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Short presentation of the most relevant elements of the transferable belief model and its
use for problems related to the diagnostic process. These examples illustrate the use of
the transferable belief model and in particular of the Generalized Bayesian Theorem.

1. Introduction.

Uncertainty is classically represented by probability functions, and diagnostic in an
environment poised by uncertainty is usually handled through the application of the Bayesian
theorem that permits the computation of the posterior probability over the diagnostic categories
given the observed data from the prior probability over the same categories. We show here that
the whole problem admits a similar solution when uncertainty is quantified by belief functions
as in the transferable belief model. The classical Bayesian theorem admits a generalization
within the transferable belief model (TBM) that we called the Generalized Bayesian Theorem
(Smets, 1978, 1981, 1993a).

This theorem seems to have been often overlooked, and the use of conditional belief functions
for diagnostic problems neglected. The Generalized Bayesian Theorem (GBT) permits the
computation of the conditional belief over the diagnostic classes given an observed data from
the knowledge of the set of the conditional beliefs about which data will be observed when the
case belongs to a given diagnostic category. Loosely expressed, this inversion theorem permits
to pass from a belief on the symptoms given the diseases to a belief on the diseases given the
symptoms. We present hereafter four examples of diagnostic process within the TBM, and
compared the TBM solution with its obvious contender, the probability solution. The examples
are analyzed in detail in order to give a clear understanding of the exact use of the TBM and
its GBT. We restrict ourself to ‘simple’ examples, cases of complex systems and common or
dependent causes are not tackled. Our aim is in showing how the classical Bayesian theorem
can be extended and applied within the TBM framework.

We first present the needed background knowledge about the TBM (section 2) and the GBT
(section 3). Then we present four examples (section 4). We give some comments to explain the
conceptual difference between the Bayesian networks and the evidential network (EVN), the
two networks used to implement a diagnostic problem within the probability and the belief
function framework, respectively (section 5). We then conclude (section 6).
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2. The transferable belief model.

The transferable belief model (TBM) is a model developed to represent quantified beliefs
(Smets and Kennes, 1994). It covers the same domain as the Bayesian - subjectivist
probabilities except it is not based on probability functions but on so-called belief functions
(Shafer, 1976, Smets, 1988, Smets et Magrez, 1987, Smets 1994). One starts from a finite set
of worlds Ω called the frame of discernment. One of its worlds, denoted ω0, corresponds to the

actual world. The agent, denoted You (but it might be a robot, a piece of software), does not
know which world in Ω corresponds to the actual world ω0. Nevertheless, You have some

idea, some opinion about which world might be the actual one. So for every subset A of Ω,
You can express the strength of Your opinion that the actual world ω0 belongs to A. This

strength is denoted bel(A) with bel:2Ω→[0,1]. Extreme values for bel denote full belief (1) or

no belief at all (0). The larger bel(A), the stronger You believe ω0∈ A. Up to here bel shares the

same properties as the classical subjective probability measure. The TBM departs from the
classical Bayesian approach in that we do not assume the additivity encountered in probability
theory. For instance, we do not assume that bel(A) = 0 implies that bel(A) = 1. In fact bel(A) =
bel(A) = 0 is even possible. The additivity property that characterizes the probability functions
is replaced by inequalities like:

bel(A∪ B) ≥ bel(A) + bel(B) - bel(A∩B) (2.1)

In the TBM, one assumes that bel is a capacity monotone of order infinite, i.e., bel satisfies the
following inequalities:

∀ n>1, ∀ A1,A2,...An ”Ω,

bel(A1∪ A2∪ ...An)≥∑
i

bel(Ai) - ∑
i>j

bel(Ai∩Aj)....-(-1)nbel(A1∩A2∩...An) (2.2)

As such, the meaning of these inequalities is not obvious except when n = 2, in which case one
gets relation (2.1). These inequalities generalize the idea that Your belief that the actual world
belongs to A”Ω can be larger than the sum of the beliefs You give to the elements of a partition
of A.

Basic belief assignment.
The understanding of the inequalities (2.2) is clarified once the concept of a basic belief
assignment (bba) is introduced. Related to bel, one can define its so-called Möebius
transform, denoted m and called a basic belief assignment in the present context. Let
m:2Ω→[0,1] where m(A) is called the basic belief mass (bbm) given to A”Ω. The value

m(A) represents that part of Your belief that supports A - i.e., the fact that the actual world ω0

belongs to A - without supporting any more specific subset, by lack of adequate information.
When You learn that ω0 belongs to A, and You know nothing else about the value of ω0 , then

some part of Your belief will be given to A, but no subset of A will get any positive support. In
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that case, You would have m(A) > 0 and m(B) = 0 for all B”A and B≠A, a property that could
not be satisfied by a probability measure.

Belief functions.
The bbm m(A) does not in itself quantify Your belief, denoted bel(A), that the actual world ω0

belongs to A. Indeed, the bbm m(B) given to any subset B of A also supports that ω0∈ A.

Hence, the belief bel(A) is obtained by summing all the bbm m(B) for B”A. The only
exception concerns m(Ø). In some theories (Shafer, 1976), one assumes m(Ø) = 0. In the
TBM, such a requirement is not assumed. Nevertheless m(Ø) is not included in bel(A). Indeed,
the empty set Ø is a subset of A but also of its complementA. We want bel to denote the amount
of belief given specifically to the fact that the actual world ω0 belongs to A, hence we do not

include in bel(A) those basic belief masses that support also A, i.e., m(Ø). We have:

bel(A) = ∑
Ø≠B”A

      m ( B ) ∀ A”Ω, A≠Ø (1.3)

bel(Ø) = 0.

The function bel so defined satisfies the inequalities (2.2). Thanks to the natural interpretation
that can be given to the basic belief masses, the meaning of the inequalities (2.2) becomes
somehow clearer. The originality of this approach comes from the non null masses that may be
given to non singletons of Ω. Indeed, when m(A) = 0 for all A”Ω with |A|>1 (|A| denotes the
number of elements in A), then the function bel is a probability function, and the TBM reduces
itself to the Bayesian theory. Of course, in general, this requirement is not satisfied in
the TBM, and thus the bbm m(A) given to those A with |A| >1 give it its specificity.

Those subsets A of Ω which bbm m(A) is strictly positive are called the focal elements of the
bba (or of bel). A simple support function is a belief function that has only two focal
elements, Ω and one subset A of Ω.

The advantage of the TBM over the classical Bayesian approach resides in its large flexibility,
its ability to represent more elaborated beliefs and this includes its ability to represent every state
of partial beliefs, up to the state of total ignorance (Dubois et al., 1996). In the TBM, total
ignorance is represented by the so-called vacuous belief function, i.e., a belief function
such that m(Ω) = 1, m(A) = 0 for all A with A”Ω, A≠Ω. Hence bel(Ω) = 1 and bel(A) = 0 for
all A with A”Ω, A≠Ω. It expresses that all You know is that ω0∈Ω . The representation of total

ignorance in probability theory is hard to achieve adequately, most proposed solutions being
doomed to contradictions. With the TBM, we can of course represent every state of belief, full
ignorance, partial ignorance, probabilistic-additive beliefs, or even full belief (m(A) = 1
corresponds to A is certain). Such an expressivity power explains the interest of the TBM.

Related functions.
Related to bel and m, one defines a plausibility function pl:2Ω→[0,1] so that:

pl(A) = bel(Ω) - bel(A) for all A”Ω
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or pl(A) = ∑
X”Ω:X∩A≠Ø

      m ( X ) for all A”Ω.

Both relations are equivalent. The value pl(A) represents the amount of belief that possibly
(might) support that the actual world ω0 belongs to A, whereas bel(A) represents the amount of

belief that necessarily (do) support that the actual world ω0 belongs to A.

Two other functions related to bel are also defined: the commonality function q:2Ω→[0,1] and

the b-function b:2Ω→[0,1] with:
q(A) = ∑

X”Ω:A”X
      m ( X ) for all A”Ω.

b(A) = bel(A) + m(Ø) = ∑
X”Ω:X”A

      m ( X ) for all A”Ω.

Their major interest will appear when conditioning and combination will be introduced.

Least Commitment Principle.
In probability theory, probability functions can be ordered by their ‘information content’, what
is usually achieved by the entropy Entr where the entropy of the probability measure P is:

Entr(P) = - ∑
x∈Ω

   P({x}) . log(P({x}))

The larger the entropy, the smallest the ‘informativeness’ of P. The entropy is often used to
select the least informative probability function (hence the probability function with the largest
entropy) in a set of probability functions. A similar criteria is defined within the TBM. Suppose
two plausibility functions pl1 and pl2, both on Ω. If for all A”Ω, pl1(A) ≥ pl2(A), then we say
that pl1 is less committed than pl2. Indeed, the least committed plausibility function is the
vacuous one: pl(A) = 1 for all A”Ω. The inequality can be replaced identically by:

b1(A) ≤ b2(A) for all A”Ω,
or bel1(A) ≤ bel2(A) for all A”Ω, only if m1(Ø) = m2(Ø),
To be least committed means that each subset gets less or equal support. Such property can be
used to define a partial order on the set of belief functions. Whenever You must choose
between several belief functions, and there is no extra reason to prefer any one of them, You
can then evoke the Principle of Least Commitment in order to select the least committed belief
function. The Principle can be paraphrased by ‘never give more support than necessary’.

Conditioning.
The dynamics of belief, hence how beliefs change when new information becomes known to
You, is described by several rules. The most important is the conditional rule that translates
the impact of learning for sure that the actual world ω0 belongs to X. Let mX, belX, plX, bX and

qX be the various conditional functions obtained after conditioning the initial belief function on
ω0∈ X. The mass m(A) initially supporting that ω0∈Α  supports that ω0∈Α∩ X after learning

that ω0∈ X for sure. So:

mX(A) = ∑
B”X

   m(A∪ B ) A”X
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what implies that:

belX(A) = bel(A∪ X) - bel(X) for all A”X

plX(A) = pl(A∩X) for all A”X

bX(A) = b(A∪ X) for all A”X

and qX(A) = q(A) if A”X
= 0 otherwise.

This rule of conditioning is called Dempster’s rule of conditioning, except for a possible
normalization that we don’t apply automatically in the TBM. This rule plays the role, within the
TBM, of the rule of conditioning described in probability theory.

Combination.
Another rule concerns the combination of two belief functions. Suppose You collect two
‘distinct’ pieces of evidence Ev1 and Ev2 produced by two sources of information. Let bel1 and
bel2 be the belief functions induced by each piece of evidence taken individually. Then You can
combine these two belief functions in at least two ways: conjunctively or disjunctively, by what
we mean that You want to build Your belief given You know that both sources of information
are fully reliable (conjunctive combination), or given You know only that at least one of the two
sources is reliable (disjunctive combination). The resulting belief functions bel1∧ 2 and bel1∨ 2

are obtained from the next relations.
Conjunctive combination:

m1∧ 2(A) = ∑
X,Y”Ω:X∩Y=A

        m1 ( X )  m 2 ( Y ) for all A”Ω

q1∧ 2(A) = q1(A) q2(A) for all A”Ω.
Disjunctive combination:

m1∨ 2(A) = ∑
X,Y”Ω:X∪ Y=A

        m1 ( X )  m 2 ( Y ) for all A”Ω

b1∨ 2(A) = b1(A) b2(A) for all A”Ω.
The interest of the q and b functions becomes obvious as they greatly simplified the
computation required to compute the combinations of two belief function. The conjunctive rule
is Dempster's rule of combination, but unnormalized.

The meaning of ‘distinct’ for two pieces of evidence has been left undefined. It lacks rigorous
definition. Intuitively it means the absence of any relation, of any link between the two sources.
It can also be understood as meaning that the belief function bel2 induced by the second source
is not influenced by the knowledge of the belief function bel1 induced by the first source
(knowing bel1 does not interfere with the assessment of bel2) and vice versa (Smets, 1992b) .
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Decision process.
A normative theory for decision process has been fully developed within  the TBM (Smets,
UAI, Smets and Kennes, 1994). Given a belief function, we generate a probability function
that must be used to make decision by maximizing expected utilities. It requires first the
construction of the betting frame, i.e., a list of alternatives on which the bet must be made. Let
Bf denoted the betting frame. The granularity of Bf   is such that if by necessity two
alternatives are not distinguishable from a consequence-utility point of view, than they are
pooled into the same granule. Once the betting frame Bf is determined, the initial plausibility
function pl0 defined on Ω is transformed into a plausibility function pl1 on Bf, so that:

pl1(X) = pl0(Y) for all X”Bf and Y is the smallest subset of Ω so that X”Y1.

The bba m1 on Bf is derived from pl1. The bba m1 is then transformed by the so-called
pignistic transformation into the pignistic probabilities BetP:2Ω→[0,1] with:

BetP(A) = ∑
X”Bf,X≠Ø

      
m1(X)

1-m1(Ø)  
#(A∩X)

#(X) for all A”Bf, A≠Ø,

and #(Y) is the number of granules of the betting frame Bf in Y. By construction, the pignistic
probability function BetP is a probability function, but we qualified it as pignistic to avoid the
error that would consist in considering this probability function as representing Your beliefs.
Your beliefs are represented by bel0 , and BetP is just the additive measure needed to compute
expected utilities when decision must be made (Savage, 1954). The justification of the
proposed transformation is given in Smets and Kennes (1994). Dutch Books cannot be built
against a user of the TBM , even though conditioning is not achieved by the classical
probability rule (Smets, 1993c).

3. Generalized Bayesian Theorem.

In classical probability theory, the Bayesian theorem is the major theorem that underlies the
diagnostic process. Suppose a domain Θ of possible diseases (or faults, categories, classes...)

and a set X of symptoms (or observables, data, ...). The sets Θ and X are assumed to be finite.

Let P(x | θ) be known for every x∈ X and every θ∈Θ . It is the distribution function of the

symptom x in the disease category θ. Let P0 be Your a priori belief about which disease

category the patient under consideration belongs to. Then given You observe symptom x, Your
a posteriori belief about the disease categories to which the patient belongs to is computed from
the Bayesian theorem:

P(θ | x ) = 
P(x | θ) P0(θ)

∑
θi∈Θ

 P(x | θi) P0(θi)
for all θ∈Θ . (3.1)

1This notation is quite loose, the rigourous notation is given in Smets and Kennes (1994).
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This theorem is considered both as a learning theroem as an inversion theorem. In the first case,
it permits the computation of the a posteriori probability given the a priori probability and a
learned fact. In the second case, it permits to compute the probability on Θ given x from the

probability on X given θ. Adapting the wording to fit with faults diagnostic or any other form

of diagnosis (i.e., of classification process) is straightforward: symptoms are the observed
data, the facts, and the diseases are the classes into which the case must be allocated.

We have generalized this inversion theorem within the TBM framework (Smets, 1978, 1981,
1993a). Your belief about which fact x can be observed in each class θ∈Θ  is represented by the

belief function bel(x | θ) for all x”X. We also assume that Your a priori belief bel0 defined on

Θ about the class to which Your case belongs is vacuous (total a priori ignorance). Then the a

posteriori belief bel1 and its related functions on Θ about the class to which Your case belongs

given You observe the fact x (that x is an element or a subset of X is irrelevant here) are given
by: for θ”Θ and x”X,

b1(θ | x) = ∏
θi∈ θ

  b (x | θi)

bel1(θ | x) = b1(θ | x)  - b1(Ø | x)   

pl1(θ | x) = 1 − ∏
θi∈θ

    ( 1 − pl(x | θi) ) 

q1(θ | x) = ∏
θi∈θ

   pl(x | θi) (3.2)

These relations are called the Generalized Bayesian Theorem (GBT). They can be adapted for
the case where You have some non vacuous a priori belief bel0 on Θ: You just combine

conjunctively on Θ the a priori bel0 with the function bel1 obtained by the GBT.

The belief induced on Θ can identically be obtained by construction on Θ a simple support

function for each conditional belief function bel(x | θ), θ∈Θ , received initially, and combining

them conjunctively. Suppose the observed fact is x”X. For each θ∈Θ , construct the simple

support function with the bba given by m(Θ | x) = 1- b(x |θ) and m( θ | x) = b(x |θ). Combining

conjunctively the simple support functions so obtained with each θ∈Θ  produces a belief

function on Θ that is equal to the one obtained by the GBT (3.2).

The GBT has two major interests when compared with the Bayesian theorem.
1) We can assume that Your a priori belief over Θ is vacuous, hence we avoid all the troubles

related to the choice of an adequate a priori probability function. This choice is often critical and
leads to major criticism against the use of the Bayesian theorem, what led regularly to its plain
rejection.
2) Besides, the GBT can also cope with a situation hardly manageable with classical probability
theory but still very useful. Suppose Θ is not exhaustive because You forgot some possible

classes (because of limited understanding, or pure ignorance...). The problem is solved by



TBM-Diagnosis/full July 27, 1999 8

creating an extra class. Let us denote it θω. It can be understood as “the still unknown disease

class”, “the forgotten alternatives”, “the unconsidered failures”... In order to apply the GBT,
You must provide Your belief about which fact x would be observed if the failure belongs to
the category θω. Within the GBT, such a belief is described by the vacuous belief function.

Indeed, what do You know about X for failures that belongs to the set of unlisted causes? Such
flexibility is not achievable in probability theory as total ignorance cannot be represented
adequately. Within the TBM, computing the a posteriori belief over Θ is still straightforward,

the presence of a vacuous belief function for θω does not alter the computation. After having

introduced θω, it is even possible to compute the a posteriori belief that the case belongs to the

θω class.

The case of two facts.
An important property of the GBT is the following. Suppose two finite sets X and Y, and a set
of classes Θ. Let belX(.|θ) and belY(.|θ) represent Your beliefs about which fact in X and Y

would be observed, respectively, if You knew that the case belongs to class θ∈Θ . Suppose

You observe the facts x”X and y”Y. With each of them individually, You can build Your
belief on Θ by applying the GBT. Let bel(.|x) and bel(.|y) be these two belief functions. Then

You build Your belief bel(.|x,y) on Θ given You have observed both facts by combining these

two belief functions conjunctively.

There is another way to build this final belief function on Θ. You first build the observation

space XxY and construct Your belief about which pair of fact You will observed. In probability
theory, it is often assumed that the two symptoms are conditionally independent, in which case
the conditional probability to observed the pair (x,y) when the case belong to class θ is the

product of the conditional probabilities to observed each of them individually when the case
belongs to class θ:

P(x,y | θ) = P(x | θ).P(y | θ) for all x”X, y”Y, θ∈Θ.

This concept is extended into the TBM framework where independence is called Cognitive
Independence. Two variables X and Y are Cognitive Independent if the ratio of the
plausibilities on one of them does not depend on the value of the other variable:

plX(x1 | y)

plX(x2 | y)
  =  

 plX(x1) 
 plX(x2) 

∀ x1,x2”X, ∀ y”Y,

where the index of the plausibility functions indicate their domains. It implies that:

plXxY(x,y) = plX(x) plY(y) ∀ x”X, ∀ y”Y.

The Cognitive Independence concept can be extended in a straightforward manner when the
plausibility functions are conditional plausibility functions. If the two variables X and Y are
cognitively independent in each context θ, for all θ∈Θ, then they satisfy the Conditional
Cognitive Independence property:

plXxY(x,y | θ) = plX(x | θ) plY(y | θ) ∀ x”X, ∀ y”Y, ∀θ i∈Θ.
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From this plausibility function plXxY(. | θ), You can apply the GBT in order to derive Your

beliefs bel*(.|x,y) on Θ given the observation (x, y). It happens that bel*(.|x,y) is equal to

bel(.|x,y) previously derived. This equality is essential. It shows that the belief obtained from

1) the conjunctive combination of the two beliefs on Θ obtained by the GBT and 2) the belief

obtained from the GBT when applied to the joint observations are equal as it should be.

We have shown that the GBT is the only inversion theorem that satisfies this property when
one requires that the plausibilty pl(x | A) for A”θ is a function of the terms pl(x | θ) and pl(x |

θ) for θ∈ A  (Smets, 1993a).

The GBT has also been derived independently by Appriou (1991). The author requires that the
inversion theorem degenerates into the classical Bayesian theorem when all involved belief
functions are probability functions, that the equality we just derived in the case of Conditional
Cognitive Independence holds, and that each individual conditional belief function on X given
θ∈Θ  induces a belief function on Θ where the only focal elements are θ, θ  and Θ.

Other formulas have been proposed in order to generalize the Bayesian theorem. None satisfies
the property we described in the case of Conditional Cognitive Independence. This is not
surprising as, under very natural requirements, the GBT is the only transformation that satisfies
this property  (Smets, 1993a).

4. Illustrative examples.

We illustrate the use of the TBM with four examples. The first, the breakable sensors, enhances
the difference between the TBM and the Bayesian approach. The second concerns a classical
fault diagnosis and enhance the possibility to build a priori an optimal strategy. The third is a
classical medical diagnosis that illustrates the use of the GBT. The fourth concerns the location
of some radio-active leakage and shows the power of the GBT as it can be extended to cope
with a totally unknown location.

4.1. The breakable sensors.

Suppose You are a new technician and You must check the temperature of a process. To do
this, You receive five sensors. The sensors are of two types: one of them (sensor 1) is a reliable
but expensive sensor, and the four others (sensors 2 to 5) are cheaper but less reliable sensors.
Each sensor is applied to determine the temperature of the process - a temperature that can be
only ‘Hot’ or ‘Cold’. When the sensor is in good working conditions, if the temperature is hot,
the sensor’s light is red and if the temperature is cold, the sensor’s light is blue. Each sensor is
made of a thermometer and a device that turns on the blue-red light according to the temperature
reading. Unfortunately, the thermometer may be broken: the probability that the expensive
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sensor is broken is 0.01, whereas the probability that each of the four cheaper sensors is
broken is 0.12. The event that the sensors are broken are independent.

The only information known to You is what is written on the five boxes containing the sensors.
For each of the four cheap one, You read: "Warning: the thermometer included in this sensor
may be broken. The probability that it is broken is 12%. When the thermometer is not broken,
the sensor is a perfectly reliable detector of the temperature situation. When the thermometer is
not broken, red light means the temperature is hot, blue light means the temperature is cold.
When the thermometer is broken, the sensor answer is unrelated to the temperature". For the
expensive one, You read the same text, except the 12% is replaced by 1%.

You are a new technician and have never seen these sensors before. You know nothing about
them except the warnings written on the boxes. You use the four sensors as ordered. The red
light goes on for the expensive sensor and for one cheap sensor, and the blue one goes on for
the three cheap sensors. How do You assess the temperature status? What is Your belief that
the temperature status is hot or cold? And supposing You must act differently according to the
temperature of the process, how would You decide?

TBM analysis.
We first analysis the problem in the TBM framework. Table 4.1.1 presents the sensor’s
reliabilities. Table 4.1.2 presents the focal sets on the product space Light x Temperature x
Sensor’s status. With sensor 1, the bbm are:

m( { (Red, Hot, Working), (Blue, Cold, Working) } ) = .99
and m( {Red, Blue} x {Hot, Cold} x {Broken} ) = .01.
The bbm translates the fact that with probability .99 the sensor is in working condition in which
case Red = Hot and Blue = Cold, and with probability .01 it is broken in which case there is no
relation between the temperature’s status and the sensor’s answer. Table 4.1.3 presents the bba
induced on the temperature’s status for sensor 1 when the sensor’s answer is red and blue,
respectively.

Reliability
Sensor 1 0.99

Sensors 2 to 5 0.88

Table 4.1.1: Reliability of the five sensors.

Sensor’s answer Red Red Blue Blue
Water temperature Hot Cold Hot Cold bbm
Working Cond. 1 - - 1 0.99

Broken 1 1 1 1 0.01

Table 4.1.2: TBM analysis: for sensor 1, the two focal elements with their bbm (the 1’s
indicate those elements in each focal element.
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If Sensor’s answer = Red Blue
Ø 0.00 0.00

Hot 0.99 0.00
Cold 0.00 0.99

Hot or Cold 0.01 0.01

Table 4.1.3: TBM analysis: for sensor 1, the bba on the temperature given the sensor’s light
is red or blue, respectively.

Suppose Sensors 1 and 2’s answers are Red and Sensors 3 to 5’s answers are Blue. Each
sensor induces a bba on the temperature status, which bbm are given in table 4.1.4. These bba
are then combined by the conjunctive combination rule (rightmost column). It shows a strong
contradiction (m(Ø) = .997) as expected in this case. Indeed two sensors support hot and three
support cold, and each sensor is quite reliable.

Sensor 1 2 3 4 5
Reliability 0.99 0.88 0.88 0.88 0.88

Sensor’s Answer Red Red Blue Blue Blue
bba1 bba2 bba3 bba4 bba5 Comb.

Ø 0.00 0.00 0.00 0.00 0.00 0.9971
Hot 0.99 0.88 0.00 0.00 0.00 0.0017
Cold 0.00 0.00 0.88 0.88 0.88 0.0012

Hot or Cold 0.01 0.12 0.12 0.12 0.12 0.0000

Table 4.1.4: TBM analysis: for each sensor, the bba on the temperature given the sensor’s
answer. The last column presents the bba obtained by the conjunctive combination of the five
bba (Comb. column).

Sensor Observation
1 Red Red Red
2 Blue Red Red
3 Blue Blue Red
4 Blue Blue Blue
5 Blue Blue Blue

Case 1 2 3
TBM Hot 0.020 0.590 0.990

BetP(Temp|Obser.) Cold 0.980 0.410 0.010

Table 4.1.5: For three sets of observations (cases 1 to 3), values of the pignistic probability
BetP on the temperature status given the temperature status.

Three sets of observations are considered (table 4.1.5). Data of Table 4.1.4 correspond to those
of the second example. The pignistic probability BetP on the temperature’s status are computed
from the bba obtained after conjunctively combining the five bba obtained from each of the five
sensors. So for the second case (table 4.1.4),
BetP(Hot | data) = ( m(Hot) + m(Hot or Cold)/2 ) / (1-m(Ø) )

= ( .0017 + .0000/2 ) / (1-.9971) = .5902
The other values of BetP are presented in table 4.1.5. So in case 1, cold is highly probable
temperature (only sensor 1 supports Hot), hot is a little more probable in the second case
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(Sensor 1 and 2 support Hot), and highly probable in the third cases (Sensor 1 to 3 support
Hot). For the first case, it was not obvious that the joint opinion of four ‘cheap’ sensors would
beat the opinion of one ‘good’ sensor, but it seems surely acceptable. For the third case, the
opinions of the ‘cheap’ sensors balance each other, and the ‘good’ one puts the balance toward
Hot. For the second case, we just discover that the joint opinion of one ‘good’ and one ‘cheap’
sensors is stronger than the joint opinion of three ‘cheaper’ sensors.

Probabilistic analysis.
We then proceed with the probabilistic analysis. Table 4.1.6 presents, for each sensor, the
conditional probability on the sensor’s answer given the temperature’s status. It is based on the
reliability value and the extra assumption that the sensor’s answer will be red or blue with
equiprobability (.5) when the sensor is broken. So, for sensor 1, the probability of Red when
Hot is the probability that the sensor is in working condition (.99) plus the probability to be
broken (.01) multiplied by the probability of a Red answer when the sensor is broken (.5). The
origin of this data comes from classical probability theory:

P(Red | Hot) = P(Red | Hot, Working) P(Working | Hot)
+ P(Red | Hot, Broken) P(Broken | Hot)

One have P(Red | Hot, Working) = 1,
P(Working | Hot) = P(Working) = .99
P(Red | Hot, Broken) = P(Red | Broken) = .5
P(Broken | Hot) = P(Broken) = .01

 Hence P(Red | Hot) = .99 + .5 x .01 = .995.

Temperature Hot Hot Cold Cold
Sensor 1 2-3-4-5 1 2-3-4-5

Reliability 0.99 0.88 0.99 0.88
Red 0.995 0.940 0.005 0.060
Blue 0.005 0.060 0.995 0.940

Table 4.1.6: Probabilistic analysis: conditional probability functions on the sensor’s answer
given the temperature’s status, for each sensor.

The equiprobability assumption is based on a classical symmetry principle: “As far as there is
no more reason to believe that the answer will be red than blue when the sensor is broken, the
two alternatives receive equal probabilities”. If You had some reason to put other values, the
whole example could be just as well redone with new data so that the embarrassing conclusions
toward which we are proceeding would still be derived. In order to compute the a posteriori
probability on the temperature’s status given the observed data, we need the likelihood on the
temperature given the data, denoted l(temperature’s state | observed data). This likelihood is
equal to the probability to observe the data given the temperature. Let the observed data =
(Red1, Red2, Blue3, Blue4, Blue5) where the numbers indicate the sensor producing the
information.
We must compute l(Hot | observed data) = P(observed data | Hot).
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We use the following notation:
xi is the observed answer of sensor i where xi ∈ {Redi, Bluei}

si is the working / broken status of sensor i, where si∈ {w, b}

Let rel denote one combination of sensor’s status: e.g., rel = (w1, b2, w3, w4, w5) means that
sensor 2 is broken, and the others are in working conditions.
One has:
P(observed data | Hot) = P(x1, x2, x3, x4, x5 | Hot)

= ∑
rel

 P(x1, x2, x3, x4, x5 | Hot, s1, s2, s3, s4, s5) P(s1, s2, s3, s4, s5 | Hot))

where rel denotes every combination of sensor’s status.

Given the independence assumptions between the working conditions of the five sensors
among themselves and with the temperature’s status, one has:

P(s1, s2, s3, s4, s5 | Hot) = P(s1, s2, s3, s4, s5 ) = ∏
i

 Pi(si)

where Pi(si) is the probability that sensor i is in status si.

Then P(x1, x2, x3, x4, x5 | Hot, s1, s2, s3, s4, s5) =
= P(x1 | Hot, s1, s2, s3, s4, s5, x2, x3, x4, x5) . P(x2, x3, x4, x5 | Hot, s1, s2, s3, s4, s5)
= P(x1 | Hot, s1) . P(x2, x3, x4, x5 | Hot, s2, s3, s4, s5).
This results from the fact that the status of sensors 2 to 5 is irrelevant to sensor 1’s status once
You know its status and the temperature status, and sensor 1’s status is irrelevant to the other
sensors’ answer. Iterating this equality leads to:

P(x1, x2, x3, x4, x5 | Hot, s1, s2, s3, s4, s5) = ∏
i

 P(xi | Hot, si)

Hence: P(x1, x2, x3, x4, x5 | Hot) = ∑
rel

  ∏
i

 ( P(xi |  Hot, si)) .Pi(si)  ) .

It can then be shown that this relation is also equal to:
 P(x1, x2, x3, x4, x5 | Hot) = ∏

i
  ( P(xi | Hot, si=w) .Pi(si=w) + P(xi | Hot, si=b) .Pi(si=b))

=  ∏
i

  P(xi | Hot)

Table 4.1.6 presents the values of P(xi | Hot) and P(xi | Cold), and table 4.1.7 presents the
values of P(observed data | Hot) and P(observed data | Cold) for the three cases presented in
table 4.1.5.

Case
P(obsev.|Temp.) 1 2 3

Hot 0.000013 0.000202 0.003165
Cold 0.003904 0.000249 0.000016

Table 4.1.7: Values of the probability of the observed data given the temperature’s status for
the three cases presented in table 4.1.5.

Comparing the two approaches.
In order to compare the two approaches, the TBM and the probability approach, we present the
results as odds. The odds for an hypothesis H is the ratio P(H) / (1-P(H)) where P(H) is the
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probability of the hypothesis. It is just another way to present probabilities, but convenient in
this case. We have:

P(Hot | data)
 P(Cold | data) = 

P(data | Hot) P(Hot)
P(data | Cold) P(Cold) = 

P(data | Hot)
P(data | Cold)  

P(Hot)
P(Cold)

So the posterior odds (after conditioning on the data) is equal to the prior odds (before
considering the data) multiplied by a coefficient that is the ratio of the likelihoods l(Hot | data)
and l(Cold | data). The value of the coefficient is independent of the prior probabilities, hence its
interest. A value less than one implies that the a posteriori probability for Hot is smaller then the
a priori probability for Hot, and a value larger than one implies hat the a posteriori probability
for Hot is larger then the a priori probability for Hot.

In the TBM, similar relations are derived when Your a priori belief on the temperature’s status
is represented by a probability function, as it is assumed in the probability approach. One has:

BetP(Hot | data)
BetP(Cold | data)  = 

pl(data | Hot)
pl(data | Cold)   

BetP(Hot)
BetP(Cold).

In the TBM, the plausibility plays the role of the likelihood, a link that was already encountered
in many other contexts, and clearly illustrates by the relation:

pl(Hot | data) = pl(data | Hot).
In probability theory, one writes:

l(Hot | data) = P(data | Hot).
where the concept of likelihood is needed as l is not a probability function (l(Hot | data) +
l(Cold | data) ≠ 1). In the TBM, such distinction is not needed as pl(Hot | data) is also a
plausibility function. The value of pl on non elementary elements of its domain is not directly
available, even though it can be derived from the GBT results. When Θ generalizes the

temperature’s domain in order to have a non-binary variable, one has:

pl(Α | data) = pl(data | A) = 1 - ∏
θi∈ A

    (1- pl(data | θi)) for all A”Θ.

Note: In probability theory, the likelihood l(A | data) for |A|>1 is sometimes defined as:

l(A | data) = max θi∈ A l(θi | data).

In that case the likelihood function is a possibility function (Zadeh, 1978, Smets, 1982) as it
satisfies:

l(A∪ B | data) = max( l(A | data), l(B | data) ).

These coefficients 
pl(data | Hot)
pl(data | Cold) and 

l(Hot | data)
l(Cold | data) by which the prior odds are multiplied to

obtain the posterior odds are presented in table 4.1.8. They are similar in the first and third
case. Discrepancies appear in case two, where the odds are larger than one in the TBM
analysis, indicating that Your belief that the temperature is Hot is increased by the data, whereas
in the probability approach, the odds is smaller than one, indicating that Your beliefs that the
temperature is Hot is decreased by the data. Suppose You must take a decision according to the
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variation of Your beliefs, like to call John Doe if beliefs that Hot increases, and James Ikx if it
decreases. What would You do? In the TBM approach, You would call John and in the
probability approach, James. So choosing the theory is not just a minor academic issue.

Case 1 2 3
Odds Ratio for Hot Coefficient by which prior odds are multiplied

TBM 0.02 1.44 100.00
Probability Th. 0.00 0.81 199.00

Table 4.1.8: For the three sets of observations of table 4.1.5, values of the coefficients by
which the prior odds for the temperature status ‘hot’ is multiplied to compute the posterior
odds.

The results depend on the .5 value used for the missing probability P(Red | broken). As already

mentioned, using other value does not help as similar examples can always be built. A more
cautious approach sometimes proposed is just to accept that the missing probability can take any
value between 0 and 1, and to perform a sensitivity analysis. Unfortunately results are useless.
Given the data (and in fact given any observed data) the factor by which the prior odds are
multiplied can taken any value between 0 and ∞, what is already known before looking at the

sensors (by definition, the factor is always between 0 and ∞). Using meta-probability, i.e., a

probability measure over the value of the unknown probability P(Red | broken) might be
thought off, but would require the assessment of these meta-probabilities (remembering that
some authors even contest that meta-probabilities exists!)

What is the best model? This question cannot be answered, unfortunately, because its answer
requires a definition of ‘a good model’. The advantage of the TBM comes from the fact it takes
into account only the information really available, whereas too often the Bayesian is forced into
filling missing probabilities by pure guesses, what might be called an artificial hyper-
probabilization. In a state of total ignorance, as held by the technician using the sensors, no
value for the missing probability can be justified (except the 0.5 that results from the Principle
of Insufficient Reason, a highly dangerous principle that leads to many contradictions, and is
usually denied by the Bayesians themselves). The introduction of a maximum entropy principle
or of a meta-probability does not really solve the problem, it just displaces the problem. The
only way to select the ‘good model’ is obtained by a close examination of the assumptions
underlying the two competing models, and then deciding which set of assumptions is the most
appropriate for the problem to be solved (Smets, 1993b).

4.2. Finding the broken circuit.

Suppose an equipment that is made out of 15 circuits denoted ci: i = 1, 2, ... 15. Each circuit is
necessary so that the equipment can work adequately. It happens that the equipment is broken.
So You know that at least one circuit is broken. You assume that only one circuit is broken. The
reason for such an assumption resides in Your opinion that two circuits being simultaneously
broken is not plausible. Generalization by relaxing this assumption is possible, but the
assumption greatly simplifies the analyses.



TBM-Diagnosis/full July 27, 1999 16

The diagnostic problem consists in finding which circuit ci is broken. You can use five sensors
Sj: j = 1, 2... 5 to check the working condition of the equipment. The sensor’s outcome sj is
binary and we use the convention:
sj = 0 if the sensor Sj does not detect a failure,
sj = 1 if the sensor Sj detects a failure.

You know the relation between the circuits’ status and the sensors’ outcome. Let aij be an
indicator that expresses what You know about the relation between circuit ci status and sensors
Sj’s outcome, with the convention
aij = 1 : sj depends on ci, in which case if ci is broken then sj = 1
aij = 0 : sj does not depend of ci.
aij = ? : You don’t know the dependency between sj and ci.
The last value for aij reflects that You might not know all the details about the structure of the
failed equipment and You just don’t know if Sj’s outcome will be influenced by ci’s status.

Table 4.2.1 presents the value of aij for the 15 circuits ci and the 5 sensors Sj.

sensor S = 1 S = 0 S = 1
circuit 1 2 3 4 5 M1 M2 M3

1 1 0 ? 1 1 1 1 1
2 ? 1 0 0 1 1
3 1 0 1 1 1 1 1 1
4 0 0 0 ? 0 1
5 0 ? 0 0 ? 1
6 0 1 1 1 1 1
7 1 1 ? 1 ? 1 1
8 ? 1 0 1 1 1
9 1 ? 0 0 1 1 1
10 1 0 ? 1 1 1 1 1
11 1 0 1 1 1 1 1 1
12 0 0 1 1 0 1 1
13 ? ? ? 1 1 1 1 1
14 1 ? 0 0 1 1 1
15 0 ? 1 ? 1 1 1

Table 4.2.1. Value of aij for the 15 circuits ci and the 5 sensors Sj. Right part presents the
sets Mi obtained when s1 = 1, s2 = 0 and s3 = 1.

Let Aj = {ci: aij = 1}, Bj = {ci: aij = 0} and Cj = {ci: aij = ?}.
So for instance You know that:
- whenever one of the circuit in A1 is broken then s1 = 1,
- if none of them is broken then s1 might be 0
- s1 is unrelated to the status of circuits in B1, so if a circuit in B1 is broken then s1 = 0,
and You don’t know if the status of the circuits in C1 influence or not the outcome of S1.



TBM-Diagnosis/full July 27, 1999 17

Unfortunately, the sensors themselves can be broken and You only know their reliability. You
consider that sensor S1’s reliability is 0.95. It means that in Your opinion, there is a probability
0.95 that the sensor S1 is in working condition and a probability 0.05 that sensor S1 is not in a
working condition.
- In the first case, sensor S1 outcome is meaningful, in which case and by pure logic, if s1 = 0
you know that those circuits in A1 are all in working condition, so the broken circuit belongs to
B1∪ C1, and if s1 = 1 You know that the broken circuit is one of those in A1∪ C1, and none of

B1.
- In the second case, You can as well forget the outcome of sensor S1 as its outcome is
meaningless when it comes to decide which is the broken circuit.

Table 4.2.2 presents the reliabilities of the 5 sensors.

Sensor
1 2 3 4 5

0.95 0.85 0.80 0.75 0.70

Table 4.2.2: Reliabilities of the 5 sensors.

The sensors S1, S2 and S3 have been applied and their respective outcomes were 1, 0 and 1
(see table 4.2.1). In the columns M1 to M3, the value 1 indicates which of the 15 circuits might
be broken if the sensor is reliable. These three sets are denoted Mj, j=1, 2, 3. Given the
sensors’ outcomes, M1 = A1∪ C1, M2 = B2∪ C2 and M3 = A3∪ C3. Indeed if sensor S1 is

reliable (probability 0.95) then the broken circuit may not be one in B1, and it can be any in A1

or C1 (as maybe those circuits in C1 might influence S1’s outcome). Identically if sensor S2 is
reliable (probability 0.85), then the broken circuit may not be one of A2 (as in that case s2

would be 1, contrary to the observation s2 = 0) and might be any of B2 or C2, etc...

What we obtain for the three sensors’ outcomes are just three simple support functions mj: j=1,
2, 3, on Ω = {ci: i= 1, ... 15} with Ω and Mj being their focal elements. So:
1) m1(M1) = .95 and m1(Ω) = .05,
2) m2(M2) = .85 and m2(Ω) = .15, and
3) m3(M3) = .80 and m3(Ω) = .20.
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bba on set of circuits Ω
0.65 0.16 0.11 0.03 0.03 0.01 0.01 0.00
M1 M1 M1 M1 Ω Ω Ω Ω

Ω M2 M2 Ω Ω M2 M2 Ω Ω circuit ci is broken
circuit M3 Ω M3 Ω M3 Ω M3 Ω plausib BetP

1 1 1 1 1 1 1 1 1 1.00 0.18
2 1 1 0.03 0.00
3 1 1 1 1 1 1 1 1 1.00 0.18
4 1 1 0.01 0.00
5 1 1 0.01 0.00
6 1 1 0.01 0.00
7 1 1 1 1 0.15 0.02
8 1 1 0.03 0.00
9 1 1 1 1 0.20 0.03
10 1 1 1 1 1 1 1 1 1.00 0.18
11 1 1 1 1 1 1 1 1 1.00 0.18
12 1 1 1 1 0.05 0.01
13 1 1 1 1 1 1 1 1 1.00 0.18
14 1 1 1 1 0.20 0.03
15 1 1 1 1 0.05 0.01

Table 4.2.3: Values of the bbm m1∧ 2∧ 3, with their focal element, obtained by combining
conjunctively the three simple support functions induced by the three observations.

The conjunctive combination of these three simple support functions results in the bba given in
table 4.2.3. We have m1∧ 2∧ 3(M1∩M2∩M3) = .95 * .85 * .80 = .65, and m1∧ 2∧ 3(M2∪ M3) =

.05 * .85 * .80, etc... The next column of table 4.2.3 lists the values of the plausibility
computed from m1∧ 2∧ 3 on the singletons of Ω. Low plausibilities as for circuits c2, c4, c5, c6,
c8, c12, c15 indicate that the broken circuit is none of them. Table 4.2.3 then lists the value of
the pignistic probability BetP given to each singleton and computed from m1∧ 2∧ 3. It indicates
that the broken circuit is probably one of c1, c3, c10, c11 or c13, i.e., those circuits in
M1∩M2∩M3, and pointed as broken by the three sensors when they are reliable.

Given that level of beliefs about the broken circuit, You must now decide if You are going to
use sensor S4 or sensor S5 as a next step in Your diagnostic procedure. Table 4.2.1 presents
the value of aij for sensors S4 and S5, and table 4.2.2 gives their reliability. The procedure
consists then in deciding which one of the two sensors is the most efficient for establishing the
diagnosis when only one of them is used. Let us accept that You want to minimize the entropy
computed from the pignistic probability. This means that You accept that this entropy is an
appropriate measure for the information available to You when decision must be made (this is a
quite common attitude in classical probability, but other attitude could be adopted as well). The
entropy related to the pignistic probability BetP is given by:

Entr(BetP) = ∑
ci: ci∈Ω

    BetP(ci) . log(BetP(ci))

With BetP computed from m1∧ 2∧ 3, the value of the entropy is 1.94.
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To compute the benefit You could expected from using the sensors S4, You suppose first that
s4 = 0, You compute the simple support function m4 on Ω, You combine it conjunctively with
m1∧ 2∧ 3, You obtain the bba m1∧ 2∧ 3∧ 4, You compute the pignistic probability BetP on Ω
induced by  m1∧ 2∧ 3∧ 4 and then the entropy of BetP. You perform similar computation with
s4 = 1 and obtain another entropy. The two entropies so obtained are denoted Entr4=0 and
Entr4=1.

You must then compute from m1∧ 2∧ 3 Your belief bels that S4’s outcome will be 0 or 1,
respectively. This belief is obtained from Your belief bel1∧ 2∧ 3 as following: given ai4 You
know that s4 = 0 whenever the broken circuit belongs to A4, and that s4 = 1 whenever the
broken circuit belongs to B4. So pls(s4 = 0) = pl1∧ 2∧ 3(broken circuit ∈  A4) and pls(s4 = 1) =

pl1∧ 2∧ 3(broken circuit ∈  B4). This plausibility function pls is transformed into pignistic

probabilities BetP on the betting frame {s4 = 0, s4 = 1}. Then in order to compute the entropy
you might expect by testing the equipment with S4, you compute:

Entr4 = BetP(s4 = 0) . Entr4=0 + BetP(s4 = 1) . Entr4=1.

Identical computation is performed with S5. Results are presented in table 4.2.4. They show
that sensor S4 is the best one to apply, as it minimizes the expected entropy.

Outcome Entropy BetP E(Entr)
Sensor 4 s4 = 0 2.19 0.12 1.86

s4 = 1 1.82 0.88
Sensor 5 s5 = 0 2.02 0.10 1.93

s5 = 1 1.92 0.90

Table 4.2.4: Entropies E(Entr) one could expected by applying sensors 4 and 5 individually.

You can still consider other actions in that example. Instead of applying new sensors, You
might consider finding the exact value of aij, j = 1 to 3 for the case where aij = ?. This could be
achieved by calling the factory and checking the original plans (that You do not have). You
consider each case where aij = ?. Suppose akl = ?, You assume that akl = 1 and compute the
entropy Entr1 computed from the pignistic probability You would obtained by putting akl = 1 in
table 4.2.1. You repeat the procedure by assuming that akl = 0, what leads to Entr0. Suppose
Your a priori belief about the value of akl is vacuous, then the entropy You could expect by
learning the value of akl is then:

Ekl(Entr) = .5 Entr0 + .5 Entr1.

Table 4.2.5 presents the value of the expected entropy for every case where aij= ? for j = 1, 2,
3. It indicates that the richest information would be obtained by learning the value of a13,1 i.e.
the link between circuit c13 and sensor S1.

Nevertheless applying sensor S4 is still better from a minimal entropy point of view. So if there
is no financial difference between applying a new sensor or getting the value of a13,1 Your best
decision would be to apply sensor S4.
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Circuit Sensor aij Entropy BetP E(Entr)
2 1 0 1.93 0.5 1.94

1 1.94 0.5
8 1 0 1.93 0.5 1.94

1 1.94 0.5
13 1 0 1.80 0.5 1.87

1 1.94 0.5
5 2 0 1.94 0.5 1.94

1 1.94 0.5
9 2 0 1.94 0.5 1.92

1 1.89 0.5
13 2 0 1.94 0.5 1.89

1 1.84 0.5
14 2 0 1.94 0.5 1.92

1 1.89 0.5
15 2 0 1.94 0.5 1.93

1 1.92 0.5
1 3 0 1.84 0.5 1.89

1 1.94 0.5
7 3 0 1.89 0.5 1.92

1 1.94 0.5
10 3 0 1.84 0.5 1.89

1 1.94 0.5
13 3 0 1.84 0.5 1.89

1 1.94 0.5

Table 4.2.5: Computation of the entropies one could expect by resolving the ambiguities left
for the relation between the sensors and the circuits (those (i,j) with aij = ? in table 4.2.1)

Generalization when cost and utilities are involved or when a priori beliefs exists is of course
possible. It will not change the philosophy of the present approach..

4.3. Lung diseases.

We analyze a highly simplified medical diagnosis problem in order to illustrate the use of the
Generalized Bayesian Theorem (GBT). It also shows how beliefs can be assessed. Let Θ =

{tuberculosis, lung cancer, bronchitis, none}, where the categories are considered as mutually
exclusive and where ‘none’ represents the absence of the three real disease categories. Two
symptoms can be collected: the lung X-ray that can be positive or negative, and the fever that
can be none, mild or severe.

We assume that one and only one disease can be present at the same time (this hypothesis could
be relaxed but the complexity of the computation should increase seriously and the example
would loose its illustrative capacity).
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X-ray tuberculosis lung cancer bronchitis none
Ø 0 0 0 0

Positive 0.8 0.4 0.1 0
Negative 0 0 0.7 0.9

Ω 0.2 0.6 0.2 0.1

BetP tuberculosis lung cancer bronchitis none
Positive 0.9 0.7 0.2 0.05
Negative 0.1 0.3 0.8 0.95

Table 4.3.1: Conditional beliefs over the X-ray symptoms within the four categories. The
upper part presents the four bba, and the lower part presents the pignistic probabilities BetP
within each categories.

Your knowledge about the relation between the diseases and the symptoms is represented by
Your conditional beliefs about the symptoms that would be observed if You knew that the
patient belongs to the disease category θ∈Θ . This is available for each diseases category θ∈Θ.
Table 4.3.1 presents the bba related to the conditional belief function you should have about the
value of the X-ray outcomes. You assume first that m(Ø) = 0 as You feel there is no
contradiction in your conditional beliefs. Their constructions are based on the pignistic
probabilities You would have if You had to bet on which symptom will be present if the patient
belongs to category θ. The bottom part of table 4.3.1 presents these probabilities BetP. When

patient presents a tuberculosis, You would bet with 0.9 that the X-ray is positive, and 0.1 that
is negative. Many bba could be built on the X-ray domain and that are compatible with the
pignistic probability just defined. But it happens that You feel that when tuberculosis is present,
You have no reason to belief that the X-ray might be negative. Hence You impose that
m(Negative) = 0. In that case there is only one bba that fits with BetP and m(Negative) = 0, the
one given in table 4.3.1 that allocates m(Positive) = 0.8 and m(Ω) = 0.2 (where Ω denotes
systematically the domain of the variable under consideration, the X-ray here).

Data for the lung cancer are obtained identically, and those for none also except the null mass is
forced for Positive.

For the bronchitis, the assessment of bba is a little more subtle. You don’t want to assume the
same constraint as in the previous cases. On the betting frame B1 = {Positive, Negative} Your
BetP1 are 0.2 and 0.8, respectively (see table 4.3.1). Let the bba on B1 that must be assessed
be denoted by m1. Now we build a second betting frame B2  based on an adapted domain for
the X-ray outcome. Suppose there are two forms of positive X-ray according to the size of the
lesion: Small or Large. So the second betting frame B2 = {X-ray Positive with a Small lesion ,
X-ray Positive with a Large lesion and, X-ray Negative}. If You had to bet on the lesion size,
You would be totally ignorant about it. So in Your opinion the bba m2 on the set B2  should
give no support to Positive Small or to Positive Large, what means that the bba m2 on B2

satisfies:
m2(Positive Small) = m2(Positive Large) = 0
m2(Positive) = m1(Positive).
m2(Negative or Positive Small) = m2(Negative or Positive Large) = 0
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m2(Negative) = m1(Negative).
m2(Ω) = m1(Ω)
m2(Ø) = m1(Ø) = 0.

Suppose You are asked to provide Your pignistic probabilities on B2, and that they are:
BetP2(Positive Small) = BetP2(Positive Large) = 0.117

and BetP2(Negative) = 0.767.

So we have to solve the following set of equations:
BetP1(Positive) = 0.2 = m1(Positive) + m1(Ω)/2
BetP1(Negative) = 0.8 = m1(Negative) + m1(Ω)/2
BetP2(Positive Small) = 0.117 = m1(Positive)/2 + m1(Ω)/3
BetP2(Positive Large) = 0.117 = m1(Positive)/2 + m1(Ω)/3
BetP2(Negative) = 0.767 = m1(Negative) + m1(Ω)/3
m1(Positive) + m1(negative) + m1(Ω) = 1.

The only solution is m1(Positive) = 0.1, m1(Negative) = 0.7 and m1(Ω) = 0.2 (see table 4.3.1)

Similar assessments are performed for the fever symptom. Given the betting probabilities
obtained within each of the four disease categories, You build the least committed belief
function over the fever status which pignistic transformation would lead back to the pignistic
probability BetP observed. The results are given on table 4.3.2.

fever tuberculosis lung cancer bronchitis none
Ø 0 0 0 0

none 0 0.45 0 0.91
mild 0 0 0 0

none-mild 0 0.4 0 0.06
severe 0.1 0 0.35 0

none-sev 0 0 0 0
mild-sev 0.6 0 0.5 0

Ω 0.3 0.15 0.15 0.03

BetP tuberculosis lung cancer bronchitis none
none 0.1 0.7 0.05 0.95
mild 0.4 0.25 0.3 0.04

severe 0.5 0.05 0.65 0.01

Table 4.3.2: Conditional beliefs over the fever symptoms within the four categories. The
upper part presents the four bba, and the lower part presents the pignistic probabilities BetP
within each categories.

Three methods for belief assessments are thus illustrated. The first is based on the assumption
of special constraints, the second on varying betting schemes, and the third on the least
commitment principle (‘never allocate more belief than necessary’).
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In order to apply the GBT, we need the belief over the symptom space within each disease
category. This is obtained by accepting the idea that the symptoms are cognitively independent
(the concept that generalizes the idea of stochastic independence). It means that the plausibility
to observed a Positive X-ray and a mild fever in disease category θ is the product of the

plausibility to observe a Positive X-ray in θ and of observing a mild fever in θ. The analogy

with the probabilistic case is obvious. Similar computation is done for every combination of
symptoms within each disease category.

Knowing the belief over the symptoms within each diseases category, it is just a matter of
applying the GBT in order to produce the belief over the disease classes given the observed
symptoms.

Suppose then that the X-ray is positive and the clinician only knows that the patient has ‘mild or
severe’ fever. The exact value of the fever status happens to be unknown to the clinician (the
patient speaks of fever, but don’t provide any detail about it). All that is needed in that case are
the conditional of Positive X-ray and mild-severe fever. They are:

pl(Positive & mild-severe|θ) = pl(Positive|θ) pl(mild-severe|θ).

Table 4.3.3 presents the details of the computation.

Symptom Status tuberculosis lung cancer bronchitis none
X-ray Positive 1.000 1.000 0.300 0.100
Fever mild-sev. 1.000 0.550 1.000 0.090

Combin. & 1.000 0.550 0.300 0.009

Table 4.3.3: Values of the conditional plausibility needed for the computation of the beliefs
given X-ray Positive and fever mild-severe.

Table 4.3.4 presents the values of the belief function bel, the plausibility function pl and the
pignistic probability BetP for each disease category individually. They are obtained by the
application of the GBT. In that case, the most probable diagnosis is tuberculosis (BetP = 0.628)
and there is no conflict in the induced belief function over the disease categories (conflict = 0).
Notice that the plausibility of the disease categories given the observed symptoms are equal to
the plausibility of the observed symptoms given the disease category, what is indeed always
true and reflects the equality:

pl(A|B) = pl(A&B) = pl(B|A) for any A,B”Ω.
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X-ray Fever Conflict tuberculosis lung cancer bronchitis none
positive mild-sev 0.000 bel 0.312 0.000 0.000 0.000

pl 1.000 0.550 0.300 0.009
BetP 0.628 0.247 0.122 0.003

negative mild 0.207 bel 0.046 0.102 0.292 0.021
pl 0.180 0.330 0.585 0.090

BetP 0.133 0.262 0.542 0.064
positive none-mild 0.000 bel 0.000 0.072 0.000 0.000

pl 0.900 1.000 0.195 0.100
BetP 0.407 0.493 0.066 0.033

positive Ω 0.000 bel 0.000 0.000 0.000 0.000
pl 1.000 1.000 0.300 0.100

BetP 0.436 0.436 0.098 0.031
Ω mild-sev. 0.000 bel 0.000 0.000 0.000 0.000

pl 1.000 0.550 1.000 0.090
BetP 0.397 0.179 0.397 0.026

Table 4.3.4: Beliefs induced by the GBT on the four categories. Five sets of symptoms are
considered. For each of them, the table presents the values of bel, pl and BetP four each
categories. Ω denotes the domain of the symptoms. Notations like mild-sev. means mild or
severe,...

Suppose now that the patient has a negative X-ray and a mild fever. The pignistic probabilities
indicate that the most probable category is bronchitis (BetP = 0.542). In this case, the conflict is
0.207, a medium value that results from the fact that the patient has a negative X-ray, what is
compatible with bronchitis and ‘none’, but he has a mild fever, what is not exactly compatible
with bronchitis nor with ‘none’. The 0.207 conflict enhances this weak contradiction.

If the patient has a positive X-ray and does not suffer from severe fever, then the most probable
diagnosis would be lung cancer (bet P = 0.493). This example just illustrates how easy it is to
compute the requested data.

The interest of the method resides in the fact that:
1) there is a measure of conflict. It indicates the presence of some incoherence between the
symptoms.
2) the prior belief over the disease is vacuous. The method developed does not require any
specific a priori belief about the disease categories, a major advantage of the method. If we had
some a priori belief about the disease, this belief would have been conjunctively combined with
the belief function induced by the symptoms over the disease categories in the presence of a
vacuous a priori belief over the disease categories.

Finally, to show that the GBT behaves appropriately when symptoms are combined, suppose
successively that we only know that the patient has a positive X-ray, and then that the fever is
mild or severe (see table 4.3.4 last two cases). Table 4.3.5 presents the values of the bba (the
missing values are null) in both cases and their combination. The result of this combination is
nothing but the data that were summarized in table 4.3.4, case 1.
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non null bbm X-ray Fever
positive mild-severe Combination

tub 0.312
tub-lcanc 0.630 0.382

tub-bronch 0.410 0.134
tub-lcanc-bronch 0.270 0.501 0.164

tub-none 0.003
tub-lcanc-none 0.070 0.003

tub-bronch-none 0.041 0.001
Ω 0.030 0.050 0.001

Table 4.3.5: Non null values of the bba induced by the GBT on the four categories given the
observed X-ray symptom and given the observed fever symptom. Their combination by
Dempster's rule of combination results in the bba presented in table 4.3.3 for the first
symptoms combination. The data for the individual symptoms are those consider in table 4.3.3
as cases 4 and 5.

4.4. Radio-active leakage location.

Suppose You discovers that there is some abnormal radio-activity is a given region, and You
suspect it results from a leakage in one of the 7 nuclear waste disposal sites in that region. You
know the location of the disposal sites. There are 21 locations where radio-activity
measurements can be obtained. For each disposal site and for each measurement location, You
provide Your conditional belief about what would be the outcome of the measurement (e.g.,
positive or negative) given the radio-active material is leaking at that disposal site. You know
the cost of collecting each radio-activity measurement. You also know, for each disposal site,
the cost of exploring it and the consequences of a delay in taking appropriate actions if the
leakage happens to be at that site. Details are given in Xu et al. (1993, 1996).

Given the observed radio-activity measurement obtained from a selected sample of sites, You
assess Your beliefs about the location of the leakage and the optimal action. The computation
can hardly be performed on a piece of paper as for the previous examples, but the evaluation of
the beliefs and the optimal decision becomes easily manageable when using the Evidential
Networks software (Xu, 1992a) and the Decision Support System (Xu, 1992b), both based on
the Valuation-Based Systems (Shafer et al., 1987, Shenoy and Shafer, 1990, Shenoy, 1992).
The architecture of the integrated software is given in Xu (1995).

With the same information, You can also precompile the optimal strategy to follow if some
abnormal radio-activity is detected, just as we did in the broken circuit example (section 4.2).
The precompile strategy will tell its users which sample to collect, which action to taken given
the observation, like ‘proceed with sampling at that site’, or ‘explore that disposal site’... Such
precompile strategy could then be introduced in the adequate safety procedures.

Up to here, all we have done mimic the Bayesian approach, both in the diagnostic process as in
the precompilation of an optimal strategy. The only difference is that the relations between the
variables are represented by belief functions instead of probability functions. Otherwise utilities
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and expected utilities are similarly computed (with the pignistic probabilities in the TBM). The
advantage of the TBM is that one does not have to feed into the model those many probabilities
required by a full flesh probabilistic approach, what often goes far into the thousands, even
thought most of them are totally unsupported and reflects pure uneducated and unjustified
guesses. The TBM uses only what is known, not what is invented (usually by a blind
application of the Principle of Insufficient Reason). This reflects the ability of the TBM to
represent any level of beliefs, up to total ignorance, a tasks hardly achievable within probability
theory.

Nevertheless there is one adaptation of the scenario where the TBM really beats the most
classical probability approach. Suppose that You are not aware that the Army might have
created a disposal site in the region You are exploring. Military Secrets are sometimes so strong
that You are ignorant about the existence of such a Secret Site, and of course, You have no idea
whatsoever where it might be located, and how the radio-activity measurements can be
influenced by a leakage happening in that Secret Site. With the TBM such a case can easily be
solved by introducing the extra Secret Site θω, and assuming vacuous belief functions on the

radio-activity measurements outcomes when a leakage occurs in the Secret Site. All these
adaptations are straightforward and do not need any modification of the model. Within the
Bayesian approach, I prefer to leave such a problem to a Bayesian specialist, but in my personal
opinion, there is not real way to solve realistically such a problem without introducing totally
artificial assumptions.

5. Belief networks and evidential networks.

In the radio-activity leakage, we mentioned the use of evidential networks to compute the
required beliefs. In probability approach, similar computations are achieved with the Bayesian
networks (Pearl, 1988, Lauritzen and Spiegelhalter, 1988). Even if the two approaches share
similarities, they also have major conceptual differences that are often neglected. So we detail
these hereafter.

In both cases, one starts with a set U of variables Xi: i=1, 2...n, each with its finite domain Di.
In the probability approach one assumes the existence of an joint probability function over the
product space X = X1 x X2 x...x Xn, whereas the TBM approach constructs a belief function
over the space X. In the probability approach, on assumes the existence of a very large number
of independence constraints, thanks to which the joint probability function on X can be
represented by a few appropriate conditional probability functions between subsets of variables
of U. Links between variables indicates their relation, the absence of a link indicating  that the
two variables are conditionally independent given the other variables. With the TBM, one does
not assume the existence of a belief function on U that could be represented by a small number
of belief functions defined on smaller subsets of U. Each piece of information induced a belief
function on a subset of U, and the joint belief function on X is built from these belief functions.
The links indicate the belief functions constraints between those variables connected by the link.
The absence of a link between a subset A of variable in U reflects that the belief function
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between those variables in A is vacuous. In the TBM, each time a new piece of evidence is
collected, one just adds the induced belief function to the network. This addition does not
change what was previously introduced in the network, it just increases the information
represented by it. In probability theory, adding a new probability function to the network
consists either in changing preexisting probabilities or changing one’s mind about a previously
assumed independence. Knowing more, as in the TBM, is different from shifting from an
independence assumption toward a dependency. In the TBM, You just know more. Going
from a vacuous belief function toward a belief function is what occurs when You learn a new
piece of evidence. In the probability approach, You change Your mind about a previously
assumed property, what means You acknowledge Your independence assumption was
inappropriate.

The belief functions can be joint belief functions as in the original network as presented by
Shenoy and Shafer (1990), but they can as well be conditional belief functions (Xu and Smets,
1995). The simplest (if maybe not most efficient way to cope with conditional belief functions
consists in creating their ballooning extension on the product space (Smets, 1993a), and them
combining conjunctively those joint belief functions so derived, in which case we are back to
the original network. So the evidential network can cope with both joint and conditional belief
functions, and the critics that claim that evidential networks cannot cope with conditional
information are just wrong.

Besides there is another serious discrepancy between the Bayesian networks and the evidential
networks. In the TBM, You can perfectly introduce two belief functions between variables X1

and X2. It would mean that You have two sources of information, and the two induced belief
functions are combined into a single belief function on X1 x X2. In the Bayesian networks,
You can freely assign the conditional probability function on X1 given X2. Once this
assignement is done, You may not introduce another conditional probability function on X1

given X2. You could introduce a conditional probability function on X2 given X1, but this new
probability function must be built very carefully if You require, what is compulsory, that the
two conditional probability functions are compatible with a unique underlying joint probability
function on the product space. Requiring that Bayesian networks are directed acyclic graphs
consists in avoiding such dangerous construction. In the evidential networks, this is not
required, that networks are directed acyclic or not is irrelevant, they all finished as undirected
graphs thanks to the ballooning extension.

6. Conclusions.

We have summarized the possibilities of the transferable belief model in domains related to the
diagnostic process, and shown its strengths within some applications. The interest and
capacities of the TBM do not stop so short of course. Many problems of probability theory
have already be generalized in order to be handled by the TBM. In particular, the TBM can be
used for cluster analysis (Schubert, 1995), for discriminant analysis (Denoeux, 1995), for
expert opinions pooling (Smets, 1992a), for plausible reasoning (Benferhat et al., 1995), for
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auditing procedures (Srivastava, 1995, Van den Acker and Vanthienen, 1996), for
classification (Lohmann, 1991), for decision making (Xu et al., 1996) etc... In particular, with
the TBM, it is possible to perform a discriminant analysis even when the classes of the cases in
the learning sets are not exactly known, but only known to belong to a set of possible classes.
Future use of the TBM in real worlds applications will permit to assess its value.

Acknowledgments.

Research work has been partly supported by the Action de Recherches Concertées BELON funded by a grant from

the Communauté Française de Belgique and the ESPRIT III, Basic Research Action 6156 (DRUMS II) funded by

a grant from the Commission of the European Communities.

References.

APPRIOU A. (1991) Probabilités et incertitude en fusion de données multi-senseurs. Revue
Scientifique et Technique de la Défense, 11:27-40.

BENFERHAT S., SAFFIOTTI A. and SMETS Ph. (1995) Belief functions and default
reasoning. in Uncertainty in AI 95. Besnard Ph. and Hanks S. eds. Moragan Kaufman,
San Francisco, Ca, pg. 19-26.

DENOEUX T. (1995) A k-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Trans. SMC: 25:804-813.

DUBOIS D., PRADE H. and SMETS Ph. (1996) Representing partial ignorance. IEEE System
Machine and Cybernetic. Forthcoming.

LOHMANN G. (1991) An evidential reasoning approach to the classification of satellite
images. in Kruse R. and Siegel P (eds) Symbolic and Quantitative Approaches to
Uncertainty. Springer-Verlag, Berlin, pg. 227-231

LAURITZEN S.L. and SPIEGELHALTER D.J., (1988) Local computation with probabilities
and graphical structures and their application to expert systems. J. Royal Statistical
Society B50:157-224.

PEARL J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann Pub. San Mateo, Ca, USA.

SAVAGE L.J. (1954) Foundations of Statistics. Wiley, New York.
SCHUBERT, J., (1995) Cluster-based Specification Techniques in Dempster-Shafer Theory,

Proc. European Conf. Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, (ECSQARU '95), Springer-Verlag (LNCS), Berlin.

SHAFER G. (1976) A mathematical theory of evidence. Princeton Univ. Press. Princeton.
SHAFER G., SHENOY P.P. and MELLOULI K. (1987) Propagating belief functions in

qualitative Markov trees. Int. J. Approx. Reasoning, 1:349-400.
SHENOY P. P. and SHAFER G.(1990) Axioms for probability and belief functions

propagation, in Shachter R.D., Levitt T.S., Kanal L.N. and Lemmer J.F. eds,
Uncertainty in Artificial Intelligence 4, North Holland, Amsterdam, 159-198.

SMETS Ph.  (1978) Un modèle mathématico-statistique simulant le processus du diagnostic
médical.  Thèse d'agrégation de l'Enseignement Supérieur.  Presses Universitaires.  269
pages.  (available through University Microfilm International, 30-32 Mortimer street,
London W1N 7RA, thesis 80-70,003, In French).

SMETS Ph. (1981) Medical Diagnosis : Fuzzy Sets and Degrees of Belief. Int. J. Fuzzy Sets
and systems, 5 : 259-266.

SMETS Ph.  (1982) Possibilistic Inference from Statistical Data.  In : Second World
Conference on Mathematics at the Service of Man.  A. Ballester, D. Cardus and E. Trillas
eds.  Universidad Politecnica de Las Palmas, pp 611-613.

SMETS Ph. (1988) Belief functions. in Non Standard Logics for Automated Reasoning, ed.
Smets Ph., Mamdani A., Dubois D. and Prade H. Academic Pr., London pg253-286.

SMETS Ph. (1992a) The transferable belief model for expert judgments and reliability
problems. Reliability Engineering and System Safety. 38:59-66.

SMETS Ph. (1992b) The concept of distinct evidence. IPMU 92 Proceedings.pg. 789-794.



TBM-Diagnosis/full July 27, 1999 29

SMETS Ph. (1993a) Belief functions: the disjunctive rule of combination and the Generalized
Bayesian Theorem. Int. J. Approximate Reasoning 9:1-35.

SMETS Ph. (1993b) An axiomatic justifiaction for the use of belief function to quantify beliefs.
IJCAI'93 (Inter. Joint Conf. on AI), Chambery. pg. 598-603.

SMETS Ph. (1993c) No Dutch Book can be built against the TBM even though update is not
obtained by Bayes rule of conditioning. SIS, Workshop on Probabilisitic Expert
Systems, (ed. R. Scozzafava), Roma, pg. 181-204..

SMETS Ph. (1994) What is Dempster-Shafer's model? in Advances in the Dempster-Shafer
Theory of Evidence. Yager R.R., Kacprzyk J. and Fedrizzi M., eds, Wiley, New York,
pg. 5-34..

SMETS Ph. and KENNES R. (1994) The transferable belief model. Artificial Intelligence
66:191-234.

SMETS Ph. and MAGREZ P. (1987) La représentation de la croyance. Revue de l'Intelligence
Artificielle, 1: 31-46, 1987.

SRIVASTAVA R.P. (1995) The belief function approach to aggregating audit evidence. Int. J.
Intelligent Systems, 10:329-356.

VAN DEN ACKER C. and VANTHIENEN J., (1996), Integrating statistical audit evidence
with belief function theory. Proc. Formal and applied practical reasoning.

XU H. (1992a) An efficient tool for reasoning with belief functions. in Bouchon-Meunier B.,
Valverde L. and Yager R.R. eds. Uncertainty in intelligent systems. North Holland,
Elsevier Scinece, 215-224.

XU H. (1992b) A decision calculus for belief functions in valuation based systems. in
DUBOIS D., WELLMAN M.P., D'AMBROSIO B.and SMETS Ph. eds. Uncertainty in
Artificial Intelligence-92. Morgan Kaufman, San Mateo, Ca, 352-359.

XU H. (1995) Uncertainty Reasoning and Decision Analysis Using Belief Functions in the
Valuation-Based Systems. Ph.D. Thesis, Université Libre de Bruxelles.

XU H., HSIA Y.T. and SMETS Ph. (1993) A belief function based decision support system.
Uncertainty in AI 93. Heckerman D. and Mamdani A. eds. Morgan Kaufmann, San
Mateo, Ca, USA, 535-542.

XU H. and SMETS Ph. (1995) Evidential reasoning with conditional belief functions. Int. J.
Approximate Reasoning, 14:155-185.

XU H., HSIA Y.T. and SMETS Ph. (1996) The transferable belief model for decision making
in valuation based systems, IEEE Trans. System, Man and Cybernetics 26:698-707.


