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Abstract: In Dempster-Shafer theory, belief functions induced by distinct pieces of evidence
can be combined by Dempster's rule of combination. The concept of distinctness has not been
formally defined. We present a tentative definition of the concept of distinctness and compare
this definition with the definition of stochastic independence described in probability theory.

1. Introduction.

Shafer (1978) introduced the idea that belief functions induced by "distinct" pieces of evidence
should be combined by Dempster's rule of combination.  But no definition of distinctness was
provided, what lead to many misuses of Dempster's rule of combination (see Pearl (1990) for a
list of errors and Smets (1991a) for solutions to these errors).

We present a tentative definition of the concept of distinctness and argue for its naturalness by
comparing it  to the concept of independence in probability theory.  Our definition is coined
within the transferable belief model, our interpretation of Dempster-Shafer theory (Smets
1991b, Smets and Kennes1990).

Our presentation is done under the open-world assumption (Smets 1988). It means that we do
not require bel(Ω)=1 or equivalently m(Ø)=0. Further we never normalize belief functions after
conditioning or combination. The meaning of m(Ø)>0 is presented in Smets (1992)

2. Expansion is Specialization.

The TBM postulates the existence of basic belief masses (bbm) allocated to the subsets of a
frame of discernment Ω.  For A”Ω, the bbm m(A) quantifies the part of Your2 belief that
supports A without supporting any strict subset of A, and that could be transferred to subsets of
A if further information justifies such a transfer.  We call bba the function whose values on Ω
are the basic belief masses.

1 This research has been supported by the ESPRIT II Basic Research Project 3085 (DRUMS)
and DGXII MUNVAR project, which are funded by the European Community.
2 'You' is the agent that entertains the beliefs considered in this presentation.



Distinct Evidence July 27, 1999 2

When a new piece of evidence becomes known to You, Your beliefs must be updated. There
are three forms of updating: expansion, contraction and revision (Gardenfors, 1988) The
expansion is the change of belief that results from adding a belief without retracting any old
beliefs.  The contraction  is the change of belief that results from giving up a belief. It is the
inverse of an expansion. Finally the revision is the change of belief that results from adding a
belief that is not compatible with the previously held beliefs, in which case a contraction is also
needed.

In the case of an expansion, each bbm m(A) for A”Ω is distributed by the updating process
among the subset of A (including the empty set Ø). This transfer of belief due to a new
information can de described by a specialization matrix S defined on 2Ωx2Ω (Kruse and
Schwecke (1990),Yager (1986), Dubois and Prade (1986) , Moral (1985), Delgado and Moral
(1987)).  It is a ‘stochastic’ matrix1 where, for A, B”Ω,  the elements s(B, A) are null if B /”A
and otherwise s(B, A) is the part of the bbm m(A) that is transferred to B.

Let m0 be Your initial bba on Ω (represented as a row vector as every bba in this paper).  We
write m1 = m0.S to denote that m1 results from the application of the specialization matrix S to
m0. We say then that m1 is a specialization of m0. m1 can be computed by the straightforward
multiplication of the vector m0 by the matrix S.

3. Contraction is de-specialization.

The contraction (giving up a belief) is the inverse of an expansion. It can be characterized by the
matrix obtained by  inverting a specialization matrix. It can indeed be defined by a matrix S-1

where S is a specialization matrix.  S-1 is called a de-specialization matrix.

Any change of belief due to expansions and contractions, and therefore to revisions, will be
represented by an updating operator. So an updating operator results from the combination of
specialization and de-specialization matrices. The updating from bba m1 to bba m2, both
defined on Ω, can be represented by a pair of specialization matrices S1 and S2  such that:

m2 = m1.S1 .S2-1 (1)
We say that m2 is an updating of m1.

We define the Dempsterian specialization matrix Dm related to a bba m as the
specialization matrix that will update any bba m1 into the bba that would be obtained by
combining m and m1 by Dempster's rule of combination (⊕ ):

m1.Dm = m1⊕ m

Its mathematical structure is detailed in Klawonn and Smets (1991).

1 This means that s(B, A)≥0 and 
B⊆ A
∑ s(B,  A) =  1.
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Let m1 and m2 be two bba that obey to (1). It can be shown that one can always find two
Dempsterian specialization matrices D1 and D2 such that:

m2 = m1.D1 .D2-1 = m1.D2-1 .D1 (2)
In (2), the Dempsterian specialization matrices D1 and D2 are those related to m1 and m2,
respectively: D1 = Dm1 and D2 = Dm2.

4. The anatomy of the evidence.

Suppose the bba mA is an updating of a bba m0. What are the pieces of evidence that have
induced the change of belief from m0 to mA?  We know that there exist pairs of Dempsterian
specialization matrices D1A and D2A such that:

mA = m0.D1A.D2A-1     (3)

There are many pairs of Dempsterian specialization matrices that satisfy the relation (2) but one
can show that each Dempsterian specialization matrix D admits a unique representation such that

D = Q.Λ.Q-1

where Q is a constant matrix whose elements are only 0 and 1 (it is the matrix that transforms a
bba row vector into a communality function represented also as a row vector) and Λ is a

diagonal matrix whose elements are the communalities corresponding to the bba underlying the
Dempsterian specialization matrix D.  One can further decomposed Λ into a product of diagonal

matrices ΛX, X”Ω, such that the diagonal elements of each ΛX are the communalities induced

by the simple support function (SSF) focused on X. So in general,

D = Q. ∏
X”Ω

 ΛX .Q-1

(slight adaptations must be introduced if the bba underlying D is not directly separable into
SFF). The product D1A.D2A-1 can then be represented as

D1A.D2A-1  =  Q. ∏
X”Ω

 ∆XA .Q-1

where the ∆XA are either the diagonal matrix or the inverse of the diagonal matrix induced by a

SSF focused on X.

The set of the matrices ∆XA, for X”Ω, summarizes the impact of all the pieces of evidence

involved in the updating from m0 to mA.

5. Combining pieces of evidence .

Suppose the bba mA and mB  are two updatings of a bba m0. Let the two sets of matrices ∆XA

and ∆XB, X”Ω, be defined as above. Let mAB be the bba that corresponds to the combination

of all the pieces of evidence that have induced m0, mA and mB.  The matrices ∆XA and
∆XB summarize the impact of the pieces of evidence that are included in A and



Distinct Evidence July 27, 1999 4

on B and not considered in m0.  So mAB  must result from all these pieces of evidence
and the result can be shown to be:

mAB = m0.Q. ∏
X”Ω

 ∆XA.∆XB .Q-1

The result reduces into Dempster's rule of combination
mAB = mA⊕ mB

if m0 is a vacuous belief function.

In fact, m0 could be seen as the 'correlation' between mA and mB. The absence of correlation
(independence) translated then into the assumption that m0 is a vacuous bba.  We use the word
'distinct' to qualify such a form of 'independence' between two pieces of evidence. (The word
'independence' is not appropriate as it describes a property between some subsets of Ω. The
word 'distinctness' is more appropriate as it describes a property between two sets of pieces of
evidence.) Within the TBM, the 'correlation coefficient' happens to be the whole belief function
m0.

Definition of 'Distinct pieces of evidence'.
Two pieces of evidence are distinct if and only if the bba common to the bba they induce is
vacuous.

The problem of recognizing distinctness becomes essentially a problem of acknowledging that
there is only a vacuous correlation and that both ∆XA and ∆XB results from unrelated, distinct

pieces of evidence. It can not be achieved by only comparing m1 and m2. If one knows also the
bba m*AB induced by the conjunction of the two pieces of evidence that individually induces
mA and mB, then it becomes easy to decide if the two pieces of evidence are distinct or not:
compare m*AB with mAB. A difference reflects a non-vacuous correlation1.

The real problem appears when m*AB is unknown, and one would like to build the bba induced
by the conjunction of the two pieces of evidence that have induced mA and mB. Distinctness has
to be assumed. It cannot be accepted as a default rule (as in probability theory where accepting
independence must result from a voluntary act, not an act by default). Its acceptance results
from an in-depth comparison of the origin of the pieces of evidence that have induced mA and
mB. It is analogous to the process used is statistics and by which we accept that two
experimental results are independent.

1 The computation of the corelation is then easy: the commonality function q0 related to m0 is: 

∀ A ⊆ Ω ,q0 (A) = q1(A)q2 (A)
q *AB (A)

where q*AB is the commonality function related to m*AB.
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6. Parallelism with probability independence.

One might be tempted to disregard our definition of distinctness because it seems circular or
vacuous. Therefore we now show that our definition obeys the same pattern of reasoning as the
one that is being followed when defining the concept of independence in probability theory. In
the following paragraphs, the Pi's are propositions in probability theory, the Bi's are their
equivalent in the TBM.

Probability context.
Suppose You know the probabilities P(A) and P(B) of two events A and B. What is P(A∩B)?

P1.  If You know the correlation between the events A and B, You can derive P(A∩B).

P2. If You can assume that A and B are independent events (what means the correlation is null)
You obtain P(A∩B)=P(A)P(B).

P3. If You cannot assume independence between events A and B, and You do not know the
value of the correlation between them, You can use a conservative approach and use the whole
set of values for P(A∩B) that are compatible with the constraints P(A) and P(B).

P4. In context P3, You can apply a Principle of Minimal Entropy  in order to derive a point-
value for P(A∩B).

TBM context.
When it comes to the handling of pieces of evidence within the TBM, the reasoning becomes as
follows. Suppose You know two belief functions mA and mB, induced by two pieces of
evidence EA and EB. What is the bba mAB that results from the conjunction of both pieces of
evidence.

B1. If You know the 'correlation' (i.e. the underlying bba m0), you can derive mAB (as done in
section 5).
B2. If You can assume that mA and mB are induced by two distinct pieces of evidence (what
means that You can assume that m0 is vacuous), You obtain mAB = mA⊕ mB.

B3. If You cannot assume distinctness between EA and EB and You do not know the value of
m0, You can use a conservative approach and compute the set of bba mAB compatible with the
constraints on mA and mB (i.e. You consider all the possible bba m0 and compute mAB for each
m0, in which case You end up with a set of possible mAB)
B4. In context B3, You can apply the Principle of Minimal Commitment (Smets (1991), Hsia
(1991)) in order to derive the least committed solution for mAB (Kennes (1991) presents the
solution of this "cautious Dempster's rule of combination" when mA and mB admit a
decomposition in SSF).

In probability theory, the comparison of P(A∩B) with P(A) P(B) permits to test the hypothesis

of independence. Analogously the comparison of m*AB with mA⊕ mB permits to test the

hypothesis of distinctness. Up to here, both problems are conceptually of the same difficulty.
The nice property encountered in probability theory is that independence is equivalent to P(A|B)
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= P(A| B), a highly intuitive property. The analogous properties we were able to derive up to
now with belief functions are unfortunately not so appealing.
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