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Abstract :

We construct the belief function that quantifies
the agent’ beliefs about which event of Ω will
occurred when he knows that the event is
selected by a chance set-up and that the
probability function associated to the chance set
up is only partially known.

Keywords: belief function, upper and lower
probabilities.

1. INTRODUCTION.

1) The use of belief functions to quantify degrees of
belief is muddled by problems that result from the
confusion between belief and lower probabilities (or
between plausibility and upper probabilities). Beliefs can
be induced by many types of information. In this paper,
we consider only one very special case: beliefs induced
on a frame of discernment Ω when the elements of Ω will
be selected by a random process. It seems reasonable to
defend the idea that the belief of an event should be
numerically equal to the probability of that event. This
principle is called the Hacking Frequency Principle
(Hacking 1965).

But there are cases where the probability function that
governs the random process is not exactly known. This
lack of knowledge can be encountered when probabilities
are partially defined or when data are missing. As an
example, suppose an urn where there are 100 balls. Its
composition is not exactly known. All that is known is
that there are between 30 and 40 black balls, between 10
and 50 white balls, and the other are red. What is your
belief that the next randomly selected ball will be black?
Suppose you have selected 50 balls at random with
replacement and you have observed 15 black balls, 20
white, 10 reds and 5 ‘not black’. What is your belief now
that there are between 35 and 37 black balls? What is
your belief now that the next  randomly selected ball will
be black? These are the problems we solve in this paper.

In this paper, we accept that beliefs are quantified by
belief functions, as described in the transferable belief
model (Smets 1990b, Smets and Kennes 1994). The
transferable belief model is a model for quantified beliefs

developed independently of any underlying probabilistic
model.  It is   neither   Dempster’s  model   nor  its   today

versions (Shafer, 1990, Kohlas, 1994). It is not a model
based on inner measures (Halpern and Fagin, 1990).

What we study here is just a special case of belief
function. We study the belief induced by the knowledge
of the existence of an objective chance set up that
generates random events according to a probability
function, probability function that happens to be only
partially known to us.

2) Suppose a frame of discernment Ω, i.e., a set of
mutually exclusive and exhaustive events such as one and
only one of them is true (we accept the close world
assumption (Smets 1988)). Suppose the true element will
be selected by a chance process. Let P:2Ω→[0,1] be the
probability function over Ω where P(A) for A”Ω
quantifies the probability (chance) that the selected
element is in A. We accept that this probability measure
is "objective". The problem is to assess Your degree of
belief. You denotes the agent who hold the beliefs. Your
beliefs are quantified by a belief function bel:2Ω→[0,1],
about the fact that the selected element is in A, given You
only have some partial knowledge about the value of P.

Should You know P, then by Hacking Frequency
Principle (1965) Your degree of belief bel(A) for each
A”Ω should be equal to P(A):
If You know that P(A) = pA ∀ A”Ω

then bel(A) = pA ∀ A”Ω
In that case bel is a probability function over Ω. But
remember that bel and P do not have the same meaning,
they only share the same values. P quantifies the
probability (chance) of the events in Ω, bel quantifies the
belief over Ω induced in You by the knowledge of the
value of the probabilities. P exists independently of me,
bel cannot exist if You do not exist.

Let pΩ be the set of probability functions over Ω.
Suppose that You know only that the probability function
P that governs the random process over Ω is an element
of a subset P of pΩ. The problem is to determine Your
belief about Ω given You know only that P is an element
of P (but You do not know which one).

In many cases, P is uniquely defined by its upper and
lower probabilities functions P* and P* where:



P*(A) = min { P(A) : P∈ P}

P*(A) = max { P(A) : P∈ P} = 1 - P*(A)

or P = {P : P∈ pΩ, P*(A) ≤ P(A) ≤ P*(A), ∀ A”Ω}.
Just as P and bel characterize different concepts, P* and
bel characterize also different concepts, even when P* is
mathematically a belief function. The function bel
concerns Your belief over Ω. The function P* gives the
lowest possible values for the probability of the events in
Ω compatible with what You know.

This knowledge that P∈ P”pΩ is translated into a belief
belpΩ 

over pΩ.1 That belief only supports P , i.e., its

basic belief masses are:
mpΩ

(Q) = 1 if Q=P

= 0 otherwise
Given Your belief over pΩ, can You build Your belief
over Ω. In this paper, we will show how to build such a
belief function.

Classical material about belief functions and the
transferable belief model can be found in Shafer (1976),
Smets (1988) and Smets and Kennes (1994).

2 .  I M P A C T  O F  H A C K I N G
FREQUENCY PRINCIPLE.

The general frame consists of :
- Ω: the finite set of possible elementary events ωi, i=1,
2...n, (the outcomes of the stochastic experiment),
- pΩ: the set of probability functions P over Ω,

- bpΩ
: the set of belief functions over pΩ.

Let N = {1, 2...n}. Let W = pΩ x Ω. All subsets A of W
can be represented as the finite union of the intersection
of A with each of the elementary events ωi:

∀ A”W, A = ∪
i∈Ν

(Ai , ωi) (2.1)

where Ai = proj(A∩cyl(ωi))”pΩ, cyl(X) is the cylin-
drical extension of X on W where X denotes a subset of
Ω (or pΩ), and proj(B) is the projection of B”W on Ω
(or pΩ) (context makes it clear which domain and which
range are involved).

The major problem solved in this paper is the
construction of the belief function belW on W that would
result if You were in a state of total ignorance about the
value of P. If You have some prior belief belpΩ 

about the

value of P, the belief belW over W would be combined
with the vacuous extension of belpΩ 

on W by the

application of Dempster's rule of combination. We will
treat essentially the case where You only know that P∈ P

1 subscripts of m and bel denote their domain.

where P is a subset of pΩ, i.e., when P is the only focal

element and Your belief over pΩ can be represented by
the basic belief assignment with mpΩ

(P) = 1.

Generalization for a finite (or countable) numbers of
focal elements is immediate. Further generalization is
more delicate.

Let bW be the set of belief functions over W. What is
their nature? We are going to construct the equivalent of
the basic belief masses (bbm) on bW. We say equivalent
as W is not a finite space and the concept of basic belief
masses has to be extended in order to cope with the
structure of W. The bbm will become some sort of
‘densities’. For simplicity sake, they are also denoted by
mW : 2W→[0,1]. The value belW(A) is defined as the
‘integral’ of the mW values given to the non empty
subsets of A. It happens that in the case considered in this
paper, mW is a real density for which classical integrals
are well defined. We call the mW function a basic belief
density (bbd) to enhance its particular nature. Those
subsets A of W such that mW(A)>0 are called the focal
elements of mW.

The first constraint about mW results from Hacking
Frequency Principle. Suppose You know the values P(ωi)
of the objective probability function P on Ω for every
ωi∈Ω  (what is translated by P = {P}). Let belΩ{P}

denotes Your belief over Ω when You know that P =
{P}.2 By Hacking Frequency Principle, the value
belΩ{P}(X) for any subset X of Ω is numerically equal to
the probability P(X) given to X.

By construction, belΩ{P} results from the marginalizing
of belW

{P} over Ω:

belΩ{P}(X) = belW{P}(cyl(X)) ∀ X”Ω
Hacking Frequency Principle implies the next
requirement.

Requirement 1:
If You know that P = {P}
                 then belW{P}(cyl(X)) = P(X)  ∀ X”Ω (2.2)

Let π(P) = cyl({P}) ” W, then π(P) = ∪
i∈Ν

({P(ωi)}, ωi) by

2.1. Thus belW{P}(cyl(X)) = belW(cyl(X)|π(P)). The
second term is just the result of the conditioning of belW
on cyl({P}), what is achieved by the application of
Dempster's rule of conditioning. Hence the bbd mW(A),

A”W is transferred to A∩π(P). Let A = ∪
i∈Ν

(Ai, ωi)”W ,

then m(A) is transferred to A∩π(P) = ∪
i∈Ν 

(Ai∩{P(ωi)},

ωi).

2Superscripts of bem and m denote Your knowledge
about P, i.e., the focal element of belpΩ

.



The result of this conditioning on π(P) is a probability
function. Hence belW {P} must be a Bayesian belief
function, i.e., only singletons can be focal elements and
belW{P}(W) = 1. The singletons of W have the form
({P(ωi)}, ωi) for i∈ { 1,...n}, P ∈ pΩ. Hence mW must
satisfy:
mW( ∪

i∈Ν
(Ai , ωi)) = 0 if Ai ∩Aj ≠Ø for some i≠j∈ N

= 0 if  ∪
i∈Ν

Ai ≠ pΩ

≥ 0 otherwise. (2.3)

The impact of Hacking Frequency Principle, translated by
2.3, is very strong. It implies that the focal elements of
mW  can be represented as  ∪

i∈Ν
(Ai, ωi) where the Ai,

i=1,...n, are non empty elements of a partition of pΩ.

3. THE CASE WHERE |Ω| = 2.

We study now the case where |Ω| = 2. Let Ω = {S, F}
where S and F denote Success and Failure, respectively.

Figure 1: Structure of the domain of mW and one
example of bbd centered on a when |Ω| = 2.

Let A”W be a focal element of mW , then A = (α,

S)∪ ( α , F) where α”[0, 1] and α  is the complement of
α  relative to [0, 1]. For simplicity sake, the bbd mW((α,
S)∪ ( α , F)) is written as mW(α).

W can be graphically represented by two [0, 1] intervals
where the upper [0, 1] interval is the intersection of W
with S, and the lower one is the intersection of W with F
(see figure 1). Every focal element of mW is made of a
set of mutually exclusive and exhaustive intervals that are
either in the S domain or the F domain. By convention,
intervals are defined as closed to the left and open to the
right, except when 1 is the right limit, in which case the
interval is also closed to the right.

We introduce an extra assumption.

Requirement 2:
If |Ω|=2,   belpΩ

([a,b)∪ [c,d) | S) = belpΩ
([a,d) | S)

                        for every 0≤a≤b≤c≤d≤1.

It is equivalent to assuming that mW(α) is null except if α
= [a, 1]. The origin of the assumption is to be found in the
meaning of the bbd. The bbd mW(α) for α”[0, 1] is that
part of belief (a density here) that supports the fact that
P(S)∈α  (and P(F)∈ α ). Suppose we condition mW on S.

Each bbd mW (α ) is transferred to (α , S)”W.
Requirement 2 means that if after conditioning on S a bbd
supports P(S) = x ∈ [0,1], it also supports every value in
[0, 1] larger than x. Observing a success could support
P(S) = .3, but that support should then also be given to
P(S) = .4 etc....

This assumption means that each focal element is a step
function that starts from ({0}, F), jumps from the F
domain to the S domain at some a in [0,1], and ends at
({1}, S) (see figure 1).

Finally, if we apply again the Hacking Frequency
Principle, we obtain after conditioning on P = {P} with
P(S) = p, P(F) = 1-p:

belΩ{P}(S) = p = ∫
0

p
   mW([x,1]) dx.

The second equality results from the fact that only those
bbd that jump before p will touch ({p}, S) and
belΩ{P}(S) is equal to the integral of those bbd that touch
({p}, S). Derivating both terms on p implies that:

mW([p,1]) = 1 ∀ p∈ [0,1].

In conclusion we have derived the bbd on W when |Ω| =
2.

Some properties can be easily derived.

1) Suppose the agent knows that P = {P: a ≤ P(S) ≤ b, 0
≤ a < b ≤ 1}. We condition mW on the cylindrical

extension of [a, b]. The bbd mW (A) for A”W is
transferred to A∩cyl([a, b]). belWP(S) is the integral of
all the bbd that touch only S after conditioning on cyl([a,
b]), i.e., those bbd that jump to S before a:

belWP(S)  = ∫
0

a
 mW([x,1]) dx = a

Similarly plWP(S) is the integral of all the bbd that touch
S, i.e., that jump to S before b:

plWP(S)  = ∫
0

b
 mW([x,1])  dx = b

This result should not be extrapolated blindly to higher
dimensions (see section 4 ).

2) The case |Ω| = 2 can be nicely represented by figure 2
(Smets, 1978). Each point in the triangle corresponds to
one interval of [0,1]. In general, if positive bbd are given



only to intervals, we assign the bbd given to [a,b] to the
point (a,b) of the triangle. Then:

bel([a,b]) = ∫
a

b
  ∫
x

b
  m([x,y]) dy dx

pl([a,b]) = ∫
0

b
 ∫
a∨ x

1
  m([x,y]) dy dx

q([a,b]) = ∫
0

a
  ∫
b

1
  m([x,y]) dy dx

m([a,b]) = - 
∂2bel([a,b])

∂a ∂b
 = - 

∂2q([a,b])
∂a ∂b

The result of the application of Dempster's rule of
combination is given by multiplying the commonality
functions.

Figure 2: Parametric representation on beliefs on [0,1]
when the focal elements are intervals. The shaded areas
are those on which integration is performed in order to
compute bel([a,b] (a triangle) , q([a,b]) (a rectangle) and
pl([a,b]) (a rectangle with right lower corner truncated).

In the present case (|Ω|=2) the non-null bbd of mW
obtained after conditioning on S are given to the intervals
[a,1], hence they cluster on the upper horizontal line.
Those obtained after conditioning on F are given to the
intervals [0,b], hence they cluster on the left vertical line.

Suppose You perform n independent experiments and
observe r successes, s failures where r + s ≤ n (the
difference n - (r + s) is the number of experiments for
which the outcome is not available). The commonality
function induced on pΩ = [0, 1]
- by a success is: qpΩ

([a,b] | S) = a

- by a failure is: qpΩ
([a,b] | F) = 1-b

- by a ‘S∪ F’ is: qpΩ
([a,b] | S∪ F) = 1

The belief function induced by ‘S∪ F’ is the vacuous
belief function that reflect the state of total ignorance in
which You are after just learning the tautology ‘S∪ F’.
Hence we can just as well drop all ‘vacuous’ results and
assume n = r+s.

The commonality function induced by r successes and s
failures in n independent (Bernoullian) trials is obtained
by multiplying the corresponding commonality functions.
Hence:

qpΩ
([a,b] | r, s) ≈ ar (1-b)s

In that case, by derivating qpΩ
([a,b] | r, s) and

appropriate normalization, we get:

 mpΩ
([a,b] | r, s) = 

Γ(r+s+1)
Γ(r) Γ(s)

 ar-1 (1-b)s-1

where Γ is the gamma function.

When n→∞, r→np, s→n(1-p) (hence p = lim 
r

r+s
), the

limit of m([a,b] | r, s) tends to 0 except for a dirac
function at p. In that case bel(A | r,s) = 1 if p∈ A and 0
otherwise. After accumulating an infinite number of
information, You will be in a state of ‘total certainty’, of
‘knowledge’ about the value of P(S).

3) Suppose You want to compute the belief that the next
outcome is a success (or a failure) given You have
already observed r successes and s failures in n
independent trials. We use m([a,b] | r, s) as the a priori
belief over [0, 1]. Dempster's rule of combination m12 =
m1⊕ m2 can be represented as (Dubois and Prade, 1986,
Smets, 1993a):

m12(A) = ∑
B⊆ Ω

   m1(A | B) m2(B)

bel12(A) = ∑
B⊆ Ω

   bel1(A | B) m2(B)

where m1(A | B) and bel1 (A | B) are unnormalized
conditional basic belief masses and belief functions.
Generalizing this relation in the present context and

denoting belΩ
{P: P(S)∈ {a,b]}(S) by belΩ(S | P(S)∈ [a,b])

(which value equals a), one obtains:

belΩ(S|r,s) = ∫
0

1
 ∫
a

1
 belΩ(S|P(S)∈ [a,b])mpΩ

([a,b]|r,s) db da

    = ∫
0

1
 ∫
a

1
 a  

Γ(r+s+1)
Γ(r) Γ(s)

 ar-1 (1-b)s-1  db da

So: belΩ(S | r, s) = 
r

r+s+1

belΩ(F | r, s) = 
s

r+s+1

and mΩ(S∪ F | r,s) =
1

r+s+1
.



This result shows that the observed proportion is an
excellent approximation of belΩ if r+s is not too small.

4. CASE WITH |Ω| = 3.

Suppose |Ω| = 3 where Ω = {A, B, C}. pΩ can be
represented by an equilateral triangle where each point
corresponds to an element of pΩ. The three heights are
equal to the three probabilities P(A), P(B) and P(C). The
height of such a triangle is 1 and the length of its side is

equal to √4/3.

By requirement 1, we know that the focal elements of
mW can be represented by:

(PA, A)∪ (PB, B)∪ (PC, C)
where (PA, PB, PC) are the elements of a partition of
pΩ.

In order to specify the form of the subsets PX, X∈ {A, B,
C}, we consider the conditioning of mW on the set PL ”

pΩ where

PL = {P: P = (pA, pB, pC): pB = b0 +  
1 - a1 - b0

a1
 pA,

                                                 pC = 1 - pA - pB}. (4.1)
where b0 , a1 ∈ [0, 1], b0 < 1-a1.
This set P L  corresponds to the subset of pΩ where
P(A)∈ [0, a1] and P(B) and P(C) are linearly related to
P(A). Requirement 3 states that, after conditioning mW
on PL, the bbd so obtained on the space PL is identical to
those obtained when |Ω|=2 (indeed every element of the
new subdomain is characterized by P(A) as when |Ω|=2).
Therefore after further conditioning on A, the focal
elements on PL should be of the form of intervals [a, a1]
(see figure 3). This requirement is sufficient in order to
derive the structure of the focal elements of mW.

Figure 3: Explanation of Requirement 3. Left figure:
the pΩ space with |Ω| = 3, and the PL domain. Middle
figure: a bbd that satisfies Requirement 3. Right figure:  a
bbd that does not satisfy Requirement 3

Requirement 3:
If |Ω| = 3, for every PA, there exists an α∈ [0, a1] such
that the projection of PA on PL is the interval [α , a1].

Requirement 3 can identically be defined as:

Requirement 3’:
If |Ω| = 3, mW(X | PL)≥ 0 if it exists an α∈ [0, a1]

 and X = {P: P∈ PL,  pA ≥ α}.
            = 0  otherwise.

Each requirement implies that the limits between PA and
PB must be a straight line passing through the corner
where P(C) = 1 and that crosses the opposite side of the
triangle (and similarly for the other limits). Every focal
elements of mW can be labeled by an element q = (qA,
qB, qC)∈ pΩ. The focal element labeled by q is the set
P(q) = (PA(q), A)∪ (PB(q), B)∪ (PC(q), C) (4.2)
where:
PA(q) = {P: P = (pA, pB, pC)∈ pΩ,

pA ≥ max(pB 
qA
qB

, pC 
qA
qC

 )

and similarly for PB(q) and PC(q) where the A,B,C-
indexes are symmetrically exchanged. The graphical
representation of PA(q) is the upper corner of the pΩ
triangle that includes all points in pΩ between the upper
corner and the two straight lines drawn from the two
other corners through q. belW(X | A) for X”pΩ will be
the ‘integral’ of all the bbd given to the focal elements
P(q) such that X”PA(q).

Figure 4 shows the structure of the partition so generated.

The value of belΩ(A | P = {(a, b, c)} ) is the ‘integral’ of
mW taken over all q in the triangle which corners are (0,
0, 1), (0, 1, 0) and (a, b, c). Reapplying the Hacking
Frequency Principle we have:

belΩ(A | P = {(a, b, c)} ) = a (4.3)

It can then be proved that the only function mW
symmetric in the three arguments of q that satisfies (4.3)

for every (a, b, c) ∈  pΩ is the function mW(P(q)) = √ 3

for every q∈ pΩ.



Figure 4: Structure of the domain of mW and one
example of bbd labeled q when |Ω| = 3. The shaded area
is PA(q).

Some properties derived from this solution are detailed.

1) If P  = {(.5, 0, .5), (.5, .5, 0)}, then mΩ(A) = 1/3,
mΩ(B) = mΩ(C) = 0, mΩ (A∪ B) = mΩ(A∪ C) = 1/6,
mΩ(B∪ C) = 1/3, mΩ(A∪ B∪ C) = 0. This result merits
some reflection. One might be surprised that even though
P(A) = .5 is exactly known, one does not have belΩ(A) =

.5. If the frame had been A versus A, the critic would
have been appropriate, except that in such a frame we just
have the required results. The difference observed here
reflects the fact that there are three elements.  What is
nice is that the pignistic probability induced in this case is
such that BetP(A) = .5 (the pignistic transformation is
detailed in next section).

2) If P = {(.5, b, c): b+c = .5}, then mΩ(A) = 1/3, mΩ(B)
= mΩ(C) = 0, mΩ(A∪ B) = mΩ(A∪ C) = 1/6, mΩ(B∪ C) =
1/4, mΩ(A∪ B∪ C) = 1/12. The same remarks hold as for
the case 1, but BetP(A) = .5 as it should.

3) If P  = {(a, b, c): a≤.5, b≤.5, c≤.5}, then mΩ(A) =
mΩ(B) = mΩ(C) = 0 , mΩ(A∪ B) = mΩ(A∪ C) =
mΩ(B∪ C) = .25, mΩ(A∪ B∪ C) = .25.

4) Suppose You know that P is characterized by a lower
probability function P* on Ω. Let P* be the upper

probability function dual of P*, i.e., P*(X) = 1 - P*(X)

for X”Ω. Let a = P*(A), b = P*(B), c = P*(C), A =

P*(A), B = P*(B), C = P*(C). The belief on Ω induced by
the set P of probability distributions P on Ω compatible
with the upper and lower probabilities (i.e., ∀ A”Ω,
P*(A)≤P(A)≤P*(A)) is given by:

Figure 5: Domain of PΩ when |Ω| = 3. The hexagon
represents the set P of probability functions compatible
with a given lower probability function. The values of
mΩ(A | P) and mΩ(A∪ B | P)  are the shaded surfaces.
mΩ(A∪ B∪ C | P) is the surface of the hexagon plus the
three small left over triangles fixed on its side.

belΩ(A) = 
a

a+B+C

belΩ(B) = 
b

A+b+C
 

belΩ(C) = 
c

A+B+c
belΩ(A∪ B) = (1-C)2  + C (a+b)
belΩ(A∪ C) = (1-B)2  + B (a+c)
belΩ(B∪ C) = (1-A)2  + A (b+c)
belΩ(A∪ B∪ C) = 1

These results are obtained by computing the various
surfaces described in figure 5.

It is worth noticing that bel is not equal to P*, even when

P*  is a belief function. Why should they? The

transferable belief model never requires that the belief
function that quantities our belief should be the lower
envelop of a set of probability function.

5. PIGNISTIC PROBABILITY.

In Smets (1990a, 1993b) and Smets and Kennes (1994),
we have shown how to build the appropriate probability
function BetP, called the pignistic probability function,
from a belief function when a decision must be made. We
have shown that the only ‘rational’ transformation, called
the pignistic transformation, must satisfy the following
rule when the betting frame Ω is finite. Let m be the basic



belief assignment quantifying the agent’s beliefs over Ω.
For ω∈Ω ,

BetP(ω) = ∑
A:ω∈ A”Ω

       
1

|A|
  m(A)

where |A| is the number of elements of Ω in A. Any other
probability function would lead to irrationality in the
betting behavior of the agent. Its extension to continuous
cases is easy to realize if the bbd are really densities, in
which case sums become classical integrals.

We study how decision should be made when beliefs are
induced by a set of probabilities, i.e., how to derive the
appropriate pignistic probability from the initial belief
induced by the knowledge that P∈ P”pΩ. The choice of
the appropriate betting frame is important. We could
think to build the belief function over Ω that quantifies
our belief over Ω and apply the pignistic transformation
to such a belief function over Ω using Ω as the betting
frame. But this is an erroneous strategy as the betting
frame is not Ω but W. The beliefs induced by P∈ P is a
belief over W, the belief derived on Ω is only the result of
the marginalization of the first one on Ω.

Using W as the betting frame, we apply the pignistic
transformation to BelW . For X”pΩ let S(X) be the
surface of X. Suppose the agent who wants to bet on Ω
knows only that P∈ P. The pignistic transformation
implies that the bbd mW(P(q)) given to P(q) (see (4.2))
be equally distributed among the elements of P:

BetPΩ(A) = ∫
q∈ pΩ

   
S(PA(q)∩P)

S(P)
  dq.

Interchanging the order of integration, one gets that

BetPΩ(A) = 
1

S(P)
   ∫

P∈ P

    ∫
q∈ pΩ

   I(PA(q)∩{P}) dq dP

where I(X) = 1   if X≠Ø,
0   otherwise.

One has: ∫
q∈ pΩ

   I(PA(q)∩{P}) dq = P(A),

hence: 

BetPΩ(A) = 
1

S(P)
  ∫
P∈ P

    P(A) dP.

The pignistic probability BetPΩ(A) so derived is
equivalent to the probability one would derive by
assuming an equi a priori density over pΩ, conditioning
it on P, and computing the expected probability of P(A).

In particular, when |Ω| = 2 and P = [a, b], the result is:

BetP(S) =  
1 + a - b

2
.

These are quite natural results. BetPΩ(. | P) indeed
happens to be the center of gravity of P, but its derivation
does not result from the use of an equi a priori density
over pΩ. It just happens that both approaches lead to the

same results: 1) the equi a priori density over pΩ and 2)
the application of the pignistic transformation combined
with the evaluation of BetPΩ(X | P) as BetPW(cyl(X) | P)

for X”Ω, where BetPW is the pignistic probability
obtained from belW(. | P) over the betting frame W.

6. CONCLUSIONS:

1) Generalization to |Ω| > 3 is conceptually easy, but very
laborious when solutions must be written down. Nothing
new comes out of it. In practice, computation will not
been based on the explicit equations, but on some Monte
Carlo method.

2) Generalization of the procedure can be achieved if one
has a non-degenerated belief function on pΩ if there are

only a finite number of subsets of pΩ that receive
positive basic belief masses (more general cases are not
considered here). Let {Pi: i= 1, 2...n} be the set of focal
elements of belpΩ 

with their basic belief masses

mpΩ
(Pi). For each focal element Pi, we derive belW(. |

P∈ Pi ) over W. The belief function belW 
over Ω induced

{(Pi, mpΩ
(Pi)): i= 1, 2...n}is:

∀ A”W      belW(A) = ∑
i=1

n
 belW(A | P∈ Pi ) mpΩ

(Pi) 

3) Suppose two pieces of evidence that say that P∈ P1
and P∈ P2, respectively. The combination of these two
pieces of evidence leads to the knowledge P∈ P1∩P2.

One could build bel1 on W as the belief function induced
by the knowledge that P∈ P1. Identically, one could build
bel2 on W as the belief function induced by the
knowledge that P∈ P2. One could then be tempted,
erroneously in fact, to combine bel1 and bel2  into
bel1⊕ bel2 by Dempster's rule of combination.

One could also build bel12 on W as the belief function
induced by the knowledge that P∈ P1∩P2. In general
bel12 ≠bel1 ⊕ bel2. Only bel12 is correct. Indeed
Dempster's rule of combination is applicable iff both
pieces of evidence are distinct, and distinctness is not
satisfied in the present context because of the existence of
a unique underlying probability function on Ω that create
a link between the two pieces of evidence.

4) In conclusion, the knowledge that the probability
function P over Ω belongs to some subset P of pΩ
permits the construction of a belief function bel over pΩ
x Ω and over Ω. It must be enhanced that in general the
belief function belΩ induced over Ω by a lower
probability function P* will not satisfy belΩ = P* even if

P* happens to be a belief function. By showing what is



the belief induced by a lower probability, we hope we
have been able to show the fundamental difference
between the upper and lower probabilities model and the
transferable belief model (see also Smets, 1987, Smets
and Kennes, 1994, Halpern and Fagin, 1990).

Acknowledgment: Research work has been partly
supported by the Action de Recherches Concertées
BELON funded by a grant from the Communauté
Française de Belgique and the ESPRIT III, Basic research
Action 6156 (DRUMS II) funded by a grant from the
Commission of the European Communities.

Bibliography:

DUBOIS D. and PRADE H. (1986) On the unicity of
Dempster rule of combination. Int. J. Intelligent Systems,
1:133-142.
HACKING I. (1965) Logic of statistical inference.
Cambridge University Press, Cambridge, U.K.
HALPERN J.Y. and FAGIN R. (1990) Two views of
beleif: beleif as generalized probability and belief as
evidence. submitted for publication.
KOHLAS J. and MONNEY P.A (1994) Representation
of Evidence by Hints. in Advances in the Dempster-
Shafer Theory of Evidence. Yager R.R.,  Kacprzyk J. and
Fedrizzi M., eds, Wiley, New York, pg. 473-492.
SHAFER G. (1976) A mathematical theory of evidence.
Princeton Univ. Press. Princeton, NJ.
SHAFER G. (1990) Perspectives in the theory and
practice of belief functions. Intern. J. Approx. Reasoning,
4:323-362.
SMETS Ph. (1978) Un modèle mathématico-statistique
simulant le processus du diagnostic médical. Doctoral
dissertation, Université Libre de Bruxelles, Bruxelles,
(Available through University Microfilm International,
30-32 Mortimer Street, London W1N 7RA, thesis 80-
70,003)
SMETS P. (1987) Upper and lower probability functions
versus belief functions. Proc. International Symposium
on Fuzzy Systems and Knowledge Engineering,
Guangzhou, China, July 10-16, pg 17-21.
SMETS Ph. (1988) Belief functions. in SMETS Ph,
MAMDANI A., DUBOIS D. and PRADE H. ed. Non
standard logics for automated reasoning. Academic Press,
London p 253-286.
SMETS Ph. (1990a) Construucting the pignistic
probability function in a context of uncertainty.
Uncertainty in Artificial Intelligence 5, Henrion M.,
Shachter R.D., Kanal L.N. and Lemmer J.F. eds, North
Holland, Amsterdam, , 29-40.
SMETS Ph. (1990b) The combination of evidence in the
transferable belief model. IEEE-Pattern analysis and
Machine Intelligence, 12:447-458.
SMETS P. (1993a) Belief functions: the disjunctive rule
of combination and the generalized Bayesian theorem.
Int. J. Approximate Reasoning 9:1-35.

SMETS P. (1993b) An axiomatic justifiaction for the use
of belief function to quantify beliefs. IJCAI'93 (Inter.
Joint Conf. on AI), San Mateo, Ca, pg. 598-603.
SMETS Ph. and KENNES (1994) The transferable belief
model. Artificial Intelligence, 66:191-234.


