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Abstract

In the companion paper (Ben Yaghlane, Smets, & Mellouli, 2000a),
we have enhanced the distinction between non-interactivity and doxastic
independence in the context of the transferable belief model. The first cor-
responds to decompositionality of the belief function, whereas the second
is defined as irrelevance preserved under Dempster’s rule of combination.
We had shown that the two concepts are equivalent in the marginal case.
We proceed here with the conditional case. We show how the definitions
generalize themselves, and that we still have the equivalence between con-
ditional non-interactivity and conditional doxastic independence.

Keywords. Belief functions, Transferable Belief Model, Conditional Non-
interactivity, Conditional Irrelevance, Conditional Doxastic Independence.

1 Introduction

In many fields of Artificial Intelligence, the notion of conditional independence
is considered as very important. Among others, it permits to simplify several
computational reasoning tasks. Indeed, instead of having to explore a complete
knowledge base of a given complex problem, we organize the problem into sim-
pler components in such a way that we only manipulate the pieces of information
having relevance to the question we are interested in.

The concept of probabilistic conditional independence was initially developed
by Dawid (Dawid, 1979). More recently and in order to enhance the application
of Probability Theory to Artificial Intelligence, Pearl and Paz suggested the con-
nections between conditional independence and graphical representations and
proved that the essence of conditional independence can be identified with a
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common structure consisting of some basic properties of the conditional inde-
pendence relation, called ’graphoid axioms’ (Pearl & Paz, 1987). These axioms
convey the simple idea that when we learn an irrelevant fact, the relevance
relationships of all other propositions remain unchanged (Pearl, 1988).

The graphoid axioms are also satisfied by embedded multi-valued depen-
dency models in relational databases (Fagin, 1977), by conditional indepen-
dence in Spohn’s theory of ordinal conditional functions (Spohn, 1988), (Hunter,
1991), by qualitative conditional independence in Dempster-Shafer theory of
belief functions partitions (Shafer, Shenoy, & Mellouli, 1987), by possibilistic
conditional independence (Fonck, 1994), (de Campos, Huete, & Moral, 1995),
(Vejnarova, 1999), by conditional independence and irrelevance in connection to
the theory of closed convex sets of probability measures (Cozman, 1999), and by
conditional independence in valuation-based systems (VBS) representing many
different uncertainty calculi (Shenoy, 1994).

Unfortunately, these axioms have not received a complete treatment in the
literature when related to the theory of belief functions. For this purpose, we
study the notion of independence between sets of variables when uncertainty is
expressed by belief functions as defined in the context of the transferable belief
model (TBM) (Smets & Kennes, 1994),(Smets, 1998). This study is done in
two parts: marginal independence and conditional independence.

In the first part (Ben Yaghlane et al., 2000a), we have discussed different
concepts of marginal independence for belief functions and we have clarified the
relationships between the concepts of non-interactivity, irrelevance and doxastic
independence. Non-interactivity is defined by the ’mathematical’ property use-
ful for computation considerations and it means that the joint belief function can
be reconstructed from its marginals. Irrelevance is defined by a ’common sense’
property based on conditioning, and it means that conditioning the joint be-
lief function on one variable and marginalizing it on the other variable produce
a belief function that is the same whatever the conditioning event. Doxastic
independence is defined by a particular form of irrelevance, the one preserved
under Dempster’s rule of combination. The main results of this study is that we
have proved that irrelevance alone does not imply non-interactivity. We have
also proved that doxastic independence is equivalent to non-interactivity, thus
equating the ’common sense’ definition with the ’mathematical’ one.

In this second part, we extend these concepts of marginal independence for
belief functions to conditional case. We particularly discuss the new proper-
ties and we show that we still have the equivalence between conditional non-
interactivity and conditional doxastic independence. Finally, we present the
axiomatic characterization of conditional independence definition for belief func-
tions.

The remainder of this paper is organized as follows. In section 2, we first
introduce the necessary notations and terminologies. In section 3, we recall
the definition of probabilistic conditional independence. Then, after extending
the definition of evidential and cognitive independence to the conditional case
(section 4), we present our definitions of conditional non-interactivity (section
5), conditional irrelevance (section 6) and conditional doxastic independence
(section 7) for belief functions. In section 8, we discuss the axiomatic charac-
terization of conditional independence definition for belief functions. Finally, in
section 9, we summarize the results achieved in this paper and point out some
future directions.
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2 Notations and Terminologies

The main purpose of the theory of belief functions, also known as Dempster-
Shafer theory and theory of evidence, is to model someone’s degree of belief.
Since it was developed by Shafer (Shafer, 1976), many interpretations have been
proposed. Among them, we can distinguish: the lower probability model (Jaf-
fray, 1989), (Walley, 1991), Dempster’s model (Dempster, 1967), the hint model
(Kohlas & Monney, 1995) and the transferable belief model (TBM) (Smets &
Kennes, 1994). Like in our companion paper (Ben Yaghlane et al., 2000a), we
are only concerned, in this paper, with the TBM.

Most needed definitions and properties have been given in the first part
of this paper and the reader is referred to it to find the conventions and the
background material on belief functions and the transferable belief model. In
this section, we just reproduce the important ones in order to help the reader.

2.1 Sets

When authors discuss about conditional independence, they begin with a set
S of variables X1, X2...Xn, then consider pairwise disjoint subsets of variables
U, V,W where U ⊆ S, V ⊆ S and W ⊆ S. The concepts of non-interactivity,
irrelevance and independence are then defined between U , V and W . We will
not repeat systematically this preliminary definitions, and we will consider only
three variables, denoted X,Y, Z, with the understanding that each one repre-
sents a variable which domain is the product space of its related Xi variables.

2.1.1 Set Notations

We give here some essential set notations.

• By convention, indexed variables like xi, yj , zk denote elements of their
domain whereas x, y, z denote subsets of their domain.

• If X,Y, Z are three variables, XY denotes X × Y and XY Z denotes
X × Y × Z.

• For x ⊆ X, y ⊆ Y, (x, y) denotes the subset w of XY such that w =
{(xi, yj) : xi ∈ x, yj ∈ y}.

• For x ⊆ X, y ⊆ Y, z ⊆ Z, (x, y, z) denotes the subset w of XY Z such that
w = {(xi, yj , zk) : xi ∈ x, yj ∈ y, zk ∈ z}.

• For x ⊆ X, x↑XY is the cylindrical extension of x on XY : x↑XY = (x, Y ).

• For w ⊆ Ω, w↓X is the projection of w on X: w↓X = {xi : xi ∈ X,x↑Ω
i ∩

w �= ∅}.

• For any w ⊆ XY Z, we have w = ∪zi∈Z(Ai, zi) where Ai ⊆ XY . Note that
Ai may be empty for some i. Equivalently, we have w = ∪zi∈w↓Z (Ai, zi)
in which case Ai �= ∅ for all i.

• Let A ⊆ XZ and B ⊆ Y Z, with

A = ∪zi∈A↓Z (xA
i , zi) and B = ∪zi∈B↓Z (yB

i , zi)
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then

A↑XY Z ∩B↑XY Z = ∪zi∈A↓Z∩B↓Z (xA
i , y

B
i , zi).

• We assume that the variables X,Y, Z are ‘independent’, by what we mean
that:

(xi, Y, Z) ∩ (X, yj , Z) ∩ (X,Y, zk) �= ∅, ∀xi ∈ X, yj ∈ Y, zk ∈ Z.

All these definitions are extended to the case where indices are permuted.

2.1.2 Properties of the Intersections

In order to avoid any confusion on the domain of the sets, we often indicate it
in the first superscript of each set. So AXZ means that A ⊆ XZ. The arrows
then indicate the extensions and marginalizations to which they are submitted.

Lemma 2.1 AXZ↑XY Z ∩BY Z↑XY Z �= ∅ iff AXZ↓Z ∩BY Z↓Z �= ∅.

Proof. Let ZA = AXZ↓Z and ZB = BY Z↓Z . We have AXZ = ∪zi∈ZA(xA
i , zi)

and BY Z = ∪zi∈ZB (yB
i , zi), where xA

i �= ∅ and yB
i �= ∅.

Then AXZ↑XY Z ∩BY Z↑XY Z = ∪zi∈ZA∩ZB (xA
i , y

B
i , zi) �= ∅ if ZA ∩ ZB �= ∅ and

∅ if ZA ∩ ZB = ∅. ✷

Lemma 2.2 (AXZ ∩ zZ↑XZ)↓Z �= ∅ iff AXZ↓Z ∩ zZ �= ∅.

Proof. Direct from lemma 2.1 when |Y | = 1 and B is replaced by z and noting
that marginalization does not affect the emptiness status. ✷

Lemma 2.3 AXZ↑XY Z∩BY Z↑XY Z∩zZ↑XY Z �= ∅ iff AXZ↓Z∩BY Z↓Z∩zZ �= ∅.

Proof. We have:

AXZ↑XY Z ∩BY Z↑XY Z ∩ zZ↑XY Z �= ∅
iff BY Z↑XY Z ∩ (AXZ ∩ zZ↑XZ)↑XY Z) �= ∅
iff BY Z↓Z ∩ (AXZ ∩ zZ↑XZ)↓Z �= ∅ by lemma 2.1

iff BY Z↓Z ∩ (AXZ↓Z ∩ zZ) �= ∅ by lemma 2.2

✷

2.1.3 The Z-layered Rectangles

When studying non-interactivity in a two dimension space, we have introduced
the notion of a ‘rectangle’ as follows.

Definition 2.1 Rectangles. A rectangle in XY is a subset of XY that admits
a representation as (x, y) for x ⊆ X, y ⊆ Y .
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This notion was useful as in case of non-interactivity under m, all focal
elements of m are rectangles. This notion can be generalized into a concept of
‘Z-layered rectangles’. A Z-layered rectangle is a subset w of XY Z such that
for every zi ∈ Z, its intersection with z↑XY Z

i is a rectangle in XY . Formally, a
definition of Z-layered rectangles is as follows.

Definition 2.2 Z-layered rectangles. A set w ⊆ XY Z is called a Z-layered
rectangle if, for every zi ∈ Z, (w ∩ z↑XY Z

i )↓XY is a rectangle in XY .

Lemma 2.4 A set w ⊆ XY Z is a Z-layered rectangle iff it admits the repre-
sentation w = ∪zi∈Z(xw

i , y
w
i , zi) where xw

i ⊆ X, yw
i ⊆ Y

Proof. By definition 2.2, (w ∩ z↑XY Z
i )↓XY is a rectangle in XY , thus it can be

represented as (xw
i , y

w
i ), hence the lemma. ✷

✟✟✟✟✟

z1 ✉ ✉
✉

✉✟✟✟✟✟

x1 ✟✟✟✟✟

x2 ✟✟✟✟✟

x3 ✟✟✟✟✟❍❍❍❍❍

❍❍❍❍❍

y1 ❍❍❍❍❍

y2 ❍❍❍❍❍

y3 ❍❍❍❍❍

✟✟✟✟✟

z2 ✉✟✟✟✟✟

x1 ✟✟✟✟✟

x2 ✟✟✟✟✟

x3 ✟✟✟✟✟❍❍❍❍❍

❍❍❍❍❍

y1 ❍❍❍❍❍

y2 ❍❍❍❍❍

y3 ❍❍❍❍❍

✟✟✟✟✟

z3
✉

✉✟✟✟✟✟

x1 ✟✟✟✟✟

x2 ✟✟✟✟✟

x3 ✟✟✟✟✟❍❍❍❍❍

❍❍❍❍❍

y1 ❍❍❍❍❍

y2 ❍❍❍❍❍

y3 ❍❍❍❍❍

Figure 1: Example of a Z-layered rectangle, dots indicate its elements.

Figure 1 presents an example of Z-layered rectangle. We define ZLR as the
set of Z-layered rectangles.

Definition 2.3 ZLR = {w : ω ⊆ XY Z,∀zi ∈ Z,∃xw
i ⊆ X, ∃yw

i ⊆ Y, such that
w = ∪zi∈Z(xw

i , y
w
i , zi)}

In the marginal case, we have shown that the focal elements of m are rect-
angles in XY when X and Y are non-interactive under m (Theorem 3 in (Ben
Yaghlane et al., 2000a)). For the conditional case, we show below that the focal
elements of m will be Z-layered rectangles when X and Y are non-interactive
given Z under m.

2.2 Belief Functions

2.2.1 Notations

• We use the notation mΩ[x] to represent the bba (shorthand for basic belief
assignment) m defined on the domain Ω given the belief holder knows
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(accepts) that x is true (i.e. x holds). The term m can be replaced by
bel, pl, q in order to denote the belief function , the plausibility function
and the commonality function. The values taken by these functions at w ⊆
Ω are denoted by mΩ[x](w), belΩ[x](w), plΩ[x](w), qΩ[x](w), respectively.
mΩ[x](w) is called a basic belief mass (bbm).

• In the TBM, none of these functions is necessarily normalized. When
we want to get the normalized forms, we use the upper-cases notations
M,Bel, P l,Q. These normalized functions are obtained by dividing the
unnormalized functions by the factor 1 - m(∅) (putting M(∅) = 0, Bel(∅) =
0 and Q(∅) = 1).

• The ⊕ symbol represents Dempster’s rule of combination in its normalized
form and ∩© represents the conjunctive combination, i.e., the same oper-
ation as Dempster’s rule of combination except the normalization (the
division by 1−m(∅)) is not performed. The conjunctive combination rule
can be written equivalently as:

m1 ∩©2(w) = m1 ∩©m2(w) =
∑

w1,w2⊆Ω,w1∩w2=w

m1(w1)m2(w2)

The next formula is very useful:

f1 ∩©2(w) =
∑

w∗⊆Ω

f1[w∗](w)m2(w∗), ∀w ⊆ Ω (1)

where f ∈ {m, bel, pl, q} and f1[w∗] is the result of the unnormalized
conditioning of f1 on w∗ ⊆ Ω (see (Smets, 1993)).

• pl1 ∩©pl2 represents the plausibility function obtained from m1 ∩©m2 where
m1 and m2 are the bba’s related to pl1 and pl2, respectively (and similarly
with bel and q).

• The set of belief functions defined on Ω is denoted by BFΩ.

• By abuse of language, we may omit the Ω index and we will write state-
ments like m ∈ BFΩ to mean that the belief function associated with m
belongs to BFΩ.

• When convenient, bba’s m on Ω are represented by the list of pairs (w, x)
where w is a focal element of m (a subset of Ω with a non null bbm),
and x = m(w). So ((w1, .4), (w2, .6)) represents the bba mΩ on Ω with
mΩ(w1) = .4 and mΩ(w2) = .6, and w1 ⊆ Ω and w2 ⊆ Ω.

2.2.2 Marginalization of Belief Functions

We present some of the relations described by Shenoy (Shenoy, 1994) concerning
marginalization and used in this paper. Their labels are those of Shenoy.

Lemma 2.5 : M1: Order of deletion.

mXY Z↓Y Z↓Z = mXY Z↓XZ↓Z
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Lemma 2.6 : CM1: Combination and marginalization.

(mUV ∩©mV W )↓UV = mUV ∩©mV W↓V

Lemma 2.7 Given M1, mXY Z↓Y Z↓Z = mXY Z↓Z

Proof. See Shenoy (Shenoy, 1994), page 210. ✷

3 Probabilistic Conditional Independence

First, we present the meaning of the conditional independence concept in the
probability theory. Suppose three variables X,Y and Z, and let the space
Ω = XY Z. Let P be a distribution on XY Z. We write X ⊥⊥P Y |Z to denote
that, X and Y are conditionally independent given Z, with respect to P .

The usual definition of X ⊥⊥P Y |Z is in terms of the factorization of the
conditional joint probability distribution on XY given Z. We say that X and
Y are conditionally independent given Z, with respect to PXY Z , if and only if
∀x ⊆ X, ∀y ⊆ Y, ∀zi ∈ Z,

PXY Z [zi]↓XY (x, y) = PXY Z [zi]↓X(x)PXY Z [zi]↓Y (y) (2)

where PXY Z [zi]↓XY is the conditional probabilities of PXY Z on XY , given zi

and PXY Z [zi]↓X and PXY Z [zi]↓Y are the conditional probabilities of PXY Z on
X and Y , given zi.

There is another equivalent definition, which is more intuitive, that is: X
and Y are conditionally independent given Z, with respect to PXY Z , if and only
if ∀x ⊆ X, ∀y ⊆ Y , zi ∈ Z,

PXY Z [y, zi]↓X(x) = PXY Z [zi]↓X(x) (3)

where PXY Z [y, zi]↓X is the conditional probability of PXY Z on X given y and zi.

Like the marginal probabilistic case, this second definition can be interpreted
as conditional irrelevance and it means that once the value of Z is specified, any
further information about Y is irrelevant to the uncertainty about X.

As far as the two definitions turn out to be equivalent, the distinction be-
tween the factorization and the irrelevance probabilistic approach is not essen-
tial, and often it is not even considered.

4 Evidential and Cognitive Independence

In the marginal case (Ben Yaghlane et al., 2000a), we have presented the no-
tions of evidential independence and cognitive independence for belief func-
tions. These notions have been first introduced by Shafer (Shafer, 1976) for the
marginal case. In addition, it is shown in Shafer (Shafer, 1976) that evidential
independence implies cognitive independence, but not the reverse. In this sec-
tion, we only consider evidential independence.
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In the multivariate framework, Kong (Kong, 1988) studied the conditional
case. He defined the notion of evidential conditional independence of belief
functions, as follows (remember variables X, Y , and Z are always pairwise
disjoint subsets of variables (see section 2.1):

Definition 4.1 Evidential Conditional Independence. Let X,Y and Z be
three variables. X and Y are (evidentially) conditionally independent given Z
with respect to BelXY Z if and only if for all x ⊆ X, y ⊆ Y , zi ∈ Z:

BelXY Z [zi]↓XY (x, y) = BelXY Z [zi]↓X(x)BelXY Z [zi]↓Y (y) (4)

When Z is not specified this becomes marginal evidential independence of
X and Y (Definition 3 in (Ben Yaghlane et al., 2000a)).

Almond ((Almond, 1995), page 114) calls this independence a strong condi-
tional independence and shows it is equivalent to:

Definition 4.2 Strong Conditional Independence. Let X,Y and Z be three
variables. X and Y are (strongly) conditionally independent given Z with respect
to BelXY Z if and only if

BelXY Z = BelXY Z↓XZ ⊕BelXY Z↓Y Z (5)

Note that these definitions are based on normalized belief functions. When
we tolerate unnormalized belief functions, the term BelXY Z↓Z must be added
and the definition becomes as follows:

Definition 4.3 Strong Conditional Independence. Let X,Y and Z be three
variables. X and Y are (strongly) conditionally independent given Z with respect
to BelXY Z if and only if

BelXY Z ⊕BelXY Z↓Z = BelXY Z↓XZ ⊕BelXY Z↓Y Z (6)

This definition turns out to be equivalent to what we call hereafter condi-
tional non-interactivity. In the following sections, we present our definition of
conditional non-interactivity, conditional irrelevance and conditional doxastic
independence.

5 Conditional Non-Interactivity

Preamble. Many proofs are highly simplified when a matricial notation is used.
This notation being unusual, we do not use it in the core of the paper, but we
relegate it in the appendix A. The proofs using such notations are therefore also
put in the appendix A.

5.1 Definition of Conditional Non-interactivity

We focus now on the decompositional independence definition for belief func-
tions. This definition is represented by the non-interactivity that is a mathe-
matical property useful for calculus considerations. For the full study of the
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marginal non-interactivity concept for belief functions, the reader can be re-
ferred to (Ben Yaghlane, Smets, & Mellouli, 2000b) and (Ben Yaghlane et al.,
2000a).

However, for the definition of the conditional non-interactivity for belief
functions (see also (Ben Yaghlane, Smets, & Mellouli, 2000c)), we start from
the belief on the joint product XY Z. We marginalize it on XZ and also on Y Z.
We combine these two marginal belief functions and we want it to be equal to
the initial one (on XY Z) combined with its marginal on Z.

This last term results from the fact that the marginals on XZ and on Y Z
both contain the marginal on Z and this last is thus double counted when
combining the marginals on XZ and on Y Z. This term corresponds to the
plXY (X,Y ) term encountered when defining marginal independence (see rela-
tion (6) in (Ben Yaghlane et al., 2000a)). The formal definition is given as
follows:

Definition 5.1 Conditional Non-interactivity. Given three variables X,
Y and Z, and mXY Z ∈ BFXY Z , X and Y are conditionally non-interactive
given Z with respect to mXY Z , denoted by X ⊥mXY Z Y |Z, if and only if

mXY Z ∩©mXY Z↓Z = mXY Z↓XZ ∩©mXY Z↓Y Z (7)

This definition of conditional non-interactivity (7) corresponds to Shenoy’
factorization (see Shenoy (Shenoy, 1994), lemma 3.1 (5) page 215). It can also be
reformulated in terms of commonality functions as shown by Studeny (Studeny,
1993).

Theorem 5.1 X ⊥mXY Z Y |Z iff for all w ⊆ XY Z,

qXY Z(w) qXY Z↓Z(w↓Z) = qXY Z↓XZ(w↓XZ) qXY Z↓Y Z(w↓Y Z). (8)

Proof. Relation (8) is just a rewriting of relation (7) using the property that
q1 ∩©q2(A) = q1(A)q2(A) for all A in the domain of the q’s, and

qXY Z↓XZ(w↓XZ) = qXY Z↓XZ↑XY Z(w)

qXY Z↓Y Z(w↓Y Z) = qXY Z↓Y Z↑XY Z(w)

qXY Z↓Z(w↓Z) = qXY Z↓Z↑XY Z(w).

✷

5.2 Links with Marginal Non-interactivity

The marginal case corresponds to the conditional case when |Z| = 1. Then
definition (5.1) becomes equal to the one used in the marginal case (Definition
4 in (Ben Yaghlane et al., 2000a)). When |Z| = 1, we have:

• XY Z = XY, XZ = X, Y Z = Y ,

• w↓Z = Z if w �= ∅ and = ∅ otherwise.

• When w �= ∅, qXY Z↓Z(w↓Z) becomes the sum of all bba’s mXY given to
the non empty subsets of XY , which is equal to plXY (XY ).
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Equation (8) becomes then:

qXY (w) plXY (XY ) = qXY ↓X(w↓X) qXY ↓Y (w↓Y ),

for all w ⊆ XY,w �= ∅. The case where w = ∅, is trivially satisfied as q(∅) = 1
for any commonality function. This relation is the definition of marginal non-
interactivity. So our definition degrades nicely into the marginal case when
|Z| = 1, as it should.

5.3 Conditional Non-interactivity and Marginals

It is interesting to note that Studeny (Studeny, 1993) has an objection about
the definition of conditional non-interactivity1 in the framework of Dempster-
Shafer theory. Indeed, he notices that the definition based on equation (7) is not
consistent with marginalization. It may happen that for two bba’s m1 ∈ BFXZ

and m2 ∈ BFY Z that share the same marginal on Z (i.e., m↓Z
1 = m↓Z

2 ) there
exists no bba mXY Z on XY Z such that mXY Z↓XZ = m1, mXY Z↓Y Z = m2 and
X ⊥mXY Z Y |Z.

The next example illustrates this objection.

Example 5.1. From Studeny (personal communication)
Consider X = Y = Z = {u, v} and define the bba’s over XZ and Y Z as follows:

mXZ({(u, v), (v, v)}) = 0.5, mXZ({(u, v), (v, u)}) = 0.5

mY Z({(u, v), (v, v)}) = 0.5, mY Z({(u, v), (v, u)}) = 0.5

There is no bba m over XY Z such that mXZ and mY Z are its marginals
and X and Y are conditionally non-interactive given Z with respect to m.

Let mZ = mXZ↓Z = mY Z↓Z . Its focal elements and associated bbm are:
((v,.5),(Z,.5)). In order to get non-interactivity, the bba m must satisfy

qXY Z(w) =
qXY Z↓XZ(w↓XZ) qXY Z↓Y Z(w↓Y Z)

qXY Z↓Z(w↓Z)
, ∀w ⊆ XY Z.

The resulting ‘q’ function is not a commonality function as its associated
‘bba’ is:

((X,Y, v), .25), ((X,u, v), .25), ((u, Y, v), .25),
({(u, u, v), (v, v, u)}, .5), ((u, u, v),−.25).

which does not correspond to a belief function as one of the ‘masses’ is negative.
✷

This example illustrates that two bba’s mXZ and mY Z that share the same
marginal mZ on Z are not the marginal of some bba mXY Z such that X and
Y are conditionally non-interactive given Z (i.e. X ⊥mXY Z Y |Z).

Nevertheless the next theorem shows that, for any mXZ and mY Z , X and Y
are non-interactive given Z under mXY Z = mXZ ∩©mY Z . The only subtlety is

1Studeny uses the term ’conditional independence’ rather than ’conditional non-
interactivity’
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that mXZ and mY Z are not the marginals of mXY Z on XZ and Y Z, respectively.
This property provides in fact a convenient way to build belief functions that
satisfy non-interactivity. Just take any pair of bba’s mXZ and mY Z and combine
them conjunctively, the result is a bba under which X and Y are conditionally
non-interactive given Z.

Theorem 5.2 Let mXZ and mY Z be two bba on XZ and Y Z, respectively. Let
m = mXZ ∩©mY Z . Then X ⊥m Y |Z.

Proof. By CM1 (lemma 2.6) we have:

m↓XZ = (mXZ ∩©mY Z)↓XZ = mXZ ∩©mY Z↓Z (9)

m↓Y Z = (mXZ ∩©mY Z)↓Y Z = mXZ↓Z ∩©mY Z (10)

By M1 (lemma 2.5), we have: m↓Z = (m↓XZ)↓Z (see (Shenoy, 1994), page
210) and from CM1, we have:

m↓Z = (m↓XZ)↓Z = (mXZ ∩©mY Z↓Z)↓Z = mXZ↓Z ∩©mY Z↓Z . (11)

So m↓Z = mXZ↓Z ∩©mY Z↓Z . Thus using relations (9), (10) and (11), we get:

m↓XZ ∩©m↓Y Z = mXZ ∩©mY Z↓Z ∩©mXZ↓Z ∩©mY Z

= mXZ ∩©mY Z ∩©m↓Z

= m ∩©m↓Z

hence X ⊥m Y |Z. ✷

Example 5.2. (continuation)
The focal elements and related bbm for m = mXZ ∩©mY Z are:
((X,Y, v), .25), ((X,u, v), .25), ((u, Y, v), .25), ({(u, u, v), (v, v, u)}, .25).

Its marginals are:
for m↓XZ : ((X, v), .5), ((u, v), .25), ({(u, v), (v, u)}, .25).
for m↓Y Z : ((Y, v), .5), ((u, v), .25), ({(u, v), (v, u)}, .25).
and for m↓Z : ((v, .75), (Z, .25).

These bba’s satisfy relation (8), thus we have X ⊥m Y |Z. ✷

5.4 Conditional Non-interactivity and Z-layered Rectan-
gles

When we have treated the marginal non-interactivity between two random vari-
ables X and Y , we have proved that when X and Y are non-interactive, with
respect to mXY , then the focal elements of mXY belong to RectXY (Theorem 3
in (Ben Yaghlane et al., 2000a)). We proceed now with the same idea applied to
the conditional case and we show that the focal elements of m = mXY Z belong
to the set of Z-layered rectangles (see section 2.1.3).

Theorem 5.3 If X ⊥m Y |Z, then the focal elements of m belong to the set of
Z-layered rectangles.
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Proof.
Let A be a focal element of m↓XZ and A = ∪zi∈A↓Z (xA

i , zi).
Let B be a focal element of m↓Y Z and B = ∪zi∈B↓Z (yB

i , zi).
Then A↑XY Z ∩ B↑XY Z is a focal element of m↓XZ ∩©m↓Y Z and A↑XY Z ∩

B↑XY Z = ∪zi∈A↓Z∩B↓Z (xA
i , y

B
i , zi) which belongs to ZLR.

So all focal elements of m↓XZ ∩©m↓Y Z belong to ZLR.
Let C be a focal element of m↓Z . Trivially, C = ∪zi∈C(zi) and C↑XY Z =

∪zi∈C(X,Y, zi).
Let w be a focal element of m and w = ∪zi∈w↓Z (Cw

i , zi) where Cw
i ⊆ XY .

The focal elements of m ∩©m↓Z are C↑XY Z ∩ w = ∪zi∈w↓Z∩C(Cw
i , zi) and

they must belong to ZLR, as m ∩©m↓Z and m↓XZ ∩©m↓Y Z share the same focal
elements (the two belief functions are equal).

So there exist (xi, yi) with xi ⊆ X, yi ⊆ Y such that Cw
i = (xi, yi), and thus

the focal elements of m belong to ZLR. ✷

5.5 Conditions for Non-interactivity

The simple fact that the focal elements belong to the set of Z-layered rectan-
gles is not sufficient to imply conditional non-interactivity. The next example
illustrates such a case.

Example 5.3. ZLR without non-interactivity. Let X = {x1, x2}, Y =
{y1, y2} and Z = {z}, and mXY Z(x1, y1, z) = .5, mXY Z(X,Y, z) = .5. By con-
struction, this bba belongs to ZLR. To be non-interactive, mXY Z must satisfy
(7), and in particular mXY Z(x1, y1, z) = mXY Z↓XZ(x1, z)mXY Z↓Y Z(y1, z) =
.5 × .5 = .25. So mXY Z ∈ ZLR without satisfying non-interactivity. ✷

In order to get non-interactivity, we must add some proportionality con-
straints, like those presented in the next theorem. It must be enhanced that in
the definition of non-interactivity (see theorem 5.1), the relation (8) among the
commonality functions had to be true for all w in XY Z, whereas here relation
(12) is required only on the w in the set of Z-layered rectangles. The theorem
5.4 is very useful as we will later show that doxastic conditional independence
is equivalent to the properties of this theorem, and thus doxastic conditional
independence will be proved to be equivalent to conditional non-interactivity.

Theorem 5.4 Suppose a bba mXY Z . The next assertions are equivalent.

1. X ⊥mXY Z Y |Z.

2. The focal elements of mXY Z belong to ZLR and

∀w ∈ ZLR, qXY Z(w) qXY Z↓Z(w↓Z) = qXY Z↓XZ(w↓XZ) qXY Z↓Y Z(w↓Y Z)
(12)

Proof.
1 ⇒ 2 Let X ⊥mXY Z Y |Z. By theorem 5.3, the focal elements of mXY Z

are Z-layered rectangles. By theorem 5.1, qXY Z satisfies relation (12) for all
w ⊆ XY Z. Hence 1 implies 2.

12



2 ⇒ 1 We show that if the focal elements of mXY Z are Z-layered rectangles,
then relation (12) implies relation (8). Consider relation (12). Let w ⊆ XY Z.

Then qXY Z(w) is the sum of all bbm which contain w. Let rw ⊆ XY Z be
the smallest Z-layered rectangle in XY Z that contains w. Let w = ∪zi∈Z(wi, zi)
where wi ∈ XY . Then rw is uniquely defined as rw = ∪zi∈Z(w↓X

i , w↓Y
i , zi). The

only focal elements that contain w are those that contain rw, so qXY Z(w) =
qXY Z(rw).

We also have qXY Z↓XZ(w↓XZ) = qXY Z↓XZ(r↓XZ
w ) as only the supersets of

r↓XZ
w are supersets of w↓XZ with non zero bbm. And similarly with the other

two marginalizations.
The relation (8) holds iff the relation (12) holds. Therefore 2 ⇒ 1 . ✷

6 Conditional Irrelevance

Before presenting the definition of conditional irrelevance for belief functions, we
explain the idea of two belief functions on XY Z that share the same marginals
on Z after having been conjunctively combined with a given bba m defined on
XY Z.

The underlying idea is a problem of belief state distinguishability. Suppose
two agents who hold beliefs on XY Z. Suppose You can only observe the beliefs
held by these two agents on Z (thus the marginal on Z of their bba’s). If these
two marginal bba’s are equal, You cannot distinguish between the beliefs held by
the two agents, even though their beliefs on XY Z may be different. One way to
distinguish the two beliefs is to present to the two agents a new piece of evidence
which induces the bba m on XY Z. This last m is then combined conjunctively
with the initial bba’s. The marginalizations on Z can still be equal, or not, this
depending on m. So one way to distinguish between belief states which can only
be observed on Z is by producing various m, and comparing the marginals on
Z of the combination.

For a given m on XY Z, we can consider all the belief functions on XY Z
which are indistinguishable on Z. These bba’s describe belief states that can-
not be distinguished after having been conjunctively combined with m by only
observing their marginals on Z. Thus m creates an equivalence class on the set
of belief functions defined on XY Z.

6.1 Indistinguishability on Z under m

Let RZ(m) denotes the set of belief functions on XY Z that are indistinguishable
on Z under m. Its formal definition is as follows:

Definition 6.1 Indistinguishability on Z under m. For any bba m,m1,m2

∈ BFXY Z , (m1,m2) ∈ RZ(m) iff (m ∩©m1)↓Z = (m ∩©m2)↓Z .

In particular, we will use this concept of indistinguishability when m ∈
BFXY Z and m1,m2 ∈ BFY Z what is just a particular case of the definition.
The reason will be that we will define conditional irrelevance as the fact that
the belief on XZ is influenced by the belief on Y Z only through the impact of
this last belief on Z, and not on the details on how it is distributed on Y Z.
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Example 6.1. Indistinguishability. We present an example to illustrate
the concept of indistinguishability. Let X = {0, 1}, Y = {0, 1}, Z = {0, 1}.
The eight elements of XY Z are denoted by ω1, ω2, . . . ω8 as shown in table 1.
Suppose mXY Z(ω1, ω2, ω3, ω4) = mXY Z(ω1, ω5) = 1/2. The set of bba’s m on
Y Z that are pairwise indistinguishable on Z under mXY Z is built in table 2.

Z 0 0 0 0 1 1 1 1
Y 0 0 1 1 0 0 1 1
X 0 1 0 1 0 1 0 1
Ω ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Table 1: The elements of XY Z and their X,Y, Z values. So, for instance,
element ω3 has values X = 0, Y = 1, Z = 0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
34 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
56 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
78 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

15 ∅ ∅ 5 5 ∅ ∅ 5 5 1 1 15 15 1 1 15 15
12 ∅ ∅ ∅ ∅ 3 3 3 3 1 1 1 1 12 12 12 12
34 4 4 4 4 2 2 2 2 34 34 34 34

Table 2: The numbers 1 to 16 in top row indicate the index i of the xi where xi

is the mass given to the subset indicated in the four rows just below. The next
four rows indicate if the elements on XY Z which indices are referred in the first
column are included (1) or not (0) in the set. So x7 is the mass given to the focal
element {ω3, ω4, ω5, ω6} of XY Z by the bba m defined on Y Z and extended on
XY Z. The next line indicates the indices of the elements of XY Z to which
the mass mXY Z(ω1, ω5) = 1/2 is transferred by the conjunctive combination of
mXY Z and m. The last two lines, to be read together, indicate the indices of the
elements of XY Z to which the mass mXY Z(ω1, ω2, ω3, ω4) = 1/2 is transferred
by the conjunctive combination of mXY Z and m. So half of x13 is transferred
to {ω1} and half to {ω1, ω2, ω3, ω4}.

After marginalization of mXY Z ∩©m on XZ, the bbm of mZ are given by:

mZ(∅) = (x1 + x2 + x5 + x6 + x1 + x2 + x3 + x4)/2 (13)

mZ(ω1, ω2, ω3, ω4) = (x9 + x10 + x13 + x14)/2 (14)

mZ(ω5, ω6, ω7, ω8) = (x3 + x4 + x7 + x8)/2 (15)

mZ(ω1, ω2, . . . , ω8) = (x11 + x12 + x15 + x16 + x5 + x6 + . . . + x16)/2 (16)

Any set of non negative values for the xi’s that add to 1 and such that the
four sums (13), (14), (15), (16) are constant will generate the same bba on Z
after being combined with mXY Z . Hence they are indistinguishable on Z under
mXY Z . The next two bba are such examples.

• x7 = m1(ω3, ω4, ω5, ω6) = 1/2, x13 = m1(ω1, ω2, ω3, ω4) = 1/2. The
focal elements of (mXY Z ∩©m1)↓Z are {ω5}, {ω1}, {ω3, ω4}{ω1, ω2, ω3, ω4},
each with a mass 1/4. The projection of these focal elements on Z are
{ω5, ω6, ω7, ω8} with a mass 1/4 and {ω1, ω2, ω3, ω4} with a mass 3/4.
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• x8 = m2(ω3, ω4, ω5, ω6, ω7, ω8) = 1/2, x10 = m2(ω1, ω2, ω7, ω8) = 1/2.
The focal elements of (mXY Z ∩©m2)↓Z are {ω5}, {ω1}, {ω3, ω4}{ω1, ω2},
each with a mass 1/4. The projection of these focal elements on Z are
{ω5, ω6, ω7, ω8} with a mass 1/4 and {ω1, ω2, ω3, ω4} with a mass 3/4.

So the bba’s (mXY Z ∩©m1)↓Z and (mXY Z ∩©m2)↓Z are equal, hence m1 and
m2 are indistinguishable on Z under mXY Z : (m1,m2) ∈ RZ(mXY Z). ✷

We proceed by showing what indistinguishability implies about the involved
bba’s.

Theorem 6.1 Let m ∈ BFXY Z , and m1,m2 ∈ BFY Z . The following asser-
tions are equivalent.

1. (m1,m2) ∈ RZ(m)

2.
∑

C⊆Y Z

pl(z↑XY Z ∩ C↑XY Z)m1(C) =
∑

C⊆Y Z

pl(z↑XY Z ∩ C↑XY Z)m2(C),

∀z ⊆ Z. (17)

Proof. By definition, assertion 1 means (m1 ∩©m)↓Z = (m2 ∩©m)↓Z . By lemma
2.7 and 2.6, each term, with i = 1, 2, can be rewritten as:

(mi ∩©m)↓Z = (mi ∩©m)↓Y Z↓Z = (mi ∩©m↓Y Z)↓Z .

By equation (1), we have for B ⊆ Y Z,

pli ∩©pl↓Y Z(B) =
∑

C⊆Y Z

pl↓Y Z [C](B)mi(C)

=
∑

C⊆Y Z

pl↓Y Z(B ∩ C)mi(C)

=
∑

C⊆Y Z

pl((B ∩ C)↑XY Z)mi(C)

=
∑

C⊆Y Z

pl((B↑XY Z ∩ C↑XY Z)mi(C).

We also have:

(pli ∩©pl↓Y Z)↓Z(z) = pli ∩©pl↓Y Z(z↑Y Z)

=
∑

C⊆Y Z

pl((z↑XY Z ∩ C↑XY Z)mi(C).

Requiring (m ∩©m1)↓Z = (m ∩©m2)↓Z is equivalent to requiring:

(pl1 ∩©pl↓Y Z)↓Z(z) = (pl2 ∩©pl↓Y Z)↓Z(z), ∀z ⊆ Z

what is equivalent to:∑
C⊆Y Z

pl(z↑XY Z ∩ C↑XY Z)m1(C) =
∑

C⊆Y Z

pl(z↑XY Z ∩ C↑XY Z)m2(C), ∀z ⊆ Z.

what proves the equivalence between assertions 1 and 2. ✷
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6.2 Definition of Conditional Irrelevance

Let m ∈ BFXY Z . Suppose that we study the impact of any bba mi ∈ BFY Z

on our belief on XZ, i.e., we study (m ∩©mi)↓XZ . Suppose the impact of mi on
m is fully captured by its impact on Z. By that we mean that the impact of mi

defined on Y Z and the impact of any other mj defined on Y Z with (mi,mj) ∈
RZ(m) are equal when it comes to the belief induced on XZ. Equivalently it
means that all that counts for what regards our beliefs on XZ after we combine
m with mi is the belief induced by m ∩©mi on Z. Further details on the beliefs
on Y Z are irrelevant.

In that case, we say that Y is conditionally irrelevant to X given Z with
respect to m. Formally, we have the following definition:

Definition 6.2 Conditional irrelevance. Let m ∈ BFXY Z . Y is condition-
ally irrelevant to X given Z with respect to m, denoted by IRm(X,Y |Z), if and
only if for all m1,m2 ∈ BFY Z with (m1,m2) ∈ RZ(m) we have

(m ∩©m1)↓XZ = (m ∩©m2)↓XZ (18)

Example 6.2. Continuation of Example 6.1. The bba mXY Z introduced
in example 6.1 does not satisfy conditional irrelevance. Indeed there are two
bba’s m1 and m2 on Y Z which pair belongs to RZ(mXY Z) but with:

(mXY Z ∩©m↑XY Z
1 )↓XZ �= (mXY Z ∩©m↑XY Z

2 )↓Y Z

The two bba’s are:

• m1(ω5, ω6) = m1(ω1, ω2, ω5, ω6) = 1/2, or equivalently x3 = x11 = 1/2.

• m2(ω3, ω4, ω5, ω6) = m2(ω3, ω4) = 1/2, or equivalently x7 = x5 = 1/2.

mXY Z mi ∩©mXY Z mi ∩©mXY Z

bba mass Focal 15 1234 ↓ Z ↓ XZ
m1 x3 = 1/2 56 5 ∅ 5678 ∅ 57 ∅
m1 x11 = 1/2 1256 1 12 1234 1234 13 1234
m2 x7 = 1/2 3456 5 34 5678 1234 57 1234
m2 x5 = 1/2 34 ∅ 34 ∅ 1234 ∅ 1234

Table 3: An example where indistinguishability does not imply conditional ir-
relevance. As in table 2, the sets are represented by the indices of the elements
of XY Z that compose them (see table 1). The two m1 lines present the two
focal sets of m1 and their mass, then the focal sets that result from their com-
bination with mXY Z (each mass is 1/4). We continue with the marginalization
of these four focal sets on Z, and on XZ . The next two lines concerns m2.
It is to be noticed that the two bba’s obtained after projection on Z are equal
(indistinguishability), whereas they are not on XZ (no conditional irrelevance).

The computation of the masses is given in table 3. It shows that even thought
(m1,m2) ∈ RZ(mXY Z), their marginalization on XZ after combination with
mXY Z are not equal, and thus we do not have IRmXY Z (X,Y |Z). ✷
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6.3 Links with Marginal Irrelevance

The definition of marginal irrelevance is given by relation (10) in Definition 5 of
the companion paper (Ben Yaghlane et al., 2000a): for m ∈ BFXY , IRm(X,Y )
iff pl[y]↓X ∝ pl↓X .

We show that our definition of conditional irrelevance reduces into that def-
inition when |Z| = 1.

Theorem 6.2 The marginal case. If |Z| = 1, IRm(X,Y |Z) = IRm(X,Y ).

Proof. See appendix A. ✷

6.4 Conditional Irrelevance and Non-Interactivity

In the following example, we show that conditional irrelevance does not imply
conditional non-interactivity between variables. We use the same example as
in the marginal case (Ben Yaghlane et al., 2000a), but as far as the conditional
case use a more general concept of indistinguishability, we feel necessary to re-
produce the example within this larger framework.

Example 6.3. Let XY Z be as defined by table 1. Table 4 presents a
very symmetrical bba mXY Z on XY Z where all focal elements are subsets of
{ω1, ω2, ω3, ω4}. mXY Z satisfies the irrelevance constraints but not the non-
interactivity ones.

for ω such that: mXY Z(ω)
ω = ∅ or ω � {ω1, ω2, ω3, ω4} .00

ω ∈ {ω1, ω2, ω3, ω4} .15
ω ∈ {(ω1, ω2), (ω3, ω4), (ω1, ω3), (ω2, ω4)} .00

ω ∈ {(ω1, ω4), (ω2, ω3)} .04
ω ⊆ {ω1, ω2, ω3, ω4} and |ω| = 3 .02

ω = {ω1, ω2, ω3, ω4} .24

Table 4: For each subset ω of XY Z, listed in column 1, column 2 presents the
value of mXY Z .

To show that mXY Z satisfies conditional irrelevance, we build table 5. As
far as belXY Z({ω1, ω2, ω3, ω4}) = 1, the masses of mY Z on Y Z relevant for
their combination with mXY Z are those obtained by conditioning the bba’s
mY Z ∈ BFY Z on {ω1, ω2, ω3, ω4}). Then only four masses must be considered,
denoted x1, x2, x3, x4, with for instance x2 = mY Z [{ω1, ω2, ω3, ω4}]({ω3, ω4}).

For what concerns the marginalization on Z, all masses given to the non
empty set are projected on {ω1, ω2, ω3, ω4}. Hence to get indistinguishability
on Z under mXY Z , their sum must be fixed. So indistinguishability is satisfied
if the masses x1, x2, x3, x4 are such that:

0.7(x2 + x3) + x4 = c (19)

is constant. Any pair of bba on Y Z that satisfy the constraint for a given c
belongs to RZ(mXY Z).
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mY Z (mXY Z ∩©mY Z)↓XZ

Focal x1 x2 x3 x4 x2 x3 x4

mXY Z Set ∅ 34 12 1234 12 34 1234
.15 1 ∅ ∅ 1 1 ∅ 13 13
.15 2 ∅ ∅ 2 2 ∅ 24 24
.15 3 ∅ 3 ∅ 3 13 ∅ 13
.15 4 ∅ 4 ∅ 4 24 ∅ 24
.04 14 ∅ 4 1 14 24 13 1234
.04 23 ∅ 3 2 23 13 24 1234
.02 123 ∅ 3 12 123 13 1234 1234
.02 124 ∅ 4 12 124 24 1234 1234
.02 134 ∅ 34 1 134 1234 13 1234
.02 234 ∅ 34 2 234 1234 24 1234
.24 1234 ∅ 34 12 1234 1234 1234 1234

Table 5: Columns 1 and 2 present the masses and focal elements of mXY Z .
Focal sets are represented by the indices of the elements of XY Z (see table 1)
which belong to them. So 14 means {ω1, ω4}. Columns 3, 4, 5 and 6 consider
the four masses of mY Z and present the focal elements where they will be trans-
ferred after conjunctive combination with mXY Z . The last rightmost columns
indicate the subsets where the masses of the combination are transferred after
marginalization on XZ.

Given c, we consider now what are the marginalization on XZ of their com-
bination with mXY Z , what can be evaluated with the three rightmost columns
of table 5.

On {ω1, ω3}, the mass is:

(.15 + .04 + .02)x2 + (.15 + .04 + .02)x3 + (.15 + .15)x4 =

.21(x2 + x3) + .30x4 = .3c

On {ω2, ω4}, the mass is: .21(x2 + x3) + .30x4 = .3c.
On {ω1, ω2, ω3, ω4}, the mass is: .28(x2 + x3) + .40x4 = .4c.
Thus, for every m ∈ BFY Z such that (mXY Z ∩©mY Z↑XY Z)↓Z is equal, (i.e.,

that satisfies 19), (mXY Z ∩©mY Z↑XY Z)↓XZ is equal. Therefore conditional irrel-
evance is satisfied.

Nevertheless non-interactivity is not satisfied as some focal elements of mXY Z

are not Z-layered rectangles (theorem 5.3): for instance mXY Z(ω1, ω4) > 0. ✷

6.5 Symmetry of Conditional Irrelevance

Our definition of conditional irrelevance is symmetrical.

Theorem 6.3 IRm(X,Y |Z) iff IRm(Y,X|Z).

Proof. See appendix A. ✷
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6.6 Conditioning on Z and Conditional Irrelevance

Just as in the marginal case, irrelevance is not equal to non-interactivity. We
will need an extra constraint on irrelevance, the irrelevance preservation under
combination IRP ∩©, in order to get the equality between these two concepts.

When we prove that non-interactivity is equal to doxastic independence,
i.e., irrelevance plus irrelevance preservation under combination, we will use a
particular belief function, the bba characterizing a conditioning on z0 ⊆ Z, that
satisfies the irrelevance conditions.

Theorem 6.4 If m(z↑XY Z
0 ) = 1 for z0 ⊆ Z, then IRm(X,Y |Z).

Proof. See appendix A ✷

7 Conditional Doxastic Independence

In the probabilistic framework, it can be easily proved that independence and
irrelevance concepts are equivalent. However, in the belief functions framework,
the situation is not as simple, irrelevance alone does not imply independence.
In the marginal case (Ben Yaghlane et al., 2000a), we have defined that two
variables are doxastically independent when they are irrelevant and this irrele-
vance is preserved under Dempster’s rule of combination. Then we prove that
irrelevance and doxastic independence are equivalent.

In this section, we show that the notion of doxastic independence2 defined
in the marginal case can be extended to the conditional case. We discuss also
the relationship between conditional doxastic independence and Z-layered rect-
angles. Finally, we state two theorems establishing the equivalence between
conditional doxastic independence and conditional non-interactivity.

7.1 Irrelevance Preservation under Conjunctive Combina-
tion

Just as in the marginal case, we feel that conditional doxastic independence
requires not only the conditional irrelevance property, but that property should
be preserved when combining two belief functions that satisfy it. The idea fits
with the next scenario: if two agents claims that X and Y are conditionally
doxastically independent given Z, then this conditional independence should be
preserved when the belief functions representing the agents’ beliefs are conjunc-
tively combined.

So conditional doxastic independence is irrelevance plus irrelevance preserva-
tion under conjunctive combination, denoted IRP ∩©. Formally, the last property
is defined as follows:

Definition 7.1 Irrelevance preservation under conjunctive combina-
tion. Given m1,m2 ∈ BFXY Z , we say they satisfy IRP ∩© if IRm1(X,Y |Z)
and IRm2(X,Y |Z), imply IRm1 ∩©m2

(X,Y |Z).

2We use here the term ’doxastic independence’ for making the distinction between proba-
bilistic independence and belief function independence. In Greek, ’doxein’ means ’to believe’.
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7.2 Definition of Conditional Doxastic Independence

The notion of doxastic independence defined in the marginal case can be ex-
tended to the conditional case by the following definition.

Definition 7.2 Conditional Doxastic Independence. Given three vari-
ables X, Y and Z, and m ∈ BFXY Z . The variables X and Y are doxastically
independent given Z with respect to m, denoted by X ⊥⊥m Y |Z, if and only if
m satisfies

• IRm(X,Y |Z)

• ∀m0 ∈ BFXY Z : IRm0(X,Y |Z) ⇒ IRm ∩©m0
(X,Y |Z)

7.3 Conditional Doxastic Independence and Z-layered Rect-
angles

Theorem 7.1 If X ⊥⊥m Y |Z, then the focal elements of m belong to ZLR.

Proof. In the marginal case (|Z| = 1), we have defined X ⊥⊥m Y with
m ∈ BFXY as irrelevance and irrelevance preservation under conjunctive com-
bination (X ⊥⊥m Y iff IRm(X,Y ) and IRP ∩©). We have shown that X ⊥⊥m Y
implies that the focal elements of m are rectangles on XY .

The Z-layered rectangles (ZLR) reduce to rectangles on XY when |Z| = 1.
Let m ∈ BFXY Z satisfies IRm(X,Y |Z). Let z0 ∈ Z. We know that the bba

m0(z
↑XY Z
0 ) = 1 also satisfies conditional irrelevance (see theorem 6.4). IRP ∩©

implies that we still have X ⊥⊥m ∩©m0
Y |Z. But m ∩©m0 is the bba defined on

X × Y × z0 that corresponds to the conditioning of m on z0 (by Dempster’s
rule of conditioning). Furthermore the results correspond to the case |Z| = 1.
So we know that the focal elements of m[z0] = m ∩©m0 are rectangles on Y X.
It means that m must be so that for all zi ∈ Z, the focal elements of m[zi] are
rectangles in X × Y × zi. Therefore the focal elements of m belong to the set
of ZLR.

Suppose it was not the case, and m(C) > 0 for C ⊆ XY Z. Then there is at
least one zj ∈ Z such that C∩z↑XY Z

j is not a rectangle. Then m[zj ](C∩z↑XY Z
j )

is then positive (as it contains m(C)). But in that case we do not have doxastic
independence after conditioning on zj , contrary of what we had shown. ✷

This result already provides the first requirement of theorem 5.4(2) . The
second is proved hereafter.

7.4 Conditional Doxastic Independence equals Conditional
Non-Interactivity

Theorem 7.2 X ⊥⊥m Y |Z implies X ⊥m Y |Z.

Proof. Both requirements of theorem 5.4 are satisfied: the ZLR requirement
is proved in theorem 7.1 and the commonality requirement is proved in theorem
10.11 in appendix A. ✷
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Theorem 7.3 X ⊥m Y |Z implies X ⊥⊥m Y |Z.

Proof. We first prove that X ⊥m Y |Z implies IRm(X,Y |Z). For that, we use
the removal operator of Shenoy (Shenoy, 1994), here denoted ∩©. By definition
m3 = m1 ∩©m2 is the bba m3 such that m3 ∩©m2 = m1. It is just the inverse of ∩©.

If X ⊥m Y |Z for m ∈ BRXY Z , then by definition we have

m = m↓XZ ∩©m↓Y Z ∩©m↓Z .

Suppose m1,m2 ∈ BFY Z . In that case

(m ∩©mi)↓Z = ((m ∩©mi)↓Y Z)↓Z lemma 2.5

= (m↓Y Z ∩©mi)↓Z lemma 2.6

If furthermore (m1,m2) ∈ RZ(m), then:

(m↓Y Z ∩©m1)↓Z = (m↓Y Z ∩©m2)↓Z (20)

Then using lemma 2.6, we get:

(m ∩©mi)↓XZ = (m↓XZ ∩©m↓Y Z ∩©m↓Z ∩©mi)↓XZ

= m↓XZ ∩©(m↓Y Z ∩©m↓Z ∩©mi)↓Z

= m↓XZ ∩©m↓Z ∩©(m↓Y Z ∩©mi)↓Z .

Using equation (20), we get thus:

(m ∩©m1)↓XZ = (m ∩©m2)↓XZ

hence IRm(X,Y |Z).

We must now prove that X ⊥m Y |Z implies that irrelevance preservation
under ∩©. By Lemma 3.1 of (Shenoy, 1994), property 2, we have:

X ⊥m Y |Z iff ∃f1 ∈ BFXZ , f2 ∈ BFY Z and m ∩©m↓Z = f1 ∩©f2

It can equaly be written with g ∈ BFXZ , h ∈ BFY Z , k ∈ BFZ as:

m ∩©m↓Z = g ∩©h ∩©k

by ∩© combining any of f1, f2 with m↓Z and k.
Suppose m1,m2 ∈ BFXY Z and X ⊥m1 Y |Z, X ⊥m2 Y |Z. We must show

we also have X ⊥m1 ∩©m2
Y |Z. By X ⊥mi

Y |Z, we have:

mi = m↓XZ
i

∩©m↓Y Z
i

∩©m↓Z
i

and

m12 = m1 ∩©m2 = (m↓XZ
1

∩©m↓XZ
2 ) ∩©(m↓Y Z

1
∩©m↓Y Z

2 ) ∩©(m↓Z
1

∩©m↓Z
2 )

hence X ⊥m1 ∩©m2
Y |Z, which itself implies IRm1 ∩©m2

(X,Y |Z) as shown in the
first part of this proof. ✷
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8 Axiomatic Characterization

As we said before, reasoning systems should take into account conditional inde-
pendence considerations in order to get an efficient performance. Conditional in-
dependence is given with the conditional independence relations (Dawid, 1979),
(Pearl, 1988), which successfully depict our intuition about how dependencies
should update in response to new pieces of information.

In this section, we first introduce the conditional independence relations in an
abstract way (section 8.1). We emphasize, essentially, on the intuitive meaning
of these relations. After this, we present the characterization of conditional
independence definition for belief functions (section 8.2).

8.1 Conditional Independence Relations

The concept of conditional independence has been well studied in probability
theory (see, for instance, (Dawid, 1979) (Dawid, 1999), (Pearl, 1988),...). This
study of probabilistic conditional independence has resulted in the identification
of several properties that should be satisfied by any relationship which attempts
to capture the intuitive notion of independence.

Recently, several researchers propose to treat conditional independence (CI)
without any connection to probability theory. For this purpose, CI is presented
as an abstract concept (Dawid, 1999). This approach leads to a well understand-
ing of the CI properties, and then facilitates efficient computations in reasoning
systems. In this context, the intuitive meaning of the (abstract) conditional
independence is given in terms of irrelevance. Suppose three (sets of) random
variables X, Y , and Z. When we say that X is conditionally independent to
Y given Z (written X ⊥⊥ Y |Z), we mean that once the value of Z has been
specified, any further information about Y is irrelevant to uncertainty about X.
In order to capture the main properties of this abstract notion, some axioms
are proposed (Pearl, 1988), (Dawid, 1999):

• A1: Symmetry : X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X|Z
This relation asserts that in any state of knowledge Z, if Y tells us nothing
new about X, then X tells us nothing new about Y.

• A2: Decomposition : X ⊥⊥ (Y,W )|Z ⇒ X ⊥⊥ Y |Z
This relation asserts that if (Y and W) are irrelevant to X then Y (resp.
W) is irrelevant to X.

• A3: Weak union : X ⊥⊥ (Y,W )|Z ⇒ X ⊥⊥ Y |(Z,W )
This relation states that the learning of an irrelevant information W, can’t
transform an irrelevant information Y into a pertinent one to X.

• A4: Contraction : X ⊥⊥ Y |Z and X ⊥⊥ W |(Z, Y ) ⇒ X ⊥⊥ (Y,W )|Z
This relation asserts that if W is irrelevant to X after learning some ir-
relevant information Y, then W was also irrelevant to X knowing Y. The
weak union and this property state, together, that irrelevant information
should not modify the relevance of other propositions.

• A5: Intersection : X ⊥⊥ Y |(Z,W ) and X ⊥⊥ W |(Z, Y ) ⇒ X ⊥⊥ (Y,W )|Z
This relation states that if Y is irrelevant to X when W is known and
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W is irrelevant to X when Y is known, then neither W, nor Y, nor their
combination is relevant to X.

A dependency model is called semi-graphoid if it verify the axioms A1-A4,
and graphoid if it satisfy the axioms A1-A5. It is well known (see e.g. (Pearl,
1988)) that probabilistic independence relation is a semi- graphoid, and it is a
graphoid if the probability is strictly positive (in this case A5 is satisfied).

8.2 Belief Function Conditional Independence Relations

The properties of conditional independence can be considered as a rules’ set
useful to infer new independence relations from an initial set. They are also
important when we need a graphical representation of dependencies.

When studying the concept of conditional independence in valuation-based
systems (VBS3), Shenoy have proved that the conditional independence concept
satisfies the graphoid axioms (Shenoy, 1994).

As the theory of belief functions is one particular uncertainty theory of
the VBS framework, we proceed similarly and we provide in the theorem 8.1
the conditional independence properties for belief functions that also satisfy
graphoid axioms. For this purpose, we use the definition of conditional non-
interactivity.

Theorem 8.1 Let X, Y, Z and W be disjoint subsets of a set of variables U,
and a mass m over the product space. The following properties are satisfied:

Symmetry X ⊥m Y |Z ⇔ Y ⊥m X|Z
Decomposition X ⊥m Y ∪W |Z ⇒ X ⊥m Y |Z
Weak Union X ⊥m Y ∪W |Z ⇒ X ⊥m Y |W ∪ Z

Contraction X ⊥m Y |Z and X ⊥m W |Y ∪ Z ⇒ X ⊥m Y ∪W |Z
Intersection X ⊥m Y |Z ∪W and X ⊥m W |Z ∪ Y ⇒ X ⊥m Y ∪W |Z

The corresponding proofs showing the validity of these properties for any
belief function are given in appendix B.

9 Conclusion

Like for other uncertainty formalisms, the concept of conditional independence
is also important in belief functions theory. After the first part of this study (Ben
Yaghlane et al., 2000c) in which we have studied the marginal belief function
independence, we proceed similarly and we propose, in this paper, an extension
of the marginal case to the conditional case. For this purpose, we present the
definitions of:

• Conditional non-interactivity : the joint belief function can be rebuilt from
its marginals.

• Conditional irrelevance: the belief on XZ depends on any belief over Y Z
only through the impact of the last belief function on Z.

3VBS is an axiomatic framework capable of representing many different uncertainty theo-
ries.
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• Conditional irrelevance preservation under conjunctive combination rule:
if two belief functions satisfy conditional irrelevance, then their conjunctive
combination satisfies also conditional irrelevance.

• Conditional doxastic independence: defined as conditional irrelevance that
is preserved under conjunctive combination rule.

The major result is that conditional non-interactivity and conditional dox-
astic independence are equivalent. Furthermore, we show that belief function
conditional non-interactivity satisfy the graphoid axioms.

In future work, we will investigate:

• the existence and the properties of conditional products (Dawid & Studeny,
1999) for belief function theory,

• the links between our concept of conditional doxastic independence and
the concept of separoid recently introduced by Dawid (Dawid, 2000),

• the impact of conditional doxastic independence with respect to its graph-
ical representation and the propagation of information in this structure.

10 Appendix A : Matricial Representations and Proofs

10.1 Relation between q and pl

The next relation holds between plausibility functions and commonality func-
tions.

Lemma 10.1

q(A) = −
∑
B⊆A

(−1)|B|pl(B), forA �= ∅ (21)

pl(A) = −
∑
B⊆A

(−1)|B|q(B), (22)

10.2 Solution by Continuity for Dogmatic Belief Func-
tions

A dogmatic belief function is defined as a belief function with m(Ω) = 0 (Smets,
1995). Many theorems are easy to prove for non dogmatic belief functions. A
method to solve the dogmatic case consists in studying a solution when m(Ω) =
ε, and then taking its limits when ε → 0. This is satisfactory if we accept that
belief functions satisfy the continuity assumptions.

Axiom 10.1 Continuity Let belε be a family of belief functions indexed by the
ε parameter. We assume that bel0 = limε→0belε.

This axiom simplifies the solution of rank problems in section 10.8. It could
be avoided but proofs would be more complex.
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10.3 Matricial Notations

In order to simplify the proofs, we use the following matricial notations.

• For mi ∈ BFY Z , mi is the 2|Y Z| column vector with components
mi(B), B ⊆ Y Z.

• For m ∈ BFXY Z , P is the 2|XZ| × 2|Y Z| matrix with components
p(A,B) = pl((A↑XY Z ∩B↑XY Z), A ⊆ XZ,B ⊆ Y Z.
As pl(∅) = 0, the components of P are 0 whenever A↑XY Z ∩B↑XY Z = ∅.

• For m ∈ BFXY Z , HX is the 2|XZ| × 2|Z| matrix with components
hX(A, z) = pl(A↑XY Z ∩ z↑XY Z), A ⊆ XZ, z ∈ Z.
The columns of HX are the columns of P where B = z↑XZ .

• For m ∈ BFXY Z , HY is the 2|Y Z| × 2|Z| matrix with components
hY (B, z) = pl(B↑XY Z ∩ z↑XY Z), B ⊆ Y Z, z ∈ Z.
The columns of HY are the lines of P where A = z↑Y Z .

• Let NX be the 2|XZ|×2|XZ| matrix with components nX(A,B) = −(−1)|B|

if B↑XY Z ⊆ A↑XY Z , = 0 otherwise, where A,B ⊆ XZ.

• Let NY be the 2|Y Z|×2|Y Z| matrix with components nY (A,B) = −(−1)|B|

if B↑XY Z ⊆ A↑XY Z , = 0 otherwise, where A,B ⊆ Y Z.

• For m ∈ BFXY Z , QX is the 2|XZ| × 2|Z| matrix with components
qX(A, z) = q↓XZ [z](A), A ⊆ XZ, z ∈ Z. We have:

Lemma 10.2 QX = NX · HX.

Proof. We have to prove that for A ⊆ XZ:

q↓XZ [z](A) =
∑

C⊆XZ

nX(A,C)hX(C, z)

=
∑
C⊆A

−(−1)|C|pl(C↑XY Z ∩ z↑XY Z)

=
∑
C⊆A

−(−1)|C|pl↓XZ [z](C)

what is true by lemma 10.1. ✷

• For m ∈ BFXY Z , QY is the 2|Y Z| × 2|Z| matrix with components
qY (B, z) = q↓Y Z [z](B), B ⊆ Y Z, z ∈ Z. We have:

Lemma 10.3 QY = NY · HY.

Proof. The proof proceeds as for lemma 10.2 . ✷

• Let N be the 2|XZ| × 2|Y Z| matrix with components n(A,B) = −(−1)|B|

if B ⊆ A, = 0 otherwise, where A ⊆ XZ,B ⊆ Y Z. It is inspired by the
matrix that transforms a plausibility vector into a commonality vector
(see lemma 10.1).
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10.4 Indistinguishability

We rewrite theorem 6.1 in matricial notation.

Theorem 10.1 Let m ∈ BFXY Z , and m1,m2 ∈ BFY Z . The following asser-
tions are equivalent.

1. (m1,m2) ∈ RZ(m)
2. H′

Y · m1 = H′
Y · m2 (23)

Proof. This theorem is just a rewriting of relation (17) of theorem 6.1. ✷

Lemma 10.4 rank(HY) ≤ 2|Z| − 1.

Proof. There as 2|Z| possible values for z but the column of HY corresponding
to z = ∅ is made of 0’s, so the rank can never be larger than 2|Z| − 1. ✷

10.5 Irrelevance in Matricial Notation

Theorem 10.2 Let m ∈ BFXY Z such that IRm(X,Y |Z). Then for all m1,m2 ∈
BFY Z with (m1,m2) ∈ RZ(m), we have:

P · m1 = P · m2

and P = C · H′
Y where C is a 2|XZ| × 2|Z| matrix.

Proof. By theorem 10.1, (m1,m2) ∈ RZ(m) iff H′
Y · m1 = H′

Y · m2.
By definition 6.2, IRm(X,Y |Z) iff

(m ∩©m1)↓XZ = (m ∩©m2)↓XZ .

For i = 1, 2, (m ∩©mi)↓XZ can be written in term of its plausibility functions.
For A ⊆ XZ,

(pl ∩©pli)↓XZ(A) = (pl ∩©pli)(A↑XY Z)

=
∑

B⊆Y Z

pl[B↑XY Z ](A↑XY Z)mi(B)

=
∑

B⊆Y Z

pl(A↑XY Z ∩B↑XY Z)mi(B)

= (P · mi) (A)

So the equality (m ∩©m1)↓XZ = (m ∩©m2)↓XZ is equivalent to P · m1 =
P · m2. Thus we have IRm(X,Y |Z) iff

∀m1,m2 ∈ BFY Z such that H′
Y · m1 = H′

Y · m2, we have P · m1 = P · m2.

This last constraint implies that H′
Y is a basis for P, i.e. all lines of P are

linear combinations of the lines of H′
Y. So we can write P = C · H′

Y where C
is a 2|XZ| × 2|Z| matrix. ✷
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Theorem 10.3 Conditional irrelevance: alternate definition.
IRm(X,Y |Z) with m ∈ BFXY Z iff

∀ m1,m2 ∈ BFY Z , if H′
Y · m1 = H′

Y · m2, then P · m1 = P · m2.

Proof. This property is just a rephrasing of the initial definition, using the
properties derived in theorem 10.2. ✷

We prove theorem 6.2 that shows that conditional irrelevance degrades into
marginal irrelevance when |Z| = 1.

Theorem 10.4 If |Z| = 1, IRm(X,Y |Z) = IRm(X,Y ).

Proof. Let A ⊆ XZ,B ⊆ Y Z. The constraint P = C · H′
Y can be written as:

pl(A↑XY Z ∩B↑XY Z) =
∑
z⊆Z

c(A, z)pl(z↑XY Z ∩B↑XY Z)

=
∑
z⊆Z

c(A, z)pl[z]↓Y Z(B).

When |Z| = 1, A can be written as x, B as y, and the constraints become:

pl(x↑XY ∩ y↑XY ) = pl[y]↓X(x)

= c(y)pl↓X(x), ∀x ⊆ X, y ⊆ Y.

Hence pl[y]↓X ∝ pl↓X , and IRm(X,Y ) holds. ✷

10.6 Symmetry of Conditional Irrelevance

In order to prove the symmetry of irrelevance, we first prove the following prop-
erties.

Theorem 10.5 Rank properties. Let m ∈ BFXY Z and IRm(X,Y |Z), then
rank(P) = rank(HY).

Proof. All lines of P being linear combinations of those in H′
Y, rank(P) ≤

rank(HY). As all rows of H′
Y are rows of P, rank(HY) ≤ rank(P). Therefore

P and HY have the same rank. ✷

Theorem 10.6 Rank properties. Let m ∈ BFXY Z and IRm(X,Y |Z), then
rank(P) = rank(HX).

Proof. Let r = rank(P) = rank(HY).

Let H′
Y =

[
A B
C D

]
, where

[
A B

]
are r linearly independent rows of H′

Y,

and
[
C D

]
are 2|Z| − r rows of H′

Y that are linearly dependent of those in[
A B

]
. Furthermore the columns of A are selected as those encountered in

HX.
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Then P admits a representation as P =


A B
C D
E F


. As rank(P) = r, all rows

in
[
E F

]
are linearly dependent of those in

[
A B

]
. Hence all rows of

[
C
E

]

are linearly dependent of those in
[
A

]
, and therefore rank(


A
C
E


) = r. But this

last matrix is just HX, hence rank(HX) = r. ✷

Theorem 10.7 IRm(X,Y |Z) iff IRm(Y,X|Z).

Proof. Let P be represented as P =
[
A B
C D

]
, where

[
A B

]
= H′

Y, and[
A
C

]
= HX. As rank(HX) = rank(HY), we know that all columns of

[
B
D

]
can

be represented as linear combination of those in
[
A
C

]
, therefore once m′

1HX =

m′
2HX, we also have m′

1

[
B
D

]
= m′

2

[
B
D

]
. Hence we have m′

1P = m′
2P. ✷

10.7 Conditioning on Z and irrelevance.

We prove the technical theorem 6.4, about a particular belief function.

Theorem 10.8 If m(z↑XY Z
0 ) = 1 for z0 ⊆ Z, then IRm(X,Y |Z).

Proof. We keep the notation convention that A ⊆ XZ, B ⊆ Y Z and z ⊆
Z. Let H = [h(z,B)] where h(z,B) = pl(z↑XY Z ∩ B↑XY Z) = 1 if z↑XY Z ∩
B↑XY Z z↑XY Z

0 �= ∅, and = 0 otherwise.
Let m1,m2 ∈ BFY Z with H · m1 = H · m2. We have:

(H · mi)(z) =
∑

B⊆Y Z

h(z,B)mi(B)

=
∑

B:z↑XY Z∩B↑XY Z∩z↑XY Z
0 �=∅

mi(B)

=
∑

B:z↑Y Z∩B∩z↑Y Z
0 �=∅

mi(B)

= pli((z ∩ z0)↑Y Z)

So H · m1 = H · m2 implies

pl1(z↑Y Z) = pl2(z↑Y Z), ∀z ⊆ z0. (24)
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We proceed with the P = [p(A,B)] matrix, where p(A,B) = pl(A↑XY Z ∩
B↑XY Z) = 1 if A↑XY Z ∩B↑XY Z ∩ z↑XY Z �= ∅, and = 0 otherwise. We have:

(p · mi)(A) =
∑

B⊆Y Z

p(A,B)mi(B)

=
∑

B:A↑XY Z∩B↑XY Z∩z↑XY Z �=∅
mi(B)

=
∑

B:B↓Z∩(A↓Z∩z0) �=∅
mi(B)

= pli((A↓Z ∩ z0)↑Y Z).

¿From (24) we have pl1((A↓Z ∩ z0)↑Y Z) = pl2((A↓Z ∩ z0)↑Y Z) for all A ⊆
Y Z, as all that counts is the projection of A on Z. Hence the requirement
P · m1 = P · m2 is satisfied and we have IRm(X,Y |Z). ✷

10.8 The Commonality Matrix R

By pre- and post-multiplying P by NX and N′
Y, the result is a matrix made of

‘rectangles’ located on the diagonal.

Theorem 10.9 Let m ∈ BFXY Z and IRm(X,Y |Z). R = NX · P · N′
Y is a

matrix which components satisfy:

1. r(A,B) = (−1)1+|z∗|q(A↑XY Z ∩B↑XY Z), ifA↓Z = B↓Z = z∗ �= ∅,
2. r(A,B) = 0, whenever A↓Z �= B↓Z ,

3. r(∅, ∅) = 0.

Proof. We keep the notation convention that A ⊆ XZ, B ⊆ Y Z and z ⊆ Z.

1. a) Let A↓Z = B↓Z = z∗. We have A = ∪zi∈z∗(xA
i , zi), B = ∪zi∈z∗(yB

i , zi),
and A↑XY Z ∩B↑XY Z = ∪zi∈z∗(xA

i , y
B
i , zi) where xA

i ⊆ X, yB
i ⊆ Y . Then :

r(A,B) =
∑

C⊆XZ

∑
D⊆Y Z

nX(A,C)p(C,D)nY (B,D)

=
∑
C⊆A

∑
D⊆B

(−1)|C|+|D|p(C,D)

=
∑

∅�=C⊆A,∅�=D⊆B,C↓Z∩D↓Z �=∅
(−1)|C|+|D|pl(C↑XY Z ∩D↑XY Z)

b) For w ⊆ (X,Y, z∗), we have:

m[z∗](w) =
∑

w′⊆(X,Y,z∗)

m(w ∪ w′).

We know that m’s focal elements belong to ZLR (as m satisfies IRm(X,Y |Z)),
hence they can be represented as ∪zi∈Z(xi, yi, zi).
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The only non zero terms for m[z∗](w) are those given to a w ⊆ (X,Y, z∗) that
admits a representation as: w = ∪zi∈(X,Y,z∗)(xw

i , y
w
i , zi) where xw

i ⊆ X, yw
i ⊆ Y .

We successively consider how many times (they turn out to be +1, -1 or 0)
the terms m[z∗](∪zi∈z∗(xw

i , y
w
i , zi)) are encountered when computing r(A,B).

c) Consider first the case w↓XZ = A, w↓Y Z = B. This term is encountered in
every p(C,D) included in r(A,B), provided C↓Z ∩D↓Z �= ∅. Its coefficients are
thus:

∑
∅�=C⊆A

(−1)|C|
∑

∅�=D⊆B,C↓Z∩D↓Z �=∅
(−1)|D|. (25)

Given C, and with B1 = B ∩ C↓Z↑Y Z , B2 = B ∩B1, the second summation is
∑

∅�=D1⊆B1

(−1)|D1|
∑

D2⊆B2

(−1)|D2| = 0 if B2 �= ∅

=
∑

∅�=D1⊆B1

(−1)|D1| = −1 if B2 = ∅

The requirement B2 = ∅ is equivalent to C↓Z = z∗, that means also B↓Z
1 = z∗.

Let A = ∪zi∈z∗(xA
i , zi), with every xA

i �= ∅. So (25) becomes:
∑

∅�=C⊆A,C↓Z=z∗

(−1)1+|C| =
∑

{xi:∅�=xi⊆xA
i }

(−1)1+
∑

i |xi|

= −
∑

∅�=x1⊆xA
1

(−1)|x1|
∑

∅�=x2⊆xA
2

(−1)|x2| . . .
∑

∅�=x|z∗|⊆xA
n

(−1)|x|z∗||

= (−1)1+|z∗|.

d) Consider now the mass m[z∗](EXZ↑XY Z ∩FY Z↑XY Z) with E ⊆ A, F ⊆ B,
and at least one of E �= A or F �= B holds.

We have EXZ↑XY Z ∩ FY Z↑XY Z = ∪zi∈z∗(xE
i , yF

i , zi) where xE
i ⊆ xA

i and
yF

i ⊆ yB
i .

We consider all terms p(C,D) where CXZ↑XY Z∩DY Z↑XY Z has a non empty
intersection with EXZ↑XY Z ∩FY Z↑XY Z , and among them those that share the
same intersection with EXZ↑XY Z ∩ FY Z↑XY Z .

They admit a representation ∪zi∈z∗((xC
i ∩xE

i )∪ (xC
i ∩xE

i ), (yD
i ∩yF

i )∪ (yD
i ∩

yF
i ), zi).

We fix xC
i ∩xE

i and yD
i ∩ yF

i , and we consider the sets obtained while letting
(xC

i ∩ xE
i ) varies with ∅ ⊆ xC

i ∩ xE
i ⊆ xA

i ∩ xE
i .

Its coefficient is (−1)
∑

|x|. Either xA
i ∩ xE

i = ∅ and the coefficient is +/-1,
or xA

i ∩ xE
i �= ∅ and the coefficient is 0.

The only way to get a non zero coefficient is achieved when all xA
i ∩ xE

i = ∅
and yB

i ∩ yF
i = ∅, i.e. when A↑XY Z ∩ B↑XY Z = EXZ↑XY Z ∩ FY Z↑XY Z . but

this is back to the previous analysis and we have shown that the coefficient is
then (−1)|z

∗|+1.
So r(A,B) contains only (−1)|z

∗|m[z∗](A↑XY Z ∩ B↑XY Z) which is equal to
(−1)|z

∗|+1q(A↑XY Z ∩B↑XY Z) with z∗ = A↓Z = B↓Z .
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2. Let

• z∗ = A↓Z ∩B↓Z ,

• A∗ = A ∩ z∗↑XZ , A′ = A ∩A∗, so A = A∗ ∪A′.

• B∗ = B ∩ z∗↑Y Z , B′ = B ∩B∗, so B = B∗ ∪B′.

We show that r(A,B) = 0 whenever A↓Z �= B↓Z . We had:

r(A,B) =
∑
C⊆A

∑
D⊆B

(−1)|C|+|D|p(C,D)

=
∑

C1⊆A∗

∑
C2⊆A′

∑
D1⊆B∗

∑
D2⊆B′

(−1)|C|+|D|p(C,D)

=
∑

C1⊆A∗

∑
D1⊆B∗

p(C1, D1)(−1)|C1|+|D1|
∑

C2⊆A′

∑
D2⊆B′

(−1)|C2|+|D2|

=
∑

C1⊆A∗

∑
D1⊆B∗

p(C1, D1)(−1)|C1|+|D1| if A′ = B′ = ∅

= 0 otherwise

3. The case r(∅, ∅) = 0 is direct as r(∅, ∅) = p(∅, ∅) = 0. ✷

Suppose the subsets A of XZ and B of Y Z are identically ordered in the
matrix R according to the values of their projection on Z. It means we start
with ∅, and put successively the subsets A of XZ which projection on Z is
z1, is z2, is {z1, z2}, is z3, . . . is Z, and similarly with the subsets of Y Z.
Theorem 10.9 shows that R is then made of 2|Z| − 1 non zero blocks located
along its ‘diagonal’. As NX and NY are non-singular, P and R have equal
ranks. Therefore the basis of R is built by selecting in each block one line and
one column. The choice is arbitrary, but the best choice consists in using the
lines that correspond to those subsets of XZ which are equal to z↑XZ for z ⊆ Z
(and the same for the columns). The resulting matrix are denoted QX and QY,
respectively, as shown hereafter (see lemma 10.2 and 10.3).

NX · HX = QX and NY · HY = QY.

Theorem 10.10 Let

• DX = [dX(A, z)] is a 2|XZ| × 2|Z| matrix with dX(A, z) = q↓XZ [z](A) if
A↓Z = z, and = 0 otherwise,

• DY = [dY (A, z)] is a 2|Y Z| × 2|Z| matrix with dY (B, z) = q↓Y Z [z](B) if
B↓Z = z, and = 0 otherwise,

• F = [f(z1, z2)] is a 2|Z|×2|Z| diagonal matrix with f(z, z) = (−1)1+|z|q↓Z(z).

Then R = DX · F · D′
Y.

Proof.
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1. Let Q = [q(z1, z2)] be the 2|Z|×2|Z| matrix with q(z1, z2) = 1 if z1 ⊆ z2, and
= 0 otherwise. Note that Q is the matrix that transforms a bba into a credibility
function. So Q−1 is well defined, and its component q(z1, z2) = (−1)|z2|−|z1| if
z1 ⊆ z2, and = 0 otherwise. By construction, QX = DX Q and QY = DY Q.

2. We prove first that there exists a diagonal matrix F such that:

P = HX Q−1 F Q′−1 H′
Y (26)

Based on the theory of generalized inverse, we know that the 2|XZ| × 2|Y Z|

matrix P of rank r can be represented as P = PX L P′
Y where

• PX is a 2|XZ| × r matrix of rank r,

• PY is a 2|Y Z| × r matrix of rank r,

• L is a r × r diagonal matrix of rank r,

• and P′
YPX = I, the r × r identity matrix.

We know also that rank(HX) = rank(HY) = r. So there exists a TX and a
TY so that PX = HXTX and PY = HYTY So P can also be represented as

P = HX D H′
Y

where D = TX L T′
Y is a 2|Z| × 2|Z| matrix.

Now we have

R = NX P N′
Y

= NX HX D H′
Y N′

Y (27)
= QX D Q′

Y

= DX Q D Q′ D′
Y

= DX F D′
Y (28)

where DX and DY are defined in the theorem and F = Q D Q′ = [f(z1, z2)], z1, z2 ⊆
Z, which values are still to be derived.

These equalities result from the general equality q[D](C) = q(C) if C ⊆ D,
and 0 otherwise.

3. Let R = [r(A,B)] with A ⊆ XZ and B ⊆ Y Z. We explore the value of
r(A,B). From (28), we have:

r(A,B) =
∑

z1,z2Z

dX(A, z1)f(z1, z2)dY (B, z2)

= q↓XZ [A↓Z ](A)f(A↓Z , B↓Z)q↓Y Z [B↓Z ](B)

Suppose A↓Z = B↓Z = z, then, by theorem 10.9:

r(A,B) = q↓XZ [z](A)f(z, z)q↓Y Z [z](B)

= q↓XZ(A)f(z, z)q↓Y Z(B)
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If A↓Z = zA, and B↓Z = zB with zA �= zB then, r(A,B) = 0 by theorem
10.9. So:

0 = q↓XZ [zA](A)f(zA, zB)q↓Y Z [zB ](B)

Suppose that q is not dogmatic (i.e., q(X,Y, Z) > 0). Then the two q terms
are positive, and thus f(zA, zB) = 0. If q is dogmatic, we just change q so that
q(X,Y, Z) = ε, and we find then that f(zA, zB) = 0. This is true for every ε,
and by the continuity assumed in axiom 10.1, we can deduce that even for the
dogmatic case, f(zA, zB) = 0 is required.

Thus f(z1, z2) = 0 whenever z1 �= z2, what means that F is a diagonal
matrix. Therefore replacing D by Q−1 F Q′−1 in (27) we get

P = HX Q−1 F Q′−1 H′
Y

where F is diagonal. Hence (26) is proved.

4. We prove that the diagonal elements of F are (−1)|z|+1/q↓Z(z) when the
denominator is non null, and = 0 otherwise.

The rows of HX can be permuted so that the rows which index is a cylin-

drical extension of a subset of Z are at the top. Then HX =
[

A
BX

]
where the

(z↑XZ
1 , z2) element of A is pl(z↑XY Z

1 ∩ z↑XY Z
2 ) = pl((z1 ∩ z2)↑XY Z). So A is

symmetrical. The same operation can be done on HY, and the upper block is in
fact the same A as in the decomposition of HX. Applying the same permutation
on P, we find that its upper left corner is also the A matrix.

So we get

A = A Q−1 F Q′−1 A. (29)

Let B = [b(z1, z2)] be the 2|Z| × 2|Z| diagonal matrix with b(z1, z2) =
(−1)|z|+1q↓Z(z) if z1 = z2 = z �= ∅, and = 0 otherwise. Then the element
β(z1, z2), z1, z2 ⊆ Z, of Q′ B Q is:

β(z1, z2) =
∑

z3⊆Z,z4⊆Z

q(z3, z1)b(z3, z4)q(z4, z2)

=
∑

z3⊆z1,z4⊆z2

b(z3, z4)

=
∑

∅�=z⊆z1∩z2

b(z, z)

=
∑

∅�=z⊆z1∩z2

(−1)|z|+1q↓Z(z)

= pl↓Z(z1 ∩ z2)

= pl((z1 ∩ z2)↑XY Z)

Hence Q′ B Q = A. Equation (29) becomes B = B F B where B and F are
diagonal. So the diagonal elements of F are (−1)|z|+1/q↓Z(z) when denominator
is non null, and = 0 otherwise (anything would be satisfactory, and we choose
for simplicity sake). ✷
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The next theorem shows that the second requirement requested by theorem
5.4 is satisfied.

Theorem 10.11 For A ⊆ XZ,B ⊆ Y Z, X ⊥⊥m Y |Z implies

q(A↑XUZ ∩B↑Y UZ) =
qXY Z↓XZ(w↓XZ) qXY Z↓Y Z(w↓Y Z)

qXY Z↓Z(w↓Z)
.

Proof. By theorem 10.9, the non zero r terms in R are

r(A,B) = (−1)|z
∗|+1q(A↑XUZ ∩B↑Y UZ), if A↓Z = B↓Z = z∗ �= ∅.

By theorem 10.10, we found also

r(A,B) = (−1)|z
∗|+1 q

XY Z↓XZ(w↓XZ) qXY Z↓Y Z(w↓Y Z)
qXY Z↓Z(w↓Z)

.

Hence the theorem is proved. ✷

11 Appendix B : Proofs of Graphoid Axioms for Belief
Function Conditional Independence

The following properties corresponding to the theorem 8.1 prove the validity
of the graphoid axioms for any belief function. In all proofs, we use the defi-
nition of conditional non-interactivity and we omit to indicate the domain XY Z.

Property P1. Symmetry holds for any belief function distribution.

Proof. Given three variables X, Y , and Z.
We have to show X ⊥m Y |Z ⇔ Y ⊥m X|Z.
X ⊥m Y |Z (by definition 5.1)
⇔ m ∩©m↓Z = m↓XZ ∩©m↓Y Z

⇔ m ∩©m↓Z = m↓Y Z ∩©m↓XZ (commutativity of combination)
⇔ Y ⊥m X|Z ✷

Property P2. Decomposition holds for any belief function distribution.

Proof. Given four variables X, Y , Z, and W .
X ⊥m Y ∪W |Z ⇒ X ⊥m Y |Z ?
X ⊥m Y ∪W |Z (by definition 5.1)
⇔ m ∩©m↓Z = m↓XZ ∩©m↓(WY )Z

⇔ m ∩©m↓Z = m↓XZ ∩©m↓WY Z

We marginalize on W, we obtain :
(m ∩©m↓Z)↓W = (m↓XZ ∩©m↓WY Z)↓W

⇒ m ∩©m↓Z = m↓XZ ∩©m↓Y Z (using CM1 : lemma 2.6)
⇒ X ⊥m Y |Z ✷

Property P3. Weak union holds for any belief function distribution.

Proof. Given four variables X, Y , Z, and W .
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X ⊥m Y ∪W |Z ⇒ X ⊥m Y |W ∪ Z ?
Using definition 5.1, X ⊥m Y ∪W |Z

⇔ m ∩©m↓Z = m↓XZ ∩©m↓(WY )Z

⇔ m ∩©m↓Z = m↓XZ ∩©m↓WY Z

Combining m↓W with both sides of the preceding equality, we get :

⇔ (m ∩©m↓Z) ∩©m↓W = (m↓XZ ∩©m↓WY Z) ∩©m↓W

⇒ m ∩©(m↓Z ∩©m↓W ) = (m↓XZ ∩©m↓W ) ∩©m↓WY Z

⇒ m ∩©m↓WZ = m↓WXZ ∩©m↓WY Z

⇒ X ⊥m Y |W ∪ Z

✷

Property P4. Contraction holds for any belief function distribution.

Proof. Given four variables X, Y , Z, and W .
We have to show
X ⊥m Y |Z and X ⊥m W |Y ∪ Z ⇒ X ⊥m Y ∪W |Z

Using X ⊥m Y |Z and X ⊥m W |Y ∪ Z, we find

⇒ m ∩©m↓Y Z = m↓XY Z ∩©m↓Y WZ

⇒ m ∩©(m↓Z ∩©m↓Y ) = (m↓XZ ∩©m↓Y ) ∩©m↓Y WZ

⇒ (m ∩©m↓Z) ∩©m↓Y = (m↓XZ ∩©m↓Y WZ) ∩©m↓Y

⇒ m ∩©m↓Z = m↓XZ ∩©m↓Y WZ

⇒ X ⊥m Y ∪W |Z

✷

Property P5. Intersection holds for any belief function distribution.

Proof. Given four variables X, Y , Z, and W .
We have to show
X ⊥m Y |Z ∪W and X ⊥m W |Z ∪ Y ⇒ X ⊥m Y ∪W |Z

We have X ⊥m Y |W ∪ Z

⇒ m ∩©m↓WZ = m↓WXZ ∩©m↓WY Z

⇒ (m ∩©m↓WZ)↓W = (m↓WXZ ∩©m↓WY Z)↓W

⇒ m ∩©m↓Z = m↓XZ ∩©m↓Y Z (30)

We have also X ⊥m W |Y ∪ Z

⇒ m ∩©m↓Y Z = m↓Y XZ ∩©m↓WY Z

⇒ (m ∩©m↓Y Z)↓Y = (m↓Y XZ ∩©m↓WY Z)↓Y

⇒ m ∩©m↓Z = m↓XZ ∩©m↓WZ (31)

Since we have the same left-hand sides of the preceding two equalities (30)
and (31), the right-hands must be equal, so we obtain :

m↓XZ ∩©m↓Y Z = m↓XZ ∩©m↓WZ
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When we combine m↓Y ∩©m↓W with both sides of the preceding equality, we
get :

⇒ m↓XZ ∩©m↓Y Z ∩©m↓Y ∩©m↓W = m↓XZ ∩©m↓WZ ∩©m↓Y ∩©m↓W (32)

We marginalize (32) on Y, we obtain then :

⇒ m↓XZ ∩©m↓W ∩©(m↓Y Z ∩©m↓Y ) = m↓XZ ∩©(m↓WZ ∩©m↓W ) ∩©m↓Y

⇒ (m↓XZ ∩©m↓W ) ∩©m↓Z = m↓XZ ∩©(m↓WZ ∩©m↓W )
⇒ m ∩©m↓Z = m↓XZ ∩©m↓WZ

⇒ X ⊥m W |Z

By equation (30), we have already proved that X ⊥m Y |W ∪ Z

⇒ m ∩©m↓Z = m↓XZ ∩©m↓Y Z

⇒ m ∩©m↓Z ∩©m↓WY Z = m↓XZ ∩©m↓Y Z ∩©m↓WY Z

⇒ m ∩©m↓Z ∩©(m↓WY ∩©m↓Z) = m↓XZ ∩©m↓Y Z ∩©(m↓WY Z ∩©m↓WY )
⇒ (m ∩©m↓Z) ∩©m↓WY = m↓XZ ∩©(m↓Y Z ∩©m↓WY Z) ∩©m↓WY

⇒ (m ∩©m↓Z) ∩©m↓WY = (m↓XZ ∩©m↓WY Z) ∩©m↓WY

⇒ m ∩©m↓Z = m↓XZ ∩©m↓WY Z

⇒ X ⊥m Y ∪W |Z

✷
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