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1 Introduction

Suppose a remote sensor RS that detects the presence
or absence of a given object and communicates this in-
formation to a coordination center CC. Consider an
enemy, a deceiver agent DA, who has the ability to in-
terfere with the communication. DA could fool CC by
either interrupting the communication or by commu-
nicating a tampered message, like communicating an
absence of a given object when the object is present
and a presence of a given object when the object is ab-
sent. Interrupting the communication is maybe not the
best strategy as CC might conclude from the interrup-
tion that DA has interfered with the communication,
which is already an information. A best fooling strat-
egy might be the second one, i.e., to send the negation
of the original message.

Now you are working at CC and collect a message
from RS. How to handle it, specially if the problem is
not as easy as just described as when there are many
possible messages, added noise and other sources of
unreliability.

Classically tampered messages are not considered,
and probability theory is used to handle noisy and un-
reliable messages. Recently the belief function theory
has been suggested as an alternative to the probability
approach. We have defended the use of the transfer-
able belief model (TBM), an interpretation of the belief
function theory well adapted, among others, for object
detection and classification (Ristic & Smets, 2004). We
show here that the TBM can also handle tampered
messages. Our presentation is focussed on a classifica-
tion issue, where RS sends to CC a report about the
class to which the observed object belongs, and this
report is under the form of a belief function express-
ing RS’s opinion about what is the actual class of the
object. The issue studied here is the possibility that
the message is tampered in that DA tries to deceive
CC by sending ‘false’ data. We show that this can be
achieved for instance by sending to CC the negation
of the belief function sent by RS.

The purpose of this paper is not to solve the general
problem of tampered messages, but to show what the
principle of negated belief functions can offer to that
problem. Decoding tampered messages is an enormous
issue that we only skim over. Our paper considers only
one form of tampering, a form where negated belief
functions can be helpful.

Our presentation is organized as follows. In section
2, we provide the needed background material about
belief functions. In section 3, we present the concept of
the negation of a belief function and the de Morgan’s
laws that apply to it. In section 4 we explain why using
negated belief functions is a good strategy for what
concerns DA . In section 5, we present an illustrative
example of our method. We conclude in section 6.

2 The TBM background

In the transferable belief model (TBM), we consider
the actual value ω0 of a variable which finite domain is
a given set Ω. We represent the uncertainty about the
value of ω0 by a basic belief assignment (bba) denoted
mΩ where mΩ(A) is the basic belief mass (bbm) given
to A ⊆ Ω, and mΩ maps 2Ω, the power set of Ω, on
[0, 1] with the constraint that

∑
A⊆Ω mΩ(A) = 1. The

mass mΩ(A) represents the part of belief that supports
that the actual value ω0 belongs to A and nothing more
specific. Classical material about the TBM and belief
function theory can be found in (Shafer, 1976; Smets
& Kennes, 1994; Smets & Kruse, 1997; Smets, 1998).

Several useful functions related to mΩ have been de-
scribed.

Belief function. A belief function is defined as:

belΩ(A) =
∑

B:∅6=B⊆A

mΩ(B).

The value belΩ(A) represents the total amount of belief
that supports that ω0 is in A without supporting that
it is in A.

Plausibility function. A plausibility function is defined
as:

plΩ(A) =
∑

B:A∩B 6=∅

mΩ(B) = belΩ(Ω)− belΩ(A).

The value plΩ(A) represents the total amount of belief
that supports that ω0 might be in A without support-
ing that it might be in A.

Commonality function. A commonality function is de-
fined as:

qΩ(A) =
∑

B:A⊆B

mΩ(B).

The value qΩ(A) represents the conditional amount of
uncertainty should we accept that ω0 is in A.

Implicability function. An implicability function is de-
fined as:

bΩ(A) =
∑

B:B⊆A

mΩ(B) = belΩ(A) + mΩ(∅).

The value bΩ(A) represents the total amount of belief
that supports that ω0 is in A.

Some particular belief functions are used in this pa-
per.

Definition 2.1 Categorical belief function. A
categorical belief function on Ω focussed on A∗ ⊆ Ω,
is a belief function which related bba mΩ satisfies:

mΩ(A) =
{

1 if A = A∗

0 otherwise. (1)
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When all bbas are categorical, the TBM becomes
equivalent to classical propositional logic. Two lim-
iting cases of categorical bbas have received special
names.

Definition 2.2 Vacuous belief function. The vac-
uous belief function on Ω is a categorical belief function
focused on Ω. It is denoted by V BF .

Definition 2.3 Contradictory belief function. A
contradictory belief function on Ω is a categorical belief
function focused on ∅. It is denoted by CBF .

2.1 Decision making

In the TBM, decision are made using the pignistic
probabilities derived from the bba by the pignistic
transformation. (Smets, 1990, 2002, 2005).

Definition 2.4 The pignistic transformation.
The pignistic transformation maps bbas to so called
pignistic probability functions. The pignistic transfor-
mation of mΩ is given by:

BetPΩ(A) =
∑
B⊆Ω

|A ∩B|
|B|

mΩ(B)
1−mΩ(∅)

, ∀A ⊆ Ω

where |A| is the number of elements of Ω in A.

BetPΩ is a probability measure.

2.2 Notation

We use the notation mΩ
Ag,t[Ev] to express the bba held

by an agent Ag at time t about the actual value ω0

of a variable which possible values belong to the finite
set Ω, where the bba is conditioned on Ev i.e., what
the agent Ag accepts as true at time t. Indexes are
neglected when the context makes them obvious.

2.3 Types of combinations

Given the distinct pieces of evidence Evi and their in-
duced mΩ[Evi], i = 1, 2, the belief holder Ag can build
combinations based on the conjunction (AND, denoted
∧) or the disjunction (OR, denoted ∨) of the two pieces
of evidence.

• mΩ[Ev1 ∧ Ev2]: the belief that results from the
conjunctive combination of the two pieces of evi-
dence. It applies when Ag considers that the two
Evi’s hold.

• mΩ[Ev1 ∨ Ev2]: the belief that results from the
disjunctive combination of the two pieces of evi-
dence. It applies when Ag considers that at least
one of the two Evi’s holds but Ag does not know
which one.

In the TBM, these combinations are achieved by the
next rules. We provide their formal definition based
on the bba itself, and the simple relations based on the

commonality functions and the implicability functions.
For all A ⊆ Ω:

conjunctive combination rule

mΩ[Ev1 ∧ Ev2](A) =
∑

X∩Y =A

mΩ[Ev1](X)mΩ[Ev2](Y )

qΩ[Ev1 ∧ Ev2](A) = qΩ[Ev1](A)qΩ[Ev2](A)

disjunctive combination rule

mΩ[Ev1 ∨ Ev2](A) =
∑

X∪Y =A

mΩ[Ev1](X)mΩ[Ev2](Y )

bΩ[Ev1 ∨ Ev2](A) = bΩ[Ev1](A)bΩ[Ev2](A)

3 The negation of a belief function

Suppose a bba mΩ. Dubois and Prade (1986) have
defined the negation of mΩ.

Definition 3.1 Negation of a bba. The negation of
mΩ is the bba mΩ that satisfies:

mΩ(A) = mΩ(A), ∀A ⊆ Ω (2)

They also show that for all A ⊆ Ω:

Theorem 3.1 For any bba mΩ, one has:

b
Ω
(A) = qΩ(A)

qΩ(A) = bΩ(A).

De Morgan’s laws apply also.

Theorem 3.2 For any pair of bbas mΩ
1 and mΩ

2 on Ω,
one has:

mΩ
1 ∩©mΩ

2 = mΩ
1 ∪©mΩ

2

mΩ
1 ∪©mΩ

2 = mΩ
1 ∩©mΩ

2 .

The meaning of this negated belief function was de-
tailed in (Smets, 1997) when studying the α-junction
operators, among which one finds the conjunctive com-
bination rule and the disjunctive combination rule.
Suppose two distinct pieces of evidence Ev1 and Ev2

that bear on Ω. We can write the combination rules
as:

mΩ[Ev1 ∧ Ev2] = mΩ[Ev1] ∩©mΩ[Ev2]

mΩ[Ev1 ∨ Ev2] = mΩ[Ev1] ∪©mΩ[Ev2]

We define ∼ Ev as the piece of evidence that in-
duces the bba mΩ[Ev], the negation of mΩ[Ev]. The
de Morgan’s laws are satisfied and can then be written
as:

mΩ[∼ (Ev1 ∧ Ev2)] = mΩ[∼ Ev1∨ ∼ Ev2]

mΩ[∼ (Ev1 ∨ Ev2)] = mΩ[∼ Ev1∧ ∼ Ev2].
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4 Negated belief functions and
deceitful reports

4.1 Possible behavior from DA

Let mΩ
RS be the bba sent by RS. What is the ‘best’

attitude DA could take to fool CC. DA will build a
bba mΩ

DA and will communicate it to CC. Let mΩ
Col

be the bba collected by CC. We assume mΩ
Col = mΩ

DA,
thus there is no further interference between DA and
CC. What bba DA should send to CC in order to get
CC as ‘confused‘or deceived as possible.

1. Stopping communication. DA could stop the
communication line, in which case CC would be-
come aware of DA presence, something we feel DA
would try to avoid.

2. Sending a vacuous belief function. Sending
a vacuous belief function might also trigger some
suspicion from CC that there is a DA along the
communication line, something we feel DA would
try to avoid.

3. Smart permutation of the elements. DA
could collect mΩ

RS and compute its pignistic trans-
formation BetPΩ

RS . Suppose BetPΩ
RS(ωi1) >

BetPΩ
RS(ωi2) . . . BetPΩ

RS(ωin) with n = |Ω|
(equality are handled trivially). DA permutes the
elements such that the most probable becomes
the least probable.... It means replacing ωik

by
ωin+1−k

for all k = 1, . . . , n. E.g., suppose n = 4
and the probability ordered elements are (2, 4, 3, 1)
(hence BetPΩ

RS(ω2) is the largest). After trans-
formation, the set A = {ω2} becomes the set
{ω1}, and the set B = {ω1, ω3} becomes the set
{ω2, ω4}, etc. . .

This is surely not a bad attitude, but requires that
DA understands what the bba mΩ

RS represents.
The permutation depends indeed on mΩ

RS . This
solution requires maybe too much knowledge from
DA.

4. Random bba. DA could also send a random
bba to CC. CC would be partially confused, but
usually not fooled as much as when receiving the
negated bba considered below.

5. Negated bba. Finally DA might send the
negated bba, i.e., mΩ

DA = mΩ
RS . A nice property is

that the transformation does not depend on mΩ
RS

and can be applied by any DA, even a moronic
robot. Does such an attitude fits with common
sense?

(a) Suppose mΩ
RS is a categorical bba focussed

on A ⊂ Ω. It seems perfect to send to CC
another categorical bba mΩ

DA focussed on A.

(b) Suppose mΩ
RS is a vacuous bba. Leaving it

so will not alter the CC opinions, whereas
sending a contradictory bba could seriously

disturbed CC as such a bba could lead CC
to conclude anything and its contrary. CC
will have to spend energy handling RS and
the communication line to find out the origin
of the contradictory bba.

(c) Suppose mΩ
RS is a contradictory bba. It is ob-

vious CC should spend some energy to repair
RS and/or the communication line. Sending
a vacuous bba to CC will stop performing
this task that should have been done.

In these three cases, using the negation of the bba
seems thus an adequate strategy. For the general
case, common sense can hardly dictate the ‘good’
behavior, but using the negated bba seems still an
adequate strategy for DA.

4.2 Reaction by CC

How could CC react when collecting the bba mΩ
DA?

For that we must consider CC’s beliefs about the fact
that the message might have been tampered or not.
Consider a space L = {U, T} where U = Untampered,
and T = Tampered, where the two states mean that:

1. Untampered: the message has not been altered
by some DA, so mΩ

Col = mΩ
RS . In that case, CC

should accept the incoming bba.

2. Tampered: the message has been altered by some
DA, so mΩ

Col = mΩ
RS . In that case, CC should

accept the negation mΩ
Col of the incoming bba (as

negation is involutive, i.e., m = m).

Should CC be certain about which of the two contexts
prevails, CC just accepts the incoming message or its
negation, accordingly, and feed it into CC’s multisen-
sor data fusion system.

4.2.1 Prior on the nature of the collected bba

Such an ideal situation seems hardly expectable as too
unrealistic. In practice we could accept that CC has
some beliefs over L. Let mL be the belief held by CC
about the fact the message has been tampered of not.

To compute the belief over Ω held by CC based on
L, we need to derive the bba induced on Ω when CC
is ignorant about the value of L. Due to the particular
nature of the two involved bba’s (which are not distinct
of course), it can be shown that mΩ

CC [{U, T}] = V BF ,
where V BF is the vacuous belief function, a quite nat-
ural result.

Given L and mΩ
DA, one gets:

mΩ
CC = mL(∅)CBF + mL(U)mΩ

DA

+ mL(T )mΩ
DA + mL(L)V BF. (3)

This bba can then be fed into CC’s multisensor data
fusion system. This solution is correct as it results
from a direct application of the TBM, but it may be
too demanding as CC might be unable to assess mL.
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4.2.2 Absence of prior on L by CC

In many cases, we feel CC does not have any prior be-
liefs about the presence or absence of DA, thus about
L. A nice procedure would be to derive a method so
that mL is derived from the collected data themselves,
provided the CC has some prior beliefs about Ω.

If the CC has neither prior beliefs on Ω nor on L,
there is no hope to find out if mΩ

Col represents what
RS has send or not.

Let us suppose CC had some prior on Ω represented
by mΩ

CC,0 and none on L, what is probably the most
classical context to be encountered. mΩ

CC,0 will prob-
ably be collected from CC’s multisensor data fusion
system.

We can compute the conflict mΩ
CC [U ](∅) between

mΩ
Col and mΩ

CC,0 and the conflict mΩ
CC [T ](∅) between

mΩ
Col and mΩ

CC,0.
Suppose two bbas mΩ

1 and mΩ
2 both on Ω. The plau-

sibility that they both concern the same variable has
been shown by Denoeux (2004) to be equal to

pl(var(mΩ
1 ) = var(mΩ

2 )) =
∑

A∩B 6=∅

mΩ
1 (A)mΩ

2 (B)

= 1−mΩ
1 ∩©2(∅)

where var(m) represents the variable considered by m
(see also (Smets, 2004)).

Consider the bba mΩ
Col collected by CC. To say that

mΩ
Col is untampered (U) is the same thing as stating

var(mΩ
CC,0) = var(mΩ

Col). To say that mΩ
Col is tam-

pered (T ) is the same thing as stating var(mΩ
CC,0) =

var(mΩ
Col). Finally to say that mΩ

Col is untam-
pered or tampered (U, T ) is the same thing as stating
var(mΩ

CC,0) = var(mΩ
Col) or var(mΩ

CC,0) = var(mΩ
Col)

in which case every mass in mΩ
CC,0 is compatible with

those of either mΩ
Col of mΩ

Col or both, the only one in-
compatible with any of these bbs is the mass given by
mΩ

CC,0 to the empty set.
We have

plLCC(U) = 1− (mΩ
CC,0 ∩©mΩ

Col)(∅)
plLCC(T ) = 1− (mΩ

CC,0 ∩©mΩ
Col)(∅)

plLCC(U, T ) = 1−mΩ
CC,0(∅)

The corresponding bba is given by:

mL
CC(∅) = mΩ

CC,0(∅)
mL

CC(U) = (mΩ
CC,0 ∩©mΩ

Col)(∅)−mΩ
CC,0(∅)

mL
CC(T ) = (mΩ

CC,0 ∩©mΩ
Col)(∅)−mΩ

CC,0(∅)
mL

CC(U, T ) = 1− (mΩ
CC,0 ∩©mΩ

Col)(∅)...
− (mΩ

CC,0 ∩©mΩ
Col)(∅) + mΩ

CC,0(∅)

We have thus been able to build a prior belief on
L based on the data themselves. We apply then the
relation 3 and get the bba mΩ

new that represents the
beliefs held by CC about the nature of the class to

which the target belongs to. This bba can then be fed
into CC’s multisensor data fusion system.

A nice property of this solution is that mΩ
new is the

same should CC collect mΩ
RS or mΩ

RS . The action of
DA is annihilated. The cost of such an approach is
that mΩ

new is more ‘cautious’ as the bba we would have
used if we had known for sure that the message had
been tampered or not.

Another property is that if mΩ
CC,0 corresponds to a

vacuous belief function, then both mL
CC(U) = 0 and

mL
CC(T ) = 0 in which case mΩ

new corresponds also to
a vacuous belief function. This corresponds to what
we had mentioned in the second paragraph of section
4.2.2 using just common sense.

The strategy here described is just one among all
those one could consider. It is more or less ad hoc as
the assumptions of distinctness that underlie the com-
bination rules are not fully satisfied. Other methods
based on cautious combination rules could be consid-
ered. Still as shown in the next examples, the method
developed here behaves nicely.

5 Illustrative use

5.1 A static combination

Suppose the frame Ω = {ω1, ω2, ω3}. RS observes an
ω1 object. Its bba mΩ

RS is the convex sum of two com-
ponents: the first m1 is a ‘coherent’ bba where every
focal set contains ω1 and the second m2 is a purely
random bba where random masses are allocated to ev-
ery possible subsets of Ω. The bba m2 can be seen as
a noise. Let π be the weight given to the ‘noise’ bba.
π can be seen as the ‘noise’ level. The bba sent by RS
at time 1 is given by:

mΩ
RS = (1− π)m1 + πm2.

The prior bba mΩ
CC,0 held by CC at time 0 is built

identically. We present in table 1 the bbas used to
build mΩ

CC,0 and mΩ
RS where π = 0.4 for mΩ

CC,0 and
π = 0.1 for mΩ

RS .
Once CC considers that the message might have

been tampered, thus that DA might be acting, the
computation will not depend on the fact that DA has
or not negated the transferred bba. Suppose the bba
collected by CC at time 1 is in fact mΩ

RS , thus DA
did not negated the message. In table 2, we present
successively mΩ

CC,0 that represents CC beliefs at time
0, mΩ

Col = mΩ
RS the bba communicated by RS at

time 1 and its negation mΩ
Col. The conflict between

mΩ
CC,0 and mΩ

Col is given by (mΩ
CC,0 ∩©mΩ

Col)(∅) = 0.09
and the conflict between mΩ

CC,0 and mΩ
Col is given by

(mΩ
CC,0 ∩©mΩ

Col)(∅) = 0.58. These conflicts point to the
fact that the collected bba seems not to have been tam-
pered.

The bba induced on L by these conflicts is given
by: mL(∅) = 0.04, mL(U) = 0.54, mL(T ) = 0.06 and
mL(U, T ) = 0.36.
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mΩ
CC,0 mΩ

RS

Ω m1 m2 bba m1 m2 bba

∅ 0.00 0.09 0.04 0.00 0.05 0.01

ω1 0.19 0.01 0.12 0.09 0.02 0.09

ω2 0.00 0.16 0.06 0.00 0.07 0.01

ω1, ω2 0.28 0.22 0.25 0.42 0.33 0.41

ω3 0.00 0.14 0.06 0.00 0.03 0.00

ω1, ω3 0.23 0.33 0.27 0.21 0.10 0.20

ω2, ω3 0.00 0.05 0.02 0.00 0.16 0.02

ω1, ω2, ω3 0.30 0.01 0.19 0.28 0.24 0.27

Table 1: With Ω = {ω1, ω2, ω3}, computation of
mΩ

CC,0, the prior bba held by CC at time 0 on Ω and
mΩ

RS , the bba communicated by RS at time 1. We
present the coherent bbas m1, the random bbas m2,
and their convex combination with a noise level of 40%
for mΩ

CC,0 and 10% for mΩ
RS .

We then computed the bba mΩ
new indued by mL and

mΩ
Col using

mΩ
new = 0.04CBF + 0.54mΩ

Col + 0.06mΩ
Col + 0.36V BF.

(4)
Table 2 presents this new bba mΩ

new and the final bba
mΩ

CC,1 that results from the conjunctive combination
of mΩ

new with the past beliefs mΩ
CC,0, i.e., mΩ

CC,1 =
mΩ

new ∩©mΩ
CC,0.

At the bottom of table 2, we provide the pignistic
probabilities for each of the bba listed.

Initially ω1 was the most probable class
(BetP (ω1) = 0.46). The hypothesis that the
message is untampered is the most supported, and the
final pignistic probability gives 0.54 to ω1.

5.2 A dynamic combination

Imagine a dynamic context where CC starts at time 0
with some prior bba on Ω = {ω1, ω2, ω3} collected from
a non tampered sensor, and then collects new bba at
time 1 to 10 from a new sensor RS. The bbas send by
RS are negated by DA at time 1, 2, 5, 7, 10. The data
collected at time 0 is very noisy (noise weight of 0.8)
whereas those from RS are much better (noise weight
of 0.2), but are sometimes tampered. We compute the
pignistic probabilities according to relation 3. Figure
1 presents the three pignistic probability functions av-
eraged over 30 simulations. The solid line indicates
BetP (ω1), the probabilities for the actual class. Not
too bad at time 0, it increases more or less regularly
with new data.

For comparison purpose we show in figure 2 what
would be the equivalent curves if CC knew which
bbas had been negated, in which case CC would had
negated the collected bba to recover the bba as send by
RS and use this de-tampered bba for the data fusion
process. Results are quite satisfactory as BetP (ω1)
grows monotonically to 1.

Finally we repeat the combination using the data as
collected, thus what CC would have computed if CC

Ω mΩ
CC,0 mΩ

Col mΩ
Col mΩ

new mΩ
CC,1

∅ 0.04 0.01 0.27 0.05 0.13

ω1 0.12 0.09 0.02 0.05 0.23

ω2 0.06 0.01 0.20 0.02 0.06

ω1, ω2 0.25 0.41 0.00 0.22 0.23

ω3 0.06 0.00 0.41 0.03 0.05

ω1, ω3 0.27 0.20 0.01 0.11 0.19

ω2, ω3 0.02 0.02 0.09 0.01 0.01

ω1, ω2, ω3 0.19 0.27 0.01 0.51 0.10

ω1 0.46 0.48 0.03 0.41 0.54

ω2 0.27 0.31 0.34 0.32 0.25

ω3 0.27 0.20 0.63 0.27 0.21

Table 2: We present successively 1) mΩ
CC,0, the prior

bba held by CC at time 0 on Ω, 2) mΩ
Col, the bba col-

lected by C at time 1 and that happens to be equal
to mΩ

RS , the bba communicated by RS at time 1, 3)
its negation mΩ

Col, 4) the bba mΩ
new computed from

the last two using relation (4), 5) the bba mΩ
CC,1 that

represents CC beliefs at time 1 and results from the
conjunctive combination of mΩ

CC,0 with mΩ
new. The

bottom part of the table present the pignistic proba-
bilities computed from each bba.

BetP based on acepting the possibility data are tampered.
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Fig. 1: Pignistic probabilities for the three classes:
solid line for the actual class. Bbas updated by rela-
tion 3, thus accepting the possibility that the message
has been tampered.

neglects the possibility that bbas may have been tam-
pered. Results given in figure 3 show how much CC
would have been deceived. In fact BetP (ω1) goes to
0 whereas the two erroneous alternatives are equally
supported. DA would have been quite efficient in de-
ceiving CC.

6 Conclusions

We consider that messages between a remote sensor
and a coordination center may be tampered by some
deceiving agent. The messages send by the remote sen-
sor are basic belief assignments (bba) over some finite
frame Ω. We discuss deceiving strategies that would
fool the coordination center? We enhance the interest
for the deceiving agent to transfer the negation of the
bba that was sent by the remote sensor. A nice prop-
erty is that the negation tampering method does not
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BetP based on using the untampered data.
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Fig. 2: Pignistic probabilities for the three classes:
solid line for the actual class. Bbas updated using the
RS data, thus what CC would compute is CC knew
which messages had been tampered.

BetP based on using data as collected.

B
et

P

Time
0 1 2 3 4 5 6 7 8 9 10

0

0.25

0.5

0.75

1

Fig. 3: Pignistic probabilities for the three classes:
solid line for the actual class. Bbas updated using
the collected data, thus neglecting that messages might
have been tampered.

depend on the decoding of the message itself, as the
transformation operator does not depend on the bba
sent by the remote sensor.

If the coordination center accepts the bba as col-
lected, the updated bbas will be inadequate and mis-
leading.

If the coordination center knew which messages had
been tampered, it would be immediate to recover the
original message but such a context is not supposed to
prevail in reality.

If the coordination center has some prior beliefs
about the presence of the deceiving agent, the applica-
tion of the TBM allows to construct the bba that takes
in account both the collected bba and these prior be-
liefs.

If the coordination center has no prior belief about
the presence of the deceiving agent, we describe a
strategy that permits the construction of a prior be-
lief about the presence of the deceiving agent, that can
be used as in the previous case. A nice property of this
method is its robustness in that the final beliefs will be
the same, had the deceiving agent act or not.

We illustrate that last method, and show that it
seems to be adequate and helpful. The method is some-

how ad hoc as the distinctness assumptions underlying
the use of the combination rules is not exactly satis-
fied. Other methods can be imagined to handle such
inter evidential correlations.

We think we have been able to show that the TBM
is somehow well adapted to cope with some kinds of
tampered data, and that it might be interesting in real
life contexts. Its applicability will of course depend on
the nature of the sensors and of the possible behaviors
of the deceiving agents.
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