also be obtained in a constructive way
by the application of the Principle of Minimal Commitment. We present three
different ways to derive both the DRC and the GBT. These constructions help
in understanding the nature of the solutions.

4.1. For each θi ∈ Θ, build the ballooning extension bel
(i)
X×Θ of belX(. p

p
θi)

on X × Θ. Combine these belief functions bel(i)X×Θ by the conjunctive rule of
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combination. Let belX×Θ = bel
(1)
X×Θ ∩©bel(2)X×Θ ∩© . . . ∩©bel(n)

X×Θ be the resulting
belief function on X × Θ. Let ω ⊆ X × Θ and let xi be the projection of
ω ∩ cyl(θi) on X. Then

belX×Θ(ω) =
∏

θi∈Θ

bX(xi p
p θi)−

∏
θi∈Θ

bX(∅ p
p θi)

mX×Θ(ω) =
∏

θi∈Θ

mX(xi p
p
θi)

qX×Θ(ω) =
∏

θi∈Θ

qX(xi p
p θi)

(all proofs are given in Smets 1978, page 163 et seq.)
The relations of Theorems 3 and 4 are obtained by conditioning belX×Θ on

cyl(x) or cyl(θ) and marginalizing the results on X or Θ.
Suppose the conditional belief functions belX(.|θi) are normalized for all

θi ∈ Θ, then any subset of X×Θ whose projection on Θ is not Θ itself receives a
zero belief, i.e. the only knowledge of the normalized conditional belief functions
belX(. p

p
θi) induces a vacuous belief on Θ.

4.2. Theorems 3 and 4 results can also be derived by individually considering
the ballooning extension beli of each conditional belief function belX(. p

p θi), i =
1, 2...n, (n = |Θ|), on space X ×Θ. Then the beli are conditionated on x ⊆ X.
The marginalization on Θ of the resulting conditional belief function is the
(normalized) simple support function with basic belief masses

m(θi p
px) = belX(x p

p θi) +mX(∅ p
p θi)

m(Θ p
px) = belX(X p

p θi)− belX(x p
p θi)

The conjunctive combination of these simple support functions on Θ obtained
for each θi ∈ Θ are the relations 3.11 to 3.13.

4.3. Finally one can also consider that each θi, (i = 1, 2...n), is the value of a
variable Θi that can take only two values: θi and θi. Given belX(. p

p θi), apply
the Principle of Minimal Commitment to build the belief function on the space
X×Θi (i.e. build the ballooning extension). Then vacuously extend these belief
functions obtained on each X ×Θi onto the space X ×Θ1 ×Θ2 × . . .×Θn by
again applying the Principle of Minimal Commitment (i.e. build their vacuous
extensions on X × Θ1 × Θ2 × . . . × Θn). Combine all these belief functions on
X × Θ1 × Θ2 × . . . × Θn by the conjunctive rule of combination and call the
resulting belief function belXn. Let Θ be the space whose elements τi are the
intersections (of the cylindrical extensions) of the complements of all θν : ν 6= i
and θi: so τi = θ1 ∩ θ2...∩ θi...∩ θn. Condition belXn on the space X ×Θ. The
belief function induced on that space X ×Θ is the same as the one deduced in
section 4.1.

Note that the belief function belX on X induced by the conditioning of belXn

on θ1 ∩ θ2.... ∩ θn is the belief function one would have derived by applying the
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conjunctive rule of combination to the individual conditional belief functions:
belX = belX(. p

p θ1) ∩©belX(. p
p θ2) ∩© . . . ∩©belX(. p

p θn).

5 Properties of the gbt

5.1. Assume there exists some a priori belief bel0 over Θ distinct from
the belief induced by the set of conditional belief functions belX(. p

p θi), θi ∈ Θ.
Combining bel0 with the belief function induced on the space X ×Θ leads to a
generalization of the DRC. By (2.3)

belX(x) =
∑
θ⊆Θ

m0(θ)belX(x p
p
θ) 5.1

=
∑
θ⊆Θ

m0(θ)(
∏
θi∈θ

bX(x p
p θi)−

∏
θi∈θ

bX(∅ p
p θi)) 5.2

plX(x) =
∑
θ⊆Θ

m0(θ)plX(x p
p θ) 5.3

=
∑
θ⊆Θ

m0(θ)(1−
∏
θi∈θ

(1− plX(x p
p θi))) 5.4

Proof: The solution is obtained by ∩©-combining the vacuous extension of bel0
on X ×Θ with belX×Θ and marginalizing them on X, using then belX(x p

p θ) as
given by equation 3.8. The full proof is given in Smets 1978, page 178. QED

Equations 5.1 and 5.3 are particular cases of equation 2.3. They can be used
to speed up computation of beliefs in beliefs networks.

To obtain the belief function induced on Θ given some x ⊆ X, we ∩©-combine
bel0 with the belief function deduced on Θ by the GBT. The results are the same
as those obtained if we combine the vacuous extension of bel0 with the belief
function belX×Θ induced on X × Θ by the set of conditional belief functions
belX(. p

p
θi), θi ∈ Θ (see section 4.1) and then condition the result on x. (Proofs

in Smets 1978, page 177 )

5.2. Assume we have some belief belX0 on X. The GBT becomes

belΘ(θ) =
∑
x⊆X

mX0(x)belΘ(θ p
px) 5.5

where belΘ(θ p
px) is given by equation 3.11.

Proof: build the vacuous extension of belX0 on X × Θ, ∩©-combine it with
belX×Θ as derived in section 4.1., and marginalize the result on Θ. QED

Note that equation 5.5 enables the backward propagation of belief based on
doubtful observations.
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5.3. If each belX(. p
p
θi) happens to be a probability function P (.|θi) on X,

then the GBT for |θ| = 1 becomes:

plΘ(θ p
px) = P (x|θ) ∀x ⊆ X.

That is, on the singletons θ of Θ, plΘ(. p
px) reduces to the likelihood of θ

given x. The analogy stops there as the solution for the likelihood of subsets of
Θ are different (see section 2.4).

If, furthermore, the a priori belief on θ is also a probability function P0(θ),
then the normalized GBT becomes:

belΘ(θ p
p
x) =

∑
θi∈θ P (x|θi)P0(θi)∑
θi∈Θ P (x|θi)P0(θi)

= P (θ p
px)

i.e. the (normalized) GBT reduces itself into the classic Bayesian theorem,
which explains the origin of its name.

5.4. Assume belX(. p
p θ) is known not on each singleton of Θ, but on the elements

of a partition of Θ. Then redefine Θ by creating the coarsening Θ’ of Θ such
that the elements of Θ’ are the elements of the partition of Θ and proceed as
before on the space Θ’.

5.5. Assume belX(. p
p θ) is known on subsets of Θ which are not mutually exclu-

sive. For instance assume one knows belX(. p
p θ1), belX(. p

p θ2) and belX(. p
p θ1 ∪ θ2)

We must determine whether belX(. p
p θ1 ∪ θ2) is compatible with the Generalized

Likelihood Principle (accepting some a priori belief on Θ) i.e., does there exist
some a priori belief function bel0 on Θ such that for all x ⊆ X:

belX(x p
p
θ1 ∪ θ2) = m0(θ1)belX(x p

p
θ1) +m0(θ2)belX(x p

p
θ2)

+m0(θ1 ∪ θ2)(bX(x p
p
θ1)b(x p

p
θ2)− b(∅ p

p
θ1)b(∅ p

p
θ2))

(see section 5.1.). A m0 must be found that satisfies these constraints. This
search will not always be successful in which case the DRC and the GBT do not
apply. Failure reflects the fact that belX( p

p θ1 ∪ θ2) is based on more information
than the one represented by belX(. p

p
θ1), belX(. p

p
θ2) and some bel0. Difficulties

can also appear when there are several solutions m0 that satisfy the constraints.
We will not discuss them further here as, fortunately, in typical cases, belX(. p

p θ)
is known for the singletons θ of Θ (or for subsets θ of Θ that constitutes a
partition of Θ). Then both the DRC and the GBT apply.

5.6. When one has an a priori belief function belX0 on X, one could compute

bel∗Xi = belX(. p
p
θi) ∩©belX0

for each θi, i.e. our belief over X that combines both pieces of evidence, the one
related to the θi and the one related to the prior on X. But it is erroneous to use
the bel∗Xi in the GBT directly. Indeed, bel∗Xi and bel∗Xj , i 6= j, do not result from
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distinct pieces of evidence as they share the same a priori belX0. The correct
computation consists in isolating each belX(. p

p θi), ballooning them on X × Θ,
∩©-combining them and marginalizing them on X and then ∩©-combining the
result with belX0. Through this technique, each piece of evidence is taken into
consideration once and only once.

5.7. Discounting a Belief Function. Consider an evidence that induces a
normalized belief function belΩ on Ω. When the evidence as a whole is itself
affected by some uncertainty (unreliability), Shafer (1976, page 251 et seq.)
suggested ’discounting’ belΩ in order to take this new uncertainty into account.
Let 1 − α be the degree of trust (reliability) in the evidence as a whole, where
0 ≤ α ≤ 1. The discounted belief function belαΩ on Ω is defined by Shafer (1976
pg 251) such that :

∀A ⊆ Ω, A 6= Ω, belαΩ(A) = (1− α)belΩ(A)
and belαΩ(Ω) = belΩ(Ω) = 1

Shafer considers this concept of discounting as simple and useful but did not
explain the origin of within his theory. It can be explained using the same ideas
as those that lead to the GBT.

Let E be a frame with two elements E and E , where E means ’I know the
evidence’, and E means ’I do not know the evidence’. Assume that these are
the only pieces of evidence available. By definition, the belief function belΩ(.|E)
induced on Ω by E is belΩ. The belief function belΩ(.|E) induced by on Ω is
vacuous: not knowing an evidence leaves us in a state of total ignorance. Thus
for each element in E , one has a belief over Ω : belΩ(.|E) = belΩ(.) and belΩ(.|E)
is the vacuous belief function. Lemma 2 shows that belΩ(.|E or E) is vacuous
as belΩ(.|E) is vacuous (and this irrespective of the DRC).

Let 1−α be my degree of belief over E that E holds (i.e. my degree of belief
that the source of the evidence E is reliable). So one has the bba over E with
mE(E) = 1− α and mE(E) = α.

Let bel∗Ω be the belief induced on Ω by the conditional belief functions
belΩ(.|E), belΩ(.|E) and belΩ(.|E or E), and the prior bba mE on E . The appli-
cation of (5.1) leads to

bel∗Ω(A) = mE(E)belΩ(.|E) +mE(E)belΩ(.|E) +mE(E)belΩ(.|E or E)
= (1− α)belΩ(A) ∀A ⊆ Ω, A 6= Ω
= 1 A = Ω

Hence bel∗Ω = belαΩ . The relation is always true as it is derived from (5.1)
which always holds and not from (5.2) which is derived from the GBT. The
discounted belief function belαΩ can thus be justified within the TBM.

Informally, the discounted belief function results belαΩ from the idea that I
have a degree of belief (1−α) that E is a legitimate (reliable) piece of evidence,
in which case my belief on Ω is quantified by belΩ. The remaining bbm α is given
to the fact thet E might be but is not necessarely a legitimate piece of evidence,
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in which case my belief on Ω can be quantified by any belief function, including
belΩ. In such a state of ignorance, the Principle of Minimal Commitment justifies
the use of the vacuous belief function to quantify my belief on Ω. belαΩ results
from the combination of the initial belief function belΩ on Ω and the belief build
on E .

Discounting can also be seen as the result of the impact of a meta-belief
over the set B of belief functions on Ω. It fits with a very special but important
case of a general theory of meta-beliefs. α is the meta-bbm (the basic belief
mass related to the meta-belief function) given to the particular element belΩ of
the set B of belief functions on Ω. 1-α is the meta-bbm given to B itself. The
discounting operation corresponds to the collapse of the meta-beliefs over the
set of belief functions on Ω into a belief function on Ω.

6 Belief networks

We now introduce some possible applications of the GBT and the DRC. All
belief functions considered here are induced by distinct pieces of evidence.

Consider the simplest directed belief network with two nodes Θ and X repre-
senting binary variables. The weights on the edge are the conditional plausibility
functions on X given θ and θ.

Θ > X∣∣∣∣ pl(x p
p θ) pl(x p

p θ) pl(x ∪ x p
p θ)

pl(x p
p θ) pl(x p

p θ) pl(x ∪ x p
p θ)

∣∣∣∣
Forward propagation: Assume there is some basic belief masses on Θ: m(θ),
m(θ) and m(θ ∪ θ). Then we can compute the plausibility induced on X by
equation 5.4:

pl(x) = m(θ)pl(x p
p θ) +m(θ)pl(x p

p θ) +m(θ ∪ θ)(1− (1− pl(x p
p θ))(1− pl(x p

p θ)))

pl(x) = m(θ)pl(x p
p θ) +m(θ)pl(x p

p θ) +m(θ ∪ θ)(1− (1− pl(x p
p θ))(1− pl(x p

p θ)))

pl(x ∪ x) = m(θ)pl(x ∪ x p
p θ) +m(θ)pl(x ∪ x p

p θ)

+m(θ ∪ θ)(1− (1− pl(x ∪ x p
p θ))(1− pl(x ∪ x p

p θ)))

Backward propagation: Should we receive a plausibility on X instead, we
could compute the belief on Θ by equation (3.3)

pl(θ) = m(x)pl(x p
p θ) +m(x)pl(x p

p θ) +m(x ∪ x)pl(x ∪ x p
p θ)

pl(θ) = m(x)pl(x p
p θ) +m(x)pl(x p

p θ) +m(x ∪ x)pl(x ∪ x p
p θ)

pl(θ ∪ θ) = m(x)(1− (1− pl(x p
p θ))(1− pl(x p

p θ)))

+m(x)(1− (1− pl(x p
p θ))(1− pl(x p

p θ)))

+m(x ∪ x)(1− (1− pl(x ∪ x p
p θ))(1− pl(x ∪ x p

p θ)))
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Propagation in both directions: Should one receive both a belief belΘ on
Θ and a belief belX on X, then

• for the X node: apply forward propagation using belΘ and the conditional
plausibilities and ∩©-combine the result with belX .

• for the Θ node: apply backward propagation using belX and the condi-
tional plausibilities and ∩©-combine the result with belΘ.

Notice the strong symmetry between the above two sets of formula, it reflects
the fact that unnormalized conditional plausibilities are symmetrical in their
two arguments. Computing the corresponding belief function is immediate.
Computing the corresponding basic belief masses or the commonality function
should be done with the Fast Moebius Transform (Kennes and Smets 1990) to
optimize computation time.

For more complicated acyclic belief networks, the computation is similar.
Each node stores the beliefs induced by its immediate neighbours. Once a node
X indicates that its belief has changed, it propagates its new belief to all its
neighbours. Each neighbour updates the belief induced byX by ∩©-combine with
its stored beliefs, using commonality functions for efficiency reasons. They then
propagate the updated belief to Y ’s neighbours that have not yet been updated.
This propagation is in fact identical to the one encountered in Shafer, Shenoy
and Mellouli’s algorithm (Shafer et al. 1987). The advantage of our method
is that storage on the edge is smaller (at most |Θ|2|X| values) and propagation
between nodes is accelerated. The only weakness of our method is that it does
not cover all possible belief functions between two variables, it is restricted to
those belief functions that can be represented through the set of conditional
belief functions, thus a subset of the set of all belief functions. We believe that
this loss of generality is not serious, as far as most natural cases correspond
to those where only the conditional belief functions are received. Finally, our
computation is faster and requires less memory than the Shafer-Shenoy-Mellouli
algorithm.

7 Example

In order to illustrate the use of the GBT and the DRC, we consider an example
of a medical diagnosis process. Let Θ = {θ1, θ2, θω} be a set of diseases with
three mutually exclusice and exhaustive diseases. θ1 and θ2 are two ‘well known’
diseases, i.e. we have some beliefs on what symptoms could hold when θ1 holds
or when θ2 holds. θω corresponds to the complement of {θ1, θ2} relative to all
possible diseases. θω represents not only all the ‘other’ diseases but also those
not yet known. In such a context, our belief on the symptoms can only be
vacuous. What do we know about the symptoms caused by a still unknown
disease? Nothing of course, hence the vacuous belief function.

We consider two sets X and Y of symptoms with X = {x1, x2, x3} and
Y = {y1, y2}. Tables 1 and 2 present the beliefs over X and Y when each of the
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{θ1} {θ2} {θω} {θ1, θ2}
X m bel m bel m bel m bel
{x1} .0 .0 .0 .0 .0 .0 .00 .00
{x2} .0 .0 .0 .0 .0 .0 .00 .00
{x3} .5 .5 .2 .2 .0 .0 .10 .10

{x1, x2} .2 .2 .6 .6 .0 .0 .12 .12
{x1, x3} .0 .5 .1 .3 .0 .0 .05 .15
{x2, x3} .0 .5 .1 .3 .0 .0 .05 .15

{x1, x2, x3} .3 1.0 .0 1.0 1.0 1.0 .68 1.00

Table 1: Conditional beliefs (bel) and bbm (m) on the symptoms x ⊆ X within
each of the mutualy exclusive and exhaustive diagnosis θ1, θ2 and θω ∈ Θ. The
right part of the table presents the beliefs (and bbm) on X given the disease is
either θ1 or θ2.

{θ1} {θ2} {θω} {θ1, θ2}
Y m bel m bel m bel m bel
{y1} .1 .1 .6 .6 .0 .0 .12 .12
{y2} .7 .7 .0 .0 .0 .0 .00 .00

{y1, x2} .1 .9 .4 1.0 1.0 1.0 .88 1.00

Table 2: Conditional beliefs (bel) and bbm (m) on the symptoms y ⊆ Y within
each of the mutualy exclusive and exhaustive diagnosis θ1, θ2 and θω ∈ Θ. The
right part of the table presents the beliefs (and bbm) on Y given the disease is
either θ1 or θ2.

individual diseases holds. They also show the beliefs over the symtpoms when
we only know that either θ1 or θ2 holds. They are derived from theorem 3. The
beliefs translate essentially the facts that θ1 ‘causes’ (supports) x3 and y2, and
θ2 ‘causes’ x2 or x3 (without preference) and y1. When we only know that θ1 or
θ2 holds, then we have a balanced support over X, and some support in favor
of y1.

Table 3 presents the beliefs induced on Θ by the individual observation of
symptom x3 or of symptom y2, respectively. We assume that the symptoms are
independent within each disease, hence the GBT can be applied. The indepen-
dence assumption means that if we knew which disease holds the observation
of one of the symptoms would not change our belief about the status of the
other symptom. The right half of table 3 presents the beliefs induced on Θ by
the joint observation of symptom x3 and of symptom y2. The beliefs are com-
puted by the application of theorem 4. The symptoms individually and jointly
support essentially {θ1, θω}. The meaning of bel(θω p

px3, y2) = 0.27 merits some
consideration. It quantifies our belief that the joint symptoms x3 and y2 are
neither ‘caused’ by θ1 nor by θ2. It supports the fact that the joint observation
is ‘caused’ by another disease or by some still unknow disease. A large value for
bel(θω p

px3, y2) somehow supports the fact that we might be facing a new disease.
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p
px3 p

p y2 p
px3, y2

Θ m q m q m q bel pl
{θ1} .00 .80 .00 .80 .00 .64 .00 .64
{θ2} .00 .40 .00 .60 .00 .24 .00 .24
{θω} .12 1.00 .08 1.00 .27 1.00 .27 1.00

{θ1, θ2} .00 .32 .00 .48 .00 .15 .00 .73
{θ1, θω} .48 .80 .32 .80 .49 .64 .76 1.00
{θ2, θω} .08 .40 .12 .60 .09 .24 .36 1.00

{θ1, θ2, θω} .32 .32 .48 .48 .15 .15 1.00 1.00

Table 3: Left part: the basic belief masses (m) and the related commonality
functions (q) induced on Θ by the observation of symptom x3 or of symptom
y2. Right part, the basic belief masses (m) and the related belief function (bel),
plausibility function (pl) and commonality function (q) induced on Θ by the
joint observation of x3 and y2.

p
p
x3, y2 m(θ1, θ2) = 1 m(θ1) = .3 m(θ1) = .3

m(θ2) = .7 m(θ1, θ2) = .7
Θ m beln m beln m beln
{} .30 .00 .70 .00 .32 .00
{θ1} .54 .77 .19 .63 .57 .84
{θ2} .06 .09 .11 .37 .04 .06

{θ1, θ2} .10 1.00 .00 1.00 .07 1.00

Table 4: The basic belief masses (m) and the related (normalized) belief function
(beln) induced on Θ by the joint observation of x3 and y2, and based on three
different a priori beliefs on Θ: an a priori that reject θω, a probabilistic a priori
on {θ1, θ2} and a simple support function on {θ1, θ2}.

In any case it should induce us in looking for other potential causes to explain
the observations.

Table 4 presents the beliefs induced on {θ1, θ2} when we condition our beliefs
on Θ on {θ1, θ2}, or when we have some a priori belief on Θ. The results are
obtained by the application of the conjunctive rule of combination applied to
the a priori belief on Θ and the belief induced by the joint observations. The
belief functions presented are normalized.

8 Conclusions

We have presented the GBT and the DRC built on the knowledge of a set
of conditional belief functions belX(. p

p
θ) on X for each θ in Θ where the θ’s

constitute a partition of Θ. Distinct beliefs on X and/or Θ can be included.
Beside the direct relevance of these theorems for inference and the combination
of distinct disjunctive pieces of evidence, they are also useful when building
belief networks: the assessment of conditional beliefs on X given each θ is more
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natural and easier than the direct assessment of the joint belief on the space
X×Θ. The loss of generality does not appear to be of any practical importance.
In any case, even for the general one, one can always speed up computation and
reduce memory requirements thanks to equations 5.1 and 5.3. that are always
valid. Instead of storing the general belief function belX×Θ, store the set of
conditional belief functions belX(. p

p
θ) ∀θ ⊆ Θ. The total amount of stored data

is at most 2|X|+|Θ| instead of 2|X|.|Θ|, a serious gain once |X| and |Θ| become
large.

The appropriate use of the GBT and the DRC resolves many of the problems
that were raised in Pearl (1990) as supposedly counter-examples against the
Dempster-Shafer theory (see Smets (1992a) for an in-depth re-analysis of these
examples).

One should take care not to apply the GBT and the DRC blindly. The
Generalized Likelihood Principle is not always satisfied. Its applicability must
be verified. As a counterexample, consider a set of urns with ten balls among
which some (n) are white, the others black. Suppose an urn with six white balls
(n = 6). Let bel(W p

pn = 6) be your belief that the next ball extracted from
that urn is white knowing there are 6 white balls. You are free to give any value
to bel(W p

p
n = 6). Hacking’s frequency principle (Hacking 1965) supports that

bel(W p
pn = 6) should be 6/10. It provides a reference scale to quantify beliefs,

but any monotonous transformation could be as good. Nevertheless bel(W p
pn =

6) and bel(W p
pn = 7) are related: once bel(W p

pn = 6) is given, bel(W p
pn = 7)

may not be smaller, (if you have the least amount of coherence). Only in the
world of ”Absurdia” could one accept that the knowledge of bel(W p

p
n = 6) does

not induce any constraint on the value of bel(W p
pn = 7). We accept - hopefully

- that we are not living in Absurdia. Hence bel(W p
pn = 6) and bel(W p

pn = 7)
are related by extra constraints and these constraints must be incorporated into
the model. Applying blindly the GBT is such a context without due regard to
the constraints that exist between the conditional belief functions would lead to
erroneous answers.

Appendix:

Lemma 3. If

plX(x p
p z)

plY (y p
p
z)

=
plX(x)
plY (y)

∀x ⊆ X,∀y ⊆ Y,∀z ⊆ Z,

then plX(x p
p
z) = plX(x)plZ(z).

Proof. By hypothesis,

plX(x p
p z)

plX(x)
=
plY (y p

p z)
plY (y)

.
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So these ratios do not depend on x (nor on y). Let the ratio be equal to f(z).
Hence plX(x p

p z) = plX(x)f(z). As plX(x p
p z) = plX×Z(x ∩ z) = plZ(z p

px), then
f(z) = plZ(z). QED

Lemma 4 : Let X and Y be two frames of discernment. Let plX and plY
be plausibility functions over the frames of discernment X and Y , respectively.
Let plX×Y be the plausibility function on X × Y such that: plX×Y (x ∩ y) =
plX(x)plY (y). Then

belX(x p
p y) = belX(x)plY (y) ∀x ⊆ X,∀y ⊆ Y

and
belX(x1 p

p
y)

belX(x2 p
p y)

=
belX(x1)
belX(x2)

∀x1, x2 ⊆ X,∀y ⊆ Y.

Proof: One has:

plY (y) =
plY (y)(plX(X)− plX(x))

plX(X)− plX(x)
=
plX×Y (X ∩ y)− plX×Y (x ∩ y)

belX(x)

=
plX(X p

p
y)− plX(x p

p
y)

belX(x)
=
belX(x p

p
y)

belX(x)

what proves the first equality. The second is then immediate. QED

Proof of Theorem 1: Let X and Y be two finite spaces. Let {belX(. p
p θi), θi ∈

Θ} and {belY (. p
p θi), θi ∈ Θ}, be two sets of normalized belief functions on X

and Y , respectively. Let pl(θ p
p
x), q(θ p

p
x) and pl(θ p

p
y), q(θ p

p
y) be the plausibility

and commonality functions induced on Θ by the two distinct pieces of evidence
x ⊆ X and y ⊆ Y . Requirement R1 is:

q(θ p
p
x, y) = q(θ p

p
x).q(θ p

p
y) ∀θ ⊆ Θ A.1

It becomes by lemma 1:∑
θ′⊆θ

(−1)|θ
′|+1pl(θ′ p

p
x, y) =

( ∑
θ′⊆θ

(−1)|θ
′|+1pl(θ′ p

p
x)

)( ∑
θ′⊆θ

(−1)|θ
′|+1pl(θ′ p

p
y)

)
A.2

We analyse successively the cases |θ| = 1, 2 and n.

1) When |θ| = 1, equation A.2 becomes:

pl(θ p
px, y) = pl(θ p

px)pl(θ p
p y)

or equivalently
plX×Y (x ∩ y p

p θ) = plX(x p
p θ)plY (y p

p θ) A .3

So x and y are CCI (see section 2.3).
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2) Assume θ = θ1 ∪ θ2 with θ1,θ2 ∈ Θ, θ1 6= θ2. Fori = 1, 2, let

αi = plX(x p
p θi), γi = plY (y p

p θi), αi = plX(x p
p θi), γi = plY (y p

p θi), fi = plX×Y (x∪y p
p θi).

By A. 3, plX×Y (x ∩ y p
p
θ1) = α1γ1 and plX×Y (x ∩ y p

p
θ2) = α2γ2.

By the Generalized Likelihood Principle, there exists a g function such that

plX(x p
p θ) = g(α1, α1, α2, α2)

and
plX(y p

p θ) = g(γ1, γ1, γ2, γ2)

Equation A. 2 becomes:

α1γ1 + α2γ2 − g(α1γ1, f1, α2γ2, f2) =

(α1 + α2 − g(α1, α1, α2, α2)).(γ1 + γ2 − g(γ1, γ1, γ2, γ2)) A .4

Let plX(. p
p θ1) be vacuous. Hence α1 = α1 = 1 and f1 = 1 as f1 = plX×Y (x∪

y p
p θ1) ≥ plX(x p

p θ1) = 1. One has also g(1, 1, α2, α2) = 1 as plX(x p
p θ) ≥

plX(x p
p θ1) = 1.

Equation A.4 becomes:

γ1 + α2γ2 − g(γ1, 1, α2γ2, f2) = α2(γ1 + γ2 − g(γ1, γ1, γ2, γ2)

So g does not depend on its second parameter. Identically g does not depend
on its fourth parameter. Let: k(α, γ) = g(α, ., γ, .).

One has pl(θ1∪θ2 p
px) = k(pl(θ1 p

px), pl(θ2 p
px)), or identically, plX(x p

p θ1∪θ2) =
k(plX(x p

p θ1), plX(x p
p θ2)). Let plX(x p

p θ1) = 1. As plX(x p
p θ1 ∪ θ2) ≥ plX(x p

p θ1)
by lemma 2, then k(1, γ) = 1 = k(γ, 1) as k is symmetrical in its arguments.

Let α1 = γ2 = 1. Then equation A.4 becomes:

γ1 + α2 − k(γ1, α2) = (1 + α2 − 1).(γ1 + 1− 1))

hence,
k(γ1, α2) = γ1 + α2 − α2γ1 = 1− (1− γ1)(1− α2)

and

plX(x p
p θ) = k(α1, α2) = 1−(1−α1)(1−α2) = 1−(1−plX(x p

p θ1)).(1−plX(x p
p θ2)).

3) By iteration one gets plX(x p
p
θ). Assume θ = ∪n

i=1θi where θi ∩ θj = ∅,
∀i 6= j. Assume

plX(x p
p θ) = 1−

∏
θi∈θ

(1− plX(x p
p θi)) = 1−

n∏
i=1

(1− αi).

Consider part 2 of the proof, but replace θ1 by θ and θ2 by θn+1. The proof can
proceeds as in 2). One gets:

plX(x p
p θ ∪ θn+1) = plX(x p

p θ) + plX(x p
p θn+1)− plX(x p

p θ)plX(x p
p θn+1)
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= 1−
∏

θi∈θ∪θn+1

(1− plX(x p
p θi)) A.5

The relation for belX(x p
p
θ) and mX(x p

p
θ) are deduced from A.5. The results

are normalized. QED

Proof of theorem 2. Derive directly from pl(θ p
px) = plX(x p

p θ) and bel(θ p
px) =

pl(Θ p
px)− pl(θ p

px) and normalize by dividing by bel(Θ p
px) QED.

Proof of theorem 3. mX(∅ p
p θi) (and/or mY (∅ p

p θi)) might be non null. To
see the impact of such non null basic belief masses, enlarge the X space into
X’ where X ′ = X ∪ ω where X ∩ ω = ∅. Apply the same proof as for theorem
1 with normalized belief functions on X ′ and condition all results on X. As
such conditioning is idempotent, one can apply it at the level of plX(. p

p
θ) or

at the level of each plX(. p
p θi). For all x ⊆ X, the plausibilities before and

after conditioning are the same. So the Generalized Likelihood Principle still
applies for all x ⊆ X. But after the conditioning has been applied, the functions
plX(. p

p θi) are un-normalized plausibility functions. QED

Proof of theorem 4. Derive directly from pl(θ p
px) = plX(x p

p θ) and bel(θ p
px) =

pl(Θ p
p
x)− pl(θ p

p
x). QED.

Acknowledgements: The author is indebted to Didier Dubois, Yen-Teh Hsia,
Frank Klawonn, Rudolf Kruse, Victor Poznanski and an anonymous referee for
many suggestions for improving the presentation, and Glen Shafer who, in 1978,
indicated to the author that the ballooning extension satisfies the Principle of
Minimal Commitment.

Bibliography

COHEN, M.S., LASKEY, K.B. and ULVILA, J.W. (1987) The management
of uncertainty in intelligence data: a self-reconciling evidential database.
Falls Church, VA: Decision Science Consortium, Inc.

DELGADO M. and MORAL S. (1987) On the concept of possibility-probabilty
consistency. Fuzzy Sets and Systems 21: 311-3018.

DUBOIS D. and PRADE H. (1985) Theorie des possibilités. Masson, Paris.

DUBOIS D. and PRADE H. (1986a) A set theoretical view of belief functions.
Int. J. Gen. Systems, 12:193-226.

DUBOIS D. and PRADE H. (1986b) On the unicity of Dempster rule of com-
bination. Int. J. Intelligent Systems, 1:133-142.

DUBOIS D. and PRADE H. (1987) The principle of minimum specificity as a
basis for evidential reasoning. in: Uncertainty in knowledge-based sys-
tems, Bouchon B. and Yager R. eds, Springer Verlag, Berlin, pg.75-84.

29



DUBOIS D. and PRADE H. (1988) Computational Intelligence, 4:244-263.

EDWARDS A.W.F. (1972) Likelihood. Cambridge University Press, Cam-
bridge, UK.

GEBHARDT F. and KRUSE R. (1990) The context model: an integrating view
of vagueness and uncertainty. To appear in Int. J. Approx. Reas.

HACKING I. (1965) Logic of statistical inference. Cambridge University Press,
Cambridge, U.K.

HALPERN J.Y. and FAGIN R. (1990) Two views of belief: Belief as Generlaized
Probability and Belief as Evidence. Proc. Eighth Natioanl Conf. on AI,
112-119.

HSIA Y.-T. (1991) Characterizing Belief with Minimum Commitment. IJCAI-
91:1184-1189.

KENNES R. and SMETS Ph. (1990) Computational Aspects of the Mšbius
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