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Summary: We present a set of axioms that justify the use of belief functions to quantify the
beliefs held by an agent Y at time t and based on Y's evidential corpus. It is essentially
postulated that  degrees of belief are quantified by a function in [0,1] that give the same degrees
of beliefs to subsets that represent the same propositions according to Y's evidential corpus.
We derive the impact of the coarsening and the refinement of the frame on which the beliefs are
expressed. The conditioning process is also derived. We propose a closure axiom that asserts
that any measure of beliefs can be derived from other measures of beliefs defined on less
specific frames.
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1 . Introduction.

Uncertainty induces beliefs2, i.e. dispositions that guide our behaviour. It sounds natural to try
and quantify them on a numerical scale. These quantified beliefs manifest themselves at two
levels: the credal level where beliefs are entertained and the pignistic level where beliefs
are used to take decisions (pignus = a bet in Latin, Smith 1961). Usually these two levels are
not distinguished and probability functions are used to quantify beliefs at both levels. The
justification is usually linked to "rational" agent behaviour within betting and decision contexts
(DeGroot 1970). The Bayesians have convincingly showed that if decisions must be
"coherent", our beliefs over the various possible outcomes must be quantified by a probability
function. This result is accepted here, except that such probability functions quantify our
beliefs only when a decision is really involved. That beliefs are necessary ingredients for our
decisions does not mean that beliefs cannot be entertained without any revealing behaviour
manifestations (Smith and Jones, p.147).

In this paper, we present a set of axioms that must be satisfied by the function that should be
used to quantify the beliefs held at the credal level. We call that function a credibility function.

1 The following text presents research results of the Belgian National incentive-program for
fundamental research in artificial intelligence initiated by the Belgian State, Prime Minister's
Office, Science Policy Programming. The scientific responsability is assumed  by its author.
Research work has been partly supported by the ESPRIT II, Basic research Action 3085
(DRUMS) funded by a grant from the Commission of the European Communities.
2 A belief is a proposition which you could doubt. Here, it is endowed by a strength.
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It will be shown that the credibility function is a belief function. The resulting model is the
transferable belief model (Smets and Kennes, 1990, Smets, 1990a, Smets, 1988)

We accept all over that degrees of beliefs at both the credal and the pignistic levels are
pointwise defined, degrees of beliefs satisfying a total order.

All beliefs entertained by an agent Y at time t and their degrees are defined relative to a given

evidential corpus (ECt
Y) i.e., the set of pieces of evidence in Y's mind at time t. Our

approach is normative, the agent Y is an ideal rational agent, the evidential corpus is

deductively closed and it induces unique degrees of belief. One source of modification in ECt
Y

is updating: it results from the adjunction to the corpus of a new piece of evidence assumed to

be true and compatible with ECt
Y. The updating is similar to the expansion process considered

in Gardenfors (1988). Only one agent Y is considered in this paper, and time t is unique except
when updating will be studied.

This paper summarizes the major results. Details and proofs are presented in Smets (1992b).
We present successively the propositional space on which credibility functions ared defined
(section 2), the principle axioms characterizing the credibility functions (section 3), the
dynamic of the credibility functions after non-informative coarsening (section 4) and
refinement (section 5) of the frame of discernment and adfter updating of the evidential corpus
by an expansion process (section 6). A closure property is presented that implies that
credibility functions are belief functions (section 7).

Lengthy discussions about the use and appropriateness of the belief functions to quantify
beliefs can be found in two special issues of the International Journal of Approximate
Reasoning (volumes 4(5):1990 and 6(3):1992). These problems are not tackled here. We only
try to find axioms that justify the use of belief functions for quantifying beliefs.

2 . The propositional space.

This section defines the domain on which the agent Y will express his beliefs at time t. These
beliefs are quantified by a function Cr that we derive in this paper.

Our presentation is based on possible worlds (Carnap, 1956, 1962, Ruspini, 1986, Bradley
and Swartz, 1979). Let L be a finite propositional language. Let Ω = {ω1, ω2, ...ωn} be

the set of worlds that correspond to the interpretations of L. We call Ω the frame of
discernment (the frame for short). Propositions identify the subsets of Ω. Let T be the
tautology and ⊥ be the contradiction. For any proposition X, let “X‘”Ω be the set of worlds

identified by X. Let A be a subset of Ω, then fA is any proposition that identifies A. So
A=“fA‘, Ø=“⊥ ‘ and Ω=“T‘. The domain of Cr are sets of worlds in Ω. By definition the

actual world ϖ is an element of Ω. ∀ A”Ω, Cr(A) quantifies Y's beliefs at time t that ϖ∈ A.
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In L, two propositions A and B are logically equivalent, denoted A≡B, iff “A‘=“B‘.

Beside the logical properties, there is another concept of equivalence related to the evidential

corpus ECt
Y
 of Y at time t.  This property is qualified as doxastic in order to contrast it from its

logical counterparts. Let “ECt
Y
‘ represents the set of worlds where all propositions deduced on

Ω from ECt
Y
 are true. All the worlds in Ω not in “ECt

Y
‘ are accepted as 'impossible' for Y at

time t. Two propositions A and B are said to be doxastically equivalent for Y at time t,

denoted A≅ B, if “ECt
Y
‘∩“A‘ = “ECt

Y
‘∩“B‘

For A”Ω, A denotes the set of worlds in “ECt
Y
‘ not in A, hence A=“ECt

Y
‘∩“¬fA‘.

Let Π  be a partition of Ω. Given the elements of the partition Π , we build ℜ , the Boolean
algebra of the subsets of Ω based on Π . Each set of worlds in Ω that is an elements of the

partition Π on which the algebra ℜ  is based is called an atom of ℜ . Given ℜ , the number of

atoms in a set A∈ℜ  is the number of atoms of ℜ  that are included in A. We call the pair (Ω,

ℜ ) a propositional space.

3 . The credibility function.

Let Y be an agent. Let ECt
Y
 be Y's evidential corpus at time t. Let Ω be the frame of

discernment on which Y entertains his beliefs concerning the answer ϖ to a question of

interest, i.e. Y allocates his beliefs at time t to the elements of ℜ,  an algebra defined on Ω. It is

postulated that the beliefs held by Y are quantified by a point-valued "credibility" function Cr

which maps ℜ  into [0, 1], is uniquely defined by (ECt
Y,Y, t), is monotonic for inclusion,

reaches its lower limit for Ø and its upper limit for Ω. The triple (Ω, ℜ , Cr) is called a

credibility space. The index in (Ω, ℜ , Cr)ECt
Y denotes the evidential corpus on which Cr is

based.

The first axiom assumes that propositions that are doxasticaly equivalent for Y at time t receive
the same beliefs (Kyburg, 1987a).

Axiom A1: Equi-credibility of doxasticaly equivalent propositions.
Suppose two credibility spaces (Ω, ℜ i, Cri), i=1,2 induced by ECt

Y. Let A1∈ℜ 1, A2∈ℜ 2 Let

fA1  and fA2 be any proposition that identifies A1 and A2. Let fA1≅ fA2. Then Cr1(A1) =

Cr2(A2).

Next, in Smets (1990b) we prove that the set of credibility functions defined on a propositional
space (Ω, ℜ ) is a convex set, i.e., if Cr1 and Cr2 are two credibility functions defined on ℜ ,

then α .Cr1 + (1-α ).Cr2, α∈ [0,1], is also a credibility function on ℜ . We also derive the

pignistic transformation, i.e., the transformation that permits the construction of the probability
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function needed for decision making. We prove that probability functions are credibility
functions (Smets 1992b).

4 . Coarsening.

We study the impact that would result on Y's beliefs from a change of the algebra on which Cr
is initially defined. These changes of algebra are said ‘uninformative’ in that they do not

induce a change in the evidential corpus ECt
Y on which Y’s beliefs at t were based. Two types

of change are considered: the coarsening and the refinement (see section 5). Intuitively the first
corresponds to a grouping together of the atoms of ℜ  whereas the second corresponds to a

splitting of the atoms of ℜ .

    Coarsening     Refinement
ℜ C ℜ ' ℜ R ℜ '

ω1 z1

ω2 z1 ω1 z2

ω3 ω2 z3

ω4 z2 z4

ω5 ω3 z5

ω6 z3 z6

Figure 1: Examples of coarsening C and refinement R from ℜ  to ℜ ' which atoms are

respectively the ωi's and the zi's.

Let (Ω, ℜ , Cr) be the credibility space induced by ECt
Y. Let C be a mapping from ℜ  to ℜ ', an

algebra defined on the same frame Ω, such that one to several atoms of ℜ  are mapped into one

atom of ℜ ' and each atom of ℜ  is mapped into one and only one atom of ℜ '. Let C(ω) be the

atom of ℜ ' on which the atom ω of ℜ  is mapped, and ∀ A∈ℜ, C(A) = (∪ C(ω) : ω∈ A). The

mapping C is called a coarsening. For A’∈ℜ ', C-1(A’) is the union of the atoms of ℜ  which

are mapped by C onto an atom of A’. Let Cr’ be the credibility function induced on ℜ ’ from

ECt
Y. The same evidential corpus ECt

Y induces both Cr and Cr’, the only difference being in
the granularity of the algebras. Hence Cr and Cr’ are strongly related. That relation between Cr
and Cr' is immediate thanks to axiom A1.

Theorem 1. Let the credibility space (Ω, ℜ ', Cr')ECt
Y be derived from (Ω, ℜ , Cr)ECt

Y

through the uninformative coarsening C. Then for A’∈ℜ ':

Cr'(A’) = Cr(C-1(A’)).

Thanks to theorem 1, the granularity of Ω in (Ω, ℜ , Cr) becomes essentially irrelevant. The

only constraint induced by ℜ  on Ω is that each element of Ω is included in one atom of ℜ  and
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each atom of ℜ  contains at least one element of Ω. So one has full freedom to change Ω
provided Ω is compatible with ℜ (i.e. satisfy the constraints  induced by ℜ ).

5 . Refinement.

Let (Ω, ℜ ) be a propositional space. Suppose a mapping R from (Ω, ℜ ) to another

propositional space (Ω', ℜ ') where ℜ ' is an algebra such that each atom of ℜ  is mapped into

one or several atoms of ℜ ' and each atom of ℜ ' is derived from one and only one atom of ℜ .

The structure of the frames of discernment Ω and Ω' is not important for our presentation
provided they are compatible with ℜ ’. Therefore Ω and Ω' can both be re-defined such that

they are equal (and denoted Ω*) and their elements correspond to the atoms of ℜ '. Let R(A) be

the image of A∈ℜ  in ℜ ', and let R(Ø)=Ø. The mapping R is called a refinement.

Let (Ω, ℜ , Cr)ECt
Y be a credibility space based on ECt

Y and let (Ω*, ℜ ') be the propositional

space derived from (Ω, ℜ ) by the uninformative refinement R. Adapt Ω of the first credibility

space into Ω*, so both credibility spaces (the ones before and after refinement) share the same

Ω*. We must determine what is the credibility function Cr' induced on ℜ ' by ECt
Y, i.e. by Cr.

As ∀ A∈ℜ , fA≅ fR(A), then Cr'(R(A)) = Cr(A) by axiom A1. But Cr' is not defined on the

elements of ℜ ' that are not the image of some elements of ℜ  under R. Thus we must define the

credibility Cr' on ℜ ' for these elements of ℜ ' given the credibility Cr on ℜ  and the

uninformative refinement R.

In order to explain the construction of Cr', consider the following illustrative example. Let ϖ
be Paul's age, Ω = [0, ∞), and ω1 = [0,20), ω2 = [20, 40), ω3 = [40, ∞) be the three atoms

of ℜ . Let Cr quantifies Y's beliefs on ℜ based on ECt
Y. Let P1, P2 and P3 be three

propositions. Y does not know what are these three propositions, he only knows that one and
only one of them is true. Let a refinement R from ℜ  to ℜ ’ with  R(ω1) = ω1, R(ω2) = ω2, and

R(ω3) = {X1, X2, X3} where Xi = 'ω3 and Pi'.

The problem is to determine Cr' given the evidential corpus ECt
Y that leads to the construction

of Cr on ℜ  and the knowledge of the refinement R. Consider the value of Cr’(ω1∪ Xi). The

uninformativeness of R is tanslated into the requirement:
Cr'(ω1∪ X1) =Cr'(ω1∪ X2) = Cr'(ω1∪ X3).

Suppose now that one uses another uninformative refinement R” from (Ω*, ℜ)  to (Ω*, ℜ ”)

such that R”(ω1) = ω1, R”(ω2) = ω2, and R”(ω3) = {Y1, Y2} where fY1≅ fX1 , fY2≅ fX2∪ X3 .

The credibility Cr” over ℜ ” is such that:

Cr”(ω1∪ Y1) = Cr”(ω1∪ Y2).

By axiom A1:
Cr”(ω1∪ Y1) = Cr'(ω1∪ X1).
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Cr”(ω1∪ Y2) = Cr'(ω1∪ X2∪ X3).

Therefore one obtains:
Cr'(ω1∪ X2) = Cr'(ω1∪ X1) = Cr”(ω1∪ Y1) = Cr”(ω1∪ Y2) = Cr'(ω1∪ X2∪ X3)

So Cr'(ω1∪ X) is equal for all X⊂ R(ω3) (where X⊂ Y means that X”Y but X≠Y). The impact

of an uninformative refinement is formalized by axiom R1 where we must only postulate the
equalities on the atoms, as the other equalities are deduced from axiom A1 and the same
argument as the one just presented.

Axiom R1: Let (Ω, ℜ , Cr)ECt
Y be a credibility space and let R be a refinement from (Ω, ℜ)

to (Ω', ℜ '). Let ω be a given atom of ℜ  and B∈ℜ ' where B∩R(ω) = Ø. Let Xi: i=1, 2...n be

the atoms of ℜ ' included in R(ω). Let (Ω', ℜ ', Cr)ECt
Y be the credibility space induced from

(Ω, ℜ , Cr)ECt
Y by R on (Ω', ℜ '). Then

Cr'(B∪ Xi) = Cr'(B∪ Xj) ∀ i,j∈ {1, 2...n}.

The next theorem just formalize the intuitive proof detailled before introducing axiom R1.

Theorem 2: Under axiom R1 conditions, for any ω∈Ω , any B∈ℜ ' and with B∩R(ω)=Ø,

Cr'(B∪ X) is constant for all X⊂ R(ω).

The property represents a serious departure from what is encountered in classical probability
theory. That departure reflects the difficulty for probability theory to deal with states of total
ignorance as those encountered with the Pi's. In fact, in probability theory, one cannot accept
simultaneously axiom R1 for any uninformative refinement R and axiom A1. In probability
theory, the introduciton of a uninformative refinement is accompanied by the introduction  in

ECt
Y of the information that tells for each atoms ω of ℜ  how the probability given to ω is

distributed among the new atoms of R(ω). Often an equidistribution of the probability given to

ω among the atoms of R(ω) is assumed, but any distribution is acceptable. The information

about that distribution is linked to the refinement, therefore ECt
Y is updated, and thus the

refinement is not uninformative as required. The uninformative refinements we consider in
axiom R1 are those that correspond only to a change in the granularity of the algebra on which

our credibility function is build, without changing the evidential corpus ECt
Y on which Y’s

beliefs are based.

Another axiom must be assumed to determine Cr' after uninformative refinement. Let A∈ℜ
and let n distinct atoms ωi, i=1, 2...n of ℜ , none being included in A. Let Xi⊂ R(ωi), i=1,

2...n. We postulate that Cr'(R(A)∪ X1∪ X2...∪ Xn) depends only on the beliefs Cr(A∪ B)

given to the union of A with each subset B of ω1∪  ω2∪ ..∪ω n.

Axiom R2: Let (Ω, ℜ , Cr)ECt
Y be the credibility space based on ECt

Y. Let R be a

uninformative refinement from (Ω, ℜ)  to (Ω', ℜ '). Let (Ω', ℜ ', Cr')ECt
Y be the credibility
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space induced from (Ω, ℜ , Cr)ECt
Y by R on (Ω', ℜ '). Let A∈ ℜ  . Let ωi: i=1,2...n, be n

different atoms of ℜ  with A∩ωi = Ø. Let Xi be any element of ℜ ' strictly included in R(ωi):
i=1,2...n. Then there is a g function such that:

Cr'(R(A)∪ X1∪ X2...∪ Xn) = g({Cr(A∪ B): B∈ℜ , B”ω1∪  ω2∪ ..∪ω n})

In fact, axiom R2 could be simplified by requiring only that Cr'(R(A)∪ X1∪ X2...∪ Xn) does

not depend on Cr(X) when X∩(A∪ω 1∪  ω2∪ ..∪ω n) = Ø. Intuitively that property is of the

same nature as the one underlying Axiom A1: irrelevant credibilities should not interfere with
the other credibilities. Given that requirement, axiom A1 permits to deduce axiom R2. The gain
is not worth the needed proof.

From axioms R1 and R2, it is possible to prove that Cr' must satisfy one of the following three
relations:

Cr'(R(A)∪ X1∪ X2...∪ Xn) = Cr(A)

Cr'(R(A)∪ X1∪ X2...∪ Xn) = Cr(A∪ω 1∪  ω2∪ ..∪ω n)

Cr'(R(A)∪ X1∪ X2...∪ Xn) = max(Cr(A), Cr(ω1), Cr(ω2), ...Cr(ωn))

The first solution is the one encountered when Cr is a belief function, and the second is the one
encountered when Cr is a plausibilty function. The third solution will not satisfy the
conditioning axioms (but find an application in possibility theory).

6 . Updating.

Let ECt
Y
 be the evidential corpus  held by Y at time t and let (Ω, ℜ , Cr)ECt

Y be the credibility

space characterizing Y's beliefs at time t about which subsets of worlds of Ω among those in ℜ
include the actual world ϖ. Suppose Y expends ECt

Y by adding the evidence EvA compatible

with ECt
Y that implies that all worlds in A”Ω are impossible, i.e. that the actual world ϖ is not

in A, or equivalently that fA≅ T. How does Y update his beliefs given the addition of EvA to

ECt
Y? Let CrA be the conditional credibility function that results from the addition of EvA to

ECt
Y. It is postulated in axiom M1 that CrA is derived from the credibility function Cr based on

ECt
Y.

Axiom M1: Let (Ω, ℜ  Cr)ECt
Y be a credibility space based on ECt

Y. Let EvA be an evidence

compatible with ECt
Y that implies that fA≅ T. Let (Ω, ℜ,  CrA)ECt

Y∪{ EvA} be the credibility

space based on ECt
Y∪{ EvA}. Then CrA depends only on Cr and A.

To derive the conditioning process, we will use the idea of iterated conditioning. For A,B”Ω,
let fA, fB and fA∩B be the propositions that denotes the sets of worlds A, B and A∩B.

Suppose you learn 1) that fA≅ T and then that fB≅ T, or 2) that fB≅ T and then that fA≅ T, or 3)

directly that fA∩B≅ T. The final conditional belief should be the same in these three cases. This
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requirerment introduces enough constraints to derive the mathematical structure of the updating
process.

We prove that the conditional credibility function CrA(B) depends only on some of the
elements of ℜ .

Theorem 3: Let (Ω, ℜ  Cr)ECt
Y be a credibility space based on ECt

Y. For A∈ℜ , let EvA be

an evidence compatible with ECt
Y that implies that fA≅ T. Let (Ω, ℜ,  CrA)ECt

Y∪{ EvA} be  the

credibility space based on ECt
Y∪{ EvA}. Then there is a f function such that CrA satisfies:

1: CrA(B) = 0 ∀ B”A, B∈ℜ
and ∀ B∈ℜ
2: CrA(B) = CrA(B∩A)

3: CrA(B) = f (Cr(B∩A), Cr( B∩A), Cr( A), Cr(A), Cr((B∩A)∪  A), Cr(( B∩A)∪  A), Cr(Ω))

The following theorem formalizes the idea that refining one atom ω of ℜ  into two new atoms

ω1 and ω2 in ℜ ' and conditioning then on ω2 will leave the credibility function unchanged

(except the algebra has changed). To illustrate the underlying idea, consider the following
example dealing with Paul's age ϖ. Consider Y's beliefs about ϖ, im particular

Crϖ<40(ϖ<20). Then consider a refinement R from (Ω, ℜ ) to (Ω', ℜ ') with R([0,20)) =

[0,20), R([20,40)) = {([20,40),Q), ([20,40),¬Q)}, R([40,∞)) = [40,∞), where Q is a
proposition unknown to Y (like the Pi’s propositions of section 5). Y builds his credibility

function Cr' on ℜ '. Than Y learns that Q is true. What is Y's beliefs about ϖ<20 given

((ϖ<20) or (20≤ϖ<40 and Q)). We feel it has to be equal to Y's previous belief

Crϖ<40(ϖ<20) about ϖ<20 given (ϖ<20 or 20≤ϖ<40). Indeed the Q story becomes irrelevant

to Y's beliefs on ϖ, and this is what theorem 4 confirms. Formally one has:

Theorem 4: Let (Ω, ℜ , Cr)ECt
Y be the credibility space based on ECt

Y. Let a uninformative

refinement R from (Ω, ℜ)  to (Ω', ℜ ') such that each atom of ℜ is mapped onto itself in ℜ ',

except one atom ω of ℜ  that is refined into ω1 and ω2 by R. Let Cr’ be the credibility function

derived from Cr on ℜ ' by R. Suppose the conditioning of Cr' on ω2 , then

∀ A∈ℜ  Cr'ω2(R(A)∩ω2) = Cr(A)

We introduce two other axioms. The first (M2) eliminates degenerated solutions. The second
(M3) says that if fotr X,Y∈ℜ , X,Y”A∈ℜ,  X∩Y=Ø, Cr(X∪ Y) = Cr(X) + Cr(Y) then the

conditional crfedibiulkty function CrA obeys CrA(X∪ Y) = CrA(X) + CrA(Y) (just as in

probability theory). We do not require that normalization is preserved, as it will correspond to
a particular case of our conditioning operator. The axioms M1, M2 and M3 combined with the
axioms about refinement are sufficient to derive the explicit structure of the conditional
credibility functions.

Axiom M2: Non-degenerated solutions. CrA(B) is not constant for all A∈ℜ .
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Axiom M3: Additivity preservation. Let (Ω, ℜ ,Cr) be a credibility space. If the

credibility function Cr is additive, then additivity is preserved after conditioning.

Theorem 5. Let (Ω, ℜ , Cr)ECt
Y be the credibility space based on ECt

Y. Let {ω1, ω2, ...ωn}

be the set of atoms of ℜ . Let a uninformative refinement R from (Ω, ℜ ) to (Ω', ℜ '). Let (Ω',

ℜ ', Cr')ECt
Y be the credibility space derived from (Ω, ℜ , Cr)ECt

Y by R. Let I”{1,2,...n}.

For i∈ I, let Xi⊂ R(ωi). Let A∈ℜ  and ωi∩Α=Ø, ∀ i∈Ι.  The refinement and the conditioning

process admit only two solutions:
The minimal solution is:

CrA(B) = 
Cr(B∪ A) - Cr(A)

Cr(Ω) - Cr(A)
 CrA(A) Cr'(R(A) ∪ (∪

i∈Ι
Xi)) = Cr(A)

The maximal solution is:

CrA(B) = 
Cr(A∩B)

Cr(A)
 CrA(A) Cr'(R(A) ∪ (∪

i∈Ι
Xi)) = Cr(A ∪ (∪

i∈Ι
ωi))

The qualification of the solutions as minimal and maximal results from the fact they correspond
to the extremal solutions among the possible solutions. Indeed the following inequalities are
required by the monotonicity for inclusions and axiom A1:

Cr(A) ≤ Cr'(R(A) ∪ (∪
i∈Ι

Xi)) ≤ Cr(A ∪ (∪
i∈Ι

ωi)).

The minimal and the maximal solutions of theorem 5 are in fact dual. We define the co-
credibility function CoCr on ℜ  induced by a credibility  function Cr on ℜ  by:

CoCr(A) = Cr(Ω) - Cr( A) ∀ A∈ℜ
If the credibility function satisfies the minimal solution, its related cocredibility function
satisfies the maximal solution, and vice versa. Therefore there is in practice only one credibility
function, as the other solution is always its dual. That duality relation is the one encountered
between the belief functions and the plausibilty functions.

The solutions for CrA(B) depend on the value of CrA(A). Three particular cases merit
consideration.

CrA(A) = 1: the solutions are those obtained by the normalized Dempster's rule of
conditioning, i.e. the solutions described in the transferable belief model under closed-world
assumption.
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CrA(A) = Cr(Ω) - Cr(A) in the minimal solution and CrA(A) = Cr(A) in the maximal solution:
the solutions are those obtained by he unnormalized Dempster's rule of conditioning as
described in the transferable belief model under open-world assumption.

CrA(A) = Cr(Ω): the solutions corresponds to those obtained by a partially renormalized
Dempster's rule of conditioning. It fits with the idea that the belief initially given to Ω is
preserved by proportionaly reallocating the belief given initially to A. The nature of such a
solution is nevertheless not very clear to us except if Cr(Ω)=1 in which case it is equivalent to
the first solution.

If initially the belief is quantified by a probability function, and if one accepts CrA(A) = 1, then
both the maximal and the minimal solutions of theorem 5 are identical and correspond to the
conditioning rule encountered in probability theory.

Gärdenfors (1988) proposed two compelling properties for probabilistic revision functions,
that are not simultaneously satisfiable in probability theory. In the context of the minimal
solution, they translate into:

Homomorphisme:
If Cr(A)<Cr(Ω) and Cr = p.Cr' + (1-p).Cr", p∈ [0,1], then CrA= p.Cr'A + (1-p).Cr"A.

Preservation:
If Cr(A)<Cr(Ω) and Cr(B) = Cr(Ω), then CrA(B) = CrA(A).

Homomorphisme is satisfied only by the unnormalized Dempster's rule of conditioning. It
fails whenever a normalization factor is introduced through a division.

Preservation is satisfied by both solution for conditioning. One could have considered that
CrA(B) = Cr(Ω) would be required by the preservation. But in order to satisfy both
homomorphisme and preservation, one would have to require that: CrA(B) = CrA(A) = Cr(Ω) -
Cr(A). These equlities are satisfied in the transferable belief model for quantified beliefs where
conditioning is performed by the unnormalized Dempster's rule of conditioning (Smets and
Kennes, 1990). In that case, the prerequisite Cr(A)<Cr(Ω) can even be relaxed, but if
Cr(A)=Cr(Ω), then CrA(B)=0 ∀ B∈ℜ , so even CrA(Ω)=0, a belief that describes a state of

complete contradiction not dissimilar to the one encountered in logic when one simultaneously
knows something and its contrary. This problem is studied in Smets (1992).

7 . Credibility functions and belief functions.

The aim of this paper was to determine which properties are required in order to justify that
beliefs should be quantified by belief functions. Up to here the credibility functions are not
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restricted to being belief functions. To achieve our aims, we introduce a closure property that
reduces the credibility functions to belief functions.

Let a propositional space (Ω, ℜ ). The only relevant information in ℜ  to define the set of all

credibility functions defined on ℜ  is the number r of atoms in ℜ  (r = |ℜ |) so we write Cr for

the set of credibility functions defined on an algebra with r atoms and that satisfy to the
minimal solutions of theorem 5. Let IΩ be the 'vacuous' credibility function on (Ω, ℜ ) where

IΩ(X)=0 ∀ X”Ω, X≠Ω, and IΩ(Ω)=1.

Let Br be the set of belief functions defined on an algebra with r atoms. Br is closed under
conditioning. Furthermore all elements of Br can be generated from the vacuous credibility
function IΩ∈ Cr by appropriate conditioning and simplex combinations (a simplex combination

is a convex combination except that the sum of the weights may be in [0, 1] instead of being
1).

Let Rr be the set of refinements Ri , i=1, 2..., from (Ω, ℜ)  to (Ω', ℜ ') where |ℜ | = r and |ℜ '|

= r+1, i.e. one and only one atom of ℜ  has been refined into two atoms of ℜ '. For Cr∈ Cr,

Ri∈ Rr, let Ri(Cr)∈ Cr+1 be the credibility function defined on ℜ ' after aplying the refinement

Ri by using the minimal solution given in theorem 5.

Let Ext(Cr) be the set of credibility functions on ℜ ' that can be obtained by convex

combinations of the credibility functions generated on ℜ ' by the application of the refinement

operators in Rr on the credibility  functions in Cr. Let D(Ext(Cr)) be the closure of Ext(Cr) that
contains all the credibility functions that can be obatined from those in Ext(Cr) through
conditioning (by the minimal solution of theorem 5) and simplex combinations. Formally:

Ext(Cr) = {Cr: Cr∈ Cr+1, Cr = ∑
i
α iRi(Cri), Cri∈ Cr, Ri∈ Rr, α i≥0, ∑

i
α i =1}

D(Ext(Cr)) = {Cr: Cr∈ Cr+1, Cr = ∑
i
α iCriAi, α i≥0, ∑

i
α i =1,

CriAi is the (minimal) conditioning on Ai∈ℜ ' of Cri∈ D(Ext(Cr))}

The problem is to decide if Cr+1 = D(Ext(Cr)) or not? We cannot prove it, but we feel it can be
postulated. We feel reasonable to assume that any credibility function in Cr+1 could be derived
from some credibility functions in Cr through refinement, conditioning and simplex
combinations.

The Closure Axiom : Cr+1 = D(Ext(Cr))

This axiom has the immediate consequence that Br = Cr, i.e. every credibility function in Cr is
a belief function.
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Theorem 6.
1: Br = Cr.
2: credibility functions that satisfy the minimal solution for conditioning and refinement are
belief functions.
3: credibility functions that satisfy the maximal solution for conditioning and refinement are
plausibilty functions.

8 . Conclusions.

We have shown under which conditions beliefs are quantified by belief functions at the credal
level, i.e. where beliefs are entertained. These conditions seem acceptable, and therefore they
provide a justification for the transferable belief model to quantify some one's beliefs (Smets
and Kennes, 1990).

One might be tempted to consider some of the axioms as unreasonable. It happens most if not
all that the axioms are satisfied in probability theory (except for the simultaneous satisfaction of
the homomorphism and the preservation properties). Therefore the rejection of our axioms
might lead to a simultaneous rejection of probability theory! In fact probability functions are
special cases of normalized belief functions.

The nature and use of the transferable belief model is detailed in Smets and Kennes (1990). In
Smets (1990b) we show and explain what is the probability function that must be used to make
decisions given the beliefs entertained at the credal level. In Smets (1990a) we show  what is
the justification of the Dempster's rule of combination (see also Klawonn and Schwecke,
1992, Klawonn and Smets 1992). The concept of distinctness is described in Smets (1992c).
The meaning of Cr(Ω)<1 is analysed in Smets (1992a). The combination of the belief
functions induced by two non-distinct pieces of evidence are already tackled in Kennes (1991)
and Smets (1986).
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