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Abstract.

Any belief function can be decomposed into a
confidence and a diffidence components. Each
components is uniquely decomposable into simple
support functions that represent the impact of the
simplest form of evidence, the one that only
partially supports a given subset of the frame of
discernment. The nature of the inverse of
Dempster's rule of combination is detailed. The
confidence component translates the impact of
‘good reasons to believe'. It is the component
classically considered when constructing a belief.
The diffidence component transl ates the impact of
‘good reasons not to believe'.

Keywords: uncertainty, belief functions, simple support
functions, Dempster's rule of combination and
decombination.

1. Introduction.

In this paper, we take it for granted that the transferable
belief model (TBM) is appropriate to represent quantified
beliefs. Hence beliefs are quantified by belief functions and
belief functions are combined by the unnormalized
Dempster's rule of combination, denoted the J-combination,
when the sources of evidence that induce them are distinct
(Smets, 1990, Smets and Kennes, 1994).

In section 2, we study a canonical decomposition of a
belief function into elementary and distinct components such
that their [0-combination restores the original belief
function. In section 3 and 4, we analyze Dempster's rule of
combination and define the decombination process. In section
5, we discuss the meaning of these elementary components.
We present the concepts of ‘absorbing belief state’, of ‘debt
of belief’, of ‘latent belief structure’, and of confidence and
diffidence components of a belief state. In section 6 we
present a mathematical generalization of this decomposition.
In section 7 we compare our canonical decomposition with
Shafer’s original proposal. In section 8, we solve the
decomposition problem for the dogmatic belief state.

Note: In the TBM, belief functions are unnormalized. It
means that we do not require m(@) = 0 and bel is defined

from its related basic belief assignment (bba) m : 22 ~[0,1]
by:
bel(A) = > m(B)
B:@#BCA
The normalization requirement m(&) = 0 that Shafer
assumes is not essential in the development of the theory,
except if one assumes that a belief function has to be viewed
as the lower probability encountered in a Dempsterian model
(1967). Thisview isirrelevant to the TBM.

for every ACQ

2. The canonical decomposition.

The canonical decomposition is based on a generalization of
the simple support functions introduced by Shafer (1976). A
simple support function (SSF) on a frame of discernment Q
isabelief function which related basic belief assignment m :

22-10,1] satisfies:

m(X) =w if X=Q
=1-w for some ACQ,
=0 otherwise

wherew([0,1], and A is called the focal element.

We denote such a SSF by AW where the index w of the
focal element A is the basic belief mass (bbm) m(Q) given
to the frame of discernment Q and the complement of wto 1
is the bbm allocated to A.

Shafer defines a belief function as separable if it can be
represented by the O-combination of SSF . For every
separable belief function bel defined on Q, one has:

bel = 0O AWA
ACSQ

The representation is unique if all focal elements are
different and bel is non-dogmatic, i.e., m(Q) >0. The
case of dogmatic belief functionsis analyzed in section 8.

Such a decomposition can be extended to any belief
functions, non-separable and/or dogmatic, if one uses some
generalization of the SSF. By abuse of language, we define a
generalized simple support function on Q (GSSF), also

denoted AW, as the function w : 22~ (-c0,00) characterized by
aweight wl(-0,00) and afocal element ACQ, such that:

w(X) =w if X=Q
=1-w if X=A
=0 otherwise.



When w(J[0,1], AW is a SSF. Those GSSF with wl1(1,)
are called Inverse Simple Support Functions (ISSF) for
reasons explained in section 4.

We prove that for any non-dogmatic belief function bel,
one has the unique canonical decomposition:

bel = 0O AWa 1)
ACQ
where wa [1[0,e0). The proof isimmediate once the relation
(2) is translated in the commonality function language. The
commonality function q : 22 ~[0,1] related to a belief
function bel and its bbam is defined by:
q(A) = > m(B) forevery ACQ
B:ACBCQ

Theorem 1: For any non-dogmatic belief function bel :
2Q-10,1], there exists a unique set of GSSF defined on Q

suchthat: bel = O AWa
ACQ

wherewa 0[0,e0) for every ACQ and

waz [ aooCHAT @

X:ASXCEQ
Proof: Let bel be a non-dogmatic belief function and g be
its related commonality function. The relation to prove
becomes:

aC = [19a(©)
ASQ
where ga isthe commonality function defined on Q and build
from such AWa, i.e., such that:
guB) =1 if BEA
=wp IfBEA
As bel is non-dogmatic, q(Q) > 0 and therefore g(C) > 0
for every CSQ. Then:
wa= [] ax)
X:ASXCQ
The proof is identical to the one given in Shafer (1976).
Asall q(X) are positive, wp, iswell-defined and positive. ©

for all CSA, 3

(-1)XHARL

The unicity of the representation results from the fact the
0O-combination operator is such that every A must be
different (in which case Shafer' canonical decomposition is
also unique). Theorem 1 generalizes Shafer'results in that it
concerns every non-dogmatic belief functions wihtout
inroducing the necessity of some underlying refinement of Q
(see section 7).

Example 1: Let Q ={a, b, c}. Let q be a commonality
function on Q. Let a=wyg, B=w{p}, Y=W{c}, X=W{ga b}
Y=W{ac}, Z=W{p,c}, t=wg. Table 1 presents the values of g,
of each ga and of wp for every ACQ.

The constraint of relation (3) means that g(A) is the
product of the gy (A) taken over XS Q (those on the same
line in table 1). Note that & is the focal element of one of
the GSSF of the canonical decomposition of bel. Q is not a
focal element as it would always correspond to the vacuous
belief function Q1, i.e., a bba with m(Q) = 1, and Qlis the
unit element of Dempster’s rule of combination:

bel IQ 1=bel forevery bel defined on Q.

Example 2: Let Q = {ab,c}. Let abbam : 22 [0,1]
be such that m({ab}) = m({ac}) = m({ab,c}) = 1/3 then
W{ab} =W{ac} = V2 andw(q =4/3.

ACQ | dA) Az %g A %o Hab} Kac
Ad{b,c}
%] 1 1 1 1 1 1 1 1
{3 Byz |t 1 B y 1 1z
{ap} | taByyz[t a B y 1 y z
{abc JtaByxyZ4 t o By X y z
ACQ WA

@ t= gq{ah).a{bh).a{ch).a{ab.c})
q{ab}).a{ac}).afbc})

(3 o= a{ab}).a{ac})
q{a).a{abct})
_dq{ab.c})
tab} *= afan))

Table 1: Subsets of Q, values of q expressed in function
of its canonical components, and values of the weights w
characterizing each elementary component.

The practical computation of wp, is obtained by applying
the logarithmic transformation to the weights and the
commonalities in (2) and applying the Fast Mobius
Transform (Kennes, 1992) appropriately adapted.

3. The 0O-combination of two belief

functions.

Let bel1 and belo be two belief functions on Q and let bel12
be the result of their [J-combination. Let {w,i: ACQ} and

{Wi: AC Q} be the sets of weights of the canonical
decomposition of bel1 and belo:

1
bel{= O AW, ad
1oaco ™A
Then: L,
bel1o = bel1Obelo = 0O AW, W
12 1 2 ACO ATA

2
belo= 0O AW
2 acq A

This results from the associativity and commutativity of
the O operator, and the fact that AXOAY = AX.Y, what is
proved by the direct application of Dempster's rule of
combination.

Note: the reason we use the weight given to Q as an
index of the GSSF resides in the last relation. A natural
alternative to represent a GSSF would have been to use the
weight given to the focal element as an index, but the index
obtained after applying Dempster’'s rule of combination
would not have been as simple.

The normalization of belqo is achieved by multiplying
every term of belq1o (and identically for mq2 and q12) by

1 L . .
k = ————.. This is identically achieved by the O -
1-m12(9) y y

combination of bel1o with @K



4. The ©-decombination operator.

We define the ©-decombination operator, i.e. the inverse of
the O-combination operator. It is that operator that would
restore bel1 from bel10bel > and belo:

(bel10bel2) © belo = belq 4
Inparticular, bel1 © bel1 = QL.

The meaning of the ©-decombination operator is clear: it
eliminates the impact of a belief that has been included in bel
thogh Dempster's rule of combination. Shenoy (1994) called
that operator the removal operator.

The decombination operation is well-defined for non-
dogmatic belief functions as it trandates into a division once
commonality functions are introduced. Indeed let g and gp
be the commonality functions related to belq and bels. The

commonality function g2 related to bel1[0bel, satisfies
g12(X) = g1(X).qo(X) for every XS Q. Therefore (4) becomes
d12(X)
—= = q1(X).
X q1(X)

So given any two belief functions bel1 and belo on Q and
their related commonality functions qp and g, let q190:

_ quX)
91902(X) = o) for all XSQ.

We define bel16belo on Q as the pseudo belief function
that is induced from q1©q2 by the same relation as the one
that links belief functions and commonality functions.

Note: bel1BGbels is not necessarily a belief function,
hence the 'pseudo’ qualification.

Let g1 and gy be the commonality functions related to the
SSF AX and the ISSF AY, respectively. Let q12 =qp .2 be
the commonality function relates to AXOAY = AX.Y. Define
g’ as the commonality function related to Al/Y. By
construction,

qu(X)=1 (X) =1 q2(X) =1
@ X)=1 if XCA,
q1(X) =x q2(X) =y q12(X) =xy
@X)=lUy  if XEA.

S0 g12 = 01.92 = g1/92’ is the commonality function
related to both AXOAY and AXGALY. This development just
shows that AXOJAY = AX@AL/Y. This can be generalized
into:

bel JAY = beloA LY.

Let AY be a GSSF with yO(1,0), then ALY is a SSF as

1/y0[0,1]. This explains why we call AY an ISSF.

5. The latent belief structure.

5.1. Meaning of AW when w>1.

The idea underlying the canonical decomposition of a
separable belief function bel into SSF is that the state of
belief represented by bel could be understood as the result of
the combination of distinct elementary states of belief, each
one represented by a SSF. Each SSF characterizes an
elementary state of belief in which only one proposition (the
proposition denoted by the focal element) is somehow
supported (somehow meaning ‘with weight 1-w’). This
simple interpretation collapses once bel is not separable, in

which case some of the GSSF of the canonical
decomposition are not SSF, but ISSF. The meaning of the
decomposition becomes clearer once the concept of absorbing
belief isintroduced.

5.2. Absorbing Beliefs.

The SSF AX, x(O[0,1], represents a state of belief that
trandlates the idea that “'Y ou have some reason to believe that
the actual world isin A (and nothing more)” (You is the
agent who holds beliefs). The 1-x is the weight
corresponding to “some reasons’. Suppose the other state of
beliefs that would translate the idea that “You have some
reason not to believe that the actual world isin A”. This
cannot be represented by a belief function over Q and it
seems there is no way to represent it by a discounting or by
a meta-belief over the set of belief functions over Q.
Suppose that You are in a situation where You have
simultaneous some reason to believe A and some reason not
to believe A. It might occur that the weights of both ‘some
reasons are exactly counter-balancing each other. In that
case, You end up in a state of total ignorance, hence Y our
belief over Q is represented by a vacuous belief function.
The first state of belief is represented by a simple support
function AX. So the second state of belief must be
represented by ‘ something’ which combination with AX leads
to avacuous belief function. But there are no belief functions
which combination with another belief function by
Dempster’s rule of combination would result in a vacuous
belief function. The state of belief encountered when there are
some reasons not to believe A is called a state of absorbing
belief as it is a state of belief that will absorb AX. It looks
like a state of belief where Y ou have a‘debt of belief’ asthe
accumulation of new pieces of evidence could lead You to a
classical state of belief. The representation of such a state of
absorbing belief cannot be achieved by a single belief
function.

Example 2, continuation. Suppose a frame Q =
[ab,c] and Your belief state is characterized by a belief
function given in example 2. We have: bel =
{ab} 1/2D{a,c} 1/2D{a} 4/3 = ({ab} l/ZD{ a,c} 1/2)9{ a} 34
How to interpret the term {a}#/3 that is taken away by a ©-
decombination of {a} 34? The function {a,b} Y20{a,b} V2 is
a belief function which bbm are: m({a}) = m({ab}) =
m({ac}) = m({ab,c}) = 1/4. Hence {a} is somehow
supported (degree 1/4). The impact of ©{a} 34 isto erase the
support given to {a}. It seems that bel was the result of the
combination of three pieces of evidence.

Evidence 1: believe{a,b}.
Evidence 2: believe {ac}.
Evidence 3: do not believe{a}.

The sources of evidence 1 and evidence 2 receive aweight
1/2 and the source of evidence 3 receives aweight 3/4.

The way you treat the first piece of evidence consists in
accepting to believe what the sources say (i.e., {ab}) with a
strength 1/2. So Evidence 1 induces in You the belief state
represented by the SSF {a,b} 1/2: You believe at level 1/2
what the source says and the source says : “believe{a,b}”, a
shortcut for "believe that the actual state of affair is one of a
or b". So You believe at level 1/2 that You should believe
{ab}, what reduces into ‘You believe at 1/2 that {ab}’.



(This reduction remembers the positive introspection
described in epistemic logic). The same holds for Evidence 2.

With Evidence 3, You believe at level 3/4 what the source
says and the source says “Do not believe {a}”. The reduction
cannot be achieved as in the previous cases as one has “You
believe at 3/4 that You should not believe {a}”. It only
means that if You had some belief in {a}, You should delete
it. It is exactly what is achieved by the ©6{a}3/4. You had a
belief 1/4 given to {a} and it is removed. So the ISSF {a} 43
corresponds to “the support given to the fact that Y ou should
not believe the focal element {a}”. You have “some good
reason not to believe something”, where the strength of good
reason is equal to the belief / reliability / support Y ou gave
to the source.

Example 3: The Pravda Bias. You are in 1980,
away from home, and read in a copy of an article published
in ajourna that the economic situation in Ukalvia is good.
Y ou do not know which journal the paper was copied from
and Y ou never heard about Ukalvia. So Y ou had no a priori
whatsoever about the economic status in Ukalvia, and now
after having read the document, You might have some
reasons to believe that the economic status is good. The
‘some reasons’ reflects the strength of the trust You put in
the information published in a journal. Then a friend in
which Y ou have full confidence mention to Y ou that Ukalvia
is a region of the USSR and that the document was
published in the Pravda. By experience, You have some
reasons not to believe what the Pravda says when it describes
the good economic status of Ukalvia, it might just be
propaganda

The reasons to believe (called the confidence) that the
economic status in Ukalvia is good result from the
information presented in the initial document and Y our
general belief about journal information. The reasons not to
believe it (called the diffidence) result from what Y ou know
about the Pravda. If both ‘reasons counter-balance each
other, You end up in a state of total ignorance about the
economic status in Ukalvia

It might be that the confidence component is stronger
than the diffidence component. Then Y ou will end up with a
dlight belief that the economic statusin Ukalviais good (but
the belief is not as strong as if You had not heard that the
journal was the Pravda and Ukalviawas in USSR).

If the diffidence component is stronger than the confidence
component, then You are still in a state of ‘debt of belief’,
in the sense that Y ou will need further confidence component
(some extra information that support that the economic
status in Ukalviais good) in order to balance the remaining
diffidence component. In such a case, if You are asked to
express Y our opinion about the economic status in Ukalvia,
You might express it under the form: ‘So far, | have no
reason to believe that the economic status is good, and |
need some extra reasons before | start to believeit'.

5.3. Latent beliefs.

A way to represent belief states where both confidence and
diffidence are involved consists in creating a structure of
‘latent’ beliefs and a structure of ‘apparent’ beliefs. A latent
belief structure is represented by a pair of belief functions (X,
Y) where X,YOB and B is the set of belief functions over
Q. X and Y are respectively quantifying the confidence and
the diffidence component of the latent belief structure. Let

Q1 represent the vacuous belief function. (X,Q1) describes a
state of belief where Y ou have only a confidence component.
(QL,Y) describes a pure state of absorbing belief where there
is only a diffidence component. For example, the state of
belief induced by “You have some reasons to believe A” is
represented by (AX,Q1) and the state “ Y ou have some reasons
not to believe A" is represented by (QL,AY) (for x,yO[0,1],
and where x and y are the complements of the weights
corresponding to the ‘ some reasons’).

Two latent belief structures are combined by Dempster’s
rule of combination (denoted by [0) applied to both the
confidence and diffidence components.

(X,)Y) O (U,V) = (XOU,YOVv).
In particular,
(X,QhH O (QLX) = (X,X)

A latent belief structure can induce an apparent belief
structure represented by an element of B. Let A be the
operator that transforms a latent belief structure into an
apparent belief structure: A:BxB - B. If thereis only anon
vacuous confidence component then we assume that the
apparent belief structure is equal to the confidence
component: A(X,Q1) = X. We also want that if the
confidence and the diffidence components are equal, they
counter-balance each other and the resulting apparent belief
structure is vacuous: A(X,X) = Q! and in particular
A(AX,AX) = QL

Consider now the equalities:

(XOY,X) = ((X.X)0(Y,Q1) = ((QLQHO(Y,Qh) = (Y,Q
Thus that for every X,Y,ZOB, (X,Y) = (X0zZ,YOZ).

Introducing the ©-decombination operator, we can write:
If XOY B, then (X,Y) = (XOY,Q1) and A(X,Y) = XOY
If XY OB, then A(X,Y) is undefined.

So A\ is not defined on the whole space BxB, but only
on those elements (X,Y) where XOY is a belief function in
B. We could have hoped that such a state of belief would
not occur. Unfortunately we already encountered a counter
example when we introduced the latent belief structure
(Q1,AX) that characterizes the case where all You know is
that Y ou have good reasons not to believe A. This means
that the apparent belief structures are not rich enough to
characterize every belief state. Some state of belief can only
be represented by their latent belief structure.

What should be an appropriate apparent belief structure
when X©Y OB is not clear. What is the apparent belief
structure in the case (Q!,AX)? We could claim that
A(QLAX) = Q1 but then the apparent vacuous belief
structure Q! could correspond to many non equivalent latent
belief structures. How to solve the general case? We could
propose that A(X,Y) is the belief function ‘closest’ from
XOY. Unfortunately such a concept of ‘closeness’ is not
available. The specialization concept can be used to create a
partial order on the set of belief functions. Pointwise
measures of the information contained in a belief function
have been proposed (Pal and Bezdek, 1992), but none seems
really convincing as THE appropriate measure to define
‘closeness’.

Nevertheless, all hope is hot lost as the problem does not
appear if we start with a belief function that represents Y our
beliefs. It can only appear when beliefs are described directly
from some latent belief structure. We show now how to
build the latent belief structure from a given belief function.



5.4. The dissection of the latent beliefs.
Let {wa: ASQ, wa[[0,0)} bethe set of weights associated
with agiven belief function bel defined on Q, so:
bel = 0O AWa,
ACQ

Create the partition of 22 into the two subsets:
Ac={A:ACQ,wa0[0,1]}
Ap={A: ACQ, wa(1,00)}.
The two subsets collect the SSF and the ISSF that belong
to the canonical decomposition of bel, respectively (the C
index isfor confidence, the D for diffidence).

Then: bel = 0O AWA = 0 AWA [0 [ AWA
ACQ ADAc ADAp

= 0 AYMAB O
ADAC ADAp

Theterm 0O AWAa isabelief function, denoted belc, as
ADAC

each component is a SSF. The term DA AlWa isalso a
D
belief function, denoted belp, as each component is also a
SSF. Therefore bel is the ©-decombination of the belief
function belc be the belief function belp:
bel = bel ¢ © belp.

Hence (belc, belp) is the latent belief structure that
underlies the apparent belief structure bel.

We have thus been able to prove that any non-dogmatic
belief function bel can be uniquely decomposed into two
belief functions belc and belp which are separable belief
functions and the sets of focal elements of the SSF in belc
and belp are digoint.

ALlwp (5)

6. Further generalization.

Up to here we have considered only GSSF with w>0. The
case w = 0 corresponds to a conditioning process (bel JAQ is
the conditional belief function obtained by conditioning bel
on A by Dempster'srule of conditioning).

We focus on the generalization with w<0. Let AW be
GSSF with wi -1,0). Then AWOAW = AW? and w20(0,1].
Hence AW is such that its O -combination with itself
produces a SSF. The relation of AW with the SSF AW?is
analogous to a square root. Hence we call AW? a square root
SSF, denoted RSSF. Analogously AW with wl(-e0,-1) is a
GSSF such that AW?is an ISSF, as w2[(1,0). So AW
corresponds to a square root of an inverse simple support
function, denoted RISSF.

A function b : 2©2 . [0,1] which canonical decomposition
will include square root terms is not a belief function. Can
we encounter states of belief which representation includes
some RSSF and IRSSF? If yes, it would mean that the
TBM isinadequate (and every models of uncertainty based on
belief functions and probability functions). It is not clear that
such functions can be involved in the representation of a
state of belief. So far, they seem nothing more than
mathematical objects without relation with the representation
of belief.

7. Comparison of our canonical
decomposition with Shafer’s solution.

Shafer (1976) has considered the set of support functions as
being the set of belief functions that can be obtained by a
coarsening of the separable belief functions. Hence a support
function is a belief function bel that admits the following
representation:
bel = Coars( O AWA)
ASQ

where bel : 22 . [0,1], AWAisa SSFon Q, © isa
coarsening of Q and Coars is the operator that transforms a
belief function defined on Q into a belief function defined on
O, i.e, for every BCO,

= WA = WA
bel(B) Coars:(A(;DQ AWA)(B) 9\ gDQ AWp)(B)
as Coars(bel(B)) = bel(B) if BSO.

In example 2, a solution would be:
bel = {ay,b} Y20{ap,b} V20 %/3

(the term @#3 is the normalization factor), Q = {a1,ap,b,c}
and © ={ab,c} where a, b, ¢ are the result of the coarsening
of a1 and ap, of b and of c, respectively.

In the canonical decomposition, we do not consider that
the belief function we deal with is only defined on a
coarsening of another belief function defined on a more
refined space. We feel that the introduction of the spaces Q
and O is not satisfactory. If it were the case, then how could
we justify Dempster’s rule of combination? To illustrate the
problem, suppose bel1 and bel» are both defined on Q, and ©

is a coarsening of Q. Let bel® denoted the belief function

induced on © by the belief function bel defined on Q, then
it is well-known that usually

bel©10bel©, # (bel 21 0bel2,)®.
Coarsening and Dempster’'s rule of combination do not
commute.

If one accept, as done in Shafer (1976), that the observed
bel is only defined on some frame © and that it results from
some underlying and unknown belief function bel defined on
Q, then the combination by Dempster’s rule of combination
becomes hazardous, is not unjustified. The canonical
decomposition studied by Shafer would result in explicitly
acknowledging that our beliefs are usually (i.e. whenever bel
is not separable) the results of some coarsening... in which
case Dempster’s rule of combination would have to be
reconsidered. We prefer our canonical decomposition aswe do
not have to acknowledge the two spaces. The space Q on
which bel isdefined is al what is needed, Dempster’s rule of
combination is well-justified and the canonical
decomposition is based on the two separable belief functions,
one representing the confidence, the other the diffidence
component of our state of belief.

8. The case of dogmatic belief functions.

If m(d) = 0O, the canonical decomposition cannot be
achieved as described as far as some w cannot be computed
(because some denominators are 0). In such a case, away out
consists in creating a bba m' where m'(Q) = ¢ (to be
rigorous, the € should be substracted from those positive



m(X) in order to keep the sum of the bbm equal to one, but
this subtlety is unnecessary in practice). By construction,
bel’ is not dogmatic, hence admits an unique canonical
decomposition.

Example 4: Let Q = {a,b,c} and let bel be the belief
function which bbais: m({ab}) = m ({ac}) = 1/2. Table 2
presents the values of m and ¢, of the m’ and
approximations of both m and g, and the coefficients of the
canonica decomposition of m’. The latent belief structure of

bel is limg _ o({ a,b}260{ a,c} 2¢, {a}4€(1-€)). So bel is
essentially the result of a conditioning on {a,b} and on {a,c}
but where {a} may not receive any support (so bel({a}) = 0).

ACQ m q m  qA) WA
/] 0 1 2¢ 1 l-¢
{& 0o 1 0 1 1/(4¢(1-¢))
{b} 0o 5 0 .5 1
{g 0O 5 0 .5 1
{ab} S5 5 5¢e 5 2¢
{ac} 5 5 5¢e 5 2¢
{b,c} 0 O € € 1
{ab,c} 0O O € €

Table 2: Example 3. Subsets of Q, values of m and g, and
their e-approximationsm’ and g and w’ a.

9. Conclusions.

Thanks to our canonical decomposition, we can represent a
complex belief state as the result of the combination of
elementary and distinct states of belief. Each elementary
belief state is represented by a SSF. Each SSF represents
either ‘good reasons to believe’ or ‘good reasons not to
believe’ a given event or proposition. Each SSF can be seen
as aweighted proposition and a state of belief is represented
by a set of independently weighted propositions. It means we
have built a weighted propositional logic where user
can write propositions and give weights independently to
each of them. The result will be a complex state of belief,
which latent belief structure iswell defined.
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