
No Dutch Book can be built against the TBM
even though update is not obtained

by Bayes rule of conditioning.

Philippe SMETS1

IRIDIA, Université Libre de Bruxelles
50 av. F. Roosevelt, CP194/6. B-1050 Brussels, Belgium.

Summary:  Synchronic and Diachronic Dutch Books are used to justify the use of
probability measures to quantify the beliefs held by a rational agent. The argument
has been used to reject any non-Bayesian representation of degrees of beliefs. We
show that the transferable belief model resists the criticism even though it is not a
Bayesian model. We analyze the ‘Peter, Paul and Mary’ example and show how it
resists to Dutch Books.

1. Introduction.

1.1. Overview

Some Bayesians used Dutch Book arguments in order to criticize any quantified
representation of belief that do not satisfy the Bayesian model, i.e. beliefs are
quantified by probability functions, and their update is obtained by the application of
Bayes rule of conditioning. Any agent whose beliefs do not satisfy this representation
is incoherent in that a Bookie could always build a set of bets such that the agent
would loose for sure. Synchronic and Diachronic Dutch Books have been defined to
justify the static representation and the dynamic behavior of the agent’s beliefs,
respectively (Teller, 1973, Jeffrey, 1988).

We show that the transferable belief model (TBM) and its pignistic transformation
resist such criticisms, and that the Dutch Book argument cannot be used to criticize
the TBM. In the TBM, we accept that decisions are based on maximizing the
expected utility,  hence they are necessarily based on some probability measures and
utility functions (Savage, 1954). What we reject is that beliefs are represented by
probability measures, and that the updating of the agent beliefs comply with Bayes
rule of conditioning.

1 This work has been partially funded by the CEC-ESPRIT III Basic Research Project
6156 (DRUMS II), and the Communauté Française de Belgique, ARC 92/97-160
(BELON).



We summarize the TBM, a model for representing quantified beliefs based on the
belief functions, and its related pignistic transformation, that induced the probability
measure to be used for optimal decisions making. Synchronic Dutch Books are
avoided as all decisions are based on so called pignistic probabilities, i.e. bona fide
probability functions on the set of alternative states of nature. The avoidance of the
Diachronic Dutch Book is much more delicate to show and the major part of this
paper is devoted to this topic. The reason we are immune to Dutch Books resides in
the non acceptation of the Temporal Coherence Principle that somehow underlies the
Diachronic Dutch Books. We do not assume that our betting behaviour is the same for
hypothetical bets (before the conditioning event has occurred) and for factual bets
(once the conditioning event has occurred). With hypothetical bets, all possible
conditioning events can be considered whereas with factual bets, only the event that
actually occurred can be used as a conditioning event. The distinction is quite similar
to the one between conditional and a posteriori probabilities as described in Goldstein
(1985).

1.1. The Transferable Belief Model.

The transferable belief model is a model for representing the quantified beliefs held
by an agent (You) at a given time on a given frame of discernment. It concerns the
same concept as those considered by the Bayesian model except it does not rely on
probabilistic quantification but on belief functions.

The transferable belief model  is based on:
- a two-level model: there is a credal level where beliefs are entertained and a

pignistic level where beliefs are used to make decisions (from pignus = a bet in
Latin, Smith 1961).

- at the credal level beliefs are quantified by belief functions.
- the credal level precedes the pignistic level in that, at any time, beliefs are

entertained (and updated) at the credal level. The pignistic level appears only when
a decision needs to be made.

- when a decision must be made, beliefs at the credal level induce a probability
measure at the pignistic level, probability measure needed to compute the expected
utilities. I.e., there is a pignistic transformation from belief functions to probability
functions.

- when a new piece of evidence is accepted, the agent’s beliefs are updated into a
new belief by the application of Dempster's rule of conditioning (see section
1.2.3).

Usually the two levels are not distinguished and probability functions are used to
quantify degrees of belief at both levels. The justification is usually linked to
"rational" agent behaviour within betting and decision contexts (DeGroot, 1970). The
Bayesians have convincingly showed that if decisions must be "coherent", our belief



over the various possible outcomes must induce a probability function that is used to
compute the expected utilities that must be maximized. This result is accepted here,
except that the probability function does not quantify our beliefs, but is induced by
them when a decision is really involved. That beliefs are necessary ingredients for our
decisions does not mean that beliefs cannot be entertained without any revealing
behaviour manifestations (Smith and Jones, 1986, p.147).

We claim that beliefs can indeed be entertained without any concept of decision. For
instances, I can entertain beliefs about meta-physical problems even though I am not
going to make any decision about it.  I can have some beliefs about the status of the
red light down my street in Brussels even though I am not in Brussels for the moment
and no decision will be made that depends on the color of the red light.

A full description of the models for beliefs representation based on belief functions
can be found in Shafer's book (1976). A somehow revised version appears in Smets
(1988). The transferable belief model is described in Smets and Kennes (1994) where
we also describe the procedure for assessing degrees of belief, a procedure based on
exchangeable bets established on different betting frames. The axiomatic justification
of the use of belief functions to quantify beliefs is given in Smets (1993c).
Justifications of the conditioning rule can be found in Klawonn and Smets (1992), in
Nguyen and Smets (1993) and in Kruse, Nauck and Klawonn (1991) where
differences between various updating concepts are considered. Further results on
Bayes theorem and the disjunctive rule of combination appear in Smets (1978,
1993a). Jeffrey’s rule of conditioning extended to the TBM are presented in Smets
(1993b).

1.2. The Mathematics of the TBM.

1.2.1. The Frame of Discernment.

Let L be a finite propositional language, and Ω = {ω1, ω2, ...ωn} be the set of

worlds that correspond to the interpretations of L. Propositions identify to
subsets of Ω. Beliefs and probabilities given to propositions can thus be identically
considered as beliefs and probabilities given to subsets of Ω. The set notation will be
used hereafter. By definition there is an actual world ϖ  and it is an element of Ω.

For A”Ω, bel(A) denote the degrees of belief that the actual world ϖ belongs to A.

For simplicity sake, we admit that bel will be defined for every subsets of Ω, so bel
are function from 2Ω to [0,1]. Ω is called the frame of discernment .



1.2.2. The Basic Belief Masses.

Basic Assumption.
The TBM postulates that the impact of a piece of evidence on an agent can be
expressed by an allocation of parts of an initial unitary amount of belief among the
subsets of Ω. For A”Ω, m(A) is a part of the agent’s belief that supports A i.e. that
the 'actual world ϖ is in A, and that, due to lack of information, does not support any

strict subset of A.

The m(A) values, A”Ω, are called the basic belief masses (bbm) and the m
function is called the basic belief assignment .

Let m: 2Ω→[0,1] with
    ∑

A”Ω
  m(A) = 1

The difference with probability models is that positive masses can be given to any
subsets of Ω and not only to the elements of Ω.

As an example, let us consider a somehow reliable witness in a murder case who
testifies to You that the killer is a male. Let α = .7 be the reliability You give to the

testimony. It results from the probability .7 You have that the witness saw the killer.
Suppose that a priori  You have an equal belief that the killer is a male or a female. A
classical probability analysis would compute the probability P(M) of M where M =
‘the killer is a male’.   P(M) = .85 = .7 + .5 x.3 (the probability .7 that the witness is
reliable (saw the killer) in which case M is true for sure, plus the probability .5 of M
given the witness is not reliable (did not see the killer) weighted by the probability  .3
that the witness is not reliable (did not see the killer)). The TBM analysis will give a
belief .7 to M. The .7 can be viewed as the justified component of the probability
given to M (called the belief or the support) whereas the .15 can be viewed as the
contextual component of that probability. The TBM deals only with the justified
components.

1.2.3. Updating.

If some further evidence becomes available to You and implies that B is true, then the
basic belief mass m(A) initially allocated to A is transferred to A∩B. Hence the name

TBM (transferable belief model)

Continuing with the murder case, suppose there are only two potential male suspects:
Phil and Tom. Then You learn that Phil is not the killer. The testimony now supports
that the killer is Tom. The reliability .7 You gave to the testimony initially supported

'the killer is Phil or Tom'. The new information about Phil implies that .7 now

supports 'the killer is Tom'.



The transfer of belief described in the TBM corresponds to the so-called
unnormalized  Dempster rule of conditioning. Let m be a basic belief
assignment on the frame of discernment Ω and suppose the conditioning evidence
tells You that the actual world is in B”Ω, the basic belief assignment m are
transformed into mB: 2Ω→[0,1] with:

mB(A) = ∑
X” B

   m(A∪ X) for A”B   

mB(A) =   0 for A /”B

Note that a non null basic belief mass could be given to Ø. Its meaning is analyzed in
Smets (1992). m(Ø) corresponds to the amount of contradiction present in the basic
belief assignment m, as encountered when two sources of information give some
support to contradictory hypothesis. For any belief function bel, its normalization is
obtained by dividing the bbm’s by 1-m(Ø).

1.2.4. Belief Functions.

Given Ω, the degree of belief of A”Ω, bel(A), quantifies the total amount of
justified specific support given to A. It is obtained by summing all the basic belief
masses given to propositions X”A (and X≠Ø). Let bel : 2Ω→[0,1] where bel is called

a belief function:

bel(A) = ∑
Ø≠X”A

  
   m(X)

We say justified because we include in bel(A) only the basic belief masses given to
subsets of A. For instance, consider two distinct elements x and y of Ω. The basic
belief mass m({x,y}) given to {x,y} could support x if further information indicates
this. However given the available information the basic belief mass can only be given
to {x,y}. We say specific because m(Ø) is not be included in bel(A). Indeed Ø
supports both A and A, thus Ø does not support specifically A.

The unnormalized Dempster's rule of conditioning expressed with bel is:
bel(A|B) =  bel(A∪ B) - bel( B) for all A”B

Its normalization is obtained by dividing the terms bel(A|B) by bel(Ω)-bel( B) = 1-

m(Ø)-bel( B).

1.2.5. The Pignistic Probability BetP .

In Smets (1990) and Smets and Kennes (1994), we show how to make decisions
when the beliefs are quantified by belief functions (see also Jaffray (1988) and Stratt
(1989, 1990) for other solutions based on Hurwicz index).



Before any bet can be elaborated, betting alternatives must be established. Let Ω’ be
the betting frame, i.e. the set of mutually exclusive and exhaustive options on
which the bet is to be established and on which ‘rewards’ can be allocated freely. Let
Your beliefs on a frame Ω be quantified by the normalized belief function bel. Let
bel’ be Your beliefs on the frame Ω’ derived from bel and such that bel’ and bel
allocated same degrees of belief to identical subsets of Ω’ and Ω (subsets that express
equivalent propositions), and bel’ does not express more information than bel did (i.e.
bel’ is the least committed belief function among those that allocate same beliefs as
bel on equivalent  propositions).

Let BetP be the probability function on Ω’ on which bets are established,. BetP is
called the pignistic probability function. It depends on Ω’ and bel (through bel’). Let
Γ be the ‘pignistic’ transformation such that:

BetP = Γ(bel, Ω’)

where BetP is a probability measure on Ω’.

In Smets (1990) we present the rationality requirements that lead to the unique
solution for BetP = Γ(bel, Ω’):

BetP({ω}) = ∑
ω∈ B”Ω’

      
m’(B)

|B|  ∀ω∈Ω ’

in which case: BetP(Α) = ∑
B”Ω’

    m’(B) 
|A∩B|

|B|  ∀ A”Ω’ (∗∗)

where |X| is the number of elements of Ω’ in X and m’ is the bba related to bel’
(where bel’ is normalized). The requirements are summarized as follows (their names
are taken from Gilboa, 1989):
- linearity: Γ(p bel1 + (1-p) bel2, Ω’) = p Γ(bel1, Ω’) + (1-p) Γ(bel2, Ω’).

- projectivity: if bel is a probability function P on Ω, then Γ(P, Ω) = P.

- efficiency: BetP(Ω’) = 1.
- anonymity: BetP is not sensible to any permutation of the elements of Ω.
- false event: If an impossible element ω is added to Ω, then BetP(ω) = 0.

The solution (**) happens to be equivalent to the Shapley value (Shapley 1953),
which model was also called the transferable utility games.

The major rationality requirements are that 1) decisions are based on a probability
measure (and the optimization of the expected utility) and 2) the linearity. The first is
justified by Savage axioms (Savage 1954). It is not satisfied by Jaffray (1988) and
Stratt (1989, 1990) proposals. The second is based on the following argument. Let
bel1 and bel2 be two belief functions on the same frame Ω in two contexts. Let the
contexts be selected at random with probability p and q = 1-p, respectively.
Depending on the context selected, bel1  or bel2 will quantify Your beliefs on Ω.



From each beli one can build the induced pignistic probability function BetPi on Ω (at
this level the distinction between Ω and Ω’ is irrelevant, so we neglect it). These
BetPi are conditional probability functions on Ω, where the conditioning events have
probabilities p and q. The probability function BetP before selecting the context is
thus:

BetP = p BetP1 + q BetP2

There is another way to derive the pignistic probability before selecting the context. If
bel1 and bel2 are the belief functions on Ω in each context, then the belief function bel
on Ω before selecting the context can be shown to be:

bel = p bel1 + q bel2.
Knowing Your beliefs on Ω before selecting the context, You derive Your pignistic
probabilities on Ω by applying the pignistic transformation to bel.

The linearity requirement corresponds to the requirement that the two derivations
(combining the pignistic probability induced by each belief function or taking the
pignistic probability induced by the combined beliefs) lead to the same pignistic
probabilities.

Note that BetP is not a representation of Your beliefs on the betting frame Ω’. It is the
additive measure induced on Ω’ by Your beliefs held at the credal level (and
quantified in the TBM by a belief function) when decision must be made and that
must be used to compute the expected utility to be maximize in order to select the
optimal decision.

1.2.6. What a Dutch Book is ?

The subjective probability P(A) given by an agent to an event A at a given time is
usually defined as the price the agent is willing to pay to play a game against a banker
where the agent receives $1 from the banker if the event A occurs and nothing if the
event A does not occur. Furthermore the bet is fair if the agent is indifferent between
being the player or the banker once the price has been fixed. Such a procedure leads
to the construction of probabilities that satisfy the classical axioms of the probability
measures and gives a semantic to the subjective probability measures. Unfortunately
this definition does not justify why beliefs should be quantified by probability
measures. In order to explain why belief should indeed be quantified by probability
measures, Bayesians use the concept of Dutch Book, originally.

A Dutch Book, as introduced by de Finetti (1937), involves a set of bets on events
over a domain X (a betting frame) offered by a Bookie to an agent. First the agent
fixes the price of each $1 bet. The bookie decides then for each bet if the agent is the
player or the banker and the amount to be bet. This set of decision is called a strategy.
A Dutch Book is build by the Bookie against the agent if the Bookie can find a



strategy under which the agent loses money in every case. It can be shown that the
value of the bets must be based on some underlying probability measure over the
possible outcomes of the betting frame X. This type of Dutch Book is qualified as
Synchronic as far as no time is involved. It justified the additivity of subjective
probabilities. It also justifies the Bayesian rule of conditioning provided the
introduction of the possibility of bets being reimbursed if some outcome does not
occur. This last form of bets fits to the concept of conditionalization as defined in
Goldstein (1985), but not necessarily to the concept of a posteriori probabilities.

Suppose evolving time is involved in the betting procedure and it is agreed upon that
the Bookie can buy back any pending bets after some intermediary events have
occurred which outcome is known to both participants,. Then a Diachronic Dutch
Book argument has been advanced to justify why beliefs should be updated by the
application of the Bayesian rule of conditioning (Teller 1973, Jeffrey 1988). This
argument is used to justify that the a posteriori beliefs should be derived from the
initial beliefs by the application of the Bayesian rule of conditioning, just as for the
conditionalization process.

We have proposed to use the transferable belief model in order to represent the
quantified beliefs held by an agent. The pignistic transformation has been defined in
order to build the probability measure needed to fix the prices of the bets. As far as
the pignistic probability is a probability measure, no Synchronic Dutch Book can be
established against the agent. The problem appears once updating is involved.
Updating is performed in the transferable belief model by the application of
Dempster's rule of conditioning. In general, the pignistic transformation of the
updated belief function is not what would be obtained by the application of Bayes
rule of conditioning applied to the initial pignistic probability function, violating thus
the consistency requirement of Gilboa (1989). So it may seem that a Diachronic
Dutch Book could be applied against the agent. We show that it is not the case, and
therefore that the TBM is immune to the Dutch Book argument, even though beliefs
are not quantified by probability measures and updating is not obtained by the
application of Bayes rule.

We do not prove that the transferable belief model can resists to ANY Dutch Book.
Its resistance to Synchronic Dutch Books is immediate, as bets are based on a
probability measure derived from our belief function. We show also that the
Diachronic Dutch Book that supposedly justifies the Bayesian updating rule cannot be
used against the transferable belief model. It may be that other Dutch Books could be
created, but , as far as I know, they remain to be built if they exist.

First we present an example called the ‘Peter, Paul and Mary saga’. We proceed by
describing what should be the diachroninc Dutch Book applicable in that example.



Finally we show how to build the pignistic probabilities so that no diachroninc Dutch
Book can be build against an agent that used the TBM to quantify his/her beliefs.

2. The Peter, Paul and Mary Scenario

2.1. The Saga.

Big Boss has decided that Mr. Jones must be murdered by one of the three people
present in his waiting room and whose names are Peter, Paul and Mary.  Big Boss has
decided that the killer on duty will be selected by a throw of a dice: if it is an even
number, the killer will be female, if it is an odd number, the killer will be male. You,
the judge, know that Mr. Jones has been murdered and who was in the waiting room.
You know about the dice throwing, but You do not know what the outcome was and
who was actually selected. You are also ignorant as to how Big Boss would have
decided between Peter and Paul in the case of an odd number being observed. Given
the available information at time t0, Your odds for betting on the sex of the killer
would be 1 to 1 for male versus female.

At time t2 > t0† , You learn that if Big Boss had not selected Peter, then Peter would
necessarily have gone to the police station at the time of the killing in order to have a
perfect alibi. Peter indeed went to the police station, so he is not the killer. The
question is how You would bet now on male versus female: should Your odds be 1 to
1 (as in the TBM) or 1 to 2 (as in the Bayesian model)

Note that the alibi evidence makes 'Peter is not the killer' and 'Peter has a perfect alibi'
equivalent. The more classical evidence 'Peter has a perfect alibi' would only imply
P('Peter is not the killer' | 'Peter has a perfect alibi') = 1. But P('Peter has a perfect
alibi' | 'Peter is not the killer') would stay undefined and would then give rise to
further discussion, which for our purpose would be useless. In this presentation, the
latter probability is also 1.

2.2. The TBM Solution.

Let k be the killer. The information about the waiting room and the dice throwing
pattern induces the following basic belief assignment m0:

k ∈ Ω = {Peter, Paul, Mary}

m0( { Mary} ) =  .5

m0( { Peter, Paul} ) = .5

† The choice of index 2 will be justified later.



The .5 belief mass given to {Peter, Paul} corresponds to that part of belief that
supports "Peter or Paul", could possibly support each of them, but given the lack of
further information, cannot be divided more specifically between Peter and Paul.

Let BetP0 be the pignistic probability obtained by applying the pignistic
transformation Γ  to m0 on the betting frame which set of atoms a  is {{Peter],

{Paul}, {Mary}}.
BetP0 = Γ(m0, a)

with:
BetP0({Peter}) = m0({Peter}) + m0({Peter, Paul}) / 2

+ m0({Peter, Mary}) / 2 + m0({Peter, Paul, Mary}) / 3
= .25

and equivalently:
BetP0({Paul}) = .25
BetP0({Mary}) = .50

Given the information available at time t0, the bet on the killer's sex (male versus
female) is held at odds 1 to 1.

Peter's alibi induces an updating of m0 into m2 be Dempster's rule of conditioning:
m2( {Mary} ) = m2( {Paul} ) = .5

The basic belief mass that was given to "Peter or Paul" is transferred to Paul.

Let BetP2 be the pignistic probability obtained by applying the pignistic
transformation Γ  to m2 on the betting frame which set of atoms b is {{Paul},

{Mary}}.
BetP2 = Γ(m2, b)

where:
BetP2({Paul}) = .50
BetP2({Mary}) = .50

Your odds for betting on Male versus Female would still be 1 to 1.

3. Diachronic Dutch Book.

We must distinguish between static and dynamic contexts. Updating is not considered
in the first case, whereas it is in the second. Synchronic Dutch Books justify the use
of a probability measure in the static case. Diachronic Dutch Books concern the
dynamic case.



We do not discuss the Synchronic Dutch Book in the static TBM context as far as all
synchronic bets are based on the pignistic probability BetP that is just a plain
probability function. Therefore no Dutch Book can be build against the static TBM
solution.

In the dynamic case, Bayesians claim they can build a Diachronic Dutch Book against
the TBM solution because the pignistic probabilities derived from the updated belief
functions are not those one would obtain from BetP0 by the application of the
Bayesian rule of conditioning on BetP0 (Teller 1973, Jeffrey 1988). We show that the
argument is not against the TBM and its updating rule, but that the construction of the
pignistic probabilities must take in due account the information underlying the
construction of the Diachronic Dutch Book, i.e. that an experiment is going to be run
before bets will be settled. We illustrate our case with the Peter, Paul and Mary saga.

Using the figures obtained with the TBM solution, Jeffrey (1988) proposes the
following strategy in order to build a Dutch Book.

You win if killer is Bookie’s   fair
Peter Paul Mary Pw price   price

B1 0 0 1 .50 24 12
B2 1 0 0 .25 16 4
B3 0 1 1 .75 4 3

BetP0 .25 .25 .50

Table 3.1.  Data about the three bets B1, B2 and B3.

Let the three $1 bets B1, B2 and B3 given in table 3.1. At time t0, Your pignistic
probabilities BetP0 for the three options are those given at the bottom of the table.
The probability of winning for each bet is given in column Pw. The Bookie sells You
the three bets at $24, $16 and $4 respectively. Given Your pignistic probabilities
BetP0, the ‘fair’ price You accept to pay for the three bets are given in the rightmost
column. For instance, You pay $12 to buy the ticket B1, You will receive $24 if Mary
is the killer, and nothing otherwise.  The total cost of the three bets is $19 at time t0.

Suppose an experiment is going to be run at time t1, the outcome of which (known by
both You and the Bookie) will be either ‘Peter is the killer’ or ‘Peter is not the killer’.
If you learn that Peter is the killer, the bets are settled and You loose $3. If you learn
that Peter is not the killer, the Bookie’s trick is that he buys back the B1 ticket at the
new value that You would give to it at time t1. In the TBM,  after learning ‘not Peter’
bel0 is updated into bel1 = bel0(.|not Peter) by conditioning bel0 on ‘not Peter’. One
obtains m1(Paul) = .5 and m1(Mary) = .5. Then the ‘fair’ price You give to B1 is
based on BetP1 = Γ(bel1, {{Paul}, {Mary}}). One obtains BetP1(Paul) = BetP1(Mary)

= .5. Therefore B2 price is still $12 = $0*BetP1(Paul) + $24*BetP1(Mary).



If You learn B1 B2 B3 Net Gain

Peter is the killer 0 16 0 16 - 19 = -3
Peter is not the killer 0 0 4 4 + 12 - 19 = -3

Table 3.2. Gain received from the three bets after learning that Peter is the killer or
isn’t it. (in which case the Bookie buys back bet B1 at $12).

The net outcome of these bets are given in table 3.2. Net gain results from the price
paid by the settled bets ($16 or $4, respectively), the $19 paid at t0 (and the $12 the
Bookie might pay to You at t1 if you learn that Peter is not the killer). In both cases,
You loose $3, and a Dutch Book has been build against You. This argument is the
one used to justify the use of the Bayesian rule of conditioning.

But the argument is not correctly applied as we show now. The information about the
experimental set up must be introduced in the TBM solution. The solution presented
in section 1.2.5. deals with the case where all the available information is summarized
in bel. In the present context, You know more, You know about the experiment that
will be run. The Dutch Book was obtained because the pignistic probability was
erroneously computed.

The pignistic probability BetP0 of table 3.1 are those You would use if You had not
known about the Peter experiment. They were perfectly valid as You might have win
(if Mary turned out to be the killer). The Bookie build a Dutch Book only because he
knows that the Peter experiment was going to be run. Should You have known about
the experiment, You would not have used the pignistic probabilities BetP0 of table
3.1, but another set of pignistic probabilities that reflect the information about the to
be run experiment. In sections 4 and 5, we develop in detail how to build the pignistic
probabilities on Ω when You know that an experiment will be run which outcome is
relevant to Your beliefs on Ω. We show that such pignistic probabilities are immune
to Dutch Books.

4. Outcome of the Peter Experiment at time t1 .

Let us rephrase the scenario. At time t0, You and the Bookie know the same
information about the Peter, Paul and Mary saga as previously. But you both know
also that at time t1 > t0 a ‘Peter sensor’ will tell to both of you if Peter is or is not the
killer. If Peter is not the killer, the Bookie is free to propose new bets or to buy back
the pending one (B1). At time t2 > t1, the bets will be settled if Peter happens not to be
the killer (they were already settled at t1 if Peter is the killer).

You are thus facing two sets of bets: those at t0 and those at t1 if the Peter sensor says
‘not Peter’ (see table 4.1). If You learn ‘not Peter’, You will update Your initial belief



function bel0 into bel1 = bel0(.|not Peter) by Dempster's rule of conditioning. Then
m1({Paul}) = m1({Mary}) = .5. Therefore Your pignistic probabilities are BetP1 =
Γ(bel1, {{Paul}, {Mary}}), i.e., BetP1({Paul}) = BetP1({Mary}) = .5. These are the

probabilities You will use at time t1 if you learn ‘not Peter’. At time t0, You build
Your pignistic probability BetPX that You will observe ‘Peter’ or ‘not Peter’ at t1. So
BetPX  = Γ (bel0, {{Peter}, {Paul, Mary}}). Hence BetPX({Peter}) = .25 and

BetPX({Paul, Mary}) = .75. The pignistic probabilities BetPΩ to be used at time t0 to
compute the fair price of the proposed bets are then (see table 4.1):

BetPΩ({Peter}) = .25
BetPΩ({Paul}) = .375
BetPΩ({Mary}) = .375

and not the .25, .25, .50 as given in the solution where it was not known about the
Peter experiment to be run. As far as all bets, those at t0 and those at t1, are linked
through an underlying join probability function, and those at t1 can be derived from
those at t0 through the application of the Bayesian rule of conditioning, no Diachronic
Dutch Book can be build against You, as shown in Teller’s work.

The killer ϖ is BetPX on

You learn X at t1 Peter Paul Mary X / -X

X = Peter is the killer 1. 0. 0. .25
-X = Peter is not the killer 0. .5 .5 .75

BetPΩ on ϖ at t0 .25 .375 .375

Table 4.1. Values of the conditional probabilities You would use at t1 if You learn
X or -X. Prior probabilities BetPX  that You will learn X or -X. Probabilities BetPΩ
used to bet on the killer at t0 knowing about the X experiment that will be run.

Therefore we have shown how the TBM resists to the Dutch Book argument. The
TBM does not update beliefs through the Bayesian rule of conditioning, but resists
nevertheless against Dutch Booking by considering appropriately the experimental set
up involved. Knowing that a ‘Peter sensor’ is going to be used is a piece of
information that must be taken in consideration. Once that is done, You are safe
against any Dutch Book as all Your bets are executed by using pignistic probabilities
that are consistent with an underlying join probability function on the product space
Ωx{possible outcomes of the experiment}.

BetP0 given in table 3.1 corresponds to the pignistic probabilities derived from the
knowledge available at t0 whereas BetP0 in table 4.1 corresponds to the pignistic
probabilities derived from the same information plus the knowledge about the ‘Peter
sensor’ experiment to be run at t1 and the ability for the Bookie to buy back any
unsettled bet at t1 . (If the Bookie could not buy back pending bets at t1,  the
appropriate pignistic probabilities are of course the BetP0 of table 3.1).



The originality achieved with the TBM resides in the fact that the probabilities used at
t0 will not be the same if You ignore the Peter experiment or if You know about it
(the BetP of tables 3.1 or 4.1). One could be tempted to create a Dutch Book by
mixing bets in the two contexts, ignoring or knowing about the Peter experiment. This
is not achievable as one can not accept a context where You simultaneously ignore
and know the same thing: either You don’t know or You know something. Such
Dutch Books could only be achieved in absurd worlds.

5. General Solution.

5.1. Observation is: ‘ϖ  ∈  B ”””” Ω’

Let m0:2Ω→[0, 1] be Your basic belief assignment at time t0 and bel0 its related

belief function, where bel0(A), ∀ A”Ω,  quantifies Your degree of belief that the

actual state of affair ϖ belongs to A. Let it be known that at time t1 an experiment will

be run which outcome will be an atom of a subalgebra B of 2Ω. Let  b = {B1, B2,...,
Bn} be the set of the atoms of B. Each Bi is itself a non empty set of elements of Ω:
Bi = {ωi1,  ωi2, ...ωini}”Ω.

Let mi be the basic belief assignment obtained by conditioning m0 on Bi by
Dempster's rule of conditioning, with beli its related belief function. Let BetPi =
Γ(beli, Bi). BetPi({ωij}) is the pignistic probability of ωij∈ Bi derived from beli  on the

elements of Ω in Bi, i.e. the betting frame corresponds to the elements of Bi. Let
BetP0 = Γ(bel0, b). BetP0(Bi) is the pignistic probability of Bi∈ b derived from bel0
on the atoms of B, i.e. the betting frame corresponds to the atoms of B.

Then the pignistic probability BetP* at t0 on the elements of Ω is:

∀ Bi ∈ b ∀ω∈ Bi , BetP*(ω) = BetPi(ω) BetP0(Bi)

and ∀ A”Ω BetP*(A) = ∑
ω∈ A

 BetP*(ω)

This formula is derived from the fact that BetPi(ω) corresponds to the conditional

probability of ω given Bi and BetP0(Bi) is the marginal probability of Bi.

5.2. General case.

Let m0:2Ω→[0, 1] be Your basic belief assignment at time t0 and bel0 its related

belief function where bel0(A), ∀ A”Ω, quantifies Your degree of belief that the actual

state of affair ϖ belongs to A. Let it be known that at time t1 an experiment will be



run which outcome will be an element of a frame X = {x1, x2...xn}. How to assess
Your pignistic probabilities BetP0 on Ω given m0 and the knowledge about the X
experiment?

Let mω:2X→[0, 1] be Your basic belief assignment at time t0 about the outcome of

the experiment if ϖ = ω, ∀ω∈Ω , and belω its related belief function. Consider the

space ΩxX. For each ω∈Ω ,  belω is the conditional belief functions induced on X

under the condition that ϖ=ω. It translates Your beliefs about which experimental

outcome will occur if ϖ=ω. Beside bel0 is Your a priori belief on Ω. We have shown

in Smets (1978, 1993) how to build the underlying belief function belΩxX on ΩxX
that integrates the information contained in bel0 and all the belω. Let belΩ(.|x) be the
belief function on Ω when conditioning belΩxX on x∈ X. The full relations are given

in Smets (1993).

For each x∈ X, build BetPx = Γ(belΩ(.|x), Ω), the pignistic probability induced by

belΩxX on Ω when x is the case. This would be the probabilities You would use on Ω
if the experimental outcome is x∈ X.

Build then BetPX  = Γ(belΩxX, X), the pignistic probability derived from the joint

belief function belΩxX on the betting frame X.

Then the pignistic probability BetP* at t0 on the elements of Ω is:

∀ A”Ω, BetP*(A) = ∑
x∈ X

   BetPx(Α) BetPX(x)

This relation corresponds to the classical relation:

∀Α ”Ω P(A) =  ∑
Ci∈ c

    P(A|Ci) P(Ci)

where the Ci are the elements of a partition c of Ω.

The probabilities BetP*(ω) are those You use at time t0 when You know there will be

an experiment which outcome at t1 will affect Your beliefs over Ω and new bets on Ω
could be proposed after knowing the outcome of the experiment. Let BetP’ = Γ(bel0,

Ω) be the probabilities you would use if there was no known experiment going to be
run before deciding of the final outcome of the bet on the frame Ω. The difference
between BetP* and BetP’ reflects the impact of the knowledge of the to-be-run
experiment and the ability for the Bookie to buy back some pending bets.

5.3. Example: Outcome is ‘¬Peter’ or ‘¬Mary‘

As an example of the general case, suppose that the experimental outcome could be
‘¬Peter’ or ‘¬Mary‘ (italics characterize the experimental outcomes). Let the



experiment be called the X experiment. The outcome is ‘¬Peter’ if the killer is Mary,
‘¬Mary’ if the killer is Peter, but what if the killer is Paul? Suppose You believe that
both answer are equiprobable when Paul is the killer. What would be BetP* in that
case?

The initial frame is ΩxX = {Peter, Paul, Mary}x{¬Peter, ¬Mary}. Tables 5.1 and 5.2
illustrate the construction of the various belief functions and pignistic probability
functions. The basic belief assignment mc on ΩxX that results from the conditional
belief functions on X given ω∈Ω  is1:

mc({(Peter,¬Mary), (Paul, ¬Peter), (Mary, ¬Peter)}) = .5
mc({(Peter,¬Mary), (Paul, ¬Mary), (Mary, ¬Peter)}) = .5

 
mω mc coin data mΩxX       mX

P P M P P M P P M P P M
e a a e a a e a a e a a
t u r t u r t u r t u r

¬Pet .0 .5 1. . . . .5 .50
     .5        .5        .5 .5   .25 .25

¬Mar 1. .5 .0 . . . .25 . .25

Table 5.1. Values of mω  where Pet, Pau and Mar denote Peter, Paul and Mary,
respectively. Construction of mc, and the belief induced by the coin data.
Construction of mΩxX by combining the last two belief functions by Dempster's rule
of combination. Construction of mX. Lines and squares designate the subsets of ΩxX
to which the bbm are given.

mx BetPx BetPX
P P M P P M
e a a e a a
t u r t u r

¬Pet .0 .25 50 .0 1/3 2/3 .625
  .25        

¬Mar .25 .0 .0 3/4 1/4 .0 .375

Table 5.2. Construction of m x, BetPx and BetPX where  x∈ X = {¬Peter ,¬Mary}.

The basic belief assignment mΩxX  on ΩxX  that combines mc with the prior
information on Ω (the coin experiment: .5 on male and .5 on female) is:

mΩxX({(Peter,¬Mary), (Paul, ¬Peter)}) = .25

1 This is the only belief function such that its conditioning on the elements of Ω
restitute the original conditional belief functions on X. The general solution is
presented in Smets (1993)



mΩxX({(Peter,¬Mary), (Paul, ¬Mary)}) = .25
mΩxX({(Mary, ¬Peter)}) = .5

mΩxX  integrates all prior knowledge relative to the bets.

Let mX be the bbm induced by mΩxX  on X:
mX (¬Peter) = .5
mX (¬Mary) = .25
mX (¬Peter or ¬Mary) = .25

mX  quantifies Your beliefs induced by mΩxX  on X.

Let m¬Peter and m¬Mary be the bbm induced on Ω after conditioning mΩxX   on
¬Peter or ¬Mary, respectively. They m¬Peter and m¬Mary quantifies Your beliefs
induced by mΩxX   on Ω after knowing that the experimental outcome is ¬Peter or
¬Mary, respectively. Their values are:

m¬Peter(Paul) = .25     and m¬Peter(Mary) = .50
m¬Mary(Peter or Paul) = .25     and m¬Mary(Peter) = .25

These belief functions will be normalized (by .75 and .50, respectively) before
applying the pignistic transformation.

Then: 
BetPX = Γ(belX , {{¬Peter} , {¬Mary}} is used to bet on the experimental outcome.

BetP¬Peter = Γ(bel¬Peter, {{Paul} , {Mary}}) is used to bet on Paul versus Mary if

the experimental outcome is ¬Peter.
BetP¬Mary = Γ(bel¬Mary, {{Paul} , {Peter}}) is used to bet on Paul versus Peter if the

experimental outcome is ¬Mary.

For instance: BetPX(¬Peter) = .25/2 + .5 = .625
and BetP¬Peter(Paul) = .25/.75.

Table 5.3 presents the various probabilities. Your bets at t0 on Ω are based on BetP*
(and not the .25, .25, .50 You should have used if You had not be aware of the
experimental set up).

   BetPx Peter Paul Mary BetPX

¬Peter 0. .25/.75 .50/.75 .625
¬Mary .375/.50 .125/.50 0. .375

   BetP* .281 .302 .417

Table 5.3. Values of the conditional pignistic probabilities BetPx  on Ω where x∈ X

= { ¬Peter ,¬Mary},  of the marginal pignistic probabilities BetPX on X and of the

pignistic probabilities BetP* on Ω used at t0 (before observing the outcome of the X
experiment).(.302 = (.25/.75).625 + (.125/.50).375, etc...)



Coming back to the B1, B2 and B3 bets considered in section 3, the fair prices for the
three bets at t0 (based on BetP*, see table 5.2) are: (B1, $10) , (B2, $4.5), (B3,
$2.875).

5.4. vacuous prior on X when Paul is the killer.

We consider the same example as in section 5.3 but where we are in a state of total
ignorance on how the X outcome will be selected if the killer is Paul, i.e. the belief
function over X given Paul is represented by a vacuous  belief function.

mω mc coin data mΩxX       mX
P P M P P M P P M P P M
e a a e a a e a a e a a
t u r t u r t u r t u r

¬Pet .0 . 1. . . . .5 .5
     1.           1.        .5 .5          .5 .5

¬Mar 1. . .0 . . . . .0

Table 5.4. Same information as table 5.1, except for m ω=Paul.

mx BetPx BetPX
P P M P P M
e a a e a a
t u r t u r

¬Pet .0 .5 5 .0 .5 .5 .75
  .5        

¬Mar .0 .0 .0 .5 .5 .0 .25

Table 5.5. Same information as table 5.2, except mω=Paul represents total
ignorance.

The initial frame is ΩxX = {Peter, Paul, Mary}x{¬Peter, ¬Mary}. Tables 5.4 and 5.5
illustrate the construction of the various belief functions and pignistic probability
functions. The basic belief assignment mc on ΩxX that results from the conditional
belief functions is:

mc({(Peter,¬Mary), (Paul, ¬Peter), (Paul, ¬Mary) (Mary, ¬Peter)}) = 1
The basic belief assignment mΩxX on ΩxX that combines mc with the prior
information on Ω is:

mΩxX({(Peter,¬Mary), (Paul, ¬Peter), (Paul,¬Mary)}) = .50
mΩxX({(Mary, ¬Peter)}) = .5

Table 5.6 presents the various probabilities computed as for those in table 5.1.



   BetPx Peter Paul Mary BetPX

¬Peter 0. .50 .50 .75
¬Mary .25/.50 .25/.50 0. .25

   BetP* .125 .50 .375

Table 5.6. Values of the conditional pignistic probabilities BetPx  on Ω where x∈ X

= { ¬Peter ,¬Mary},  of the marginal pignistic probabilities BetPX on X and of the

pignistic probabilities BetP* on Ω used at t0 (before observing the outcome of the X
experiment).

Coming back to the B1, B2 and B3 bets considered in section 3, the fair prices for the
three bets at t0 (based on BetP*, see table 5.5) are: (B1, $9) , (B2, $2), (B3, $3.5).

6. The TBM solutions are not compatible with some Bayesian
solution.

To enhance the difference between the Bayesian and the TBM approaches, we present
a simplified example that shows that the TBM solutions obtained when ignoring that
a given experiment will be run and those derived when knowing about the experiment
cannot be achieved simultaneously by some underlying Bayesian analysis. 

Ω m0 m{a,b} m{c}

{a} .0 .5
{b} .0
{c} .0 1.

{a,b} .0 .5
{a,c} .5
{b,c} .0

{a,b,c} .5

Table 6.1. Basic belief assignments m0, m{a,b} and m{c} one would build on Ω
before or after learning the various outcomes of test E.

Suppose a frame Ω = {a, b, c} and let ϖ be the actual value, unknown to You. Let m0

quantifies Your beliefs that ϖ belongs to the various subsets of Ω (table 6.1).  Let E

be an experiment that tests if ϖ∈ {a,b} or not. Table 6.1. presents m0 and the basic

belief assignment m{a,b} and m{c} one would build on Ω after learning the outcome
of the test E.



BetPx a b c

x = {a,b} .75 .25 .00
x  = {c} .00 .00 1.0

BetP0 5/12 2/12 5/12

Table 6.2. The pignistic probabilities BetPx on Ω for each outcome x of the E
experiment, and BetP0, those derived if one ignores that an experiment will be run.

Table 6.2 presents the various pignistic probabilities one would use to bet if one knew
the outcome of the experiment and if one ignored that an experiment will be run.
There is no α∈[0, 1]   such that BetP0  = α BetP{a,b} + (1-α) BetP{c}. So BetP cannot

be consider as the result of the conditionalisation by Bayes rules of a probability
measure on Ωx{{a,b}, {c}} such that its marginal is BetP0.

7. Conclusion.

We have shown how the Peter, Paul and Mary saga resists to Dutch Books, even
though updating is performed according to the transferable belief model by
Dempster's rule of conditioning and not by the classical Bayesian rule of
conditioning. The Dutch Book argument does not provide a proof that updating has to
be performed according to the Bayesian rule. Of course we do not require that
conditioning and a posteriori probabilities should be the same. We see a difference
between a bet where some options would lead to a cancellation of the bet with
reimbursement of the paid price (that is to be based on conditionalized probabilities)
and a bet after learning that some conditioning event has occurred (that is to be based
on a posteriori probabilities).

Consider a space Ω and two sets A, B. Let a bet on A∩B versus -A∩B where the

ticket price is paid back if -B. Such a bet would be obtained by conditioning the
pignistic probabilities on Ω by Bayes rule. It would avoid a Synchronic Dutch Book.
Temporal Coherence Principle requires that such a bet would be the same as the one
on A versus -A once the actual world ϖ is known to belong to B. In the TBM, this

requirement is not assumed. The second bet is based on different pignistic
probabilities derived from the belief obtained by conditioning the initial belief on B
by Dempster's rule of conditioning, what leads in general to a different bet on Ω.
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If You learn Outcome Bookie buys Net Gain BetP

Peter  nothing -1.4 .281
Paul  nothing -13.4 .302
Mary  nothing 10.6 .417

Expected 0.0

¬Peter B1 at $16 2.6

¬Peter Paul  nothing -13.4 .33
Mary  nothing 10.6 .66

Expected 2.6

¬Mary Peter  nothing -1.4 .75
Paul  nothing -13.4 .25

-4.4

¬Mary Peter B2 at $12 -5.4 .75
Paul B2 at $12 -1.4 .25

Expected -4.4

¬Mary Peter B3 at $1 -.4 .75
Paul B3 at $1 -16.4 .25

Expected -4.4

¬Mary Expected B2+B3 at $13  -4.4

Table 5.4. Same net gains as in table 5.3 the relevant pignistic probabilities and the
expected gain of each strategies before or after observing the outcome of the X
experiment.



If You learn Outcome Bookie buys Net Gain BetP

Peter 1.5 .125
Paul -10.5 .500
Mary 13.5 .375

Expected 0.0

¬Peter B1 at $16 1.5
Paul -10.5 .50
Mary 13.5 .50

Expected 1.5

¬Mary Peter B2 at $12 -6.5 .50
Paul B2 at $12 -2.5 .50

Expected -4.5

¬Mary Peter B3 at $1 3.5 .50
Paul B3 at $1 -12.5 .50

Expected -4.5

¬Mary B2+B3 at $13  -4.5

Table 5.8. Same net gains as in table 5.7, the relevant pignistic probabilities and the
expected gain of each strategies before or after observing the outcome of the X
experiment.

Let uω be the gain (the amount of money or its utility if utility of money is not linear)
You would receive if ϖ=ω. The value of a bet at time t0 is the expected value E0(uω)

of the gain uω where the expectation is taken with the probabilities BetP*(ω). The

value of these bets at time t1 is the expected value Ex(uω) of the gain where the
expectation is taken with the probabilities BetPx(ω). By construction one has always:

minx∈ X Ex(uω) ≤ E0(uω) ≤ max x∈ X Ex(uω)
as it should be.

?????3.5. The Rules of Combination.

Suppose two belief functions bel1 and bel2 induced by two 'distinct' pieces of

evidence. The question is to define a belief function bel12=bel1⊕ bel2 resulting from

the combination of the two belief functions, where the ⊕  symbolizes the

combination operator. Shafer proposed to use Dempster's rule of combination in order
to derive bel12. The underlying intuitive idea is that the product of two bbm m1(X)

and m2(Y) induced by the two distinct pieces of evidence on Ω supports X∩Y,

hence:

m12(A) = ∑
X∩Y=A

 m1(X)⋅m2(Y)



Dubois and Prade (1986a), Smets (1990a), Klawonn and Schwecke (1990), Klawonn
and Smets (1992) and Hajek (1991) provide different justifications for the origin and
the unicity of this rule. These justifications are obtained without introducing some
underlying probability concepts. They are based essentially on the associativity and
commutativity properties of the combination operator.

Dempster's rule of combination is a rule to combine conjunctive pieces of
information. Let bel1  and bel2 be the belief functions induced by the two distinct
pieces of evidence E1 and E2, respectively. Then bel12 is the belief function induced
on Ω by the conjunction 'E1 and E2'. In Smets (1993a) we present a combination rule

that permits the derivation of the belief function induced on Ω by the disjunction of
E1 and E2. It corresponds to a situation where you could assess Your belief on Ω if
E1 were true, Your belief on Ω if E2 were true, but You only know that the
disjunction 'E1 or E2' is true.

In a Bayesian analysis, BetP*1 and BretP*2 are the conditional probability functions
on Ω. Therefore Your belief on Ω depends on the knowledge of which experiment
will be run, what seems erroneous. Your initial belief on Ω reflects Your opinion
about which element of Ω corresponds to ϖ. It should be the same whatever

experiment is going to be conducted. Therefore the TBM solution is not a particular
case of some Bayesian analysis.

Lert us first consider the case where both You and the Bookie do not know of any
experiment that is going to be run. Both of you only knows about information
available at t0. What information could you learn before t2 (at t1)? You could learn,
‘Peter’, ‘Paul’, ‘Mary’, ‘¬Peter’, ‘¬Paul’, ‘¬Mary’. We examine the outcome in the
six cases.

Case Learned B1 B2 B3 Net Gain Bookie buys back:

C1 Peter 0 16 0 16 -19 = -3
C2 Paul 0 0 4 4 - 19 = -15
C3 Mary 24 0 4 28 - 19 = +9

C4 ¬Peter 0 0 4 4 + 12 - 19 = -3 B1 at $12.
C5 ¬Paul 0 0 0 ? B1, B2 and/or B3
C6 ¬Mary 0 0 0 - 19 + 10 = -9 B2 at $8 and B3 at $2

Table 3.3. Gains received in the three bets after learning ‘Peter’, ... ‘¬Mary’. Net
gains in each case, and after letting the bookie buy back some bets according to the
optimal (for him) strategy.

The case C1, C2 and C3 are trivial.



In case C4, the B1 ticket is still pending after learning ¬Peter. Its fair price given
BetP1 is $12. The Bookie buys it back, and you face a loss. In fact after learning
¬Peter, You were in the following situation. You paid $19, receive $4 from B3 and
You would receive 24 if Mary is the killer. So Your net gains are: +$9 if Mary is the
killer, -$15 is Paul is the killer. Your future is to win 9 or loose 15. Maybe would You
feel that selling back Your B1 ticket at $12 will reduce the risk of loosing $15. But
this type of argument is not related to the Dutch Book bussiness. Duth Booking
means building a set of bets that lead to a sure loss. Up to here, no such sets has been
build as You will win if You learn Mary (case C3).

Case C5 is more messy. Indeed none of the three bets is settled. Their fair prices are
updated with BetP2(Peter) = BetP2(Mary) = .5 into: (B1, $12), (B2, $8), (B3, $2). If
You keep al three tickets, Your future net gain is: +$9 if Mary is the killer, -$3 if
Peter is the killer. Table 3.4 presents Your net gains according to the Bookie possible
strategies. None leads to a sure loss for You, so the bookie cannot trick you in case
C5.

Bookie  Bookies Net Gainf if killer is
buys back pays Peter Mary

none 0 16 - 19 = -3 24 + 4 - 19 = 9
B1 12 16 - 19 + 12 = 9 4 -19 + 12 = -3
B2 8 - 19 + 8 = -11 24 + 4 - 19 + 8 = 17
B3 2 16 - 19 + 2 = -1 24 - 19 + 2 = 7

B1, B2 20 - 19 + 20 = 1 4 - 19 + 20 = 5
B1, B3 14 16 - 19 + 14 = 11 - 19 + 14 = -5
B2, B3 10 - 19 + 10 = - 9 24 - 19 + 10 = 15

B1, B2, B3 22 - 19 + 22 = 3 - 19 + 22 = 3

Table 3.4. Net gains of each outcomes according to the Bookie strategy for buying
back some open bets after knowing ¬Peter.

In case C6, Your future is bleak. You loose $3 if Peter is the killer, and $15 if Paul is
the killer. The bookie can buy the two tickets for $10 (their value according to
BetP2(Peter) = BetP2(Paul) = .5, in which case You have a sure loss of $9.

In conclusion, there are winning cases in some of the six cases: for sure in C3, and
maybe in C5. Therefore the Bookie cannot build a Dutch Book against You.

Suppose the set up is such that an experiment is going to be run (the C4, C5 and C6
cases), from which both of you might learn that one suspect is not the killer but which
suspect might be eliminated is unknown at t0. The outcome of the experiment is such
that we will end up in case C4, C5 or C6. As You can win in C5, there is no Dutch
Book against You.



Suppose the experimental set up corresponds to a ‘Peter sensor’, i.e., it can only tell
‘Peter’ or ‘¬Peter’ at time t1. (Symmetrically, one could consider a ‘Mary semsor’ or
a ‘Paul sensor’). If You and the Bookie knew about the fact that at t1, you would
know about Peter being the killer or not, then the Bookie could build a Dutch Book if
the data used in case C4 were the appropriate one. But they are not. The ‘Peter sensor’
information has not been appropriately handled.

Table 4.1 presents the fair prices for the three bets. Their total cost is $16. With such
prices, the Bookies can not build a Dutch Book. The fair price fro B1 at t1 afeter
learning ‘¬Peter’ is $12 as BetP1({Paul}) = BetP1({Mary}) = .50.

       Before ‘Peter Sensor’ outcome.
You win if killer is    Fair

Peter Paul Mary   price

B1 0 0 24 9
B2 16 0 0 4
B3 0 4 4 3

BetP0 .25 .375 .375

Table 4.1. Outcome of the three bets, pignistic probabilities of the three outcomes,
and values of the three bets.

The next table 4.2 presents Your net gains in the various possible contexts.

If You learn B1 B2 B3 Net Gain Bookie buys

Peter is the killer 0 16 0 16 - 16 = 0
Peter is not the killer 0 4 4 + 12 - 16 = 0 B1 at $12

Paul is the killer 0 0 4 4 - 16 = -12
Mary is the killer 24 0 4 28 - 16 = 12

Table 4.2.  Net gains after observing the outcome of the ‘Peter sensor’. Lines 3 and
4,  net gains if the Bookie does not buy back the B1 bet .

Table 5.2 presents also the fair prices of the three bets after observing ¬Peter or
¬Mary.



You win if killer is  Value Value Value

Peter Paul Mary at t0 if ¬Peter if ¬Mary

BetP* .281 .302 .417
BetP¬Peter .0 .33 .66
BetP¬Mary .75 .25 .0

B1 0 0 24 10 16 0
B2 16 0 0 4.5 0 12
B3 0 4 4 2.875 4 1

Total 17.375

Table 5.2. Prior (BetP*)and posterior (BetP¬Peter, BetP¬Mary) pignistic
probabilities on Ω, outcomes of bets B1, B2 and B3, and values of the three bets
before (at t0) or after observing the outcome of the X experiment.

Table 5.3 presents Your net gains in the various possible contexts, i.e. according to
what is the outcome of the X experiiment and the final outcome on Ω. As can be seen,
there is no strategy that can be build at t0 and such that the Bookie would win
whatever the final Ω outcome.

X  Outcome Ω Bets
 If You learn Outcome B1 B2 B3 Net Gain Bookie buys

Peter 0 16 0 16 - 17.4 = -1.4
Paul 0 0 4 4 - 17.4 = -13.4
Mary 24 0 4 28 - 17.4 = 10.6

¬Peter 0 4 4 + 16 - 17.4 = 2.6 B1 at $16

¬Mary Peter 0 0 12 - 17.4 = -5.4 B2 at $12
Paul 0 4 4 + 12 - 17.4 = -1.4 B2 at $12

¬Mary Peter 0 16 16 + 1 - 17.4 = -.4 B3 at $1
Paul 0 0 1 - 17.4 = -16.4 B3 at $1

¬Mary 0 13 - 17.4 = -4.4 B2+B3 at $13

Table 5.3. Net gains of the three outcomes on Ω before and after the observation of
the outcome of the X experiment and according to the possible Bookie’ strategies for
buying back some pending bets.

Table 5.5 presents also the fair prices of the three bets after observing ¬Peter or
¬Mary.



You win if killer is  Value Value Value

Peter Paul Mary at t0 if ¬Peter f ¬Mary

BetP* .125 .50 .375
BetP¬Peter .0 .50 .50
BetP¬Mary .50 .50 .0

B1 0 0 24 9 12 0
B2 16 0 0 2 0 8
B3 0 4 4 3.5 4 2

Total 14.5

Table 5.5. Prior (BetP*)and posterior (BetP¬Peter, BetP¬Mary) pignistic
probabilities on Ω, outcomes of bets B1, B2 and B3, and values of the three bets
before (at t0) or after observing the outcome of the X experiment.

The next table 5.6. presents Your net gains in the various possible contexts. As in the
previous case, the Bookie cannot build a Dutch Book againt You.

X  Outcome Ω Bets
 If You learn Outcome B1 B2 B3 Net Gain Bookie buys

Peter 0 16 0 16 - 14.5 = 1.5
Paul 0 0 4 4 - 14.5 = -10.5
Mary 24 0 4 28 - 14.5 = 13.5

¬Peter 0 4 4 + 12 - 14.5 = 1.5 B1 at $12

¬Mary Peter 0 0 8 - 14.5 = -6.5 B2 at $8
Paul 0 4 4 + 8 - 14.5 = -2.5 B2 at $8

¬Mary Peter 0 16 16 + 2 - 14.5 = 3.5 B3 at $2
Paul 0 0 2 - 14.5 = -12.5 B3 at $2

¬Mary 0 10 - 14.5 = -4.5 B2+B3 at $10

Table 5.6. Net gains of the three outcomes on Ω before and after the observation of
the outcome of the X experiment and according all possible Bookie’ strategies for
buying back some pending bets.

To enhance the difference between the Bayesian and the TBM approaches, we present
a simplified example that shows that the TBM solutions obtained when ignoring that
a given experiment will be run and those derived when knowing about the experiment
cannot be achieved simultaneously by some underlying Bayesian analysis. 

Suppose a frame Ω = {a, b, c} and let ϖ be the actual value, unknown to You. Let m0

quantifies Your beliefs that ϖ belongs to the various subsets of Ω (table 6.1).  Let E1

and E2 be two posible experiments where E1 tests if ϖ∈ {a,b} or not, and E2 tests if

∈ {b,c} or not. Table 6.1. presents m0 and the basic belief assignment m1 and m2 one

would build on Ω after learning the various outcomes of tests E1 and E2, respectively.



m0 m1 m2

{a,b} {c} {b,c} {a}

{a} .0 .3 1.
{b} .0 .2
{c} .0 1. .3

{a,b} .2 .7
{a,c} .3
{b,c} .0 .5

{a,b,c} .5

Table 6.1. Basic belief assignments m0 and m1 and m2 one would build on Ω
before or after learning the various outcomes of tests E1 and E2.

Context E1: The experimental outcome x is either {a,b} or {c}. Table 6.2. presents
the various data.

The prior pignistic probability on the experimental outcome is:
BetPE1 = Γ(bel0, {{a,b},{c}}).

The pignistic probability on Ω given each of the two possible experimental outcomes
is:

BetP{a,b} = Γ(bel1{a,b}, {{a},{b}})

BetP{c} = Γ(bel1{c} , {{c}})

where bel1{a,b} and bel1{c} are the belief functions obtained on Ω after conditioning
bel0 on the E1 outcome.

The pignistic probability on Ω at t0 is:
 BetP*1(y) = BetPE1(x) . BetPx(y) x∈ {{a,b},{c}},  y∈ x

E1 outcome
{a,b} {c}

BetPE1 .6 = .2 + (.5+.3)/2 .4 = (.5+.3)/2

Ω BetP{a,b} BetP{c} BetP*1

{a} .65 = .3 + .7/2 .39
{b} .35 = .7/2 .21
{c} 1.0 .40

Table 6.2: Context E1: values of the pignistic probabilities (BetP*1) on Ω and on
the experimental outcomes (BetPE1).

Context E2: The experimental outcome x is either {b,c} or {a}. Table 6.3. presents
the various data.

The prior pignistic probability on the experimental outcome is:



BetPE1 = Γ(bel0, {{b,c},{a}}).

The pignistic probability on Ω given each of the two possible experimental outcomes
is:

BetP{b,c} = Γ(bel1{b,c}, {{b},{c}})

BetP{a} = Γ(bel1{a} , {{a}})

where bel1{b,c} and bel1{c} are the belief functions obtained on Ω after conditioning
bel0 on the E2 outcome.

The pignistic probability on Ω at t0 is:
 BetP*2(y) = BetPE2(x) . BetPx(y) x∈ {{b,c},{a}},  y∈ x

E2 outcome
{b,c} {a}

BetPE2 .5 = (.2+.3+.5)/2 .5 = (.2+.3+.5)/2

Ω BetP{b,c} BetP{a} BetP*2

{a} 1.0 .50
{b} .45 = .2 + .5/2 .225
{c} .55 = .3 + .5/2 .275

Table 6.3: Context E2: values of the pignistic probabilities (BetP*2) on Ω and on
the experimental outcomes (BetPE2).

With the TBM analysis, You have only one belief on Ω characterized by m0 from
which You derive Your pignistic probabilities BetP*1 and BretP*2 according to
which experiment will be perfomred, and You will bet accordingly. One might
wonder if the TBM analysis is not just a rephrasing of some equivalent Bayesian
analysis.

Tbale 6.4. presents the pignistic probabilities BetP0 obtained from bel0 on Ω and
those derived after learning that a test (E1 or E2) is going to be run. In a Baysians
analysis, one could try to assume that both BetP*1 and BetP*2 are nothing but the
conditional probability measures on Ω given the knowledge about the E1 and E2
tests. But then BetP*0 should correspond to the marginalization on Ω of these two
conditional probability measures. An essential property of this marginalization
process is that the result should be numerically between the two conditional values.
As seen in table 6.4, BetP*0({b}) is larger than both BetP*1({b}) and BetP*2({b}).
So the TBM results cannot be obtained by a Bayesian analysis.



BetP*0 BetP*1 BetP*2

{a} .417 .39 .50
{b} .267 .21 .225
{c} .317 .40 .275

Table 6.4: Pignistic probabilities before knowing thzat some experiment will be
run (BetP*0) and after learning that experiments E1 or E2 is going to be run (BetP*1,
BetP*2).

The next Figure summarizes the fact that the TBM and the Bayesians solutions are
incompatible.


