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Abstract

The belief decision tree approach is
a decision tree method adapted in
order to handle uncertainty about
the actual class of the objects in
the training set. The uncertainty is
represented by the Transferable Be-
lief Model (TBM). We present two
methods to build the tree.

In order to reduce the size and the
complexity of the induced tree, we
present a pre-pruning tool related to
the stopping criteria used during the
development of the paths.

Keywords: belief decision tree, de-
cision tree, transferable belief model,
pre-pruning, classification.

1 Introduction

Decision trees are considered as one of the ef-
ficient classification techniques applied in sev-
eral fields, in particular in artificial intelli-
gence applications. Basically, we have a train-
ing set composed of objects where each one is
described by attributes and its assigned class
which is unique. The output will be a decision
tree ensuring the classification of new objects.
We call the set of these new objects a testing
set.

Classically the building of a decision tree fol-
lows a recursive top-down procedure, parti-
tioning at each level of the tree the training
(sub) set into subsets equal to the number of
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values of the chosen attribute. The choice of
the attribute as the root of the induced (sub)
tree is made according to an attribute selec-
tion measure.

In the C4.5 algorithm proposed by Quinlan
[9], the selected attribute is the one present-
ing the highest gain ratio. Once an attribute
is chosen, a branch relative to each value of
the selected attribute will be created. The
data are allocated to a node according to the
value of the selected attribute. This node is
declared as a leaf when the gain ratio values
of the remaining attributes do not present any
improvement or there is no attribute to test.

As pointed out in several researches [3] [4] [5]
[6] [8], a major problem faced by the stan-
dard decision tree algorithms is related to the
uncertainty that may affect data in the train-
ing set. In this paper, we consider the case
where there is uncertainty about the actual
class of the objects in the training set. This
uncertainty is represented by a belief func-
tion as understood in the transferable belief
model (TBM). In order to cope with such un-
certainty, we have developed a belief decision
tree method (BDT). In that tree, we imple-
ment a pre-pruning method in order to reduce
the complexity of the tree. It is based on an
idea found in [1] and used in a context of up-
per and lower probability . It turns out their
idea corresponds to a discounting in the TBM
and could thus be tailored for the BDT.

This paper is organized as follows: section
2 provides a brief description of the ba-
sics of TBM. In section 3, we describe the
two attribute selection measures developed



for building a BDT. Then, in section 4,
we present the description of the building
and classification procedures and pre-pruning
mechanism. Finally in section 5, we carry
simulations to illustrate the effect of the pre-
pruning method.

2 Transferable belief model

In this section, we briefly review the main con-
cepts underlying the transferable belief model
[13] [14] [15], one interpretation of the belief
function theory [10].

2.1 Definitions

The TBM is a model to represent quantified
beliefs based on belief functions. Let © be a fi-
nite set of elementary events, called the frame
of discernment. The basic belief assignment
(bba) is a function m : 2© — [0, 1] such that:

Z m(A) =1

ACO

The value m(A), named the basic belief mass
(bbm), represents the portion of belief com-
mitted exactly to the event A and nothing
more specific. The events having positive
bbm’s are called focal elements. Associated
with m is the belief function [13] defined for
ACO,A#0D as:

bel(A)= > m(B) and bel(}) =0
0#BCO

The degree of belief bel(A) given to a subset
A of the frame © is defined as the sum of all
the basic belief masses given to subsets that
support A without supporting its negation.

Another function is used basically to simplify
computations namely the commonality func-
tion ¢ is defined as:

q(A) = ) m(B), VAC®©
ACB

2.2 Combination

In the transferable belief model, the basic be-
lief assignments induced from distinct pieces

of evidence are combined by the conjunctive
rule of combination defined as [11]:

(m1@m2)(A) = > mi1(B).ma(C)

B,CCO:BNC=A

m1({@)my is the bba representing the combined
impact of the two pieces of evidence.

2.3 Discounting

The technique of discounting allows to take in
consideration the reliability of the information
source that generates the bba m.

For a € [0, 1], let (1 —c) be the degree of ‘con-
fidence’ (‘reliability’) we assign to the source
of information. If the source is not fully re-
libale, the bba it generates is ‘discounted’ into
a new less informative bba denoted m® [12]:

m*(A) = (1 — a).m(A) for AC O
m*(©) =a+ (1 — a).m(0)

2.4 Decision making

The TBM considers that holding beliefs and
making decision are distinct processes. Hence,
it proposes a two level model:

e The credal level where beliefs are enter-
tained and represented by belief func-
tions.

e The pignistic level where beliefs are used
to make decisions and represented by
probability functions called the pignistic
probabilities.

When a decision must be made, beliefs held at
the credal level are transformed into a proba-
bility measure denoted BetP [15].

The function building this probability is
called the pignistic transformation and is de-
fined as:

IANB| m(B)

Bl 1-m@) " <°

BetP(A) = >

BCO



3 Attribute selection measures in
the context of belief decision
trees

A belief decision tree is a decision tree in
an uncertain environment where the uncer-
tainty is represented by the TBM. The struc-
ture of the training set allowing to induce
a belief decision tree is different from the
traditional one. We assume that the values
of the attributes of each training object are
known with certainty, whereas its correspond-
ing class is uncertain. The uncertainty on the
classes of a training object is represented by
a basic belief assignment defined on the set
of possible classes. The major parameter en-
suring the building of a decision tree is the
attribute selection measure allowing to deter-
mine the attribute to assign to the decision
node of the induced belief decision tree at each
step. Within our framework, we propose two
attribute selection measures.

1. The first one is an extension of the clas-
sical approach developed by Quinlan and
based on the gain ratio criterion [9]. It is
called the averaging approach.

2. The second one represents ideas behind
the TBM itself and based on distance cri-
terion. It is called the conjunctive ap-

proach.

For all the following sections, we will use the
following notations:

e T a given training set composed by p
objects I;,j =1,...p,

e S: aset of objects belonging to the train-
ing set T,

e A: an attribute,

e © = {C1,0y,...,C,}: the frame of dis-
cernment made of the n possible classes
related to the classification problem.

e m®{I;}(C): the bbm given to the hy-
pothesis that the actual class of object I;
belongs to C' C O.

3.1 The averaging approach

As mentioned, under this approach the at-
tribute selection measure is based on the ex-
tension of the gain ratio criterion to the uncer-
tain context. It will be based on the entropy
computed from the average pignistic probabil-
ity taken into account the pignistic probabil-
ities of each object in the node. We propose
the following steps to choose the appropriate
attribute:

1. Compute the pignistic probability, de-
noted BetP®{I;}, of each training object
I; by applying the pignistic transforma-
tion to m®{I;}.

2. Compute the average pignistic probabil-
ity function BetP®{S} taken over the set
of objects S. For each C; € O,

> BetP®{I;}(Cy)

I;eS

BetP®{S}(
{SHC, |S|

3. Compute the entropy Info(S) of the av-
erage pignistic probabilities in the set S.
The entropy of a probability function P®
is given by:

Entr(P®) = ) log, (P ()

-2 P20

0cO

In the present case we define:

Info(S) = Entr(BetP®{S})

4. For each value v of a given attribute
A, define the subset S2 including ob-
jects having v as a value for the attribute
A. Then, compute the average pignistic
probability for objects in subset S;'. Let
the result be denoted BetP®{S;'}.

5. Compute the entropy Info(S2) with the

cases for which the attribute value is v:
Info(S2) = Entr(BetP®{52})

6. Compute Infoa(S), as in Quinlan:

5 Bl go(sy

Infos(S) =
vED(A) |S|

where D(A) is the domain of the possible
values of the attribute A.



7. Compute the information gain provided
by the attribute A in the set of objects S
such that:

Gain(S,A) = Info(S) — Infoa(S)

8. Using the Split Info [9], compute the
gain ratio relative to the attribute A:

Gain(S, A)

Gain Ratio(S, A) = Split Info(S, A)

where

, Er
Split Info(S,A) = — Z 5| 09go 5]
A)

9. Repeat the same process for every at-
tribute A belonging to the set of at-
tributes that can be selected. Next,
choose the one that maximizes the gain
ratio.

3.2 The conjunctive approach

The conjunctive approach is based on an
intra-group distance quantifying for each at-
tribute value how strongly objects are close
from each others. The different steps upon
this attribute selection measure ensuring the
building of a belief decision tree are the fol-
lowing ones:

1. For each training object, compute:
K{I;}(C) = —Ing®{L;}(C) VC C ©
from the bba me{Ij}.

2. For each attribute value v of an attribute
A, compute the joint x{S2} defined on
O, the set of possible classes by:

s{S)} = Y K}

IjES;1

3. For each attribute value, the intra-group
distance SumD(S;) is defined by:

2. 2

I;eSy XCO

D A
SumD(S;") |SA|

(WL H(X) = R{ Sy H(X))?

ISAI

4. Compute SumD 4(S) representing the
weighted sum of the different SumD(S%)
relative to each value v of the attribute
A:

S

A
|S|S mD(S4)

SumD 4 (S) = Z

vED(A

5. By analogy to our averaging approach,
we may also compute Dif f (S, A) defined
as the difference between SumD(S) and
SumD 4(S):

Dif f(S,A) = SumD(S) — SumD 4(S)

where

SumD(S

SEE

(R{I:}(X) — |S|ﬁ{5}( )’

6. Using the Split Info, compute the diff
ratio relative to the attribute A:
Diff(5,4)

Split Info(S, A)

Diff Ratio(S,A) =

7. For every attribute repeat the same pro-
cess, and choose the one that maximizes
the diff ratio.

Adaptations must be introduced if some
mO{I;} are dogmatic (i.e., m®{I;}(©) = 0).
The simplest consists in discounting every
dogmatic bba.

3.3 Structure of leaves

Due to uncertainty in classes of training ob-
jects, each leaf in the induced tree will be
characterized by a bba. According to the used
attribute selection measure:

e Using the averaging approach, the leaf’s
bba is equal to the average of the bba’s
of the objects belonging to this leaf.

e Using the conjunctive approach, the
leaf’s bba is the result of the conjunc-
tive combination of the bba’s of objects
belonging to this leaf.



4 Description of the belief decision
tree approach

4.1 An algorithm to build belief
decision trees

Building a decision tree in this context of un-
certainty will follow the same steps presented
by Quinlan in his C4.5 algorithm [9]. Our al-
gorithm which uses a Top Down Induction of
Decision Trees. Furthermore, our algorithm
is generic since it offers two possibilities for
selecting the attributes by using either the av-
eraging approach or the conjunctive one. The
different steps of our algorithm for building a
belief decision tree are described as follows:

1. Create the root node of the belief decision
tree with all the training objects of T'.

2. Choose which approach will be used to
select the ‘best’ attribute: either the av-
eraging approach or the conjunctive one.

3. Verify if this node satisfies any stopping
criteria:

e The node is empty or contains only
one object.

e There is no further attribute to test.
In other words, all the attributes are
split.

e If the value of the attribute selec-
tion measure is less or equal than
zero i.e., another partition does not
provide a better separation between
objects.

4. If one of these conditions is satisfied,

e then declare the node as a leaf node
and compute its corresponding bba
according to the chosen approach.
Note that in both approaches when
the leaf is empty, its corresponding
bba is a vacuous bbal.

e else, look for the attribute having

the highest value of the attribute se-
lection measure. This attribute will

LA vacuous bba is defined such that: m(©) = 1
and m(f) =0 for 6 C O.

be designed as the root of the deci-
sion tree related to the whole train-
ing set.

5. Develop a branch for each attribute value
chosen as a root. This partition leads to
several training subsets.

6. Create a root node relative to each train-
ing subset.

7. Repeat the same process for each training
subset from the step 3, while verifying the
stopping criteria.

8. Stop when all the nodes of the latter level
of the tree are leaves.

4.2 Classification

To classify a new object described by an exact
value for each one of its attribute, we have to
start from the root of the belief decision tree,
and follow the path leading to a leaf such that
for each level of the tree, we test the specified
attribute that allows us to move down the tree
branch according to the attribute value of the
object to classify. This process is repeated
until a leaf is encountered.

As a leaf is characterized by a basic belief as-
signment on classes, the pignistic transforma-
tion is applied to get the pignistic probability
on the classes of the object to classify in or-
der to decide its class. For instance, one can
choose the class having the largest pignistic
probability.

4.3 Improvements of the stopping
criteria

Inducing a decision tree, and consequently
a belief decision tree, without applying any
mechanism of pruning leads in most cases to
very large trees with many nodes and leaves.

In this paper we are not interested with post-
pruning of decision trees consisting to prune
branches once the tree is built. However, our
objective is to reduce the size of the tree and
to avoid the overfitting? by improving the

Tt occurs when the size of the tree is too large
compared to the number of training objects.



stopping rules. Such process is called pre-
pruning. In other words, the objective is to
minimize the levels of the induced tree and
also to avoid as much as possible leaves with
too few objects.

The two approaches for building belief deci-
sion trees often produce ‘complete’ trees. The
stopping criteria are such that usually they do
not stop the development of a path before us-
ing all the attributes. Therefore, we think the
stopping criteria should be adapted.

As stated previously one condition to declare
a node a leaf is when the value of the attribute
selection measure is less or equal than zero (ei-
ther for the gain ratio or the diff ratio). The
gain ratio or the diff ratio depend on the ag-
gregation of objects bba’s of those belonging
to the node (either using the averaging rule or
the conjunctive rule of combination according
the used approach). We suggest to discount
the induced bba.

As the objective is to reduce the number of
leaves in a tree and consequently not to have
leaves with too few objects, we suggest that
this discounting factor depends on the number
of objects in the node. On the other hand, it
should not ‘badly’ affect the qualtiy criteria
(PCC, kappa) used to judge the quality of
the classifier. We define the reliability factor
1 — « such that:

~_ N.OD
“TN.OD+V

where N. OD is the number of objects in the
considered decision node and V is a non neg-
ative real. This value of V should be cho-
sen such that the number of leaves diminishes
without reducing the quality criteria.

This discounting should be applied on the ag-
gregated bba, i.e., once the combination is
done (either through the averaging rule or the
conjunctive rule). Note that discounting the
aggregated bba increases uncertainty, bring-
ing the pignistic probability function closer
to the equi-probability function. The value
of the attribute selection measure decreases
and this increases the chances to declare the
node as a leaf.

5 Simulation

We have applied the BDT approaches?
Since, there
are several parameters to take into ac-
count and consequently several types of
simulations, in this paper we will present
results of simulation only on a mod-
ified breast data base inspired
by the breast cancer data base available in
http://www.ics.uci.edu/ mlearn/MLReposito-
ry.html, but modified in order to satisfy the
prerequisites of our methods: symbolic
attributes and uncertain classes.

in some known data bases.

cancer

In table 1, we give a brief description of the
modified breast cancer basis, hence we present
the parameters composing this basis:

e N. O: number of the whole objects,
e N. Tr O: number of training objects,
e N.Ts O: number of testing objects,
e N. Cl: number of classes,

e N. Att: number of attributes,

o N. Val Att: number of values for each
attribute.

Table 1: Modified breast cancer data basis

parameters.
PARAMETERS | VALUE

N. O 690

N.Tr O 621

N.Ts O 69

N. Cl 2

N. Att 8

N. Val Att 23148222 3]

Several criteria could be used to judge the
quality of classification of our induced belief
decision trees. In this paper, we use the PCC
representing the percentile of the correct clas-
sification of the objects belonging to the test-
ing set. It is computed by the cross validation

method with a partition in 10 sub samples.

3 All algorithms have been implemented using Mat-
lab V6.0.



The PCC is computed after selecting for each
testing set case the class with the largest pig-
nistic probability.

Data bases with uncertainty in the class do
not seem to be available. So we took a classi-
cal data base, and ‘destroyed’ the class vari-
able.

We randomly generate a subset 6 of © such
that the actual class of the object under con-
sideration belongs to 6, and every other class
belongs to € with probability p. We then build
a simple support function with 6 its focal ele-
ment and its weight being a random number
in [0,1]. We build several (2 here) such simple
support functions and combine them conjunc-
tively. The resulting bba is the bba describing
our belief about the value of the actual class
to which the object belongs.

Table 2 and table 3 present the mean PCC
resulting from the application of our two ap-
proaches without and with pre-pruning (V =
20). We present PCC_a, PCC_c, N. l_a and
N.l_c, the PCC and the number of leaves
induced from the averaging and conjunctive
approaches, respectively. The p parameter
(probability) used in the class ‘destruction’
varies from 0 to .9.

Table 2: PCC and number of leaves: without
pre-pruning

decision are characterized by a great number
of leaves (a mean of 220 leaves for both ap-
proaches).

Table 3: PCC and number of leaves: with
pre-pruning (V = 20)

D PCC.a | PCCc | N.l.a | N.lc
0 84.38 83.25 337.2 336.2
0.1 83.11 82.09 316.2 316.1
0.2 84.84 83.93 295.7 | 295.7
0.3 86.93 86.25 269 268.9
0.4 83.9 83.31 246 245.9
0.5 87.04 85.9 222.4 | 2224
0.6 83.01 82.47 225 225
0.7 85.64 86.94 146.1 146.1
0.8 81.27 81.46 109.8 109.8
0.9 80.43 81.15 63.4 63.4
Mean | 84.06 83.67 220.24 | 220.11

As we note, both approaches (averaging and
conjunctive) present high PCC’s for all the
values of p (the mean is almost 84%). How-
ever without pre-pruning, the induced belief

D PCC.a | PCCc| N.l.a|N.1lc
0 87.73 83.38 67.2 180.4
0.1 86.66 82.22 35.8 198.2
0.2 87.68 85.67 37.9 199.4
0.3 87.38 85.42 37.3 161.9
0.4 86.57 84.91 37.2 1474
0.5 87.44 87.93 31.7 160.7
0.6 87.33 85.2 38.1 141.2
0.7 86.46 88.19 23.6 103.2
0.8 87.98 87.57 13.3 70.7
0.9 86.41 84.09 36.2 54.1
Mean | 87.16 85.45 35.83 | 141.71

Applying our pre-pruning mechanism with a
value of V' equals to 20, we keep a high value
of PCC’s (a mean of respectively 87% and
85%). On the other hand, we note that the
number of leaves in both approaches have con-
siderably decreased (a mean of 35 leaves for
the averaging approach and 141 leaves for the
conjunctive approach). Furthermore, the av-
eraging approach seems more sensitive to this
mechanism of pre-pruning than the conjunc-
tive one in reducing the size of the induced
trees. Other values of V' have been consid-
ered. Smaller values were not that efficient in
reducing the tree complexity, larger values re-
duce the PCC'. The results were not sensible
to local variations of V.

6 Conclusion

We have presented our approach of belief de-
cision trees dealing with uncertainty about
the actual class of those cases in the train-
ing set.
have been proposed and consequently two ap-
proaches are considered. We have developed
a pre-pruning technique in order to reduce
the complexity of the induced trees and to
avoid the overfitting problem. Simulations
have shown the efficiency of this method. In
practical applications, the estimation of V' can

Two attribute selection measures



be obtained by opportunistically optimizing
the PCC on the testing set computed with
the cross validation method.
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