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1. INTRODUCTION.

Ignorance can take 2 forms: imprecision and uncertainty. A statement is imprecise if it

contains predicates that do not specify uniquely the value of a variable within its

referential (e.g. 'John is less than 30 years old', 'John is young'). A statement is

uncertain if one cannot evaluate its truth or its falsity given the available data (Dubois et

al. [7])

Imprecision is represented by intervals, fuzzy sets (Dubois and Prade [8], Mamdani

and Gaines [20]) or possibility functions (Zadeh [46], Dubois and Prade [9], Magrez

[19]).

The most classical models to quantify uncertainty are based on probability functions

and the Bayesian approach is often considered as the most appropriate (Fine [10]).



Comb.Ev. 27/7/99 11:41 2

Nevertheless it is unrealistic to claim that all forms of uncertainties can and should be

fitted by probability functions as argue in Lindley [17].

In this presentation, we consider that form of uncertainty that leads to a subjective,

personalistic degree of belief. This is indeed the topic studied by the Bayesian

probabilists. But another model based on belief functions has been proposed by

Shafer [25, 27, 28] that seems more appropriate to represent someone's degree of belief.

The need for a mathematical model to simulate the belief process can be justified

by cognitive, normative or pragmatic arguments:

1) cognitive: it helps in obtaining a better understanding of the underlying psychological

process.

2) normative: it establishes rules of behavior that should be applied by everyone.

3) pragmatic: it provides a mathematical construct that can be implemented on computers,

as in Expert Systems, in order to simulate a cognitive process where the concept of

belief is relevant.

Whereas the probability model is surely the most popular, it is not exempt of real

limitations. It hardly fits the human behavior it sets out to represent (Kahneman [15]).

Normative Bayesians claim that this lack of fit is irrelevant. It only proves that the human

being is a poor estimator of probabilities. The fact that humans cannot correctly guess the

square root of 2 is not a criticism of arithmetic, it merely implies that one should use

arithmetic in order to compute it. This normative justification would be definite if the

bayesian model were absolutely convincing. Unfortunately all axiomatic models

developed to justify the use of probability functions include some conditions open to

criticism (Fine [10], Rivett [21]) and furthermore they suffer from real weaknesses when

it comes to represent total ignorance.

From a pragmatical point of view, the developers of Expert Systems had to choose a

mathematical model to quantify uncertainties. Some choose the probability or fuzzy sets

theory. MYCIN (Shortliffe [32]) uses a model based on measures of belief and of

disbelief and a certainty factor that does not obey probability axioms [3, 31]. These

authors convincingly criticize the probability model but only provide an ad hoc model that

also presents some weaknesses. More recently the Artificial Intelligence community has

started to show interest for what they call the Dempster-Shafer's model, i.e. the use of

belief functions [1, 11, 13, 14, 16, 18, 43]. Unfortunately confusion emerged between a

model based on upper and lower probabilities and one based on transferable beliefs,

which we are here presenting in detail. Initial work by Shafer [25] looked closer to the

transferable belief model, but his more recent work is essentially based on the upper and
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lower probability model. Most work in Artificial Intelligence is based on the upper and

lower probability interpretation.

The upper and lower probability model is based on works by Good [12], Smith

[42] and Dempster [5, 6]. This model is based on the idea that there is a well-defined

probability assigned to each proposition, but that these numerical values are only known

by us to be within intervals whose boundaries are the so called upper and lower

probabilities. This model generalizes the probability model.

Using this mathematical tool, Shafer [25] suggested that degrees of belief are quantified

by belief functions and that belief functions induced by distinct pieces of evidence are

combined through Dempster's rule of combination. The fact that this model is  completely

unrelated to the probability model was not clear, and this distinction was hardly enhanced

by recent works. So we feel the necessity to present explicitly the transferable belief

model, a normative model we hope might have some cognitive and pragmatic interest.

We insist on the fact that:

1) the transferable belief model is built without ever introducing explicitly or implicitly

any concept of probability.

2) Dempster's rule of conditioning is one of the natural ingredients of the transferable

belief model. It is not ad hoc [28]. It is at the centre of the model.

3) Dempster's rule of combination will be derived from the transferable belief model, the

strongest postulate being the autofunctionality axiom A6, and not the conditioning axiom

A4, as A4 is just a formalization of one of the constituents of the transferable belief

model.

For the clarity of this paper, it is capital that the points above be borne in mind. The

reader should also temporarily forget his/her previous indoctrination in probability theory

and the fact that Dempster's rule of conditioning is often presented as a special case of

Dempster's rule of combination (which it fortunately is, but which may not be accepted a

priori, otherwise the whole derivation of Dempster's rule of combination would be a

cyclical reasoning).

Parallelism will often be established with the probability model as it is of course the best

known and major contender of the transferable belief model.

Part 2 discusses the nature of the frame of discernment on which a degree of belief will be

established, and presents the distinction between the open and closed-world assumptions

that are too often neglected. This distinction is essential in order to understand the
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normalization problem and to avoid Zadeh's paradox.

Part 3 presents the transferable belief model. Shafer [25] introduces his model by

postulating that degrees of belief are quantified by Choquet's capacities [4], but the

numerous inequalities that underlie these capacities are hardly satisfactory to convince

people of the appropriateness of the model. Hence, the need to redevelop the model.

Part 4 presents Dempster's rule of conditioning.

Part 5 presents an axiomatic justification of Dempster's rule of combination. This rule -

known in the 18th century [26] - may seem natural. Nevertheless an axiomatic derivation

is useful in order to show its meaning and its relevance.

Part 6 discusses the impact of the closed-world assumption and hopefully resolves a

criticism put forward by Zadeh [47] about the appropriateness of the renormalization

encountered in Dempster's rules as defended by Shafer [29].

Part 7 concludes and summarizes the results.

Computational feasibility of belief functions is an open question. It is usually claimed that

belief functions are computationaly intractable as works is done on power sets. Though

theoretically true, the claim is not correct in practice. We even feel that belief functions

might require less computational efforts than the use of probability functions. This paper

being a theoretical presentation of belief functions, the problem is not investigate further.

2. THE FRAME OF DISCERNMENT.

Models on reasoning postulate a finite Boolean algebra of propositions Ω on which

beliefs will be constructed, some propositions of Ω being believed more than other.  (Ω is

also called the frame of discernment, the universe of discourse, the domain of reference.)

Usually only those propositions are considered, any proposition not included in Ω is

claimed as impossible.

In reality, the cognitive process is hardly as simple. One first constructs a set KP of those

propositions Known as Possible. But one must also consider 1)  the set UP of

Unknown Propositions that are not considered and 2)  the set KI  of those

propositions Known as Impossible. In the classical approach like the bayesian,  UP

is postulated empty, one accepts a highly idealized closed-world assumption, i.e. that the
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truth is necessarily in KP.

The content of the three sets depends not only on the problem under scrutiny, but also on

the available pieces of evidence. As evidence becomes available, propositions are

redistributed among the three sets:

1) a proposition A is transferred from KP to KI if the evidence is sufficient to claim that

A is impossible. It corresponds to conditioning.

2) a proposition A is transferred from UP to KP if the evidence induces us to consider as

possible some forgotten propositions.

3) a proposition A is transferred from UP to KI if the evidence induces us to consider

that some forgotten propositions are in fact impossible. This has no practical effect as

the degrees of belief are constructed only on KP.

4) transfer from KI to KP or UP and from KP to UP would be inconsistent with the

definition of the three sets, if one accepts, as here, that the allocation of any

proposition to one of the three sets is always correct. A true proposition may be

correctly allocated to KP and UP, and a false proposition may be correctly allocated to

KP, KI or UP.

A true proposition may not be allocated to KI, and any proposition allocated to KI will

stay in KI, inducing monotony for the impossible (false) propositions.

The closed-world assumption corresponds to an a priori empty UP set. The open-

world assumption admits the existence of a non-empty UP set, and the fact that the

truth might be in UP.

As mentioned before, it is admitted here that the truth may never be in KI. Generalization

could be considered by accepting that a true proposition might be in KI and constructing

some meta-belief function on the set of all propositions, that expresses the degree of

belief that each proposition can belong to any of the three sets. It is not studied in this

paper but can be resolved by methods developed in [33] in the framework of the

generalized bayesian theorem.

3. QUANTIFICATION OF THE DEGREE OF BELIEF.

Let KP be a finite Boolean algebra of propositions Ω and let ∆ be the set of elementary

propositions of Ω. Let 1Ω be the tautology relative to Ω i.e. 1Ω is the disjunction of all

elementary propositions of ∆ . Let 0Ω be the contradiction relative to Ω i.e. none of the

propositions of ∆ implies 0Ω. The conjunction of any two distinct propositions of ∆ is



Comb.Ev. 27/7/99 11:41 6

0Ω. Any proposition of Ω different from 0Ω is called a non vacuous proposition.

3.1. Notations.

One writes ¬, ∨ ,& for the negation, the disjunction and the conjunction connectives.

Negation of any proposition A in Ω is taken relative to ∆. So ¬A is the disjunction of the

elementary propositions of ∆ not implying A.

The set UP is denoted Θ. No details about its structure and about KI are needed.

The symbols ∈, →, →/  are used with the following meanings:

A∈∆  : A is an element of ∆
A∈Ω  : A is a proposition of Ω
A→B : "it is true that A implies B" where A, B∈Ω
A→/ B : "it is true that A does not imply B" where A, B∈Ω

We write ∑
A→B

 m(A)  and ∑
A→/ B

 m(A)  to mean that the sums must be taken respectively on

all A∈Ω  that imply B and on all A∈Ω  that do not imply B. Note that 0Ω implies both A

and ¬A for all A∈Ω .

3.2. The transferable belief model.

Suppose an evidence that induces some belief in us concerning the truth of the

propositions A of Ω. It is postulated that there exists some finite amount of belief that can

be spread among the various propositions A of Ω, and that given the available pieces of

evidence, one allocates parts of that total amount of belief to each proposition.

For instance suppose Mr. White has been murdered and we have three suspects: Henry,

Tom and Sarah. Thus ∆ = {Henry, Tom, Sarah}. Given the available pieces of evidence,

parts of the amount of belief are allocated to each of the three potential murderers. But

some evidence might also point to more than just one of the three persons. Such is the

case of the evidence "the murderer is a male". This evidence points to A = "Henry ∨
Tom" and we must allocate some part m of our total mass of belief to A without being

able to split it between the two components of A. In such a situation, probabilists usually

invoke the Principle of Insufficient Reason or an argument of symmetry to decide that the

mass m must be split into two equal parts, one for Henry and one for Tom. The

originality (and the power) of the transferable belief model is that it does not ask for such

principles and leaves the mass m allocated to the proposition A.
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The model thus postulates a finite amount of belief arbitrary but conveniently scaled to 1,

a frame of discernment Ω and a distribution of this total unitary mass among the

propositions A of Ω. The non negative mass m(A) allocated to the proposition A∈Ω  that

cannot be allocated to any proposition A' such that A'→A, A'≠A is called the basic belief

mass (the basic probability number of  Shafer [25]).

A basic belief assignment is a function m:Ω→[0,1] such that:
∑

A→1Ω
  m(A) = 1

(remember that Ω is the power set build from the elementary propositions of ∆).

Shafer's model includes the further requirement m(0Ω)=0. We feel it unnecessary and it

leads to unsatisfactory results. m(0Ω) represents the amount of belief that cannot be

allocated to any non vacuous propositions of Ω.  To understand the meaning of some

mass m(0Ω) given to 0Ω, one must accept the open-world assumption and consider that

any amount of belief allocated to a proposition A→1Ω is in fact allocated to A∨Θ  where

Θ is the set UP considered in part 2. Then m(0Ω) represents the mass allocated to Θ.

In the Mr. White's case, m(0Ω) corresponds to that amount of belief allocated to none of

the three suspects. We must always keep in mind that the murderer might be someone

else, e.g. evidence pointing to Sarah and not to Henry and Tom, point in fact to "Sarah or

someone not in ∆". In particular m(0Ω) is the amount of belief allocated to the

proposition that none of the three suspects is the murderer. Had we received the evidence

that the murderer must be one of the three suspects i.e. that the closed-world assumption

is true, then this new evidence would have induced some conditioning that would have

implied m(0Ω)=0 (see part 6). The fact that m(0Ω) might be non null implies that

evidence impact is by nature essentially negative in that it  allows some propositions to be

discarded. Indeed evidence pointing to Sarah essentially does not support 'Henry or

Tom'. The method of reasoning simulated by this approach is closer to an elimination

process than to a constructive process. A support to a proposition is a non support to its

negation taken relative to a closed world.

Shafer's approach postulates beforehand the closed-world assumption. If one defines Ω
to include Θ, this would lead to the same results as with the open-world assumption if

one is careful never to allocate some masses to propositions of Ω that do not include Θ.

We feel it easier to use the restricted Ω and to allow positive masses to 0Ω, bearing in

mind that all masses given to propositions A∈Ω , are always allocated to A∨Θ , except if

the closed-world assumption is explicitly expressed. For simplicity's sake, we drop the

Θ, and use the notation A to denote A∨Θ . This implies that A&¬A=0Ω  means
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(A∨Θ )&(¬A∨Θ )=Θ.

The quantity m(A) measures the amount of belief that is exactly committed to A, not the

total belief that is committed to A. Each mass m(A) also supports any proposition B that

is implied by A. Therefore the belief that a proposition A is true is obtained by adding all

the masses m(B) allocated to propositions B that imply A without implying ¬A (which

means that 0Ω must be discarded from the sum). The degree of belief given to A is

quantified by the belief function bel:Ω→[0,1] with:

bel(A)   = ∑
B→A

   m(B)

B≠0Ω
bel(0Ω)  = 0

Given this definition, it can be shown that any belief function is a capacity of order

infinite [4], i.e. satisfies the following inequalities:

1) bel(1Ω) = 1 - m(0Ω) ≤ 1

2) for every n>0 and every collection A1,A2...An∈Ω ,

bel(V
i

Ai) ≥ ∑
i

bel(Ai) -  ∑
i>j

bel(Ai&Aj)...-(-1)nbel(A1&A2...&An)   (3.1)

Shafer starts his presentation by requiring that degrees of belief satisfy inequalities (3.1)

arguing that the belief in the disjunction of two propositions should at least contain the

sum of the belief allocated to each reduced by the belief allocated to their conjunction,

equality being unjustified. Unfortunately, this requirement is not sufficient to define belief

functions and one must postulate inequalities (3.1) for all n. Critics of Shafer's approach

[28] argue against having to postulate all these inequalities, an excessive and not very

natural requirement. These criticisms justify why our  presentation starts with basic belief

masses, not with belief functions.

Given a belief function bel or a basic belief assignment m, the plausibility of a

proposition A is the sum of the parts of belief that are allocated to propositions  B that do

not imply ¬A:

pl(A)   = ∑
B→/ ¬Α

   m(B)



Comb.Ev. 27/7/99 11:41 9

It is related to bel trough

pl(A) = bel(1Ω) - bel(¬A)

The meaning of  'belief' and 'plausibility' is still controversial. One might prefer to call

bel(A) the degree of minimal (or necessary) entailment (or support) for A, and pl(A) the

degree of maximal (or potential) entailment (or support) for A. We will hereafter use the

words belief and plausibility as they are those most often used in the present context.

The commonality function q:Ω→[0,1] with

q(A)   = ∑
B→¬A

   m(A∨ B )

has no immediate intuitive interpretation (except in the case of disjunctive evidence, not

covered here). Its usefulness will appear when one considers Dempster's rule of

combination. It represents in fact the maximum value that the mass given to A might reach

after combining the belief function that corresponds to q with the belief function induced

by any other evidence.

The four functions m, bel, pl and q define each other uniquely. Among them, one has:

m(A)   = ∑
B→¬A

   (-1)bq(A∨ B)    ≥   0  with b = |B| (3.2)

Shafer defines these functions differently: he postulates a null basic belief mass for the

contradiction 0Ω. This difference results from the closed-world assumption accepted a

priori by Shafer.

Total ignorance is described by the so called vacuous belief function where:

m(1Ω) = 1

bel(A) = 0    for all A≠1Ω
bel(1Ω) = 1

Total ignorance has always bothered the Bayesians, leading to strong controversies. It is

either simply rejected as non existing, a procrustean solution not followed here, or solved

by the application of the Principle of Insufficient Reason: if one has k elementary

propositions and there is no reason why any should be more supported (credible) than

any other, then split the probability mass equally among them. But this does not represent
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Total Ignorance. There is no reason why some disjunction of elementary propositions

should be more supported than any other. So one must have bel(A) equals some constant

c≥0 for all A in Ω, and not only for the elementary propositions of ∆. Of course such a

requirement is impossible with probability functions. With belief functions, this means

that with A and B such that A&B=0Ω, one has the inequality bel(A∨ B)≥bel(A)+bel(B)

thus c≥2c, therefore c=0 is the only solution, and it does indeed satisfy all the inequalities

(3.1). It corresponds to the highly logical basic belief assignment by which m(1Ω)=1 and

all other masses are null, 1Ω being indeed the only supported proposition.

4. CONDITIONING.

Suppose a basic belief assignment m on Ω obtained after considering some initial

evidence. Then, suppose we learn from a new evidence that the truth is necessarily in

B∈Ω , thus that all non vacuous propositions implying ¬B should be transferred into KI,

the set of propositions known as impossible. How does this evidence modify our basic

belief assignment.

Let m' be the basic belief assignment obtained after taking the new evidence into account.

To construct m'(A), three situations must be considered depending on the relation

between A∈Ω  and the conditioning proposition B.

1) A→B. The evidence that the truth is in B does not modify the part of our total belief

mass supporting A.
2) A&B=A1≠0Ω and A&¬B=A2≠0Ω. The mass A was allocated by m to A1∨ A2 with

A1→B and A2→¬B. We learn that the truth is in B, therefore the mass that was allocated

to A1∨ A2  is transferred to A1, the only part of A that is compatible with the new

evidence that asserts 'the truth is in B'.

3) A→¬B. The evidence that the truth is in B tells us that all elementary propositions in A

are impossible. Thus the mass m(A) is transferred to 0Ω (provided that - being in an

open-world - 0Ω represents in fact Θ).

Therefore

m'(A) = ∑
C→¬B

  m(A∨ C) for all A→B

             = 0 otherwise

The major ingredient of the transferable belief model is seen in case 2, cases 1 and 3

being particular cases of 2.
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When a mass m is allocated to some proposition A, it is acknowledged that this mass

could eventually be allocated to any subproposition of A if further evidence became

available, but that given the available evidence it cannot be allocated more specifically.

That mass m was given to A as there was no reason to allocate it to a more specific

proposition. Once the evidence "B is true" becomes available (with B compatible with A,

i.e. A&B≠0Ω),  the mass m should be allocated henceforth to A&B, m is transferred to

A&B, therefore the name of the model.

Case 3 was not considered by Shafer who renormalizes the basic belief masses,

multiplying each m' such that their sum remains 1 and m'(0Ω )=0. Up to that

renormalization, the proposed model for conditioning corresponds to Dempster's rule

of conditioning.

It implies: m'(0Ω) = bel(¬B) + m(0Ω)

bel'(A) = bel(A∨ ¬B)  - bel(¬B) for all A∈Ω , A≠0Ω
pl'(A) = pl(A&B) for all A∈Ω , A≠0Ω
q'(A) = q(A)  for all A→B

= 0 otherwise

Returning to Mr. White's case, suppose the  evidence "Henry is not the murderer", then

B= {Tom, Sarah}. The portion of belief that was allocated to Tom and/or Sarah remains

theirs. The portion that was given to 'Henry or Tom' now supports Tom alone, and the

portion that was given to Henry is transferred to 0Ω.

This description of the nature of the transferable belief masses justifies the resulting rule

of conditioning. It is part of the whole model and not ad hoc as is often felt.

There are two ways of presenting the use of belief functions. Shafer [25] starts with the

concept of a degree of belief represented by a belief function, postulates the inequalities

(3.2), derives the non negative masses, postulates Dempster's rule of combination and

derives Dempster's rule of conditioning. The transferable belief model first presents the

masses, derives the belief functions and the inequalities, and from the intrinsic nature of

the masses derives Dempster's rule of conditioning. Dempster's rule of combination is

then also derived (see part 5). Shafer's approach naturally leads to the "feeling" that

Dempster's rules are ad hoc. Our approach tries to eradicate that erroneous opinion.

5. COMBINATION OF TWO BELIEF FUNCTIONS.
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Suppose two belief functions bel1 and bel2 induced by two distinct evidences. The

question is to define a belief function bel12=bel1⊕ bel2 resulting from the combination of

the two belief functions, where the ⊕  symbolizes the combination operator. Shafer's

proposal was to derive bel12 from the so called Dempster's rule of combination: the

product m1(X)⋅m2(Y) is supporting X&Y

m12(A) = ∑
X&Y=A

   m1(X)⋅m2(Y)

This implies the most useful relation that explains the usefulness of the commonality

function:

q12(A) = q1(A)⋅q2(A)

Suppose further a belief function bel1 and the evidence "B is true". Let bel1B be the

result of the  conditioning of bel1 as derived in part 4. Suppose one defines mB such that

mB(B)=1. Then m1B = m1⊕ mB, therefore Dempster's rule of conditioning happens to

be a particular case of Dempster's rule of combination.

Even though Dempster's rule of combination is natural, some justification is required. A

set of axioms is given that indeed leads to Dempster's rule of combination. The

importance of these axioms rests in the fact that if Dempster's rule of combination is

refuted, some of the axioms must explicitly be rejected. A discussion on the adequacy of

the axioms is easier than a discussion based directly on the rule itself.

A1: compositionality axiom.
bel12(A) is a function of A, bel1 and bel2 only.

A2: symmetry:
bel1⊕ bel2 = bel2⊕ bel1

A3: associativity:
(bel1⊕ bel2)⊕ bel3 = bel1⊕ (bel2⊕ bel3)

A4: conditioning:
if bel2 is such that m2(B)=1, then

m12(A) = ∑
C→¬B

  m1(A∨ C) for all A→B

                = 0 otherwise
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The axiom of compositionality A1 claims that the combination is a functional of  both

belief functions and may be A, but nothing else. This is essentially what was meant by

distinct evidences. A concept of distinctness is defined in Smets [37]. Two pieces of

evidence are distinct if the knowledge of one of them does not induce a non vacuous

belief in the truth of the other. Once Dempster's rule of combination is accepted,

distinctness implies compositionality. This concept of distinctness could have been

postulated in place of the compositionality, but at the cost of higher complexity.

The axiom of symmetry A2 and the axiom of associativity A3 tell us that the result of the

combination of pieces of evidence is independent of the order in which they are

considered and/or they are associated.

The axiom of conditioning A4 has been justified in part 4. It implies that if bel2 is

vacuous, bel12=bel1.

In order to prove the unicity of Dempster's rule of combination, it is much easier to work
with commonalty functions as Dempster's rule of combination is q12(A)=q1(A)q2(A).

Many theorems are conveniently described with such commonalty functions. As belief

functions are uniquely related to commonalty functions, both approaches are equivalent.

Proofs are given in appendix 3.

Theorem  1. Given axioms A1 to A4, there is a function f such that:
q12(A) = f( A , {q1(B):B→A , q2(B):B→A} )

Axiom A5 expresses the idea that the result of the combination will not be modified by a

permutation among the elementary propositions of  ∆.

A5: internal symmetry.
Let ∆ = (A1, A2...An). Let the propositions B1,B2...Bn be a permutation of the

propositions A1, A2...An. Let mi and mi'  be two  sequences of basic belief masses with:

mi = ( mi(A1), mi(A2), mi(A1∨ A2), mi(A3)...mi(A1∨ A2...An) )

mi'= ( mi(B1), mi(B2), mi(B1∨ B2), mi(B3)...mi(B1∨ B2...Bn) )

Let bel12(A)=g(A,m1,m2).

Then g(A,m1,m2)=g(A,m1',m2')

Axiom A6 considers that the mass given by m12 to A∈Ω  is independent of the masses

given by m1 (and m2) to propositions B→¬A.
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A6: autofunctionality:
∀ A∈Ω , A≠1Ω, m12(A) does not depend on m1(X) for all X→¬A.

Theorem 2: Given  axioms A1 to A6, there is a function f such that
 q12(A) = f( A , q1(A) , q2(A) )

Two further technical axioms are necessary to prove the final theorem 3.

A7: three-element:

 There are at least three elementary propositions in ∆.

A8: continuity:
Let m2(A) = 1-ε, m2(1Ω) = ε. Let mA(A) = 1. For any bel1 defined on Ω, let

bel1A=bel1⊕ belA. Then for all X∈Ω ,
lim

ε→0
 m12(X) = m1A(X).

The three-element axiom can hardly be criticized.The continuity axiom is in fact needed

only to eliminate an uninteresting degenerate solution of theorem 3: 
q12(A) = q1(A) if q2(A)=1

  = q2(A) if q1(A)=1

  = 0 otherwise

Axiom A8 could be replaced by the requirement that q12(A)=f(A,a,b), a,b∈ [0,1], should

be non null somewhere in the open interval (0,1)x(0,1), or the degenerate solution could

be explicitly rejected.

Theorem 3: Given axioms A1 to A8, for all A∈Ω
q12(A) = q1(A)⋅q2(A)

Theorem 3 proves the unicity of Dempster's rule of combination under axioms A1 to A8.

The proof is based on the properties of triangular norms and absolute monotone functions

presented in appendix 1 and 2.

6. NORMALIZATION.

When Shafer introduced his model, he postulated m(0Ω)=0 and bel(1Ω)=1. So after

combining two belief functions, he had to normalize the results in order to get
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bel12(1Ω )=1. This is obtained by computing m12(A) as done here and then

proportionally rescaling it by a factor 1/(1-m12(0Ω)). This normalization seems natural

but has been seriously criticized by Zadeh [47] with the next counter example.

Suppose a murder case with three suspects: ∆ = {Henry, Tom, Sarah}, and two

witnesses. Table 1 presents the degrees of belief of each witness about who might be the

murderer k. For witness 1, k is not Sarah, k is most probably Henry, but k might also be

Tom. Witness 2 holds similar beliefs except for the permutation between Henry and

Sarah.

normalized unnormalized
Witness 1 Witness 2 m12 m12

Henry .99 .00 .00 .00

Tom .01 .01 1.00 .0001

Sarah .00 .99 .00 .00

How can these two quite contradictory pieces of evidence be combined? Shafer's

normalized solution leads to the conclusion that Tom is certainly the murderer.

Zadeh does not accept this solution as it gives full certainty to a solution (Tom) that is

hardly supported at all. In fact, in the totally different situation in which both witnesses

might have been sure that Tom was the murderer, the result of the combination would

have been the same. The unnormalized solution presented within our theory seems much
more realistic as it shows Tom to be slightly supported but 0Ω to be highly supported.

Bearing in mind the semantic of 0Ω given in part 2, the most obvious conclusion in the

present situation is that the real murderer must be a fourth person, i.e. the solution is in

the set UP and not in the set KP= ∆ ={Henry, Tom, Sarah}.

There is of course another way of dealing with the present incoherence. The pieces of

evidence are combined by a judge who obtains them from two witnesses, each of whom

expresses his own belief. The judge must consider his own belief about the reliability of

the witnesses. So one could introduce a meta-belief function representing the degree of

belief held by the judge about assertions of each witness. Discounting [25, 33] is one

way of taking into account this meta-belief. In the present paper we shall restrict

ourselves to the case where the two witnesses are wholly reliable.

What further is it that represents the normalization in the present theory? Suppose we are

presented with the evidence: 'The murder is necessarily Henry, Tom or Sarah'. How can
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we accommodate this 'closed-world conditioning' (UP is empty), i.e. how can we
transform m12 into m'12 so that m'12(0Ω)=0. One must somehow reallocate m12(0Ω)

to non vacuous propositions of Ω in order to keep the sum of all the  masses m'12 equal

to 1.

The general solution is given by

m'12(A) = m12(A) + c(A,m1,m2) m12(0Ω) ∀ A∈Ω , A≠0Ω
m'12(0Ω) = 0

If c does not depend on m1 (nor on m2 by symmetry as m'12 must obey axiom A2),

there is a problem if m2=mA with mA(A)=1, A∈Ω . One must obtain pl'12(¬A)=0 as m2
tells us that the truth may not be in ¬A, so that one must have m'12(X) = 0 for all

X→¬A. This can only be obtained if c depends on mA (i.e. m1 and m2). Thus Yager's

proposal [45] to take c=0 ∀ A∈Ω , A≠1Ω, and c(1Ω)=1, is not acceptable as his proposal

leads to pl'12(¬A) > 0.

Shafer's solution corresponds to c(A,m1,m2)=m12(A)/(1-m12(0Ω)). It can be obtained

if one requires that relative degrees of belief (or plausibility) should stay constant after

considering the closed-world conditioning.

Definition: the closed-world conditioning corresponds to the impact of the strictly

certain proposition 'UP is empty'.

Axiom A9: Let bel' be the belief function obtained from bel:Ω→[0,1] after closed-

world conditioning. Then ∀ A,B∈Ω , A,B≠0Ω
bel'(A)/bel'(B)=bel(A)/bel(B)

pl'(A)/pl'(B)=pl(A)/pl(B)
and m'(0Ω) = 0.

Axiom A9 implies that bel'(A)=c⋅bel(A) with c independent of A. As bel'(1Ω)=1-

m'(0Ω)=1, then c=1/(1-m(0Ω)), as in Shafer's solution.

The impact of the closed-world conditioning could in fact be represented by a meta-belief

function defined on the sets UP, KP and KI. The solution is studied in Smets [33].

In this paper, the combination operator ⊕  has been considered with the open-world

assumption and it is shown that Shafer's normalization can be assimilated to the impact of

the closed-world conditioning. It takes in account Zadeh's criticisms because if the
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closed-world assumption is true, than the only murderer is Tom as Henry and Sarah have

been eliminated by witnesses 1 and 2 respectively.

The real counter intuitive result observed within Zadeh's counter example results not so

much from the normalization than from the acceptation of the closed-world assumption.

In real world situation, it is obvious that if one can really believe both witnesses, then one
should seriously question the closed-world assumption. Solution m12 has the advantage

of showing the practical impact of the closed-world conditioning that was not visible with

Shafer's solution.

7. CONCLUSIONS.

The present paper has presented the transferable belief model used to quantify

someone's degree of belief about the truth of a set of propositions. A finite amount of

belief is distributed among the propositions of a frame of discernment Ω. The non

negative mass m(A) quantifies the amount of belief specifically allocated to proposition A,

that cannot be allocated to any proposition B≠A that implies A but that might be allocated

to such a proposition B if further evidence permits such a transfer. The degree of belief in

a proposition A is the sum of the masses allocated to propositions B that imply A without

implying ¬A. The degree of plausibility in a proposition A is the sum of the masses

allocated to propositions B that are compatible with A.

This model must not be confused with the upper and lower probabilities model or

some interval valued probabilities model, that corresponds usually to the

interpretation given by those who use Dempster-Shafer's theory [16]. In these models,

one postulates the existence of some probabilities that quantify our degrees of belief, but

the exact value of each probability is only known to be between two boundaries.  In the

transferable belief model, no probability whatsoever is introduced. Probabilities are

irrelevant.

The transferable belief model is also different conceptually and mathematically from the

bayesian model. Conceptually the bayesian assumption that belief is quantified by

probabilities rests on betting and decision arguments. The transferable belief model

applies at the cognitive level, a level where the concepts of bets and decisions are not

required. It is true that once a decision is involved, one must construct a probability

function based on the belief function that describes the cognitive state. But nowhere in the

bayesian approach is there an argument that requires that, at the cognitive level, beliefs be
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described by probability functions. The problem of decision making when beliefs are

quantified by belief functions is solved in Smets (1989).

Mathematically, a probability function is a particular case of a belief function where

positive masses are allocated only to elementary propositions of Ω. Dempster's rule of

conditioning reduces itself into classical probabilistic conditioning. But Dempster's rule

of combination does not have its real counterpart in probability theory. Dempster's rule of

combination with closed-world assumption can be seen as identical to the combination of

two a posteriori probability functions defined on Ω if the a priori probability function on

Ω gives the same probability to every elementary proposition of Ω and if the two pieces

of evidence are conditionally independent given each elementary proposition of Ω.

Generalization to the case where the a priori probabilities are not constant is immediate if

one is careful not to introduce it twice in the ⊕  combination [33]. These mathematical

similitudes should not be interpreted as implying that the transferable belief model is a

generalization of the bayesian model. We rather see them as two complementary models,

the transferable belief model normatively describes cognitive state, the bayesian model

normatively describes decision bevahiors.

Any measure of cognitive process gets its meaning only if one can provide an objective

tool through which this measure can be assessed. Exchangeable bets is the one used by

bayesians. The translator example is the one used for belief functions [30, 40].

One particularity of the transferable belief model is that it allows a positive mass

allocated to the contradiction. The meaning of such allocation can be understood if

one gives due consideration to the difference between the open and the closed-world

assumption. The frame of discernment Ω is an a priori construct on which belief is

distributed. But one should not ignore that this frame is usually nothing but an intellectual

construct and that it may be that none of the propositions of Ω is true. The impact of the

closed-world assumption is studied and a normalization coefficient is derived, the result is

Shafer's model. The advantage of distinguishing between the open and the closed-world

is that it allows evaluation of the degree of conflict among the pieces of evidence as far as

Ω is concerned, therefore to judge the appropriateness of the frame of discernment Ω and

of the closed-world assumption.

The second part of the paper provides axioms that imply the Dempster's rule of

combination used to combine two belief functions derived from two distinct pieces of

evidence. Distinctness is defined in relation to the compositionality axiom A1. The major

axiom is the conditioning axiom A4 that results directly from the structure of the

transferable belief model, i.e. a mass initially allocated to some proposition A that could
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be allocated (transferred)  to any subproposition of A by further evidence.

It would have been interesting to construct counter examples for which the

autofunctionality axiom A6 would not be fulfilled. This is easy if one restricts the belief

functions to the so called consonant belief functions  by Shafer [25] and necessity

functions in Dubois and Prade [9]. These are belief functions for which the masses are
allocated on propositions A1,A2...An such that Ai→Ai+1: i=1...n-1.. In that case,

bel(A&B) = min{bel(A) , bel(B)}

pl(A∨ B) = max{pl(A) , pl(B)}.

Acceptable solutions are
q12(A)=min { T(q1(t),q2(t)) : t∈ A }

where T is any T-norm. They obey A6 iff T=T0 (the min-based T norm). But consonant

belief functions are only particular cases of belief functions and are too restrictive to

describe someone's degree of belief.

In conclusion, the transferable belief model presents two  characteristics: the masses

allocation that leads to superadditive belief functions to describe someone's degree of

belief and a rule to combine two distinct evidences. The interest of the first aspect is

usually recognized. But the combination rule was felt to be ad hoc by critics [28],

especially  when they interpret the transferable belief model as an upper and lower

probabilities model. This paper provides axioms that explain the meaning of Dempster's

rule of combination within the transferable belief model.

Belief functions provide a model that should be most useful in developing Expert

Systems that need to handle uncertainty. Its theoretical use for medical diagnosis was

considered in Smets [33, 34, 35], the generalization of Bayes's theorem necessary for

inferences is developed in Smets [33, 38, 39] and the concept of degree of belief in a

fuzzy proposition in Smets [36].

APPENDIX 1. Triangular norms.

The concept of triangular norms (T-norms) are fully developed in Scheizer and Sklar [22,

23, 24], see also Weber [44].

Definition. A T-norm is a function T from [0,1]x[0,1] to [0,1] such that for all a, b, c,

d ∈  [0,1], one has:

1. T(a,b) = T(b,a) symmetry

2. T(a,T(b,c)) = T(T(a,b),c) associativity
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3. T(a,b) ≥ T(c,d)  if a≥c and b≥d monotony

4. T(a,1) = a boundary conditions

For any T-norm T, there is:

Tw(a,b) ≤ T(a,b) ≤ T0(a,b)

where Tw, and T0 are T-norms such that:

Tw(a,b) = a if b = 1

b if a = 1       

0 otherwise

      

T0(a,b) =   a∧ b

where ∧   denotes the minimum operator.

A particular T-norm is the product function T1  with T1(a,b) = a⋅b.

APPENDIX 2. Monotone functions.

Let a function f(x) defined on a segment 0R. Let the successive differences ∆if be positive

on the segment 0R for i=1, 2...n  and any positive h

∆1f(x) = f(x+h) - f(x) ≥ 0

∆2f(x) = f(x+2h) - 2f(x+h) + f(x) ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∆nf(x) = f(x+nh)-nf(x+{n-1}h)+...±f(x) ≥ 0

given all values in the inequalities belong to 0R.

If f satisfies those properties for n≥2, then f is continuous  and admits continuous

derivates up to the order n-2 inclusively and at each point a right and a left derivate of

order n-1. (Proof is given in Bernstein [2], pg 190 et seq.).

Given n=3, f admits non negative first and second derivates and ([2] pg 193)

f(x) = f(0) + xf'(0) + (x2/2) ∫
0

1
(1-u) f"(ux) du
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APPENDIX 3. Proofs of theorems 1 to 3.

Given the proofs are much easier when arrived at with commonalty functions, we

translate axioms A1 to A4 into axioms Q1 to Q4, their counterpart based on commonality
functions. We write qij for qi⊕ qj. ∀ A→/ C means ∀ A such that A&¬C≠0Ω.

Q1: compositionality axioms:
q12(A) is a function of A, q1 and q2 only.

Q2: symmetry:
q1⊕ q2 = q2⊕ q1

Q3: associativity:
(q1⊕ q2)⊕ q3 = q1⊕ (q2⊕ q3)

Q4: conditioning:
if q2 is such that m2(B)=1, then

q12(A) = q1(A) for all A→B

= 0 otherwise

Theorem  1. Given axioms Q1 to Q4, there is a function f such that:
q12(A) = f( A , {q1(B):B→A }, {q2(B):B→A })

Proof:  Let q1, q2 and qC be three commonality functions defined on Ω. Let C∈Ω . qC
corresponds to a conditoning on C, i.e. qC(A)=1 ∀ A→C, and 0 otherwise.

By Q1, q12(A) = f(A,{q1(X):X→1Ω},{q2(X):X→1Ω})

By Q3, q(12)C = q1(2C).

By Q4, q(12)C(A)=q12(A) ∀ A→C, and 0 otherwise.

∀ A→C,  q1(2C)(A) = f(A,{q1(X):X→1Ω},{q2(X):X→C, 0:X→/ C})

and q1(2C)(A) = q12C(A)

The comparison of the two f functions shows that q12(A) does not depend on q2(X)

∀ X→/ C. This is true for all C such that A→C and among others for C = A. Thus q12(A)

does not depend on q2(X) ∀ X→/ A. It depends only on q2(X) for X→A.

By symmetry (axiom Q2) one concludes that q12(A) depends only on the q1(X) and

q2(X) for X→A.

QED.

Lemma 1: Let qB be the commonality function corresponding to a conditioning on B.

Then qBB=qB⊕ qB=qBA

Proof: By definition, mB(B)=1, thus by axiom Q4 mBB(A)=1 if A=B, and 0 otherwise.

Therefore mB=mBB.

QED.
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Lemma 2: If for some B→A, B≠A∈Ω , q2(X)=0 ∀ X→A,∀ X→/ B, then q12(A)=0

Proof: Let B→A, B≠A∈Ω . Let qB be the commonality function corresponding to a

conditioning on B. By Q3, q(12)B=q1(2B). By Q4 as B→A, B≠A, q(12)B(A)=0 and

q2B(X)=0 ∀ X→A, ∀ X→/ B. Thus 0 = q(12)B(A) =

f(A,{q1(X):X→A},{q2B(X):X→A}) = f(A,{q1(X):X→A},{q2(X):X→B,0:∀ X→/ B})

This last term corresponds to q12(A)=0 when q2 satisfies the conditions of the

hypothesis.

QED.

Lemma 3: Axioms A6 implies that ∀ A∈Ω , A≠1Ω, q12(A) does not depend on m1(X)

for all X→¬A.

Proof: By theorem 1, for A∈Ω , q12(A) may depend only on q1(B) for B→A and q1(B)

depends only on those m1(C) such that B→C. Thus q12(A) may depend on m1(C) only

if A&C≠0Ω.

QED.

Theorem 2: Given axioms A1 to A6, there is a function f such that:
 q12(A) = f( A , q1(A) , q2(A) )

Proof: For simplicity's sake, the domain of the m1, q1, m12 and q12 functions are not

repeated. They are all defined on Ω.

For X∈Ω , |X| is the number of elementary propositions of ∆ that imply X.

The set of independence pairs is defined as the set of ordered pairs (a,b) where a=|A|,
b=|B|, a>b, and (a,b) means that q12(A) is independent of q1(B), irrespective of the

interrelations between A and B.

1°) Consider A∈Ω , |1Ω|=n, |A|=n-1 and ¬A=B. By (3.2), m12(A) = q12(A) - q12(1Ω).

By axiom A6, m12(A) does not depend on m1(B). By lemma 3, q12(A) does not depend

on m1(B). The only component of q12(1Ω) that depends on m1(B) is q1(B). Thus

q12(1Ω) is independent of q1(B). By symmetry (axiom Q5), q12(1Ω) is independent of

q1(B) whenever |B|=1. So (n,1) belongs to the set of independence pairs.

2°) Consider the set of independence pairs with i<k<n,

(n,1)

(n-1,1) (n,2)

(n-2,1) (n-1,2) (n,3)

. . .

(n-k+2,1)...............(n,k-1)

(n-k+1,1)...(n-k+i,i)
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These independence pairs (r,s) are such that either r-s>n-k or r-s=n-k in which case

s=1,2...i. Suppose these independence pairs hold, then the independence pair (n-

k+i+1,i+1) holds also.

Consider A∈Ω  such that |A|=n-k and Y→¬A with |Y|=i+1≤k. Relation (3.2) can be

written:

   k r∧ (i+1)

m12(A) =    ∑   (-1)r   ∑    ∑       ∑  q12(A∨ B∨ C)

       r=0 s=0 B→Y C→¬(A∨ Y)

      |B|=s |C|=r-s

By A6, m12(A) is independent of m1(Y). Given A,B,C, we test if q12(A∨ B∨ C) may

depend on m1(Y). Only q1(D)  may depend on m1(Y) only if D→Y, and by theorem 1,

q12(A∨ B∨ C) may depend on q1(D) only if D→A∨ B∨ C, so we must only test if

q12(A∨ B∨ C) depends on q1(D) for D→B.

To check if q12(A∨ B∨ C) is independent of q1(D), one must check if the pair (n-k+r,d)

with d=|D| belongs to the set of accepted independence pairs. One has d≤s and s≤r∧ (i+1).

Therefore n-k+r-d≥n-k. Whenever n-k+r-d>n-k, the pair belongs to the set of accepted

independence pairs. When n-k+r-d=n-k, thus r=d, the pair also belongs to the set of

accepted independence pairs if d≤i.

The only case not considered is r=d=i+1 in which case r=s, D=B=Y, which corresponds
to the only term q12(A∨ Y) that might be dependent only on q1(Y). As this is the only

term that might depend on m1(Y) and as m12(A) does not depend on m1(Y), we have

proved that q12(A∨ Y) does not depend on q1(Y). By axiom A5, it implies that the pair

(n-k+i+1,i+1) is an independence pair.

3°) Consider the set of independence pairs as in 2°) but with its last term being (n,k-1),

i.e. all the pairs (r,s) with r-s>n-k.

We must prove that (n-k+1,1) is also an independence pair. Consider |A|=n-k and |Y|=1,
Y→¬A. m12(A) depends on q12(A), q12(A∨ Y),  q12(A∨ C) and q12(A∨ Y∨ C) |C|=c≥1,

C→¬(A∨ Y). q12(A) and q12(A∨ C) do not depend on q1(Y) as Y→¬A. q12(A∨ Y∨ C)

does not depend on q1(Y) as the pair (n-k+1+c,1) belongs to the set of accepted

independence pairs as n-k+1+c-1>n-k. The only term that might depend on q1(Y) is

q12(A∨ Y). As m12(A) does not depend on q1(Y) and as there is only one term in

m12(A) that might depend on q1(Y), it is independent of q1(Y). By axiom A5, the pair

(n-k+1,1) is an independence pair.

4°) By 1° (n,1) is an independence pair. By 3° (n-1,1) is IP. By 2°, (n,2) is an
independence pair. By 3°, (n-2,1) is an independence pair etc...Thus q12(A) is

independent of all q1(Y) whenever |Y|<|A|. Therefore q12(A)=f(q1(A),q2(A)).
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QED.

Lemma 4: The f function of theorem 2 is such that f(A,a,0) = 0.
Proof: The last relation in the proof of lemma 2 becomes: 0 = q(12)B(A) =f(A,q1(A),0).

QED.

Lemma 5: The f function of theorem 2 is such that f(A,a,1)=a.
Proof: Let qA be the commonality function corresponding to the conditioning on A. Let

q1A=q1⊕ qA. Then by axiom Q4, q1A(A)=q1(A), thus f(A,q1(A),1)=q1(A).

QED.

Lemma 6: Given axioms A1 to A7, there is a function T such that:
q12(A) = T( q1(A) , q2(A) )

Proof: 1) Let ai=qi(A)=qi(A∨ X), i=1,2, with X an elementary proposition of ∆ implying

¬A. By theorem 2, one has q12(A) = TA(a1,a2). As all q functions are such that

q(A)≥q(A∨ B), TA(a1,a2)≥TA∨ X(a1,a2). It holds for all A≠1Ω.

2) Let X and Y be 2 distinct elementary propositions implying ¬A.
Let ci = mi(A∨ X∨ Y) and 1-ci = mi(A∨ X). One has:

m12(A) = ∑
 B→¬ A

(-1)b q12(A∨ B) with b=|B|.

 

Let C=A∨ X∨ Y, then:

m12(A)=TA(1,1) -TA∨ X(1,1) -TA∨ Y(c1,c2)- ∑
Z∈ ¬C

  TA∨ Z(0,0) + TA∨ X∨ Y(c1,c2) + R

where R contains terms TB(0,0) with B→/ C. By lemma 4, TB(0,0)=0 for all B. By

lemma 5, TA(1,1)=TA∨ X(1,1)=1. Thus

m12(A)=-TA∨ Y(c1,c2)+TA∨ X∨ Y(c1,c2)≥0,

so TA∨ X∨ Y(c1,c2)≥TA∨ Y(c1, c2). It holds for all A such that there are 2 elementary

propositions X and Y implying ¬A, which is possible from axiom A7.
3) Combining inequalities in 1) and 2), one has TA∨ X(c1,c2)=TA(c1,c2) for all A. Thus

T does not depend on A and it is true for all A∈Ω  as far as there are at least 2 elementary

propositions in ∆.

QED.

Lemma 7: Under lemma 6 conditions, T is non decreasing in its arguments.

P r o o f :   By definition, q(A)≥q(A∨ B) for all A,B∈ Ω . Thus one has

T(q1(A),q2(A))≥T(q1(A∨ B),q2(A∨ B)). It is equivalent to T(x+ε, y+δ)≥T(x,y) for all ε,
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δ≥0.

QED.

Lemma 8: Under lemma 6 conditions, the T function is a T-norm.

Proof: T is  a function from [0,1]x[0,1] to [0,1]. To be a T-norm, T must satisfy:

1: T(a,b)=T(b,a) which is true by axiom Q2.

2: T must be associative, which is true by axiom Q3.

3: T must be non decreasing in its arguments, which is true by lemma 7.

4: T(1,a)=a, which is true by lemma 5.

QED.

Definition: T'(x,y) and T"(x,y) are the first and second derivates of T(x,y) taken for x.

Lemma 9: Given axioms A1 to A8, the T-norm of lemma 8 is continuous on [0,1],

admits non negative derivates of order 2 and a continuous first derivative.

Proof: For all A∈Ω , the commonality functions q satisfy the following inequalities

m(A) =  ∑
B→¬A

  (-1)b q(A∨ B) ≥ 0

Let A∈Ω , B,C,D∈∆ , B,C,D be pairwise distinct and A∨ B∨ C∨ D=1Ω.

Construct a commonality function q1 such that q1(X) depends only on n=|X|. Take

m1(1Ω)=x and m1(A∨ B∨ C)=m1(A∨ B∨ D)=m1(A∨ C∨ D)=ε, x+3ε≤1, m1(X)=0 for

X=A∨ B,A∨ C,A∨ D,B∨ C,B∨ D,C∨ D,A,B,C,D. Then q1(A)=x+3ε, q1(A∨ X)=x+2ε,

X→B∨ C∨ D, |X| =1,  q1(A∨ X)=x+ε, X→B∨ C∨ D, |X| =2, and q1(A∨ B∨ C∨ D)=x. Take

a commonality function q2 such that q2(A∨ X)=y, X→B∨ C∨ D. Let q12=q1⊕ q2. The

inequalities for m(A) become,
m12(A∨ B∨ C) = T(x+ε,y) - T(x,y) ≥ 0

m12(A∨ B) = T(x+2ε,y) - 2 T(x+ε,y) + T(x,y) ≥0

m12(A) = T(x+3ε,y) - 3 T(x+2ε,y) + 3 T(x+ε,y) + T(x,y) ≥0

for all x,y,ε≥0, given all terms are in [0,1]. With f(x)=T(x,y), f thus admits non negative

differences of order 1 to 3 on [0,1]. Given A8 f is thus  continuous on [0,1]. It admits

non negative derivates f' and f",  and f' is continuous(see appendix 2).˙

QED.

Lemma 10: Under lemma 9 conditions and given A7, T"(x,y+δ) ≥ T"(x,y).

Proof: Let A∈Ω  and X,Y,Z be 3 distinct elementary propositions of ∆ such that

X∨ Y∨ Z=¬A. Construct 2 belief functions as follows with x+2ε≤1, y+δ≤1:
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A A∨ X A∨ Y A∨ Z A∨ X∨ Y A∨ X∨ Z  A∨ Y∨ Z A∨ X∨ Y∨ Z

m1 0 0 0 0 ε ε 0 x

q1 x+2ε x+2ε x+ε x+ε x+ε x+ε x x

m2 0 0 0 0 0 0 δ y

q2 y+δ y y+δ y+δ y y y+δ y

The inequality (3.2) for m12(A) becomes:

T(x+2ε,y+δ)-T(x+2ε,y)-2T(x+ε,y+δ)+2T(x+ε,y)+T(x,y+δ)-T(x,y) ≥ 0

T(x+2ε,y+δ)-2T(x+ε,y+δ)+T(x,y+δ) ≥ T(x+2ε,y)-2T(x+ε,y)+T(x,y)

As T admits a second derivate, one divides both terms by ε, and takes the limit for ε→0.

One obtains T"(x,y+δ)≥T"(x,y).

QED.

Theorem 3: Given axioms Q1 to Q8, q12 is such that for all A∈Ω
q12(A) = q1(A) . q2(A)

Proof: Given lemma 9, one knows that T'(x,y) and T"(x,y) exist and are non negative.

Therefore one has the representation (see appendix 2):

T(x,y) = T(0,y) + x T'(0,y) + (x2/2) ∫
0

1
  (1-u) T"(ux,y) du

where T is a T-norm. Thus T(0,y) = 0. As T(x,1) = x, T"(x,1)=0. By lemma 10,

T"(x,y+δ)≥T"(x,y). Thus 0=T"(x,1)≥T"(x,y)≥0, and T"(x,y)=0. Then T(x,y) =

xT'(0,y) for x∈ [0,1). T is symmetrical, T(1,1)=1 and T(x,y) is continuous as x→1 by

A8, so T(x,y)=xy.

QED.
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2. MATHEMATICAL PROPERTIES OF BELIEF FUNCTIONS.

Let ˝ be a finite set of elementary propositions, i.e. the conjunction of any 2 distinct

propositions of ˝ is a contradiction. Let ∏ be the boolean algebra  of propositions derived

from ˝, i.e. ∏ contains the conjunctions, disjunctions and negations of any set of

propositions of ˝. Let π be the tautology relative to ∏ and Ø the  contradiction relative to

∏. Ø is also called the vacuous proposition of ∏. By definition Ø is not an elementary

proposition of ˝. Negation of any proposition A of ∏ symbolized by ¬A or « is taken

relatively to ˝. One writes œ and ¢ for the disjunction and the conjunction connectives,

A‘B for 'proposition A implies proposition B'. Note that Ø‘A for all A in ∏.

The ® symbol is used with the following meanings.

A®˝ means that A is an elementary proposition of ˝,

A®∏ means that A is a proposition of ∏  and

for B®∏, A®B means that A is an elementary proposition implying B. 

Thus Ø®∏ is true but Ø®˝ and Ø®B are false as Ø is not an elementary proposition.

For any A®∏, ¿@@A@@¿ is the number of elementary propositions B®˝ such that

B®A.

All the presentation could have been done using sets, unions, intersections, and

inclusions. Our choice reflects a personal preference supported by the feeling that the

natural domain of a belief is more the truth of a proposition than the belonging to a set.

A basic belief assignment m is a function m:∏Ÿ[0,1] such that:

„  m(A) = 1

A‘π

The sum is taken on all A that imply π, i.e. all propositions A of ∏. Any A®∏ such

m(A)>0 is called a focal proposition of ∏.

A belief function bel is a function bel:∏Ÿ[0,1] such that:

bel(A) = „ m(B)

                                  B‘A

    B≠Ø

The sum is taken on all B®∏ that imply A without implying «. It satisfies the following



Comb.Ev. 27/7/99 11:41 32

inequalities:

1) bel(π) = 1 - m(Ø) ≤ 1

2) for every n>0 and every collection A1,A2...An®∏,

bel(œAi) ≥ „bel(Ai) - „bel(Ai¢Aj)...+(-1)-1bel(A1¢A2...¢An) (1)

       i     i                   i>j

A plausibility function pl is a function pl:∏Ÿ[0,1] such that:

pl(A) = „   m(B)

   B¢A≠Ø

The sum is taken on all B®∏ that do not contradict A, i.e. all those B that do not imply «.

A equivalent definition is:

pl(A) = bel(π) - bel(«) = 1 - m(Ø) - bel(«)

In particular, pl(Ø)=0.

A commonality function q is a function q:∏Ÿ[0,1] such that:

q(A) = „ m(AœB)

               B‘«

In particular, q(Ø)=1. It satisfies the following inequalities, with b = ¿@@B@@¿@@:

„ (-1)b q(AœB) ≥ 0

B‘«

These 4 functions define each other uniquely. Among other, one has:

m(A) = „ (-1) a-b bel(B)

  B‘A

  B≠Ø

with a-b = ¿@@@A¢˜@@¿ .
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@ m(A) = „ (-1)b q(AœB) (2)

  B‘«

bel(A) + m(Ø) = „ (-1)b q(B)

            B‘«

with b = ¿@@@B@@¿@.

The vacuous belief function is such that:

m(π)  @ = 1

Bel(π)@@@@= 1

Bel(A) = 0 for all A ≠ π
q(A)    = 1 for all A®∏

Shafer defines these functions differently, the only difference being that  he requires a

null basic assignment to the contradiction Ø. In order to distinguish the functions defined

here and those of Shafer, we use the symbols m, bel, pl and q for those functions as

defined here and M, Bel, Pl and Q for the equivalent ones as defined in Shafer.

Shafer's functions M, Bel, Pl and Q obey all the above mentioned rules to which one

adds:

M(Ø)   @@= 0

what implies:

Bel(Ø) = 0 Bel(π) = 1

Pl(π)  @@= 1

In the whole presentation, each time one of the functions m, bel, pl or q is introduced

with some supplementary symbols, we will abstain to define each one in relation to the
others. This avoids the necessity to define explicitely m1, pl1 and q1 as being the basic

probabilty assignment m1, the plausibility function pl1 and the commonality function q1
related to the belief function bel1. The simple declaration of one of them implies

automatically the others, the supplementary symbols being sufficient to know which one

are interrelated. The same applies for the functions as defined by Shafer.

Given 2 belief functions bel1 and bel2 induced by 2 distinct evidences, the belief function

bel that results of their combination is obtained by Dempster's rule of combination.

m(A) =  „ m1(AœX) m2(AœY)
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   X‘«

   Y‘«

  X¢Y=Ø

and M(A) = m(A) / (1 - k)

with k =  „    m1(X) m2(Y) = m(Ø)

      X¢Y=Ø

One has also the very useful relations:

q(A) = q1(A) q2(A)

and Q(A) = q(A) / (1 - k)

Conditioning on the proposition A is represented by the special case where m2(A)=1. Let

bel2 represent the belief function induced by a conditioning on A. Then the combination

of a belief function bel1 with that particular conditioning function bel2 induces the belief

function bel such that:

m(X) = „  m1(XœY)   for all X‘A

  Y‘«

m(X) = 0 for all X¢«≠Ø

bel(X) = bel1(Xœ«) - bel1(«) for all X‘A

    O for all X¢«≠Ø

pl(X) = pl1(X¢A) for all X®∏

q(X) = q1(X) for all X‘A

 0 for all X¢«≠Ø

Bel(X) = (Bel1(Xœ«) - Bel1(«)) / (1 - Bel1(«))

Pl(X) = Pl1(X¢A) / Pl1(A)

Q(X) = Q1(X)/Pl1(A) for all X‘A

       0 for all X¢«≠Ø
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The rules for Shafer's functions are Dempster's rule of conditioning.

All proofs for the M, Bel, Pl and Q functions as well as further properties of these can be

founded in Shafer [24]. Their extensions to the m, bel, pl and q functions are immediate.
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Q1: entailment functionality:
q12(A) is a function of A,q1 and q2 only.

Q2: symmetry:
q1$q2 = q2$q1

Q3: associativity:
(q1$q2)$q3 = q1$(q2$q3)

Q4: conditioning:
if q2 is such that m2(B)=1, then

q12(A) = q1(A) for all A‘B

 @@@@= 0 otherwise


