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Abstract

We generalize the TBM (transferable belief model) to the case where
the frame of discernment is the extended set of real numbersR = [−∞,∞],
under the assumptions that ‘masses’ can only be given to intervals. Masses
become densities, belief functions, plausibility functions and commonality
functions become integrals of these densities and pignistic probabilities
become pignistic densities. The mathematics of belief functions become
essentially the mathematics of probability density functions on R2.

1 Introduction

In this paper, we accept that beliefs are quantified by belief functions, as de-
scribed in the transferable belief model (TBM) (Smets & Kennes, 1994). Clas-
sically belief functions are defined on finite frames of discernment. We present
some extensions of the belief function theory to R = [−∞,∞], the extended set
of real numbers. We will consider the case where the focal elements are closed
intervals in R. We will work essentially on the frames of discernment [0, 1] and
R, but we will also provide some hints for belief functions on Rn.

Classical material about belief functions and the transferable belief model
can be found in (Shafer, 1976; Smets & Kennes, 1994; Smets, 1998).

We consider successively belief functions on [α, β],−∞ < α < β < ∞,
just to explain the origin of the generalization to non countable domains, and
belief functions on R, presenting the generalization of most of the concepts and
relations encountered in the finite case.

New concepts are introduced, among which those of credal variables, of char-
acteristic functions and of least committed isopignistic belief functions induced
by the knowledge of their pignistic transformations.

Belief functions on R, in particular figures 1 and 2 and relations (1) to
(12), were already presented in (Smets, 1978). Figure 2 and relations (1) to (3)
were also published in (Strat, 1984). An application of belief functions on R is
presented in (Ristic & Smets, 2004)
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Shafer’s thesis (Shafer, 1974) and (Shafer, 1979) also discusses generalization
of belief function theory to more abstract spaces. Shafer requires a ‘condens-
ability’ property, i.e. pl(A) = sup{pl(B) : B ⊆ A,B is finite}. This constraint
is not required by the belief functions we describe in this paper.

In (Kohlas & Monney, 1995, chapter 16), authors present the relations (1)
to (12) in a much more formal way than done here, some having already been
considered in (Dempster, 1968). Belief functions on R are also mentioned in
(Dempster, 1990; Almond, 1995). Belief functions on R are used in assumption-
based statistical inference (Monney, 2003; Kohlas & Monney, 2004). Generaliza-
tion of belief functions on some semi-lattices are considered in (Kohlas, 2003b,
2003a).

In (Liu & Shenoy, 1995; Liu, 1996; Liu, Shenoy, & Shenoy, 2003), the authors
introduce their so-called linear belief functions. They consider belief functions
in the framework defined by Dempster. They assume a continuous probability
density function (pdf) on a space X and a one-to many mapping Γ from X to
another space Y with the constraint that their focal elements Γ(A) and Γ(B)
are disjoint: Γ(A) ∩ Γ(B) = ∅ whenever A ∩ B = ∅ with A,B ⊆ X. For our
generalization of belief functions defined on the reals, we replace that constraint
with the assumption that all focal elements are intervals1 what leads to another
model, none subsuming the other. The concept of linear belief functions can
represent many types of knowledge, including linear equations, linear regression
models, direct observations, full ignorance, normal distributions, etc. . . and its
computation might be simpler and more efficient. Choosing between linear belief
functions and belief functions on the reals depends on the application. Is the
pdf on X ‘meaningful’2 and not just a mathematical abstraction for the linear
belief functions? Can we justify the values of bel given to the intervals for the
model presented in this paper? Do we need non-overlapping or interval-valued
focal elements? These issues fall outside the scope of this study.

The paper is organized as follows. In section 2, we fix the notation we use
to describe intervals. In section 3, we develop the theory of belief functions
defined on R. In section 4, we explain what become the rules describing the
dynamic of beliefs in R. In section 5, we introduce the concept of the bf-
characteristic function and its potentiality for adding credal variables. In section
6, we introduce the concept of pignistic density functions. In section 7, we
explain what is the q-Least Committed belief function induced by the knowledge
of its pignistic density function. In section 8, we present the General Bayesian
Theorem where the observation is defined on R. In section 9, we conclude.

2 Intervals representation

2.1 Intervals of R and points in R2

We first define the extended real numbers which includes plus and minus infinity.

Definition 2.1 Extended real numbers. The set R = IR ∪ {−∞,∞} ob-
tained by adjoining the two infinity elements to the set of real numbers IR is

1Some generalizations are manageable, see section 3.8.
2To be ‘meaningful’, a probability density function must concern a variable on which either

bets could be established and settled (for the subjectivists) or frequencies of occurrence could
be defined (for the frequentists).
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called the set of extended real numbers.

In the next definitions, the symbols I and T hold for ‘interval’ and ‘triangle’.

Definition 2.2 The I set. Suppose α, β ∈ R, α < β. We define:

I[α,β] = {[x, y], (x, y], [x, y), (x, y) : x, y ∈ [α, β]}
I = {[x, y], (x, y], [x, y), (x, y) : x, y ∈ R}

as the set of closed, half open and open intervals in [α, β] or R, respectively.

The set of intervals I on R contains the classical intervals of IR among which
∅ and the intervals [−∞, y], [x,∞] and [−∞,∞]. Note that [x, y] = ∅ whenever
x > y.

Definition 2.3 The T set. Closed intervals in [α, β] or R can be represented
as points in an extended two dimensional space. We define:

T[α,β] = {(x, y) : x, y ∈ [α, β], x ≤ y},
T = {(x, y) : x, y ∈ R, x ≤ y}.

The set T is also an extended set as it contains the infinities.
Figure 1 illustrates graphically this representation. The diagonal represents

the domain [0, 1]. Any interval in [0, 1] is represented by a point in the upper
left triangle. So interval [a, b] ⊆ [0, 1] is represented by the point K which
coordinates are the upper side of the triangle, denoted ‘from’, and the left side
of the triangle, denoted ‘to’. The same representation can be adapted for the
intervals of I[α,β] and I.

a

b

0 1a

b

from

0
1

0

1

t
o

x

y

K

u

v

Figure 1: Point K = (a, b) inside the triangle T[0,1], uniquely defines the interval
[a, b] ⊆ [0, 1]

The U set. Another very convenient representation consists in representing
[a, b] ∈ I as a pair (u, v) ∈ U where U = {(u, v) : u, v ∈ R, u ≥ 0}, where u
is the distance from (a, b) ∈ T to the perpendicular projection of (a, b) on the
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diagonal R that contains the intervals, and v is the coordinate of this projection
along this R diagonal (see figure 1).

Relations between T and U are given by:

u = (b− a)/2 a = v − u

v = (b+ a)/2 b = v + u

By construction, the non empty elements of I are in one-to-one correspon-
dence with those of T and U except v is undefined in the U representation for
[−∞,∞] ∈ I. For the empty set, ∅ ∈ I but it is neither representable in T nor
in U . The most general representation is achieved with I. The other two are
sometimes more convenient, hence their introduction.

2.2 Dirac’s and step functions

In our presentation, we repeatedly use the concepts of the step functions and
Dirac’s functions3.

Definition 2.4 The step function. The step function H(x− x0) centered at
x0 is a function defined by

H(x− x0) =
{

0 if x < x0

1 if x ≥ x0

In particular, H(a− x) = 1 means a ≥ x and 1−H(a− x) = 1 means a < x.

Definition 2.5 The Dirac’s function. The Dirac’s delta function (Dirac’s
function for short) δ(x−x0) is a generalized function that is 0 everywhere except
at its center x0 where it is ‘infinite’ and with the property that

∫∞
−∞ f(x)δ(x −

x0)dx = f(x0).

A Dirac’s function is sometimes defined as the limit of a gaussian pdf of mean
x0 where the variance tends to 0, whereas the step function can be seen as the
limit of the cumulative distribution functions related to the same pdfs.

Dirac’s functions satisfy
∫ b

a
δ(x−b)dx = 1 whereas

∫ b−ε

a
δ(x−b)dx = 0, ∀ε >

0.
Dirac’s and step functions are linked by:

Theorem 2.1
dH(x)
dx

= δ(x).

Probability functions can be represented as the sum of three components,
an absolutely continuous one, a discrete one, and a singular one. For instance,
the Gaussian pdf is an absolutely continuous component, a sum of weighted
Dirac’s functions is a discrete component, and the Cantor function is a singular
component. As in probability theory, the third component is assumed to be
absent in this paper. The discrete component can be represented by a sum of
weighted Dirac’s functions, which are handled as ‘continuous’ and ‘derivable’.

Step functions can be used to define inclusion and compatibility functions.
Their use can simplify some integrations.

3See Eric W. Weisstein. ‘Heaviside Step Function’ and ‘Delta Function’. From MathWorld–
A Wolfram Web Resource. http://mathworld.wolfram.com/HeavisideStepFunction.html and
/DeltaFunction.html
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Fct Meaning Constraints Representation
I
[a,b]
[x,y] [x, y] ⊆ [a, b] x ≥ a & y ≤ b H(x− a)H(b− y)

I
[a,b]
(x,y) (x, y) ⊆ [a, b] x ≥ a & y ≤ b H(x− a)H(b− y)

I
(a,b]
[x,y] [x, y] ⊆ (a, b] x > a & y ≤ b (1−H(a− x))H(b− y)

I
[a,b)
[x,y] [x, y] ⊆ [a, b) x ≥ a & y < b H(x− a)(1−H(y − b))

I
(a,b)
[x,y] [x, y] ⊆ (a, b) x > a & y < b (1−H(a− x))(1−H(y − b))

C
[a,b]
[x,y] [x, y] ∩ [a, b] 6= ∅ x ≤ b & y ≥ a H(b− x)H(y − a)

C
(a,b]
[x,y] [x, y] ∩ (a, b] 6= ∅ x ≤ b & y > a H(b− x)(1−H(a− y))

C
[a,b)
[x,y] [x, y] ∩ [a, b) 6= ∅ x < b & y ≥ a (1−H(x− b))H(y − a)

C
(a,b)
[x,y] [x, y] ∩ (a, b) 6= ∅ x < b & y > a (1−H(x− b))(1−H(a− y))

Table 1: The representations of some inclusion and compatibility functions when
all the intervals are non empty. IB

A means A ⊆ B and CB
A means A ∩B 6= ∅.

Definition 2.6 The inclusion function. For A,B ∈ I, the inclusion func-
tion IB

A is defined so that: IB
A = 1 if A ⊆ B and IB

A = 0 otherwise.

Definition 2.7 The compatibility function. For A,B ∈ I, the compatibil-
ity function CB

A is defined so that: CB
A = 1 if A∩B 6= ∅ and CB

A = 0 otherwise.

In particular, IB
∅ = 1 for all B ∈ I, I∅A = 1 iff A = ∅, CB

A = CA
B , and C∅A = 0

for all A ∈ I.
Both functions can be represented with step functions. A list of some of

them is presented in table 1. For instance, I(a,b]
[x,y] = 1 iff [x, y] ⊆ (a, b], thus iff

x > a & y ≤ b. One has 1−H(a− x) = 1 iff x > a and H(b− y) = 1 iff y ≤ b,
hence I(a,b]

[x,y] = (1−H(a− x))H(b− y).

3 Belief functions on R
We fix the notation used for representing belief functions (section 3.1). Then for
simplicity sake, we first define bbds on R in the case where there are only a finite
number of focal elements (section 3.2). We then define belief function theory
on the intervals on the extended reals (section 3.3). We formalize the nature of
the frame of discernment (section 3.4) and list several special belief functions
(section 3.5). We present the concept of belief discounting (section 3.6) and
belief ordering (section 3.7). We finish this section by discussing generalization
of the theory to n-dimensional frames (section 3.8).

3.1 Notation

In the classical TBM where the domain is finite, we use the next notation for
the basic belief assignment (bba) m and its related functions b, bel, pl and q:

mdomain[condition](subset).

The three parameters denote respectively:
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• domain : the set of elements on which the bba m is defined,

• condition : the condition which is accepted as true by the belief holder
when he/she assesses the bba m,

• subset : any subset of the domain.

For instance, belΩ[Ev](A) = .6 means that the belief holder allocates a belief
.6 to the fact that the actual world belongs to the subset A ⊆ Ω given the belief
holder accepts Ev as true.

So mΩ[Ev] is the basic belief assignment (bba), a mapping from Ω to [0, 1],
whereas mΩ[Ev](A) is the value taken by the bba at A ⊆ Ω and is called the
basic belief mass (bbm) allocated to A. A subset of the domain where the bbm
is positive is called a focal element.

In the continuous case, the equivalent of the bbas will become densities,
called the basic belief densities (bbd), and their range will be [0,∞) (see section
3.3).

3.2 Finite number of focal elements

Let A be a finite collection of intervals in [α, β]: A = {Ai : Ai ∈ I[α,β], i =
1, ..., n}. Consider a bba mA : A → [0, 1] which satisfies

∑
i=1,...,nm

A(Ai) = 1.
The Ai’s with mA(Ai) > 0 are the focal elements of the bba mA.

On each point (a, b) in T[α,β] that corresponds to a focal element [a, b] ∈ I[α,β]

of mA, we put a mass equal to mA([a, b]).
The end result of this mass allocation is a probability density function (pdf)

fT[α,β] on T[α,β] made of weighted Dirac’s functions. We have for every (x, y) ∈
T[α,β]:

fT[α,β](x, y) =
∑

i=1,...,n

mA([ai, bi])δ(x− xi)δ(y − yi),

where Ai = [ai, bi].

Example 1. In table 3.2, we present an example with six focal elements in
[α, β] = [0, 1]. Figure 2 displays these focal elements. 2

a=0.2

b=0.7

1

2

3

4

5

6

Figure 2: Graphical representation of the focal elements corresponding to table
3.2 data.

Given mA, we can define its related functions belA, plA, qA. Let X = [a, b]
be an interval in [α, β].

6



Ai = [ai, bi] A = [.2, .7]

i mA ai bi belA qA plA

1 .07 .3 .4 × ×
2 .18 .1 .9 × ×
3 .25 .1 .8 × ×
4 .15 .4 .9 ×
5 .05 .4 .5 × ×
6 .30 .8 .9

total 1.00 .12 .43 .70

Table 2: Bba defined on [0, 1] with a finite number of focal sets. The × in the
last three columns indicate the masses included in belA, qA and plA.

Belief function. belA(X) is the sum of the masses given to the subsets of
X = [a, b], thus to the non empty intervals Ai = [ai, bi] where [ai, bi] ⊆ [a, b],
thus ai ≥ a, bi ≤ b. In figure 2, one draws an horizontal and a vertical line from
point (a, b) toward the diagonal line. This creates the triangle shown in figure
3.a. Every mass included in belA(X) must be in this triangle as it contains
all the intervals [x, y] where x ≥ a, y ≤ b and only them. To get belA(X) one
adds the masses of the focal elements located on the triangle. In our example
belA([.2, .7]) = .12.

Commonality function. qA(X) for X = [a, b], is defined as the sum of the
masses given to the intervals Ai = [ai, bi] where [a, b] ⊆ [ai, bi], thus a ≥ ai, b ≤
bi. In figure 2, one draws an horizontal line from point (a, b) toward the left
border of T[0,1], and a vertical line from (a, b) up to the upper border of T[0,1],
defining thus a rectangle shown in figure 3.b. Every mass included in qA(X)
must be in this rectangle as it contains all the intervals [x, y] where x ≤ a, y ≥ b
and only them. To get qA(X) one adds the masses of the focal elements located
on the rectangle just defined. In our example qA([.2, .7]) = .43.

Plausibility function. plA(X) for X = [a, b], is defined as the sum of the
masses given to the intervals Ai = [ai, bi] where [a, b]∩[ai, bi], thus a ≤ bi, b ≥ ai.
In figure 2, one uses the triangle built for belA(X), draws an horizontal line from
its lower corner up to the left border of T[0,1], and a vertical line from its upper
corner up to the upper border of T[0,1], delimiting so an area shown in figure 3.c.
Every mass included in plA(X) must be in the area just defined as it contains
all the intervals [x, y] where x ≤ b, y ≥ a and only them. To get plA(X) one
adds the masses of the focal elements located on the area just defined. In our
example plA([.2, .7]) = .70. 2

3.3 Basic belief densities

We can relax the fact that that the intervals belong to a bounded interval and
the number of focal elements is finite, or even countable. The bounded interval
domain is replaced by R, I[α,β] becomes I and T[α,β] becomes T . Everything
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a

b

(a)
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b

(b)
a

b

(c)

Figure 3: Graphical representation of (a) belief; (b) commonality; (c) plausibil-
ity.

described up to here will be essentially similar, masses become densities and
sums become integrals4.

For notational simplicity, we use the next symbols:∫∫
x,y

. . . dydx =
∫ x=∞

x=−∞

∫ y=∞

y=−∞
. . . dydx

where the indexes of the double integrals are the integration variables and their
domain is the whole extended real line.

We generalize the classical bba into a ‘basic belief density’ (bbd) on I. This
function mI plays the role of the bba except now it is a density, not a mass,
hence its name.

Definition 3.1 The basic belief density. A basic belief density mI is a non
negative function on I such that mI(A) = 0 if A is not a closed interval in I
or ∅ and

INT =
∫ x=∞

x=−∞

∫ y=∞

y=x

mI([x, y])dydx =
∫∫
x,y

mI([x, y])H(y − x)dydx ≤ 1.

We define:
mI(∅) = 1− INT.

Definition 3.2 The focal elements. The elements A of I such that mI(A) >
0 are called the focal elements of I.

In this definition of the bbd, all focal elements are closed intervals or ∅. This
choice is of course a matter of convenience. We could have used half open or
open intervals. In the absence of Dirac’s functions, the choice is irrelevant.

Given a normalized bbdmT (i.e., mI(∅) = 0), we can define another function
fT on R2 where fT (a, b) = mT ([a, b]) for a ≤ b and fT (a, b) = 0 whenever a >
b. fT is a probability density function (pdf) on R2. When mT is not normalized
bbd (i.e., mI(∅) > 0), the integral of fT on its domain is INT = 1 −mI(∅).
By abuse of language, we will still call it a pdf.

4For simplicity sake, we use Riemann integrals, but Lebesgue integrals could as well be
used. Besides all integrals are applied on continuous pdfs with the understanding that Dirac’s
and step functions are ‘continuous’.
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Definition 3.3 Probability density function. The function fT defined on
R2 such that for all a, b ∈ R:

fT (a, b) = mI([a, b]), if a ≤ b

= 0 if a > b,

or equivalently fT (a, b) = mI([a, b])H(b − a), is called a probability density
function (pdf).

The case where the domain is a finite interval [α, β] is covered by this general
case by taking fT (x, y) = 0 whenever (x, y) /∈ T[α,β].

The presence of Dirac’s functions in the probability density function fT is
often a nuisance and in many cases they are absent in which case fT is said to
be absolutely continuous.

Definition 3.4 Absolutely continuous bbd. An absolutely continuous bbd
mI is a bbd which related fT probability density function is absolutely continu-
ous, i.e., has no Dirac’s functions.

Just as in the previous section, we define the related belI , plI , qI and bI

functions5. They become integrals of fT on the various surfaces already de-
scribed in section 3.2. We have the next definitions for the intervals (the other
cases are covered by theorem 3.4):

Definition 3.5 Related functions. For all a ≤ b, a, b ∈ R,

belief function

belI([a, b]) =
∫ x=b

x=a

∫ y=b

y=x

mI(x, y)dydx, belI(∅) = 0 (1)

plausibility function

plI([a, b]) =
∫ x=b

x=−∞

∫ y=∞

y=max(a,x)

mI(x, y)dydx, plI(∅) = 0 (2)

commonality function

qI([a, b]) =
∫ x=a

x=−∞

∫ y=∞

y=b

mI(x, y)dydx, qI(∅) = 1 (3)

implicability function

bI([a, b]) = belI([a, b]) +mI(∅) bI(∅) = mI(∅). (4)

Note that when a = b, Dirac’s functions centered on a are included in each
function as can be observed by taking the interval [a, a] as the limit of the
intervals [a− ε, a+ ε] where ε→ 0.

In particular, belI([−∞,∞]) = plI([−∞,∞]) = 1 −mI(∅), qI([−∞,∞]) =
mI([−∞,∞]) and bI([−∞,∞]) = 1.

These definitions can also be expressed using the inclusion and compatibility
functions (see section 2.2). Remember that fT (x, y) = 0 whenever x > y.

5In general, the implicability function b is defined as bel + m(∅).
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Theorem 3.1 For all a, b ∈ R, and

belI([a, b]) =
∫∫
x,y

mI([x, y])H(y − x)I [a,b]
[x,y]dydx =

∫∫
x,y

I
[a,b]
[x,y]f

T (x, y)dydx, (5)

plI([a, b]) =
∫∫
x,y

mI([x, y])H(y − x)C [a,b]
[x,y]dydx =

∫∫
x,y

C
[a,b]
[x,y]f

T (x, y)dydx, (6)

qI([a, b]) =
∫∫
x,y

mI([x, y])H(y − x)I [x,y]
[a,b] dydx =

∫∫
x,y

I
[x,y]
[a,b] f

T (x, y)dydx, (7)

When defining these functions on (half) open intervals, the last representa-
tion is simpler. E.g., compare relation (5) with what we would need for the first
representation:

belI((a, b)) =
∫ x=b−

x=a+

∫ y=b−

y=x

fT (x, y)dydx.

Both are correct, but the use of the inclusion and compatibility functions sim-
plifies the proofs of many theorems.

These definitions can also be expressed using the U representation of the
intervals. Let gU denote the function that expresses the densities on the U
space, with gU (u, v) = 2fT (v − u, v + u).

Theorem 3.2 For all a ≤ b, a, b ∈ R,

belI([a, b]) =
∫ u=(b−a)/2

u=0

∫ v=b−u

v=a+u

gU (u, v)dvdu, belI(∅) = 0 (8)

plI([a, b]) =
∫ u=∞

u=0

∫ v=b+u

v=a−u

gU (u, v)dvdu, plI(∅) = 0 (9)

qI([a, b]) =
∫ u=∞

u=(b−a)/2

∫ v=a+u

v=b−u

gU (u, v)dvdu, qI(∅) = 1. (10)

We can derive fT from relations (1) or (5) and (3) or (7) . We provide the
proof for the first case in order to illustrate how the derivatives work.

Theorem 3.3 If the derivatives exist,

fT (a, b) = −∂
2belI([a, b])
∂a∂b

, (11)

fT (a, b) = −∂
2qI([a, b])
∂a∂b

. (12)

Proof. Using relation (1) and table 1 data,

∂2belI([a, b])
∂a∂b

=
∂

∂a

( ∫ y=b

y=b

fT (b, y)dy +
∫ x=b

x=a

fT (x, b)dx
)

= 0− fT (a, b).
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Using relation(5), we get:

belI([a, b]) =
∫∫
x,y

I
[a,b]
[x,y]f

T (x, y)dydx

=
∫∫
x,y

H(x− a)H(b− y)fT (x, y)dydx

Taking derivatives on a and b, we get:

∂2belI([a, b])
∂a∂b

=
∫∫
x,y

∂2H(x− a)H(b− y)
∂a∂b

fT (x, y)dydx

=
∫∫
x,y

−δ(x− a)δ(b− y)fT (x, y)dydx

= −fT (a, b)

2

Because positive bbds are given only to closed intervals and ∅, these belief
functions satisfy a limited form of additivity described in the next theorem. This
theorem permits to extend the definition of belI and qI on sets of intervals.

Theorem 3.4 Suppose a bbd mI and its related belI . Let {Ai = [ai, bi] ∈ I, i =
1, 2, ...} be a collection of pairwise disjoint intervals in I:

Ai1 ∩Ai2 = ∅, i1, i2 ∈ {1, 2, ...}, i1 6= i2.

Then:

belI(∪i=1,2,...Ai) =
∑

i=1,2,...

belI(Ai), (13)

qI(∪i=1,2,...Ai) = qI([∧iai,∨ibi])). (14)

where ∨ and ∧ denote the max and min functions, respectively.

Proof. By construction, mI(A) = 0 whenever A is not an interval. Let A1

and A2 be two disjoint intervals. belI(A1 ∪ A2) contains all densities given to
subsets of A1 (thus included in belI(A1)), all densities given to subsets of A2

(thus included in belI(A2)), and all densities that are given to subsets of A1∪A2

and which are neither subsets of A1 nor of A2. These last densities are thus
given to subsets B with B ∩ A1 6= ∅, B ∩ A2 6= ∅, and B ∩ (A1 ∪ A2)c = ∅.
Such subsets that have elements in both A1 and A2 but not in between are
not intervals, hence their densities are null. The only densities that remain in
belI(A1 ∪A2) are all those included in belI(A1) and belI(A2). The proof is the
same for any number of pairwise disjoint intervals, hence relation(13).

For the q relation (14), the densities that enter in the left term are those
given to intervals that cover the union ∪i=1,2,...Ai, hence given to the supersets
of [∧iai,∨ibi], thus relation (14). 2

By comparing the various definitions, we get the next theorems.
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Theorem 3.5 For any fT ,

qI([a, a]) = plI([a, a])

plI([a, b]) = belI([−∞,∞])− belI([a, b])

belI([a, b]) = plI([−∞,∞])− plI([a, b])

plI([a, b]) = plI([a, a]) + plI([b, b]) + belI((a, b))− qI([a, b]), ∀[a, b] ∈ I.

Remember that (a, a) = ∅ and from relation (5), belI(∅) = 0.

Example 2. Laplace-Gamma bbd Suppose a bbd with gU (u, v) = f(v :
α, β) h(u : ν) where f(v : α, β) is a Laplace pdf with parameters α, β, α ∈
(−∞,∞) and β > 0, and h(u : ν) is a gamma pdf with parameter ν > 0.

f(v : α, β) =
1
2β
e−|v−α|/β ,

h(u : ν) =
1

Γ(ν)
uν−1e−u.

Notations are based on (Abramowitz & Stegun, 1965, chapter 26).

bel([x, y]) =
∫ u=(y−x)/2

u=0

P ([x+ u, y − u)] : α, β) h(u : ν) du

where

P ([x, y)] : α, β) =
∫ y

x

f(v : α, β) dv =
∫ y

x

1
2β
e−|v−α|/β dv

Thus

P ([x, y)] : α, β) =


1
2 (e(α−x)/β − e(α−y)/β) if x ≥ α
1− 1

2 (e(α−y)/β + e(−α+x)/β) if x < α < y
1
2 (e(−α+y)/β − e(−α+x)/β) if y ≤ α

The integration over the gamma pdf must be done term by term. For in-
stance, suppose α = 0, β = 1, x = 1, y = 3, ν = 2. We compute:

bel([1, 3]) =
∫ u=1

u=0

1
2
(e−1−u − eu−3))ue−udu

=
1
2

∫ u=1

u=0

(ue−1−2u − ue−3)du

=
1
2
(
e−1

4

∫ w=2

w=0

we−wdw − e−3

2
)

= .0149

2
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3.4 The frame of discernment

In a setting with finite cardinality, the domain of the bbas and their related
functions is the power set generated by a finite set Ω. When moving to the real
domain like R, the domain is limited to a special subset of the power set: the
Borel sigma-algebra 6.

Formally, the domain of the bbds and their related belief functions, plau-
sibility functions, implicability functions and commonality functions defined in
this paper is the sigma-algebra generated by the elements of I. Thus they map
the elements of this Borel sigma-algebra to [0,∞).

The notations mΩ for a finite case and mI for the real space are coherent.
The index of m is the set from which we build the Borel sigma-algebra. In
the finite case, the Borel sigma-algebra generated by Ω is equal to the power
set generated by Ω, hence the distinction is never mentioned. In the R case,
the bbds and their related functions are limited to Borel sigma-algebra, not the
whole power set. This is just what is done in probability theory.

3.5 Special bbds

3.5.1 Vacuous bbd

In order to use a unique symbol for the domain of a bbd, we use Ω to denote
it. In the bounded domain case I[α,β], Ω = [α, β]. In the unbounded case I, we
use Ω = [−∞,∞].

Definition 3.6 A vacuous bbd mI is a bbd such that mI(Ω) = 1.

This bbd represents the state of total ignorance. No strict subset of Ω is
supported.

3.5.2 Categorical bbd

Suppose all the belief holder knows is that the truth is in the interval [a, b] ∈ I
with [a, b] 6= Ω where Ω is the domain of the bbd (see section 3.5.1). The bbd
that represents such a belief state is represented by a categorical bbd, i.e., a
Dirac’s function centered at (a, b). The smallest the interval, the more precise
the belief.

Definition 3.7 A categorical bbd mI is a bbd such that mI([a, b]) = δ(x−a, y−
b) for [a, b] ∈ I and [a, b] 6= Ω.

3.5.3 Consonant bbd

Consider a bbd which focal elements are nested. With the gU notation, it means
there exists an index (usually continuous) such that the focal elements can be
labeled by it as in A(u). Then A(u) ⊆ A(u′) when u′ > u.

Definition 3.8 A consonant bbd is a bbd which focal elements are nested.
6The Borel sigma-algebra on the set of real numbers is the sigma-algebra generated by the

collection of closed intervals on the real numbers. As every sigma-algebra, it is closed under
complementation, countable union and countable intersection. One can prove that it contains
all open intervals, closed intervals, countably infinite unions or intersections of either.
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With the gU notation, we can express the next theorem in a simple way.

Theorem 3.6 If bbd m is consonant, then given u ∈ [0,∞), there exists at
most one v ∈ [−∞,∞] with gU (u, v) > 0.

Proof. Fix u and suppose two values v and v′. For the intervals to be nested,
one must have v − u ≤ v′ − u and v + u ≥ v′ + u (or v − u ≥ v′ − u and
v + u ≤ v′ + u). In each case, it means v = v′. 2

This theorem explains the interest of the (u, v) representation and why u
can be taken as a convenient label for the nested elements.

In the triangle of figure 1, the nested nature implies that the density function
is concentrated on a curve that leaves from the diagonal representing I and
moves always in the upper left direction.

Theorem 3.7 If bbd mI is consonant, then gU (u, v) = h(u)δ(v − ψ(u)) where
ψ(u) is the unique value for v given u when h(u) > 0 and such that gU (u, v) > 0.

Proof. By theorem 3.6, u uniquely defines v, hence positive gU is only a
function of u. 2

Theorem 3.8 If bbd mI is consonant and u′ > u, then ψ(u′) is in the upper
left quadrant centered on (u, ψ(u)).

Proof. Fix u and v = ψ(u). Let u′ > u. The related intervals are [v− u, v+ u]
and [v′ − u′, v′ + u′]. To be nested, the first must be a subset of the second,
hence v − u ≥ v′ − u′ and v + u ≤ v′ + u′. Any point of T which is not in the
upper left quadrant violates one of these two inequalities. 2

3.5.4 The Bayesian belief functions

Probability density functions are special cases of belief functions where densities
are given only to singletons. In our present context, it means that the density is
concentrated on the diagonal itself (where intervals are degenerated into points).
Such belief functions are called Bayesian belief functions.

Definition 3.9 Let f(v) be a pdf on R. The Bayesian belief function on I
based on f is a belief function with gU (u, v) = δ(u)f(v)

3.5.5 U-non-interaction

For practical applications, the bbd may often be represented by decomposable
functions, like in the next case.

Definition 3.10 A bbd is called a U -non-interactive bbd iff its related gU func-
tion satisfies gU (u, v) = h(u)f(v) .

The Bayesian belief function is an example of U–non-interaction.
Another practical example is obtained with f(v) = N(v : µ, σ) is Gaussian.

If furthermore h(u) ∝ N(u : ν, η) when u ≥ 0, the resulting density corresponds
to a censored bivariate gaussian distribution of two independent variables, where
the part for u < 0 is made null. Another useful example is obtained when h(u)
is a gamma distribution (which includes the exponential pdf case).

14



3.6 Discounting

Suppose the belief holder has a vacuous a priori belief about a given variable
and collects a bbd mI relative to this variable from a source S.

Let Ω denote the variable domain.
If the belief holder accepts that S is fully reliable, he/she would consider mI

as representing his/her belief. If the belief holder accepts that S is absolutely
not reliable, he/she would neglect mI , or equivalently consider that the bbd
collected from S must be transformed into a vacuous bbd.

For non extreme cases, let α ∈ [0, 1] be the belief allocated by the belief
holder to the fact that S is reliable. This case covers the two previous ones:
α = 1 means the source is accepted as fully reliable, and α = 0 means the source
is accepted as not reliable at all.

The impact of the partial reliability results in a discounting of the bbd mI

into a new bbd mI,α with:

mI,α([a, b]) = αmI([a, b]) ∀[a, b] 6= Ω,

mI,α(Ω) = αmI(Ω) + 1− α.

3.7 Ordering belief functions

Specialization. We define the notions of specialization (Dubois & Prade,
1986; Yager, 1986) within the classical finite frame used in belief function theory.

Suppose a bba mΩ
1 and another bba mΩ

2 obtained from the reallocation of
every mass of mΩ

1 among the subset of its focal elements. So for every A ∈ Ω,
mΩ

1 (A) is reallocated among the subsets of A. In that case, we say that mΩ
2 is

a specialization of mΩ
1 . Formal definition is presented in section 4.1.

Orderings. Dubois and Prade (1987) have proposed three solutions to order
belief functions according to the ‘strength’ of the beliefs they represent. The
intuitive idea is that the smaller the focal elements, the stronger the beliefs.

Let m1 and m2 be two bbas on Ω. Their proposals are:

• pl-ordering. If pl1(A) ≤ pl2(A) for all A ⊆ Ω, we write m1 vpl m2

• q-ordering. If q1(A) ≤ q2(A) for all A ⊆ Ω, we write m1 vq m2

• s-ordering. If m1 is a specialization of m2, we write m1 vs m2

When bbas are normalized, m1 vpl m2 implies bel1(A) ≥ bel2(A) for all
A ⊆ Ω.

They prove that :

• m1 vs m2 implies m1 vpl m2 and m1 vq m2, but the reverse is not true.

• m1 vpl m2 and m1 vq m2 do not imply each other.

In (Smets, 1983; Smets & Magrez, 1985), we define the ‘information content’
of a bba and use it for ordering belief functions. The q-ordering implies this
ordering.
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The s-ordering is thus stronger then the others as it implies them. Whenever
m1 vX m2 for X ∈ {s, pl, q}, we say that m2 is X-less committed (X-LC) than
m1. The same qualification is extended to the functions related to the bbas.

The concept of ‘least commitment’ permits the construction of a partial
order v on the set of belief functions (Yager, 1986; Dubois & Prade, 1987).

The Principle of Minimal Commitment consists in selecting the least
committed belief function in a set of equally justified belief functions. The prin-
ciple formalizes the idea that one should never give more support than justified
to any subset of Ω. It satisfies a form of skepticism, of noncommitment, of
conservatism in the allocation of the beliefs. In its spirit, it is not far from what
the probabilists try to achieve with the maximum entropy principle (Dubois &
Prade, 1987; Hsia, 1991).

Which order should be used? The best candidate seems to be the s-ordering,
as it implies the others. But when there is no s-least committed solution, the
q-ordering seems to be appropriate, in particular because of the meaning of q.

The meaning of q(A). When Ω = {x, y} the difference pl(x)−bel(x) has often
been proposed as a measure of the uncertainty in bel. In fact pl(x) − bel(x) =
m({x, y}) and m({x, y}), as well as m(Ω) in general, is the part of belief free
to flow anywhere, totally uncommitted. So to consider m(Ω) as the measure
of uncertainty seems reasonable. Suppose now we accept that A is true where
A ⊆ Ω. Then m[A](A) obtained by conditioning m with Dempster’s rule of
conditioning becomes the ‘conditional measure of uncertainty’ in context A. It
just happens that m[A](A) = q(A), so the commonality function is the set of
conditional measures of uncertainty, and ordering beliefs according to q becomes
very natural.

3.8 Generalization to Rn

The real issue underlying the possibility to extend belief functions on Rn is the
existence of a finite dimensional real space, the elements of which are in one-to-
one relation with the focal elements. This can be done when all focal elements
are ellipses, or rectangles, or hexagons...

If all focal elements can be so represented as a point in Rp for some p > 0,
the theory extends directly. Of course integrals become high dimensional and
difficult to manage.

4 Conjunctive belief revision

Beliefs held by the belief holder concerns the actual value of a given variable.
Suppose two beliefs induced by two pieces of evidence that bear directly on the
actual value of the variable, and produced by two sources. Suppose the belief
holder accepts both sources as fully reliable. Then the two beliefs are to be
conjunctively combined into a new belief that quantifies the impact of the two
pieces of evidence on the actual value of the variable.

Identically, when the belief holder has some prior beliefs on the actual value
of the variable and collects a piece of evidence from a new source accepted as
fully reliable, the prior beliefs are revised in a conjunctive way.
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In the TBM, both cases are usually treated in the same way (nevertheless see
(Smets, 2004) for dynamic belief revision), and the belief functions are revised
by some conjunctive revision. A very general form of conjunctive belief revision
is represented by a specialization. Special forms of specializations are described
by:

1. the conditioning process when one of the belief functions is categorical,

2. the conjunctive combination when the two pieces of evidence that induce
the bbas are distinct.

We study successively these three forms of belief revisions.

4.1 Specialization

A specialization is a transformation that maps bbds into bbds and satisfies
the next requirement. For every focal element [x, y] of the first bbd mI

1 , the
density mI

1 ([x, y]) is distributed among the densities mI
2 ([a, b]) given by the

second bbd to focal elements [a, b] that are subsets of [x, y]. This process could
be summarized by the expression ‘masses flow down’, what reflects that the new
bbd is more informative than the initial one.

In T , specializations are represented as follows.

Definition 4.1 Specialization operators. A specialization operator sT is a
mapping T × T → [0,∞) that satisfies for all [x, y] ∈ I:

sT (a, b|x, y) = 0, whenever [a, b] * [x, y] or [a, b] = ∅, (15)∫ a=y

a=x

∫ b=y

b=a

sT (a, b|x, y)dbda =
∫∫
a,b

sT (a, b|x, y)I [x,y]
[a,b] dbda ≤ 1. (16)

In fact, sT (a, b|x, y) is an unnormalized probability density function on T[x,y]

(unnormalized as some mass can be given to the empty set).

Definition 4.2 Bbd specialization. The specialization of the a bbd mI
1 is a

bbd mI
2 which satisfies:

fT2 (a, b) =
∫∫
x,y

sT (a, b|x, y)fT1 (x, y)dydx

where sT is a specialization operator.

The term sT (a, b|x, y) represents the ‘part’ of the bbd mI
1 given to [x, y] that

is transferred to the interval [a, b] of the new bbd mI
2 .

4.2 Belief conditioning

4.2.1 Mass transfer

Suppose a bbd mI that represents the beliefs held by the belief holder about the
actual value of a given variable. Suppose the belief holder learns then that the
actual value is in [c, d]. The bbd given to [a, b] is transferred to [a, b] ∩ [c, d] =
[a ∨ c, b ∧ d] (which may be empty).
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Definition 4.3 Dempster’s rule of conditioning. Given mI and [c, d] ∈
I, for every focal set [a, b], the density mI([a, b]) is transferred into [a, b] ∩
[c, d]. This process is called the Dempsterian conditioning and the resulting bbd,
denoted mI [[c, d]]([a, b]) is called the conditional bbd given [c, d].

In order to derive the induced relations, we consider first the result of the
belief transfer on the commonality function.

Theorem 4.1 Given the bbd mI , the result of the conditioning of its related
commonality function qI on [c, d] is given by the next commonality function:

qI [[c, d]]([a, b]) =
{
qI([a, b]) if [a, b] ⊆ [c, d]
0 if [a, b] * [c, d].

or equivalently:
qI [[c, d]]([a, b]) = qI([a, b])I [c,d]

[a,b] . (17)

Proof. We study the value qI [[c, d]]([a, b]) given by the commonality function
to [a, b] after the conditioning of mI on [c, d].

1. Suppose c ≤ d and [a, b] ⊆ [c, d]. Take a focal element [x, y] of mI .

(a) Suppose [a, b] ⊆ [x, y]. The bbd given to [x, y] belonged to qI([a, b])
and is transferred to [x, y] ∩ [c, d] which is still a superset of [a, b], so
it also belongs to qI [[c, d]]([a, b]).

(b) Suppose [a, b] * [x, y], then so is [x, y]∩ [c, d]. The bbd given to [x, y]
did not belong to qI([a, b]) and after its transfer, it still does not
belong to qI [[c, d]]([a, b]).

2. Suppose c ≤ d and [a, b] * [c, d]. Take any focal element [x, y] of mI .
After its intersection with [c, d], it cannot be a superset of [a, b], so its bbd
will not be included in qI [[c, d]]([a, b]). Hence qI [[c, d]]([a, b]) = 0.

3. Suppose [c, d] = ∅, conditioning is still possible but leads to a bbd with
the whole mass 1 allocated to ∅, hence for all [a, b] 6= ∅, qI [∅]([a, b]) = 0
and qI [∅](∅) = 1.

2

To derive the analogous relation for the bbd itself, we use relation (12) and
the inclusion function (definition 2.6).

Theorem 4.2 Given the bbd mI , the result of its conditioning on [c, d] is given
by the next bbd:

mI [[c, d]]([a, b]) =



mI([a, b]) if c < a ≤ b < d∫ x=c

x=−∞mI([x, b])dx, if c = a ≤ b < d∫ y=∞
y=d

mI([a, y])dy, if c < a ≤ b = d

qI([c, d]) if c = a ≤ b = d
1− plI([c, d]) if [a, b] = ∅
0 otherwise
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or equivalently:

fI [[c, d]]([a, b]) =
∫∫
x,y

fT (x, y)δ(a− x ∨ c)δ(b− d ∧ y)dydx (18)

Proof. From relation (12), we have for [a, b] 6= ∅:

mI [[c, d]]([a, b]) = −∂
2qI [[c, d]]([a, b])

∂a∂b
.

Using (17), the right hand term becomes for [a, b] 6= ∅:

−
∂2qI([a, b])I [c,d]

[a,b]

∂a∂b
=

− ∂

∂b

(∂qI([a, b])
∂a

H(a− c)H(d− b) + qI([a, b])δ(a− c)H(d− b)
)

=

− ∂2qI([a, b])
∂a∂b

H(a− c)H(d− b) +
∂qI([a, b])

∂a
H(a− c)δ(d− b) . . .

− ∂qI([a, b])
∂b

δ(a− c)H(d− b) + qI([a, b])δ(a− c)δ(d− b)

From relation (3), we get:

∂qI([a, b])
∂a

=
∫ y=∞

y=b

mI([a, y])dy

∂qI([a, b])
∂b

= −
∫ x=a

x=−∞
mI([x, b])dx

Replacing the terms and using relation (12), we get the four first terms of
the theorem. These four terms concerns all the densities given to focal elements
that are compatible with [c, d], thus those in plI([c, d]). The other densities are
transferred to mI [[c, d]](∅), hence the fifth term. The other terms of mI [[c, d]]
are null. 2

We give the analogous equations for bel and pl. The proofs are similar to
those for m.

Theorem 4.3 Given the bbd mI , the result of conditioning its related belI on
[c, d] is given by the next conditional belief function.

1. For [a, b] ⊆ [c, d], [a, b] 6= ∅, belI [[c, d]]([a, b]) = . . .
belI([a, b]) if a > c, b < d, a ≤ b
belI([a,∞])− belI([d,∞]) if a > c, b = d, a ≤ b
belI([−∞, b])− belI([−∞, c]) if a = c, b < d, a ≤ b
belI([−∞,∞])− belI([d,∞])− belI([−∞, c]) if a = c, b = d
0 if [a, b] = ∅

2. For [a, b] = ∅, belI [[c, d]](∅) = 0.
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3. For the other [a, b], we have belI [[c, d]]([a, b]) = belI [[c, d]]([a, b] ∩ [c, d]).

Theorem 4.4 One has:

belI [[c, d]]([a, b]) = belI([a, b] ∪ [c, d])− belI([c, d])

Theorem 4.5 Given the bbd mI , the result of conditioning its related plI on
[c, d] is given by the next conditional plausibility function:

plI [[c, d]]([a, b]) = plI([a, b] ∩ [c, d])

These results can also be obtained when conjunctively combining mI with
a categorical bbd centered on [c, d] (see definition 3.7 and section 4.3).

4.2.2 Conditioning and specialization

The Dempster’s rule of conditioning can also be described as a specialization.

Theorem 4.6 Given [c, d] ∈ I, the function δ(a − c ∨ x)δ(b − d ∧ y) in rela-
tion (18) is a specialization operator sT (a, b|x, y) (null everywhere except when
[a, b] = [c, d] ∩ [x, y]). Thus mI [[c, d]] is a specialization of mI .

Proof. δ(a − c ∨ x)δ(b − d ∧ y) is non negative, 0 when [a, b] * [x, y], and its
integral on a, b is 1 for all [x, y], hence it is a specialization operator. From
relation (18), mI [[c, d]] is thus a specialization of mI . 2

This particular specialization operator is called a conditioning specialization.
The next result is very important within the TBM, as it provides a real

justification for using Dempster’s rule of conditioning (Klawonn & Smets, 1992).
Conditioning turns out be a specialization that satisfies what we feel are natural
requirements.

Theorem 4.7 Let Sp[c,d](mI) be the set of specialization mI∗ of mI such that
plI∗([c, d]) = 0. Its s-least committed element is the bbd mI [[c, d]] computed
from Dempster’s rule of conditioning.

Proof. Suppose the bbd mI . Let sT be a specialization operator and m∗ be the
result of its application to mI . Then f∗(a, b) =

∫∫
x,y

sT (a, b|x, y)fI(x, y)dydx.

To get pl∗([c, d]) = 0, one must have sT (a, b|x, y) = 0 for all [a, b] such that

C
[c,d]
[a,b] = 1. As sT is a specialization operator, one has also for all [x, y] ∈ I,

sT (a, b|x, y) > 0 only if [a, b] ⊆ [x, y]. Therefore sT (a, b|x, y) > 0 only if [a, b] ⊆
[x, y] ∩ [c, d]. The s-least committed specialization operator that satisfies this
constraint is the one that puts for each [x, y] a mass 1 on its largest possible
interval, which is [x, y]∩ [c, d]. This specialization operator is the one of theorem
4.6. 2

That mI [[c, d]] is a specialization of mI fits with the idea that specializa-
tions represent the impact of the conjunctive combination of beliefs. That
plI [[c, d]]([c, d]) = 0 translates that the actual value of the variable considered
by mI is accepted to be in [c, d]. Selecting the s-least committed bbd trans-
lates the idea that we should never give more beliefs than justified (the TBM
concerns beliefs, not faith).
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4.3 Conjunctive combination rule

4.3.1 Mass transfer

Suppose two belief functions mI
1 and mI

2 induced by two distinct pieces of
evidence.

For the conjunctive rule of combination, the product

mI
1 ([a1, b1])mI

2 ([a2, b2])

is allocated to the interval [a1, b1] ∩ [a2, b2] = [a1 ∨ a2, b1 ∧ b2] which may be
empty.

Definition 4.4 Suppose two bbds mI
1 and mI

2 . Let

mI
1 ∩©2([a, b]) =

∫ a

x=−∞

∫ ∞

y=b

mI
1 ([x, b])mI

2 ([a, y])dydx

+
∫ a

x=−∞

∫ ∞

y=b

mI
1 ([a, y])mI

2 ([x, b])dydx

+mI
1 ([a, b])

∫ a

x=−∞

∫ ∞

y=b

mI
2 ([x, y])dydx

+mI
2 ([a, b])

∫ a

x=−∞

∫ ∞

y=b

mI
1 ([x, y])dydx.

or equivalently:

fT1 ∩©2(a, b) =
∫∫
w,z

∫∫
x,y

fT1 (w, z)fT2 (x, y)δ(a− w ∨ x)δ(b− z ∧ y)dydxdzdw (19)

We say that the bbd mI
1 ∩©2 results from the application of the conjunctive com-

bination rule.

In practice, when Dirac’s functions are present, the easiest way to handle
such ‘messy’ cases would be to separate the absolutely continuous part from the
discrete part and to perform the computation on each part separately. Compu-
tation for the discrete part is identical to the one described for belief functions
defined on the finite frames.

The relations among the commonality functions apply as in the finite cardi-
nality case.

Theorem 4.8 Suppose two bbds mI
1 and mI

2 , and their conjunctive combina-
tion mI

1 ∩©2. Assuming the derivatives used in theorem 3.3 exist, their related
commonality functions satisfy:

qI1 ∩©2([a, b]) = qI1 ([a, b])qI2 ([a, b]), ∀[a, b] ∈ I. (20)
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Proof. For simplicity sake, we omit the I index. Using relation (12), we get:

m1 ∩©2([a, b]) = −
∂2q1 ∩©2([a, b])

∂a∂b

= −∂
2(q1([a, b])q2([a, b]))

∂a∂b

= −∂
2q1([a, b])
∂a∂b

q2([a, b])− q1([a, b])
∂2q2([a, b])
∂a∂b

− ∂q1([a, b])
∂a

∂q2([a, b])
∂b

− ∂q1([a, b])
∂b

∂q2([a, b])
∂a

= m1([a, b])q2([a, b]) + q1([a, b])m2([a, b])

− ∂q1([a, b])
∂a

∂q2([a, b])
∂b

− ∂q1([a, b])
∂b

∂q2([a, b])
∂a

The first two terms are the last two of definition 4.4. For the other two, we use:

∂q([a, b])
∂a

=
∂

∫ a

x=−∞
∫∞

b
m([x, y])dydx
∂a

=
∫ ∞

y=b

m([a, y])dy

∂q([a, b])
∂b

=
∂

∫ a

x=−∞
∫∞

b
m([x, y])dydx
∂b

= −
∫ a

x=−∞
m([x, b])dx

Hence:

−∂q1([a, b])
∂a

∂q2([a, b])
∂b

− ∂q1([a, b])
∂b

∂q2([a, b])
∂a

=∫ ∞

y=b

m1([a, y])dy
∫ a

x=−∞
m2([x, b])dx+

∫ a

x=−∞
m1([x, b])dx

∫ ∞

y=b

m2([a, y])dy

which are the first two terms of definition 4.4. 2

Theorem 4.9 The conjunctive combination rule is associative, commutative,
and if mI

1 is a vacuous belief function, then for may bbd mI
2 , one has mT

1 ∩©2 =
mI

2 .

Proof. Immediate from relation (20). 2

The result of the conjunctive combination rule can be neatly represented as:

Theorem 4.10 We have:

mI
1 ∩©2([a, b]) =

∫ x=∞

x=−∞

∫ y=∞

y=x

mI
2 [[x, y]]([a, b]) mI

1 ([x, y])dydx (21)

belI1 ∩©2([a, b]) =
∫ x=∞

x=−∞

∫ y=∞

y=x

belI2 [[x, y]]([a, b]) mI
1 ([x, y])dydx (22)

plI1 ∩©2([a, b]) =
∫ x=∞

x=−∞

∫ y=∞

y=x

plI2 [[x, y]]([a, b]) mI
1 ([x, y])dydx (23)

qI1 ∩©2([a, b]) =
∫ x=∞

x=−∞

∫ y=∞

y=x

qI2 [[x, y]]([a, b]) mI
1 ([x, y])dydx (24)
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Proof. We prove the q relation, and from it the m relation. Other proofs are
analogous. They all result from the fact that all transformations are linear ones.
By theorem 4.1, one has qI2 ([x, y])(a, b) = qI2 ([a, b])I [x,y]

[a,b] . From relations (7) and
(20) we have:

qI1 ∩©2([a, b]) = qI2 ([a, b])
∫∫
x,y

mI
1 ([x, y])H(y − x)I [x,y]

[a,b] dydx

=
∫∫
x,y

qI2 ([a, b])I [x,y]
[a,b]m

I
1 ([x, y])H(y − x)dydx

=
∫∫
x,y

qI2 [[x, y]]([a, b])mI
1 ([x, y])H(y − x)dydx

=
∫ x=∞

x=−∞

∫ y=∞

y=x

qI2 [[x, y]]([a, b])mI
1 ([x, y])dydx.

thus relation (24). Taking partial derivatives of both sides on a and b, one gets
relation (21) for the bbd. 2

4.3.2 Bayesian belief functions

We can deduce some practical properties dealing with Bayesian belief functions.

Theorem 4.11 Suppose two bbds mI
1 and mI

2 , and their conjunctive combina-
tion mI

1 ∩©2.

1. If any of them is a Bayesian belief function, then their normalized con-
junctive combination is a Bayesian belief function.

2. If both of them are Bayesian belief function, then their normalized con-
junctive combination is a Bayesian belief function.

Proof. By definition 3.9, Bayesian belief functions can be represented as
gU (u, v) = δ(u)f(v). As their only focal elements are the points on line with
u = 0, so are the results of the intersection with any of the focal elements of any
other bba. Therefore the focal elements of the result of the conjunctive combi-
nation are points with u = 0. This bbd is a Bayesian belief function provided
the resulting bbd is normalized. When both bbds are Bayesian, the same proof
still holds. 2

4.3.3 Combining bbds and bbas

Bbds can also be defined on mixture of continuous and discrete spaces.

Theorem 4.12 Suppose two bbds mI
1 and mΩ

2 , the first being on the I domain
whereas the second is defined on a finite frame of discernment Ω. Their con-
junctive combination mI×Ω

1 ∩©2 is given for every [a, b] ∈ I and A ⊆ Ω by:

mI×Ω
1 ∩©2(([a, b], A)) = mI

1 ([a, b])mΩ
2 (A).
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Proof. Derived from vacuously extending both bbds on I × Ω, and applying
the conjunctive combination rule. 2

4.3.4 Conjunctive combination rule and specialization

Furthermore, the conjunctive combination rule can be represented as a special-
ization and the result of the combination is a specialization of its two compo-
nents.

Theorem 4.13 In relation (21), the function mI
2 [[x, y]]([a, b]), the result of the

conditioning of mI
2 on [x, y] using Dempster conditioning rule (section 4.2), is

a specialization function.

Proof. To be a specialization, mI
2 [[x, y]]([a, b]) must satisfy:

1. zero values constraint: relation (15). In theorem 4.2, the only positive
terms for mI

2 [[x, y]]([a, b]) are those for which [a, b] ⊆ [c, d] and ∅. Hence
mI

2 [[x, y]]([a, b]) = 0 whenever [a, b] * [x, y].

2. integral constraint: relation (16). This constraint is satisfied if bI2 [[x, y]]([x, y]) =
1. From theorem 4.3 with [x, y] = [c, d] and b = bel + m(∅), one gets
bI2 [[x, y]]([x, y]) = 1 − belI2 [[x, y]]((y,∞]) − belI2 [[x, y]]([−∞, x)). The two
last terms are null as mI

2 [[x, y]]([a, b]) = 0 whenever [a, b] * [x, y].

Hence both constraints are satisfied. 2

Theorem 4.14 mI
1 ∩©2([a, b]) is a specialization of both mI

1 and mI
2 .

Proof. That mI
1 ∩©2 is a specialization of mI

2 is deduced from theorem 4.13 and
relation (21). As the conjunctive combination rule is symmetrical, the relation
can be rewritten by interchanging the indexes 1 and 2. Therefore mI

1 ∩©2 is a
specialization of mI

1 . 2

We can also prove that the conjunctive combination rule is the only associa-
tive and commutative combination rule such that its result is a specialization of
its two components and that commutes with the conditioning specialization (see
theorem 4.6). This provides the major justification for its use within the TBM
(Klawonn & Smets, 1992). But it concerns the justification of the conjunctive
combination rule, what lays outside the scope of this paper.

5 Characteristic functions

5.1 Credal variables

Practically speaking, just as a random variable is a variable on the reals on
which a pdf is defined, so a credal variable is a variable on the reals on which a
bbd is defined. We present a more formal definition.

Definition 5.1 Credal space. A credal space is a triple (Ω,A,mΩ) where Ω
is a set, A a sigma-algebra defined on Ω and mΩ is a bbd defined on A.
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Definition 5.2 Credal variable. A credal variable is a mapping from a credal
space (Ω,A,mΩ) into R.

More subtle and more general definitions could be provided, but for our
purpose, all we need is Ω = R, A being its Borel sigma-algebra (see section
3.4), mI being a bbd which focal sets are closed intervals of R and the mapping
being continuous.

5.2 The characteristic function related to mI

Just as characteristic functions are defined for probability density function
(Kendall & Stuart, 1977, chapter 4), they can be extended directly to mI thanks
to the relation between mI and fT :

Definition 5.3 Characteristic functions The characteristic function of mT

is given by:

φ(t1, t2) =
∫∫
x,y

mT ([x, y])eit1x+it2y dy dx.

Characteristic functions built from the commonality function and from the
bbd are strongly related. The transform of the commonality function is the
transform of the bbd divided by t1t2.

Theorem 5.1 Let φ(t1, t2) be the characteristic function of mI , and ψ(t1, t2)
be the characteristic function of qI given by:

ψ(t1, t2) =
∫∫
x,y

qT ([x, y])eit1x+it2y dy dx.

Then ψ(t1, t2) = φ(t1, t2)/(t1t2)

Proof. Let G be a function on R2. Let Φ(t1, t2) be its characteristic function,
which is a form of Fourier transform:

Φ(t1, t2) =
∫∫
x,y

G(x, y)eit1x+it2ydydx

Then

φ(t1, t2) =
∫∫
x,y

δ2G(x, y)
δxδy

eit1x+it2ydydx

satisfies:
φ(t1, t2) = −t1t2Φ(t1, t2).

Replacing G(x, y) by qI([x, y]), and δ2G(x,y)
δxδy by −mI([x, y]) (see relation

(12)), the transform of the commonality function is given by:∫∫
x,y

qI([x, y])eit1x+it2ydydx =
1
t1t2

∫∫
x,y

mI([x, y])eit1x+it2ydydx

2
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5.3 Adding credal variables

Suppose two credal variables. We can add them. As one could expect it, the
characteristic function of their sum is the product of the individual characteristic
functions, a widely used relation is statistics.

Theorem 5.2 Let X1 and X2 be two credal variables defined on I which re-
lated probability density functions are given by fT1 and fT2 . Let φi(t1, t2) be
the characteristic functions of fTi . Let the credal variable Y = X1 + X2. The
characteristic function of its probability density function is given by:

φY (t1, t2) = φ1(t1, t2)φ2(t1, t2), for all (t1, t2).

Proof. Identical to the one used in probability theory. 2

Example 3. Gauss-Gamma bbd Suppose several credal variableX1, ..., Xn,
each one being U -non-interactive Gauss-Gamma, with parameters (µ, σ, ν), thus
f(v : µ, σ) = N(v : µ, σ) and h(u : ν) = uν−1e−u/Γ(ν) (see Example 2). The
corresponding characteristic function is given by:

φ(t1, t2) = eiµt1−σ2t21/2(1− it2)−ν .

The characteristic function of Y =
∑

j=1,...,nXj is given by:

einµt1−nσ2t21/2(1− it2)−nν .

So Y is also a Gauss-Gamma bbd with parameters (nµ,
√
nσ, nν).

6 Decision Making

6.1 Deriving Betf from fI

Suppose a bbd mI and its related density fT where fT is normalized. Let
Bet be the pignistic transformation operator, hence BetP = Bet(mI ,R) where
BetP is the pignistic probability function and R is the betting frame (Smets,
2002, 2005). BetP is defined for any X in the Borel sigma-algebra generated
by I. We define BetF (a) = BetP ([−∞, a]) and Betf(a) = dBetF (a)/da as the
pignistic distribution function and the pignistic density function, respectively.

The relation for the pignistic probability function becomes for a < b:

BetP ([a, b]) =
∫ x=∞

x=−∞

∫ y=∞

y=x

|[a, b] ∩ [x, y]|
|[x, y]|

fT (x, y)dydx

=
∫ x=b

x=−∞

∫ y=∞

y=a∨x

y ∧ b− x ∨ a
y − x

fT (x, y)dydx

where |∅|/|[x, y]] = 0 and when a < x = y < b, the ratio (y∧b−x∨a)/(y−x) = 1
by continuity. The next theorem provides the relation for Betf , the density
function associated with BetP with:

BetP ([a, b]) =
∫ x=b

x=a

Betf(x)dx.
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Theorem 6.1 Given a bbd mI and its related fT ,

Betf(a) = lim
ε→0

∫ x=a

x=−∞

∫ y=∞

y=a+ε

1
y − x

fT (x, y)dydx. (25)

Proof. Let b = a + ε where ε is a small positive real in the 0 neighborhood.
Let O(εn) denote any term of order n in ε, thus so that limε→0O(εn)/nk = 0
whenever k < n. We get:

BetP ([a, a+ ε]) =
∫ a+ε

a

Betf(x)dx = Betf(a)ε+O(ε2)

and

BetP ([a, a+ ε]) =
∫ x=a+ε

x=−∞

∫ y=∞

y=a

y ∧ (a+ ε)− x ∨ a
y − x

fT (x, y)dydx

=
∫ x=a

x=−∞

∫ y=∞

y=a+ε

a+ ε− a

y − x
fT (x, y)dydx

+
∫ x=a+ε

x=a

∫ y=∞

y=a+ε

a+ ε− x

y − x
fT (x, y)dydx

+
∫ x=a

x=−∞

∫ y=a+ε

y=a

y − a

y − x
fT (x, y)dydx

+
∫ x=a+ε

x=a

∫ y=a+ε

y=a

y − x

y − x
fT (x, y)dydx

=
∫ x=a

x=−∞

∫ y=∞

y=a+ε

ε

y − x
fT (x, y)dydx

+ε
∫ y=∞

y=a+ε

a+ ε− a

y − a
fT (a, y)dy

+ε
∫ x=a

x=−∞

a− a

a− x
fT (x, a)dx

+ε2fT (a, a) +O(ε2)

= ε

∫ x=a

x=−∞

∫ y=∞

y=a+ε

1
y − x

fT (x, y)dydx+O(ε2)

For ε→ 0, we can write :

Betf(a) = lim
ε→0

∫ x=a

x=−∞

∫ y=∞

y=a+ε

1
y − x

fT (x, y)dydx

2

To use equation (25) of theorem 6.1, beware not to put directly ε = 0 as the
term 1/(y−x) is undefined when y = x, which does not not occur in the correct
integration (and explains why we went through these tedious derivations).
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Theorem 6.2 Given a bbd mI and its related gU ,

Betf(a) = lim
ε→0

∫ u=∞

u=ε

∫ v=a+u

v=a−u

1
2u
gU (u, v)dvdu. (26)

6.2 Example: Betf induced by a uniform density on T[0,1].

Uniform density on T[0,1] is achieved when fT (x, y) = 2 for all x, y ∈ [0, 1], x ≤ y.
Then

Betf(a) = 2 lim
ε→0

∫ x=a

x=0

∫ y=1

y=a+ε

1
y − x

dydx

= 2 lim
ε→0

∫ x=a

x=0

log(y − x)|y=1
y=a+εdx

= 2 lim
ε→0

∫ x=a

x=0

(log(1− x)− log(a+ ε− x))dx

= 2 lim
ε→0

(−(1− x)log(1− x)− x+ ((a+ ε− x)log(a+ ε− x) + x)|x=a
x=0

= 2 lim
ε→0

(−(1− a)log(1− a)− a+ εlog(ε) + a+ 0 + 0− (a+ ε)log(a+ ε)− 0)

= −2((1− a)log(1− a) + alog(a))

7 Beliefs induced by a pdf

Suppose You collect a pdf on the set of real numbers R. This pdf can represent
two kinds of information.

7.1 The Bayesian belief function

In the first case, the pdf is understood as representing the agent’s beliefs them-
selves. The result is a Bayesian belief function. It fits sometimes with objective
data. Suppose a sensor which generated data x is corrupted by noise ε, so the
collected data y is given by y = x + ε. Suppose the noise ε is generated by a
random process with density h. Then Your belief about the value x generated
by the sensor before corruption given the collected corrupted data y is also rep-
resented by a pdf fully determined by h. Of course other cases can be considered
that result in a Bayesian belief function.

Let h(v) be the collected pdf defined on R and let P be the probability
measure related to h: P ([a, b]) =

∫ v=b

v=a
h(v)dv. (We use the (u, v) notation as is

is simpler.) Then gU (u, v) = δ(u)λ(u, v) with:

λ(u, v) = h(v) if u = 0
= 0 otherwise.

We prove that belI([a, b]) = P ([a, b]) as it should.
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Theorem 7.1 Suppose mI([a, b]) = δ(u)λ(u, v) with λ(u, v) = h(v) if u = 0
and 0 otherwise, where h(v) is a pdf on R. Let P ([a, b]) =

∫ t=b

t=a
h(t)dt be the

probability that the random variable which pdf is h(t) is in [a, b]. Then

belI([a, b]) = P ([a, b]).

Proof. Given the relations of section 2.1, we have:

belI([a, b]) = belI([v − u, v + u]) =
∫ z=u

z=0

∫ t=v+u−z

t=v−u+z

gU (z, t)dtdz

=
∫ z=u

z=0

δ(z)
∫ t=v+u−z

t=v−u+z

λ(z, t)dtdz

=
∫ t=v+u

t=v−u

λ(0, t)dt =
∫ t=v+u

t=v−u

h(t)dt = P ([a, b])

2

7.2 LC bbd induced by Betf

In the second case, one considers that the collected pdf represents how the agent
would bet about the actual value of the unknown variable defined on the frame
R. Thus the pdf is the pignistic probability function Betf induced on R by the
underlying belief function which value is unknown.

Many mI functions can induce this Betf function. The set of bba mI

which related pignistic probability density function equals Betf is called the
set of isopignistic belief functions induced by Betf and denoted BIso(Betf).
So if Bet is the operator that corresponds to the pignistic transformation, i.e.,
Betf = Bet(m), then BIso(Betf) = Bet−(Betf) is the (maybe generalized)
inverse image of Betf by Bet.

The user knows only that belI ∈ BIso(Betf). The least commitment prin-
ciple (never give more belief than justified) can be evoked to select the least
committed belief function in BIso(Betf).

We analyze two cases. In the first we do not know Betf(x) for every x ∈ R,
but only a finite (or at most countable) numbers of values xi : i = 1, 2, .... In
the second case Betf(x) is known for every x ∈ R.

7.2.1 BetF known for some x ∈ R

In many practical applications, the values of BetF are assessed only for a few x
values. One can then try to determine the missing values, using some assumed
underlying parametric model. In that case, we are back to the case treated in
the next section 7.2.2. Another approach consists in using what is available
and fitting the least committed bbd which pignistic transformation satisfies to
the given constraints. The resulting bbd is made of a finite number of masses
(formally, weighted Dirac’s functions). Their focal elements are not always
intervals. We will only consider the case of interval focal elements, even though
this solution can easily be adapted to handle the general case. We present an
example related to reliability study. We then explain the algorithm to build
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the q-LC bbd isopignistic with the given BetF values. We present the value
of Betf induced by this bbd. We then present the concept of expectation.
Finally we present an example related to reliability studies where discounting
and conjunctive combination rule are also applied.

Example 4. To assess the reliability of an equipment, one needs the value of
π, the probability that the equipment fails within a given time. The parameter π
is often not available. It is assessed by experts who provide their opinion about
the value of π. For instance, they are asked to express a value p.50 such they
believe as much that the actual value π is below p.50 or above p.50. Then they
are asked for a value p.25 such that they are three times more confident that π is
larger then p.25 than smaller. In fact they produce some of the percentiles of a
meta-probability function about the value of the probability π. The percentiles
classically collected and published are the .05, .25, .50, .75, .95 percentiles, or
some subset of them.

A percentile like the .05 percentile is the value p.05 such that the expert is
ready to bet that π ≤ p.05 versus π ≥ p.05 with odds 5 to 95. These are just
our pignistic probabilities. Percentile p.05 satisfies BetP (π ≤ p.05) = .05, and
similarly for the other percentiles. So in general BetP (π ≤ px) = x for x ∈ [0, 1].

Suppose for simplicity sake that we have only collected the .05, .50 and .95
percentiles. Assume the collected percentiles are: p.05 = .5, p.50 = .7, p.95 = .8.
This is all we know about the expert beliefs about the value of π. They are the
pignistic probabilities induced by an underlying belief function defined on [0, 1].
There are many such belief functions. The Minimal Commitment Principle
can be evoked. Finding the q-least committed belief function which pignistic
transformation satisfies the known constraints BetP is computationally trivial.

The bbm given to the whole interval [0, 1] must satisfy BetP ([0, .5]) = .05.
The bbm given to [0,1] is spread equally on the interval [0,1] by the pignistic
transformation. The value m([0,1]) = .1 explains the .05 given to [0, .5] and is
compatible with the two other data. The next constraint to be satisfied is the
p.95 = .8. The [.8, 1] interval received already a probability of m([0, 1]) × (1 −
.8) = .1 × .2 = .02. The bbm that could justify the still unexplained pignistic
probability 0.05 − 0.02 = 0.03 to be allocated to [.8, 1] is to be given to the
largest left over interval, i.e. [.5, 1]. The portion of that bbm given to [.8, 1] -
i.e. (1−.8)/(1−.5) = 2/5 - must be equal to 0.03. Hence m([.5, 1.]) = .03∗5/2 =
.075.

The next bbm are computed similarly. The results are m([.0, 1.]) = .100,
m([.5, 1.]) = .075, m([.5, .8]) = .600, m([.7, .8]) = .225. Table 3 presents the
whole computation. We start from the known BetP . We created the largest fo-
cal element and give it the largest mass compatible with the BetP . We subtract
the masses so allocated, and repeat the operation on the residuals.

In general the solution is given by the next theorem.

Theorem 7.2 Let Ω be a subset of R. Let {ω0, ω1, ..., ωn} be a set of elements
in Ω with ωi ≤ ωi+1 and Ω = [ω0, ωn]. Let BetP be known on the intervals
[ωi, ωi+1]. Let m be the q-LC bba isopignistic with BetP .

Let Betf be the pdf on Ω such that BetP ([ωi−1, ωi]) =
∫ x=ωi

x=ωi−1
Betf(x)dx

and Betf(x) is constant for all x ∈ [ωi−1, ωi]. Then

Betf(x) = BetP ([ωi−1, ωi])/([ωi − ωi−1]), x ∈ [ωi−1, ωi]
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limits → 0.-.5 .5-.7 .7-.8 .8-1.
k Nk Xk I width → .5 .2 .1 .2
1 1,2,3,4 [.0,1.] 1 R1

i = BetP .050 .450 .450 .050
m = .100 .050 .020 .010 .020

2 2,3,4 [.5,1.] 4 residual R2
i .000 .430 .440 .030

m = .075 .030 .015 .030
3 2,3 [.5,.8] 2 residual R3

i .000 .400 .425 .000
m = .600 .400 .200

4 3 [.7,.8] 3 residual R4
i .000 .000 .225 .000

m = .225 .225
5 ∅ residual R5

i .000 .000 .000 .000

Table 3: Building the q-LC Isopignistic bba for the reliability assessment based
on expert opinions, using the algorithm of theorem 7.2.

Then the next algorithm builds m.

N1 = [1, ...n]

R1
i = BetP ([ωi−1, ωi]),∀i ∈ N1

k = 1
While Nk 6= ∅

Xk = ∪ν∈Nk
[ων−1, ων ]

Find I ⊆ Nk :
Rk

i

ωi − ωi−1
= min

j∈Nk

{
Rk

j

ωj − ωj−1
} ∀i ∈ I

Let: m(Xk) =
Rk

i

ωi − ωi−1

∑
j∈Nk

(ωj − ωj−1)

Rk+1
j = Rk

j −
m(Xk)(ωj − ωj−1)∑

j∈Nk
(ωj − ωj−1)

,∀j ∈ Nk

Nk+1 = Nk\I
k = k + 1

End while

If Betf is bell shaped7, then the focal elements of the q-LC bba isopignistic
with BetP are nested intervals. If Betf is not bell shaped, then some focal
elements of the q-LC bba isopignistic with BetP are the union of more than one
interval.

The next theorem presents the value of the pdf generated by the bbd build
in theorem 7.2.

Theorem 7.3 (Probability density function) Suppose a bbd m on R made
of masses given to the intervals [ai, bi], i = 1, 2, .... The related pdf f(x) : x ∈ R,
is given by

f(x) =
∑

i

m([ai, bi])I(x, [ai, bi])/(bi − ai)

7A ‘bell shaped’ density is a unimodal density, continuous and strictly monotone increasing
(decreasing) at left (right) of the mode.
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where I(x, [a, b]) = 1 if x ∈ [a, b] and 0 otherwise.

Proof. Each mass m([ai, bi]) is equally distributed on its focal element, so its
density at x is 1/(bi− ai) if x ∈ [ai, bi], and 0 otherwise, hence the I coefficient.
The value of f(x) is obtained by adding the densities produced by each mass.
2

Expectations are taken using Betf .

Theorem 7.4 (Expectation) Suppose the pdf f(x) defined in theorem 7.3.
The expectation of the function g : R → R is given by:

E(g) =
∑

i

m([ai, bi])
bi − ai

∫ bi

ai

g(x)dx

Proof. One has

E(g) =
∫ ∞

−∞
g(x)f(x)dx

=
∫ ∞

−∞
g(x)

∑
i

m([ai, bi])
bi − ai

I(x, [ai, bi])dx

=
∑

i

m([ai, bi])
bi − ai

∫ bi

ai

g(x)dx

2

In particular, the mean (where g(x) = x) is computed as:

mean =
∑

i

m([ai, bi])(ai + bi)/2

Ω m1 m.7
1 Ω m2 m.6

2

.0-1. 0.100 0.3700 .0-1. 0.25 0.55
.5-1 0.075 0.0525 .4-1. 0.05 0.03
.5-.8 0.600 0.4200 .4-.7 0.50 0.30
.7-.8 0.225 0.1575 .6-.7 0.20 0.12
sum 1 1 sum 1 1
mean 0.665 0.6155 mean 0.565 0.539

Table 4: Building the q-LC Isopignistic bba for the reliability assessment based
on the opinions of the two experts, and their discounted bba.

Example 5. Consider the same problem as in the previous example, but we
collect data from two experts. The percentiles of their meta-probability about
the value of π are given, respectively,by:

1. Expert 1: p.05 = .5, p.50 = .7, p.95 = .8
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2. Expert 2: p.10 = .4, p.50 = .6, p.90 = .7.

In table 4, we present the focal elements and the bbm of the q-LC bbd
isopignistic with the collected percentiles (column Ω, m1 and m2).

I am collecting these two sets, and my own opinion about the two experts is
limited. I feel that the bbas must be discounted by a factor .3 for expert 1, and
.4 for expert 2. The results of discounting m1 and m2 are given in the columns
m.7

1 and m.6
2 . Data m1 (m2) are multiplied by .7 (.6) and the mass .3 (.4) is

added to the universe ([.0, 1.]).
The means for the four bbds are presented in table 4.
The discounted bbd are combined by the conjunctive combination rule (sec-

tion 4.3). The result of the combination are presented in table 5, columns 1 and
2.

The pdf f(x) derived from m is also given in table 4. The top line presents
the upper boundaries of the focal elements. The 1’s in the table indicate the
value of I(x, [a, b]) where b is the upper limit of the interval indicated at the top
of the columns, and a is the value to its left (with 0 at left of 0.4). Beware that
there is a Dirac’s function with weight .06615 on .7. The pdf f(x) is constant in
each intervals. The width of the intervals are given on next line. The product
width×f(x) is the integral of f(x) over the corresponding interval. Finally
F (x) is the cumulative distribution function. The weight 0.06615 of the Dirac’s
centered at .7 is included in the F (.7) value.

The mean computed from the pdf in table 4 is 0.61733. The p.50 = 0.6446
is obtained by solving the next interpolation:

.50 = .358 + (p.50 − .6)× .3185/.1.

int m 0.4 0.5 0.6 0.7 0.8 1

.0-1. 0.2035 1 1 1 1 1 1

.4-1. 0.0111 1 1 1 1 1

.4-.7 0.111 1 1 1

.6-.7 0.1011 1

.5-1. 0.03045 1 1 1 1

.5-.7 0.14175 1 1

.5-.8 0.2436 1 1 1

.7-.8 0.09135 1
.7 0.06615

f(x) 0.2035 0.592 2.17365 3.18465 2.0084 0.2829
width 0.4 0.1 0.1 0.1 0.1 0.2

width×f(x) 0.0814 0.0592 0.217365 0.318465 0.20084 0.05658
F (x) 0.0814 0.1406 0.357965 0.74258 0.94342 1

Table 5: The bbd m = m.7
1 ∩©m.6

2 and the pdf induced by m. Based on data of
table 4.

7.2.2 Continuous pdf

Just as in the finite case, the q-LC element of BIso(Betf) is a consonant belief
function (the proof for the finite case can be found in (Dubois, Prade, & Smets,
2003) and extend directly to the present case when the Betf is a ‘bell shaped’
density. On R, this will imply that the focal elements are nested.
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In this paper, we focus only on the case of ‘bell shaped’ densities. The deter-
mination of the bbd on R described in the next theorem is based on focal ele-
ments [a, b] whose limits a and b share the same density, thusBetf(a) = Betf(b).
Betf being unimodal and strictly monotone increasing or decreasing, each of a
and b uniquely determines the other one. Being bell shaped, Betf(x) > Betf(a)
for all x ∈ (a, b). In the theorem we use the upper limit b, and given b, we define
a as γ(b). The determination of γ(b) is simple if Betf is an exponential distribu-
tion (γ(b) = 0 for all b), or if Betf is a symmetrical unimodal distribution (like
the Laplace and in the Gaussian distributions) (γ(b) satisfies ν − γ(b) = b − ν
when b ≥ ν and ν is the mode of the pdf).

In the next two theorems, we derive a consonant bba which belongs to
BIso(Betf) , and then prove that his solution is the q-least committed element
of BIso(Betf).

Theorem 7.5 Let Betf be a ‘bell shaped’ pignistic probability function on R
with mode ν. Let the bba mI([a, b]) = θ(b)δ(a − γ(b)) and let γ(b) satisfy
Betf(γ(b)) = Betf(b), b ≥ ν. Then:

θ(b) = (γ(b)− b)
dBetf(b)

db
. (27)

This bba is a consonant bba and belongs to BIso(Betf).

Proof. By theorem 3.7, the bba of the theorem is consonant. Its pignistic
transformation is given for b ≥ ν by:

Betf(b) =
∫ y=∞

y=b

θ(y)
1

y − γ(y)
dy.

Derivating both terms for b gives the theorem for b ≥ ν. The same derivation
holds for b ≤ ν. Thus the theorem. 2

Theorem 7.6 Let Betf be a ‘bell shaped’ pignistic probability function on R
with mode ν. Let γ(b) satisfies Betf(γ(b)) = Betf(b), b ≥ ν. The U−form of
the bba mI([a, b]) in theorem 7.5 is given by gU (u, v) = h(u)δ(v − φ(u)) where
u = (b− γ(b))/2, φ(u) = (b+ γ(b))/2 Then:

h(u) = 2(b− γ(b))
f ′(b)f ′(γ(b))
f ′(b)− f ′(γ(b))

(28)

where f ′(x) = dBetf(2)
d2

|2=x.

Proof. We write f(x) for Betf(x). Fix b > ν, determine γ(b) and define
u = (b− γ(b))/2. We have:

pl(b) =
∫ ∞

u

h(x)dx = f(b)(b− γ(b)) +
∫ γ(b)

−∞
f(x)dx+

∫ ∞

b

f(x)dx.

Derive both terms on b. One gets:

h(u)
1− γ′(b)

2
= f ′(b)(b− γ(b)) +Betf(b)(1− γ′(b) + γ′(b)− 1).
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From Betf(b) = Betf(γ(b)), one gets after derivating both terms on b,
f ′(b) = f ′(γ(b))γ′(b) where γ′ is the derivate of γ.

By replacing γ′(b) with f ′(b)/f ′(γ(b)), one gets the relation (28).
Similar results hold for b < ν. At b = ν, b = γ(b), the derivatives are

undefined, but by continuity, one gets h(0) = 0. 2

The relation of theorem 7.6 is not very useful in practice. Starting with u
is not sufficient. One must then find out the v value such that Betf(v − u) =
Betf(v + u), what is usually not easy to derive. Once u and v are known, one
can use the relation of theorem 7.6, but as (u, v) uniquely determines b and γ(b),
the relations of theorem 7.5 seem easier to manipulate.

We now prove that the bba of theorem 7.5 is the q-least committed element
of BIso(Betf).

Theorem 7.7 The bba mI([a, b]) of theorem 7.5 is the q-least committed ele-
ment of BIso(Betf).

Proof. Suppose we have some bbd of non null measure located in the neighbor-
hood of (x, y) ∈ T which does not belong to the focal elements of the consonant
bbd given in theorem 7.5. We can then always find out a point (x∗, y∗) which is
a focal element of the consonant bbd given in theorem 7.5 and such that (x, y)
belongs to either the lower left or the upper right quadrant centered on (x∗, y∗).

In order to fit with the pignistic transformation constrain, it means that this
masses around (x, y) must be taken away from those masses in the upper left
quadrant.

But qI([x∗, y∗]) is the integral over the bbd in the upper left quadrant. The
existence of some bbd (of non null measure) outside this quadrant means that
the commonality at (x∗, y∗) is smaller than with the solution of relation theorem
7.5. So whenever non null densities do not belong to this solution, qI([x∗, y∗]) is
smaller. Thus the qI([x∗, y∗]) of the solution of relation theorem 7.5 are always
the largest possible, and thus the solution is the q-LC solution. 2

We prove a few useful theorems.

Theorem 7.8 If Betf is symmetrical, centered on ν, then v(u) is the line
perpendicular to the diagonal and crosses the diagonal at ν, the mode of Betf .

Proof. As Betf is symmetrical, γ(b) = ν − b, and ν is the midpoint of every
focal element. Hence the theorem. 2

Theorem 7.9 Let ν be the mode of Betf . Then plI([ν, ν]) = 1.

Proof. All focal elements contain ν, hence the theorem. 2

Theorem 7.10 The bbd mI of theorem 7.7 is normalized.

Proof. Immediate as plI([ν, ν]) = 1 from theorem 7.9. Thus plI(I) = 1. 2
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Example 6. The Gaussian Betf . Suppose Betf is a gaussian distribution
N(x : µ, σ) with mean µ and standard deviation σ. Let x ≥ µ. One has
γ(x) = 2µ− x. Hence −(x− γ(x)) = 2(µ− x). We have:

θ(x) = 2(µ− x)
d

dx

1√
2πσ

e−
1
2 ( x−µ

σ )2

= −2(µ− x)
1√
2πσ

x− µ

σ2
e−

1
2 ( x−µ

σ )2

= 2(x− µ)2
1√

2πσ3
e−

1
2 ( x−µ

σ )2

This function is 0 at x = µ, increases with x and reaches a maximum of
4/(σe

√
2π) at x = µ+

√
2σ (obtained from dθ(x)/dx = 0), then decreases to 0

at x goes to infinity.

8 The General Bayesian Theorem

To apply the General Bayesian Theorem (Smets, 1993; Delmotte & Smets,
2004), all we need is the likelihood vector lkh on the finite set of hypothe-
ses, and the likelihood lkh(θi) given to the hypothesis θi ∈ Θ generated by the
observation X ⊆ R is equal to the plausibility of observing X if the actual
hypothesis were θi.

8.1 Isopignistic q-LC belief function induced by a pdf

For many applications, one can expect that the available data are the conditional
pignistic density Betf [θi] for each θi ∈ Θ.

We transform these densities into their q-least committed isopignistic bbd
mI [θi] as done in section 7.2. Then given the observed data X ⊆ R, be it a
point or an interval or some more complex type of data, we assess plI [θi](X).

As mI [θi] is consonant, plI [θi](X) = plI [θi](x) where x = min(x ∈ X) if
min(x ∈ X) > ν, x = max(x ∈ X) if max(x ∈ X) < ν and x = ν otherwise,
where ν is the mode of the Betf density.

Theorem 8.1 Let Betf be a ‘bell shaped’ pignistic density function with mode
ν. Let X = [x, y]. Suppose x > ν. Then

plI [θi](X) =
∫ t=∞

t=x

(γ(t)− t)
dBetf(t)

dt
dt, (29)

where γ(t) satisfies Betf(γ(t)) = Betf(t). If Betf is symmetrical, then

plI [θi](X) = 2(x− ν)Betf(x) + 2
∫ t=∞

t=x

Betf(t)dt. (30)

Proof. All densities covering x coverX, and only them. Thus we must integrate
relation (27) for t ≥ x, hence relation (29). Using the relation uv′ = (uv)′−u′v,
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with u = γ(t)− t and v = Betf(t), we get:

plI [θi](X) = (γ(t)− t)Betf(t)|∞x −
∫ t=∞

t=x

(
dγ(t)
dt

− 1)Betf(t)dt

= (x− γ(x))Betf(x)−
∫ t=∞

t=x

(
dγ(t)
dt

− 1)Betf(t)dt.

If furthermore, Betf is symmetrical with mode ν, then γ(x) = 2ν − x, and
we get:

plI [θi](X) = 2(x− ν)Betf(x) +
∫ t=∞

t=x

2Betf(t)dt.

2

The case where max(x ∈ X) < ν is solved identically, and when ν ∈ X,
plI [θi](X) = 1 by theorem 7.9.

Relation (29) can be expressed in a quite different way initially described in
(Dubois, Prade, & Sandri, 1993, relation (6)).

Theorem 8.2 Let Betf be a ‘bell shaped’ pignistic density function with mode
ν. Let X = [x, y]. Suppose x > ν. Then

plI [θi](X) =
∫ t=∞

t=−∞
min(Betf(t), Betf(x))dt (31)

Proof. Take the derivative of relations (29) and (31) on x. We get from (29):

−(γ(x)− x)
dBetf(x)

dx

and from (31): ∫ t=γ(x)

t=x

dBetf(x)
dx

dt = (x− γ(x))
dBetf(x)

dx
.

The equality of the constant terms is handled by the fat both pdf are normalized.
2

The other cases where max(x ∈ X) ≤ ν are solved identically.
As mI is consonant, belI , plI and qI satisfy useful relations.

Theorem 8.3 Let mI be the consonant bbd of theorem 7.5. Let ν be the mode
of Betf . One has for all [a, b] ⊆ I:

plI([a, b]) =

 plI([a, a]) if ν ≤ a ≤ b
1 if a ≤ ν ≤ b
plI([b, b]) if a ≤ b ≤ ν

qI([a, b]) = min(qI([a, a]), qI([b, b]))

with qI([a, a]) = plI([a, a]),∀a ∈ I.
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Proof. For qI , draw the right angle centered on [a, b]. Observe that mI can
enter into it only by the lower or the right side, and cannot leave the domain of
qI([a, b]) as being consonant, the focus of the focal element propagates always
in the upper left quadrant. If it enters by the bottom, qI([a, b]) = qI([b, b])
Similar reasoning are used for the other properties. 2

As we can expect Betf to be a classical probability density function, like a
Gaussian, a Laplace, a gamma, etc. . . , the integrals are well documented and
the programs to compute them are easily accessible.

Therefore, the General Bayesian Theorem can be extended to the case where
the observation is defined on R.

Example 7. A sensor with Gaussian observations. Suppose a sensor S
that reports the likelihood on the set of hypotheses Θ = {θ1, θ2, θ3, θ4}. Suppose
the measurement space X is R and we know BetfX [θi] for each hypothesis. Let
BetfX [θi](x) = N(x;µi, σi), x ∈ X. The values of the parameters are presented
in table 6.

I µi σi plX [θI ]([15, 35]) BetPΘ[15, 35]]
1 10 4 0.5337 0.1409
2 20 8 1 0.3094
3 30 5 1 0.3094
4 40 10 0.8316 0.2402

Table 6: For each of the four hypothesis θi ∈ Θ, the parameters of the Gaus-
sian distributions, the likelihoods (the plausibility of the observation given each
hypothesis) and the posterior pignistic probabilities on Θ.

Suppose the observation is imprecise and given by the interval [x1, x2] =
[15, 35]. The likelihoods are:

plI [θ1]([x1, x2]) = 2(x1 − µ1)N(x1 : µ1, σ1) +
∫ t=∞

t=x1

2N(t : µ1, σ1)dt = 0.5337

plI [θ2]([x1, x2]) = 1

plI [θ3]([x1, x2]) = 1

plI [θ4]([x1, x2]) = 2(µ4 − x2)N(x2 : µ4, σ4) +
∫ t=x2

t=−∞
2N(t : µ4, σ4)dt = 0.8316.

It is interesting to note that if x1 > µi (respectively x2 < µi), the likelihoods
do not depend on x2 (respectively x1). Furthermore if the mode is covered by
the observation, the likelihood is 1. In table 6, we present the values of the
parameters and the likelihoods, which are equal to plX [θi]([x1, x2]).

From these likelihoods, one computesmΘ[[x1, x2]] using the General Bayesian
Theorem formulas and from this bba one computes BetPΘ for each hypothesis.
These BetPΘ are presented in table 6. In practice, we use very efficient short
cuts to transform likelihoods into BetPΘ. They can be found in the software
TBMLAB8 developed by Smets and Denoeux. In the present case, hypotheses
θ2 and θ3 are the most supported hypotheses.

8Downloadable from http://iridia.ulb.ac.be/˜psmets
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It is worth noticing that whenever the observation x ⊆ X covers the mode of
the pdf onX, then plX [θ](x) = 1 (see theorem 7.10). This means that every such
hypothesis will get the same a posteriori BetPΘ, a situation not encountered
in the Bayesian analysis where the posterior probability favors the hypothesis
with the smallest variance. This property deserves some consideration (Ristic &
Smets, 2004). In our example, θ2 and θ3 are such hypotheses. So under θ2 and
θ3, the observed data cannot be more plausible, more likely than what we have
observed, so there is no reason why one of them should be more supported than
the other. The TBM will give them equal supports, contrary to the Bayesian
analysis. This is still another property that might help to choose the ’good’
model.

8.2 Point observations and Bayesian belief function

Suppose the conditional belief functions fX [θi], θi ∈ Θ, over the observation
domainX are Bayesian as considered in section 7.1. The likelihood of hypothesis
θi given the observation A ⊆ X is equal to plX [θi](A) =

∫
A
fX [θi](x)dx.

Suppose the observation is the point x ∈ X. The likelihood becomes plX [θi](x) =
fX [θi](x)dx, an infinitesimal. In that case the normalized posterior belief func-
tion on Θ is obtained by computing the classical GBT, but letting dx tend to
0. The result is given by :

plΘ[x](θi) =
fX [θi](x)∑

θj∈Θ f
X [θj ](x)

.

This posterior plausibility function is in fact a probability function that is often
encountered in probability theory. This particular result comes from the infinite
information provided by the observation x. Indeed claiming to have observed
x ∈ X implies an infinite precision as the data is known for all its decimals.
Infinite information like ‘observing x’ is at the origin of the fact the posterior
belief function is a probability function. This illustrates the position of classical
Bayesian statistics in the TBM: Bayesian statistics result from infinitely precise
data.

9 Conclusions

Classically, belief functions are defined on frames of finite cardinalities. In fact
this limitation can be relaxed. Belief functions can be defined on R, the set of
real numbers, provided their focal elements can be defined by a finite number
of parameters. In that case, one can define a probability density function (pdf)
that plays the role of the basic belief masses. Masses become densities, and the
belief functions, plausibility functions and commonality functions are integrals
of this pdf.

In this paper, we consider belief functions on the set of reals, assuming the
focal elements are the closed intervals of R. The belief function and its related
functions are defined on the Borel sigma-algebra generated by the closed interval
of R.

We present most of the relations encountered in the TBM in this new setting.
In many practical cases, one can expect that the only available informa-

tion is a pignistic probability density function on R. In that case, the least
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commitment principle can be invoked to justify the construction of the q-least
committed isopignistic belief function induced by the given pignistic probability
density function. The solution is a consonant belief function on R whose value
is presented here.

We think these extensions of the TBM will be useful in many practical
contexts, as already illustrated in the applications presented in (Ristic & Smets,
2004).
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