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Summary: Belief functions have recently been advocated as an alternative to probability
functions for representing quantified belief. This new normative model has several merits, but
these merits are not sufficient to justify its use. Some ‘axiomatic’ justification is al'so needed.
Indeed the examination of the requirements that underlie the normative models of subjective
behaviors provides usualy the best if not the only tool to compare them. We present such a set
of axioms. In order to show that belief functions are appropriate for representing quantified
beliefs, we present and analyze the requirements that should be satisfied when conditioning is
introduced and when the domain on which beliefs are assessed changes. The deduced model
corresponds to the transferable belief model, i.e. amodel for quantified beliefs based on belief
functions and independent of any underlying probability model.
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1. Introduction.
1.1. Why representing beliefs is useful?

Why should statisticians, engineers, logicians, philosophers... be interested in a model to
represent quantified beliefs? For the statisticians, because statistical inference is essentially
building ‘beliefs’, as done explicitely in Bayesian inference but also in classical inference,
significance levels and confidence intervals have a strong flavor of ‘belief’, even though that
‘belief’ is supposed to be ‘objective’ . For the engineer, because building a ‘thinking robot' is
part of the dream of Artificial Intelligence. To be 'viable' such arobot must be able to reason
and to act within an environment ridddled with uncertainty. For the logicians, because
approximate and commonsense reasoning are based on beliefs. For the philiosophers, because
the representation of belief is part of any search for understanding humans.

1 Research work has been partly supported by the Action de Recherches Concertées BELON
funded by a grant from the Communauté Francaise de Belgique and the ESPRIT |11, Basic
Research Action 6156 (DRUMS I1) funded by a grant from the Commission of the European
Communities.
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What we philosophically mean by ‘belief’ isleft aside. We study epistemic states involving
shades of belief, where the ‘belief’ express the extend to which an ultimately true or false
proposition is believed (Dubois and Prade, 1996). In practice we study the same concept as
the one considered by the Bayesian probabilists. The .7 value in the statement ‘ the probability
of A is.7 quantifies someone’'s ‘beliefs'. We use ‘belief’ in this non categorical sense. We
could as well have used words like credibility, support, strength of opinion, necessary
commitment... or many other similar expressions. The word ‘belief’ is just used for
simplicity’s sake.

Classicaly gantified beliefs is represented by probability functions. This paper reconsiders the
justifications that underlie the determination of a model to represent quantified beliefs.
Rationality requirements are proposed that lead to the transferable belief model (TBM), a
model based on belief functions. The meaning and advantages of the TBM are presented in
Smets and Kennes (1994). Such a model was criticized as ‘lacking of any axiomatic
justification’. We present here such ajustification.

The Bayesian model is perfect when all needed probabilities are available. But what when
some of these probabilities do not exist? One can either claim that they always exist, in which
case the Bayesian model covers all needs. This claim hardly makes unanimity. The TBM
extends the Bayesian program to those cases where a strict Bayesian approach is questionable
if not purely inappropriate. The TBM provides a model much more flexible than the Bayesian
model, and reduces itself into the Bayesian model when the conditions underlying the
applicability of the Bayesian model are satisfied.

1.2. About the concept of belief.

1) Credal versus pignistic levels. Uncertainty induces beliefs, i.e. graded dispositions
that guide our behavior. They manifest themselves at two mental levels. the credal level where
beliefs are entertained and the pignistic level where beliefs are used to make decisions?.

Usually these two levels are not distinguished and probability functions are used to quantify
beliefs at both levels. The justification for the use of probability functionsis usually linked to
"rational” behavior to be held by an ideal agent involved in some betting or decision contexts
(Ramsey, 1931, Savage, 1954, DeGroot, 1970). They have shown that if decisions must be
"coherent”, the uncertainty over the possible outcomes must be represented by a probability
function. This result is accepted here, except that such probability functions quantify the
uncertainty only when a decision is really involved. Therefore uncertainty must be represented
by a probability function at the pignistic level. We also accept that this probability function is
induced from the beliefs entertained at the credal level. What we reject is the assumption that

2 Credal and pignistic derive both from the latin words ‘credo’, | believe and ‘pignus’, a
wage, a bet (Smith, 1961).
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this probability function represents the uncertainty at the credal level. We assume that the
pignistic and the credal levels are distinct what implies that the justification for using
probability functions at the credal level does not hold anymore (Dubois et al., 1996). This
paper is concerned with developing the nature of the function that might appropriately
represent quantified beliefs at the credal level.

Many comments and disgressions are necessary in order to make the paper self contained but
they can be skipped on first reading. These sections are marked **.

** 2) Historical comments: The distinction between the two levels was already
recognized by previous authors as illustrated by the following quotations. ‘The kind of
measurement of belief with which probability is concerned is a measurement of belief qua
basis of action’ (Ramsey, 1931). ‘That beliefs are necessary ingredients for our decisions
does not mean that beliefs cannot be entertained without any revealing behavior
manifestations’ (Smith and Jones, 1986, p.147). ‘A belief is a disposition to feel that things
are thus-and-so. It must be contrasted with the concept of acceptance’ (Cohen, 1993). ‘A
probability measure is atool for action, not for ng strength of evidence’ (Sahlin, 1993).
‘There is difference between theoretical reaoning, which immediately modifies beliefs, and
practical reasoning, which immediately modifies plans and intentions' (Harman, 1986).

The normative models proposed to represent quantified beliefs entertained at the credal level
can be categorized into three classes:.

1) the probabilistic models,

2) the non-standard probabilistic models, i.e., extensions of the probability model: the upper
and lower probabilities models (Good, 1950, Smith, 1961, Kyburg, 1987b, Walley, 1991,
Voorbraak, 1993), Dempster-Shafer's models (Dempster, 1967, Shafer, 1976, Smets, 1994),
the Hints models (Kohlas and Monney, 1994), the probability of provability models (Ruspini,
1986, Pearl, 1988, Smets, 1991), the convex sets of probability functions (Levi, 1980),

3) the non-probabilistic models, i.e., models independent of any underlying probability
model: the transferable belief model (Smets, 1988, 1990a, Smets and Kennes, 1994), the
possibility theory model (Zadeh, 1978, Dubois and Prade, 1985), etc...

For each of these normative models, authors have proposed sets of requirements that
measures of belief should satisfy. The comparison of the requirements helps to evaluate the
appropriateness of the normative models.

3) Our strategy for building the model. In this paper, we follow the same strategy.
We propose a set of requirements that should be satisfied by the mathematical functions that
represent quantified beliefs at the credal level. Therse functions are temporarily called
‘credibility functions'. Initially credibility functions could be any set-functions. We then
introduce rationality requirements that any credibility function should satisfy in order to
adequately represent beliefs. Each requirement puts more and more constraints on the family
of functions that could be used to quantify beliefs, up to the point where that family reduces
itself to the set of belief functions. Even though probability functions are special cases of
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belief functions, the family of probability functions is not rich enough to satisfy all the
requirements we introduce.

The resulting model for representing quantified beliefs at the credal level isthe TBM (Smets
and Kennes, 1994). Like Dempster-Shafer models, the TBM is based on belief functions, but
it isfree of any probabilistic connotation. As far as we know, thisis the first axiomatization
based on rationality requirements that justify the use of belief functionsto represent quantified
beliefs.

4) The evidential corpus. Our approach is normative, not descriptive. We consider
beliefs held by anideal rational agent, denoted Y ou. Y our beliefs are relative to the truth status
of some propositions. We limit ourselves to propositional logic. Extensions to higher order
logics, to multivalued logics and to fuzzy logics are left aside. The strength of the belief
entertained by You at time t that a given proposition is true is defined relative to a given
evidential corpus, denoted EC;, i.e., the set of evidencein Your mind at timet. The evidential
corpus Ed corresponds to Y our background knowledge, to ‘al what You know at t’. Ed is
the set of information used by You at t to build Y our beliefs. It will be constant when we will
discuss uninformative refinements and coarsenings. It will change when we will discuss
conditioning and deconditioning, i.e., when new pieces of evidence are added (conditioning)
or retracted (deconditioning) from ECY .

** B5) The strucutre of the evidential corpus. For what concerns the construction of
Your beliefs, ECF is composed of propositions accepted to be true tby You at t. Some
propositions bear directly on the domain on which Y our beliefs are built. Other propositions
translate rationality principle that Y our beliefs should satisfy. For example, as a Bayesian,
Y ou would put in ECF the list of possible events on which Y our probabilities will be defined,
Y our opinion about whch event will prevail, and some rationality requirements like the one
that states that the probability given to two mutually exclusive events should be the sum of the
probabilities given to the individual events, etc... Given EC), if You are a Bayesian, You
assign a probability to every event.

One could claim that Ed uniquely determines these probabilities, a reminiscence of Carnap
logical probabilities. Nevertheless, the derived probabilities are subjective as E@( contains
Your personal opinions at t. It is hard to differentiate between subjective probabilities and
logical probabilitiesinduced by propositions that describe persona opinions.

The belief set of Géardenfors (1988) is a subset of ECY, it is the set of propositionsin ECY
that induce the list of possible events on which quantified beliefs will be distributed.

We do not include the beliefs assigned to the various eventsin ECF aswewant touseit just as

a description of the background from which You build Your beliefs at t. If we had put the
values of the beliefsin ECY, then the beliefs induced by ECY would be nothing but those
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included in ECY. We use EC} asa‘background’ and we say ‘ECY induces beliefs so and so’
just as we would say ‘under such a background knowledge, beliefs are so and so'.

6) Achievement. This paper presents the rationality requirements that should be included in
EQ( . Once therationality requirements are included in EC}( , gantified beliefs are represented
by belief functions. The strategy we follow consistsin assuming that You isin agiven ‘belief
state’ induced by some evidential corpus EC?. Then we introduce some additional
information, like a conditioning information, in Y our evidential corpus. Y our beliefs must be
adapted accordingly in order to keep some ‘ coherence’ between the belief states. We assume
Y our beliefs are summarized by a‘credibility function’. Therefore the changes between belief
states that result from additional information are reflected by transformation between
‘credibility functions'. The coherence required among belief states will induce some
constraints on the possible nature of the ‘credibility functions'. Together the constraints we
will introduce imply that ‘credibility functions are belief functions, i.e., that the model for
representing quantified beliefsisthe TBM.

1.3. Summary of content.

The outline of the paper is as follows. Section 2 sets the frame on which beliefs are held. The
frame is essentially a finite Boolean algebra over a set of possible worlds. Credibility
functions are required to be bounded real valued functions, monotone for inclusion, that give
the same belief to two propositions that are considered as equivalent by Y ou.

Section 3 shows that the set of credibility functions is convex. Section 4 introduces the
concepts of uninformative coarsening and refinements, i.e., changes limited to the granularity
of the domain on which credibility functions are defined. Section 5, by far the most
importanty section, studies the impact of a new piece of evidence on a credibility function,
i.e., the conditioning process. Section 6 introduces the concept of deconditionalization and
shows that a credibility function isin fact a belief function. It concludes our justification for
the use of belief functions to quantify beliefs. Section 7 summarizes the results and answers
potential questions. Proofs are given in the appendix.

2. The credibility function.

The aim of this work is to develop the mathematical structure of a function Cr, called a
credibility function, that quantifies Y our beliefs. The kind of belief we are concerned with are
those encountered in statements like "Your belief that a proposition A istrueis.7', or as a
shortcut, "Your belief that A is.7'. Beliefs weight the strength given by the agent Y ou to the
fact that a given proposition is true in the actual world. The meaning of the statement 'Y our
belief that it will rain tomorrow is.7' can be either: 'the measure of the belief held by Y ou that
the proposition "it will rain tomorrow" istrueis.7' or: 'You believe at level .7 that the day of
tomorrow belongs to the set of rainy days. So beliefs given to 'propositions’ can equivalently
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be given to the subsets of worlds that denote the propositions. Defining beliefs on
propositions or on sets is equivalent. We will adopt the second approach. We restrict
ourselvesto propositional logic, therefore the sets of worlds are also equivalent to the ‘events
considered in probability theory.

We proceed now by formally defining the domain on which Y ou will express Y our beliefs at
timet given Your evidential corpus E@( . Then afirst set of requirements are presented, the
most important being the doxastic consistency, i.e., propositions that are considered as
equivalent by You at t given E@( should receive equal beliefs.

2.1. The propositional space.

We formalize the domain on which degrees of belief will be assessed. The domain, called the
credibility domain, will be a Boolean algebra built on a set of possible worlds.

1) Possible worlds. Our presentation is based on possible worlds (Carnap, 1962,
Ruspini, 1986, Bradley and Swartz, 1979) and beliefs will be given to sets of worlds. These
sets of worlds, called ‘events' in probability theory, will be elements of a Boolean algebra of
sets.

Let L be afinite propositional language, supplemented by the tautology and the contradiction,
denoted T and U, respectively. Let Q; be the set of worlds that correspond to the
interpretations of L. and built so that every world corresponds to a different interpretation.
Propositions identify the subsets of Q, , and the subsets of Q denote propositions. For any
proposition X, let [XI<Q, be the set of worlds identified by X (i.e., those worlds where X

istrue).

We assume that among the worlds of Q, a particular one, denoted wp, corresponds to the
actual world. You ignore at t which world is wg. Y ou can only express Your beliefs at t that
the actual world wg belongs or not to this or that subsets of Q| .

2) The frame of discernment. By definition the actual world wg is an element of Q) .
But because of Y our limited understanding of Q; , some of the worlds of Q| might be not
conceivableto You at t. Let Q=Q  be the set of worlds conceived by You at t given Y our

evidential corpus ECY. The set Q is called the frame of discernment.

** 3) The structure of the frame of discernment. The set Q results from EC{ and
contains all the worlds conceivable by You at t given Ed . Of course EC}( can say more about
Q. It can tell that some worlds in Q are in fact considered as impossible by You at t. Let
lIEd 1 denote the set of worldsin Q where all the propositions deduced on L from EC}( are
true. Hence Y our beliefs are essentially defined on [ECY] as, at time t, Y ou consider those
worldsin Q and not in [ECY] as impossible. Nevertheless we can innocuously extend the
domain of Your beliefs to Q. So by construction, [EC{1<Q. The worlds in Q and not in
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[EC/] are considered as impossible to You at t, the worlds in Q; and not in Q are
inconceivable to You at t: impossible and inconceivable worlds should not be confused.

Of course, defining Q as [[EC?I] could also be accepted as beliefs are always allocated to
subsets of [ECY 1. So distinguishing between Q and [EC/'T is not really important.

Classically, inconceivable worlds are not considered and Q = Q. A difference between Q
and Q, can nevertheless appear if You had built Q by an enumeration procedure, and You
had omitted (because of Y our limited understanding) to list some of the possible worlds.

Y our beliefs about wg can only be expressed for the subsets of Q. The idea of speaking about
the belief given by Y ou to aset of worldsinconceivableto Y ou seems difficult to accept and is
thus rejected. Note that nothing requires wg to be in Q: the actual world can be one of those
worlds ‘inconceivable’ to You at t.

When Q # Q, , it could be tempting to consider the set n of worlds of Q; not in Q, and to
define Your beliefson Q, . We prefer to avoid such artifice as we feel that Y ou could bein a
state of beliefs where he can only express Y our beliefs over the subsets of Q. Creating the
extra set  works innocuously in probability theory, but not with more general theories where
the degree of belief givento Al for A=Q isnot just the sum of the degrees of belief given to
A and to . In these more general theories, if we add the extra set ), Y ou would have to
specifically assess Y our beliefsfor the subsets Al for all ACQ. Thisisnot realisticasYou
do not know what these subsets represent as those worlds in n are ‘inconceivable’ for You
at t.

It isworth noticing that extending the belief domain from [EC] to Q was accepted, whereas
extending it from Q to Q, was not. The reason for such asymmetry is that, in the first case,
Y ou know that the worldsin Q not in [EC{] are impossible, whereas Y ou have no opinion
about theworldsin Q; notin Q.

4) Doxastic equivalence. In the propositional language L, two propositions are logically
equivalent iff the sets of worlds that denote them are equal. Besides this logical equivalence,
there is another form of equivalence that concerns Y our beliefs. Suppose Y ou want to decide
whether to go to amovie or stay at home tonight. Y ou have decided to tossacoin, and if it is
heads, Y ou will go to the movie, and if it istails, Y ou will stay at home. (These are the pieces
of evidencein ECI). Then 'heads' and 'going to the movie' are ‘equivalent’ from Your point
of view as they share the same truth status given what Y ou know at t. Of course, they are not
logically equivalent (Kyburg, 1987a). We call them doxastically equivalent (from doxa = an
opinion, in Greek). Logical equivalence implies doxastic equivalence, not the reverse.
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Definition: Two propositions p and g defined on L are doxastically equivalent (for You at t,
i.e., given ECY) iff the sets of worlds [pl and [ql, both subsets of Q, , that denote them
share the same worlds among thosein [ECT, i.e., [EC Inlpl = [ECInIq].

Doxastic equivalence of propositions p and g under Ed is denoted by: [pll =gcy [ql.

5) Complement. For ACQ, A denotes the set of worlds in Q not in A. By definition,
AOA = Q.

6) The propositional space. Whenever Y ou can express Your belief that wg belongsto a
set A, and to aset B, You can also express Your belief that wg belongs to their complement
(relative to Q), union and intersection. Therefore, the domain of Y our beliefs is assumed to be
a Boolean algebra of subsets of the frame of discernment Q (thus closed under union,
intersection, complement, and containing Q and @).

Let [ denote this Boolean algebra of subsets of Q on which Y ou can express Y our beliefs.
We call the pair (Q, [J) apropositional space and [J the credibility domain. The atoms of the
credibility domain [0 are defined as the ‘smallest’ non empty elements of [1 such that their
intersection with any element of [ is either themselves or the empty set. Let At([J) denoted
the set of atoms of [I. Note that several worlds of Q might belong to one atom of [I. The
atoms of [J are in fact the elements of a partition of Q. When [ is the power set of Q, the
atoms of [J are the singletons of Q. Given [J, the number of atomsin aset Al , denoted
|A, is the number of atoms on O that areincluded in A.

** 7) Details about the propositional space. Why do we introduce the credibility
domain [, restricting Y our beliefs to it, and we just do not accept that [1 is the power set of
Q? Thereason is that the propositional language L can be very rich, therefore the worlds of Q
can denote very precise propositions, and due to Your limited understanding, Y ou cannot
express Y our beliefs on such adetailed domain. When Y ou wants to assess Y our beliefs about
tomorrow weather in Brussels, he will not asses Your beliefs on the weather at every
geographical location. He will restrict himself to Brussels even though L could be: {‘Brussels
weather is fine’, ‘New York weather is fine’, ‘Tokyo weather is fine', ...}. When asked
about Y our belief about Brussels weather, Y ou builds a credibility domain O with two atoms:
one where Brussels weather is fine, and one where Brussels weather is not fine. He will not
build an atom where simultaneously Brussels weather is fine and New Y ork weather is not
fine and Tokyo weather isfine, etc... You just does not care about such arefined domain.

As an example of a propositional space (Q2, [1) and of the atoms of [, consider a given
person X whose gender and pregnancy status Y ou wonders about. Let Q = { w1, wp, w3}
where X is a pregnant female in wj, a non-pregnant female in wyp, and a non-pregnant malein
w3. Thereisno wy world where X is a pregnant male because wy is not conceivable for Y ou at
t. Let (J1 and [ be two credibility domains on Q with At([11) = {Female, Male} = {{ w1,
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wz}, {wa}} and At(U2) = {Pregnant, Non-pregnant} = {{wa}, {2, wa}}. Then D1 is{{},
Female, Male, FemaleI1Male} = {{}, {w1, w2}, {w3z}, {w1, w2, wz}}and O> = {{},
Pregnant, Non-pregnant, PregnantC]1Non-pregnant} = {{}, {w1}, { w2, w3z}, { w1, wo, w3}}.
In 01, [Q]=2. If O isthe power set of Q, then |Q| = 3.

8) Unique agent. Only one agent You is considered in this paper, and time t is unique
except when belief revision is studied. It should nevertheless be remembered that the
evidential corpus ECY, the frame of discernment Q, the credibility domain [0, and the
credibility function Cr to be soon introduced are al relativeto You at t.

2.2. The credibility function.

Let (Q, [0) be a propositional space and Y ou be an agent with EC? being Y our evidential
corpus a timet. Wefirst require that the beliefs held by Y ou at timet are quantified by a point-
valued ‘credibility’ function Cr which maps [J into a closed interval of the real line, is
monotone for inclusion, and reaches its lower limit for @.

Requirement A2.1: Let (Q, ) be a propositional space. Let Ed be agent Y our evidential
corpus at timet. Then Your beliefs alocated to the elements of [1 given Ed are quantified by
afunction Cr, where

1. Cr: [ [ap, aT] where[ap, at] isan interval of thereal line.

2: 0A, B , if ASB, then Cr(A)<Cr(B)

3. Cr(@) =ap.

Thetriple (Q, (I, Cr) iscalled acredibility space. Requirement A2.1 is already very strong as
it eliminates models based on sets of probability functions (Kyburg, 1987b, 1995, Voorbraak,
1993, Levi, 1980) or on interval valued probabilities (Walley, 1991).

The belief state of You at t about the frame of discernment Q is defined by the quadruple (Q,
0, Cr, ECY). The credibility domain [ is the algebra that bears Your beliefs and Cr is the
function that assignsto every element A of [J avalue that quantifies Y our belief that the actual
world wo belongsto A.

Given Q and ECY, You can build several credibility domains j, i=1,2..., and build a

credibility function Cr; on each of these credibility domains. Hence given Q and EC/, there
exists a family of credibility spaces (Q, Uj, Cr;) that will represent Y our beliefs. The next
requirement is proposed in order to preserve coherence between these credibility spaces. It
states that given Ed , two doxastically equivalent propositions should receive the same
credibility (Kyburg, 1987a).

Requirement A2.2: Doxastic Consistency.
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Let (Q, Oj, Crj, EC?), i=1,2, be two belief states based on the same Ed and relative to two
credibility domains built on the same frame of discernment Q. Let A1 1, Aol ».
If A1 =gcy A2, then Cri(A1) = Cra(A).

Requirement A2.2 implies that those subsets of Q that belong to both [11 and (02 will receive
the same belief. Indeed the propositions that identify these subsets are doxastically equivalent
for You at t. A consequence of A2.2 isthat the belief given by You at t to a subset of Q does
not depend on the structure of the algebrato which the subset belongs.

3. Convexity of the set of credibility functions.

In this section, we show that the set of credibility functions defined on a credibility domainis
aconvex set. Such a property is needed as some requirements use the property that the convex
combination of two credibility functionsis a credibility function. Along the way, we assume
that probability functions are credibility functions, thus making the classical probability theory
at least a specia case of our general model.

** 3.1. Example.
The next exampleillustrates the origin of the convexity property.

Example 1. Horse Race. Suppose a horse race involving three horses. Allan, Blues and
Carol. Tomorrow at 7 AM, it will be decided depending on the outcome of a coin tossing
experiment, if therace will berunat 9 AM or 11 AM. Let a be the probability that theraceis
run at 9 AM. The time of the race influences Y our beliefs about which horse will win. Let Crq
and Cr2 be the credibility functions that describe Y our beliefs about which horse will win if
theraceisrunat 9 AM or at 11 AM, respectively. You must buy aticket now. Let Cryo bethe
credibility function that describes Y our beliefs held by now about the winner not knowing at
which time the race will be run. We essentially assume that Cri2(A) for AC{Allan, Blues,
Carol} depends only on Crq(A), Crz(A) and a. O

So we have two belief states (Q, 0, Cry, ECY) and (Q, O, Crp, ECY) where Q = {Allan,
Blues, Carol}, and [ isthe power sets of Q. One of the two belief states will be selected by a
chance process. Let (Q, [, Cr1o, EC}( ) be the belief state built on [0 before learning which
belief state will prevail. What are the coherence requirements to impose on Cryo, i.e., what is
the relation between Cr12 and Crq and Cro. We want:

1) Cria2({Allan}) depends only on Cri({Allan}) and Cro({Allan}) (and a), Crio({ Allan,
Blues}) depends only on Cry({ Allan, Blues}) and Cra({ Allan, Blues}) (and a), €tc...,

2) Crq2 strictly and continuously increases when Crq and/or Cry increase,
3) if Cra({Allan}) = Cra({ Allan}), then Cri2({ Allan}) should also be equal to Cri({ Allan}),
etc...
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These requirements are sufficient to derive very strong results on the relation between Crq2
and its components Cr1 and Cr». m]

** 3.2. Convexity Requirements.
The following requirements are postul ated for the credibility function Crqo.

Requirement A3.1:. Pointwise Compositionality.
There exists afunction Fg:[ap, at]2- [, a1] such that for each AD ,
Cri2(A) = Fa( Cra(A), Cra(A)).

Requirement A3.2: Continuity.
Fa(X,y) is continuous in (x,y)O[a, at]?2.

Requirement A3.3: Strict Monotonicity.
Fa(Xx,y) is strictly monotone for x and yO[a g, aT].

Requirement A3.4: Idempotency.
Fa(X,x) = x for al xO[ap, aT].

The Pointwise Compositionality, reflected by the existence of the F function, is justified by
the idea that, for agiven Alll , Cr12(A) should not be changed if we replace the credibility
domain O by the credibility domain O' with only two atoms, A and A. Requiring that Crq2
should be unchanged after regrouping the atoms is obvious (and will be fully analyzed in
section 4.1). Thereal limitation introduced by requirement A3.1 is that we do not have:
Cr12(A) = Fo( Cr1(A) , Cra(A) , Cry(A) , Cra(A) ),

but we consider only the first two terms. It trandated the idea that Crq2(A) should only depend
on the beliefs given to those propositions that enter in the construction of A.

The other requirements are hardly arguable. Continuity is assumed essentially for simplicity
sake, and strict monotonicity is postulated as we consider that Crq2 should be sensitive to both
its arguments. ldempotency reflectsthe ideathat if the beliefs do not depend on the time when
theraceisrun, i.e., Cr1 = Crp, then Crq2 should be equal to Crj.

We now show that F satisfies the bisymmetry equation:

FG( FG(X’y) ’ FQ(U,V) ) = FG( FQ(X,U) ’ FG(y!V) )’ (31)
which solution is analyzed in Aczel (1966, pg. 287). The origin of the bisymmetry equation is
illustrated in example 1, continuation 1.

Example 1, continuation 1. Suppose that the race could be run at 9 AM, 11 AM, 3 PM or
5 PM. The choice of the time will be made by applying a random device to decide between
AM or PM. Let a be the probability that the race is run in the morning. Once selection
between AM and PM have been achieved, the race organizers use the same random device to
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select between the first or second time slot, with a being the probability that the raceisrun at
9 AM if runin the morning, or 3 PM if run in the afternoon. Independence is assumed. So the
probability that the raceisrun at 9 AM isa?, at 11 AM, a(1-a), at 3 PM, (1-a)a, at 5 PM,
(1-a)2.

Let (Q, OO, Crj, EC}(), i1=1,2,3,4, be the belief states that represent Your belief about the
winner depending if theraceisrunat 9 AM, 11 AM, 3 PM or 5 PM, respectively. We want to
build (Q, O, Cr1234, Ed ), Your belief state before deciding when the race will be run. There
are two identical waysto build Cri234. You can first build Crq2 from Crp and Cr where the
probability that Crq will prevail is a, and Cras from Crz and Crg where the probability that
Crz will prevail is a, and then build Crqi234 from Crq2 and Crz4 where the probability that
Cr1o will prevail isa. You can aswell build Cri3 from Crq and Cr3z where the probability that
Crq will prevail isa, and Crpg from Crp and Crg4 where the probability that Cro will prevail is
a, and then build Cr1234 from Crl13 and Crp4 where the probability that Cri3 will prevail is
o. The choice of the selection procedure was specifically done so that all the mentioned
probabilities are equal. Both approaches should lead to the same final results. This
requirement trandates into: for each Al

Cri12(A) = Fa( Cry(A) , Cra(A))
Cras(A) = Fo( Cr3(A) , Cra(A))
Cr1234(A) = Fa( Cri2(A) , Craa(A) )

Cr13(A) = Fo( Cry(A) , Cr3(A))
Cro4(A) = Fa( Cra(A) , Cra(A))
Cr1234(A) = Fo( Cr13(A) , Craa(A) ).

From the equality between Crq1234, we have:
Cr1234(A) = Fa(Fa(Cra(A), Cra(A) ), Fa( Cra(A) , Cra(A) ) )
= Fa(Fa(Cry(A), Cra(A)) , Fa(Cra(A) , Cra(A) ) ).
Thisisthe bisymmetry equation (3.1). O

Theorem 1: Given requirements A3.1 to A3.4, the Fy function in requirement A3.1 that
satisfies the bisymmetry equation (3.1) is of the form:

Fa(xy) = fa( afal(x) + (1-8).fa"1(y) ) (3.2)
with continuous, strictly monotone fq: [ag,071] - [an,01], fa1(0) = ap, fa1(1) = at and
al[0, 1] where amay depend on a.

Proof: see Aczel (1966, page 287).

** 3.3. Canonical scale.
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We assume that probability functions are credibility functions. Such an assumption
acknowledges that Bayesian theory should be at least a subset of the theory we are
developing.

Requirement A3.5: Probability functions belong to the set of credibility functions.

Assuming probability functions are credibility functions, one obtainsap=0and a1 =1, as
impossible event has a probability 0, sure event has probability 1, and these are the extreme
values belief can take. So fo~1(0) = 0 and fo~1(1) = 1.

When building Cr12 from Crq and Cr» , suppose the wo credibility functions Crq and Cro are
probability functions P1 and P>. These two probability functions are conditional probability
functions. Then by probability calculus we know that Cr12 is also a probability function, and:
Cr12 (A) = a Py(A) + (1-a) P2(A).
In particular with P1(A) = 1, Po(A) = P3(A) = P4(A) = 0, we obtain from (3.2):
a =fq(a)
and 02=fgy(a?)
Iterating wuth 6, 8 ...2n possible times for the race in example 1, we obtain:
an = fg(@"),
hence: fa(a") = (fa ()",
an equation which unique solutioniis: fy(a) = a.
In that casea=aq.
Relation (3.2) becomes: Fa(X,y) = a.x + (1-a).y

Theorem 2 summarizes the results of section 3.

Theorem 2: Given the requirements A2 and A3, the set of credibility functions defined on
the same credibility domainisaconvex set,andag=0andat=1

4. Coarsening and Refinement.

4.1. Example.

We study the impact on Y our beliefs that would result from an ‘uninformative’ change of the
credibility domain on which Cr isinitially defined. We consider two types of changes. the
coarsening and the refinement. Intuitively the first corresponds to a grouping together of the

atoms of [J whereas the second corresponds to a splitting of the atoms of [J (see figure 1).
The next example motivates the concept of uninformative changes of the credibility domain.
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Figure 1. Examples of a coarsening C from [0 to 0” and a refinement R from 0 to [0’
whose atoms are the wj's and the z;'s, respectively.

Example 2: Killer's Nationality. Suppose a person has been murdered. Let Crg represent
Your beliefs that the killer (k) is English, German, French or Italian. Crq is defined on the
subsets of {E, G, F, 1}. We consider how Crqg will be adapted when the domain of Y our belief
is changed. Two transformations are considered: coarsening and refinement. In the first case,
suppose French and Italian are grouped into the set ‘ Mediterranean’. The new space { E, G, M}
is a coarsening of the initial space. In the second case, suppose the set ‘ French’ is partitioned
into two subsets, the sets ‘FrenchTuc’ (FT) and ‘FrenchPic’ (FP). The new space {E, G, FT,
FP, I} isarefinement of theinitial space. These transformations of the frames on which Y our
beliefs are defined are said to be 'uninformative' inasmuch as Your evidential corpus ECY is
unchanged for what concerns Your beliefs about the killer's nationality. To change the
granularity of the frames does not modify Y our beliefs for those subsets that are doxastically
equivalent.

Let Crq and Cro represent Your belief on {E, G, M} and {E, G, FT, FP, 1}, respectively. By
Doxastic Consistency, Cr1(E) = Cro(E), Cr1(M) = Cro(FO 1), etc... and in fact Crq is entirely
defined from Crq. Identically, Cro(E) = Cro(E), Cro(FTOFP) = Cro(F), ... but not all values of
Crp are derivable by Doxastic Consistency from Crq: so it isthe case for Crp(FT), Cro(F,LIE)...
Hence extra requirements will be introduced. O

** 4.2. Formal definitions.

Formally, we have the next definitions.

Coarsening: Let (Q, ) be a propositional space. A coarsening C is a mapping from [ to
(0”7, where 0" is an algebra also defined on Q, such that one or several atoms of [ are

mapped into one atom of [1” and each atom of [ is mapped into one and only one atom of
0.
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Let C(w) be the atom of (0" on which the atom w of O is mapped, and LJATI C(A)

= c‘)D%t(A)C(oo) where At(A) are the atoms of [ subsets of A. For Al ”, C-1(A) isthe union

of the atoms of [J which are mapped by C into an atom of A.

Refinement: Let (Q, (1) be a propositional space. A refinement R is a mapping from [ to
(' where [0' is an algebra on Q' such that each atom of [ is mapped into one or several
atoms of [1' and each atom of [1' is derived from one and only one atom of [1. Let R(A) be
theimage of Al in ', and let R(@)=0.

Inabelief state (Q, O, Cr, EC}(), the structure of the frame of discernment Q is, in fact, not
essential. The only relevant component in the propositional spaceisthe algebra 1. Hencein a
refinement, we only require that Q' is sufficiently detailed so that each atom of the algebra [0’
can be uniquely defined. Therefore we will always define Q and Q' such that they are equal
and the atoms of the algebras [1 and [J’ can be defined from the elements of Q.

4.3. The uninformativeness requirement.

Given a belief state (Q, [, Cr, ECY), we want to build the belief states (Q, O°, Cr’, ECY)
and (Q, O, Cr, Ed ) in a coherent way. The coarsenings and refinements are called
uninformative because the evidential corpus EC}( held by You at t stays unchanged.
Uninformative changes fit in with the idea that only the structure of the algebras on which
beliefs are held is modified, no further information is added to the evidential corpus.

The uninformative nature of the changes and the coherence we ask for are formalized in the
next requirement that states that the credibility functions encountered in the belief states
induced by such mappings are completely determined by Cr and the mappings.

Requirement A4.1: Let (Q, O, Cr, EC}() be a belief state. Let R be an uninformative
refinement from (Q, [ to (Q, [0’) and let C be an uninformative coarsening from (Q, ) to
(Q, O0”). Let the belief states (Q, 0’, Cr', ECY) and (Q, 0", Cr”, EC/). Then Cr’ and Cr”
are completely determined by Cr and R and C, respectively. So there are g and h functions
such that:

Cr=9g(Cr,R) and Cr'=h(Cr,C).

4.4. Uninformative Coarsening.
The derivation of the nature of the h transformation is immediate. In figure 1, {z1} is
doxastically equivalent to { w1, wp, w3}, hence they share the same credibility. Identically,

{z1, 2o} isdoxasticaly equivalent to { w1, wp, wg, w4}, etc... The credibility function over [
automatically induces the credibility function on [1”, as given in theorem 3.
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Theorem 3. Let (Q, O, Cr”, ECI) be the belief state derived from the belief state (Q, [T,
Cr, ECF) by the uninformative coarsening C from (Q, [J) to (Q, 0”). Given requirements
A2, A3 and A4.1,

Cr'(A) = Cr(C'L{(A)) for all Al (4.1)

Let v be the Mobius transform of Cr (see appendix 1). Then the Mobiustransform v’ of Cr” is
such that,
V'(A) = ) v(B) foral A ” (4.2)
B:BII ,C(B)=A

The effect of the coarsening resultsin an additive transfer of v(B) to the 'smallest' element of
(0" that contains B (where smallest means ‘with the smallest number of atoms’). The only
difference between Cr” and Cr residesin the fact that Cr provides a more detailed information
on Q than Cr”. Indeed Cr describes abelief over an algebra [0 whose granularity is finer than
theoneof J”.

45. Uninformative refinement.
Weillustrate the uninformative refinement in the next example.

Example 3. Failure diagnosis.

Suppose an electrical equipment has failed and Y ou knows that one and only one circuit has
failed. There are two types of circuits, the A- and the B-circuits made at the Fo and Fg
factories, respectively. Y ou knows that circuits made at factory Fa are of high quality whereas
those at factory Fg are of alower quality. Hence Y ou might have good reasons to believe that
the broken circuit is a B-circuit, even though it might be a A-circuit. The belief state of You is
denoted by (Q, O, Crg, ECp)3, where O is the power set of {A, B}4, and Crg represents
Y our belief about which type of circuit is broken, with Crg(A) and Cro(B) being the degree of
belief given by You to the fact that the broken circuit is an A- or aB-circuit, respectively. The
atoms of the algebra [0 on which Y our beliefs are assessed are:

At(D) = {{A}, {B}}.

Then Y ou learns that the A-circuits are painted in green (G) and the B-circuits are painted in
white (W) and pink (P). Let (I’ be the power set of {G, W, P}. By construction, [’ results
from arefinement R of (I, with R(A) = G and R(B) = POW. For Y ou, the color has nothing
to do with failure (asfar as Y ou knows), thus from Y our point of view, R is an uninformative
refinement. Let (Q, ', Cr', ECp) bethe belief state of Y ou where Cr' quantifies Y our beliefs
about the color of the broken circuit. The uninformative nature of the refinement is reflected by
the fact that the evidential corpus ECq has not changed. This results from the assumption that

3 For simplicity’ s sake, we drop the explicit index Y in the evidential corpora, even though all
evidential corpora should be understood as dependingon Y.

4 As aready mentioned, the detailed nature of Q isirrelevant. Q must only be so defined that
the atoms of the algebras built on it can be defined from the elements of Q.
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the information relative to the color does not change Y our knowledge for what concerns which

is the broken circuit. By Doxastic Consistency, Cr’ (G) = Crg(A), Cr’ (PLOW) = Cro(B) and

Cr’ (GOPOW) = Cro(AOB), but Cr'(P), Cr' (W), Cr'(GOP), Cr'(GOW) are still undefined

except for the inequalities that result from the monotonicity of Cr’. For instance:
0<Cr(P)<Cr(POW) =Crg(B)

and Crg(A) =Cr'(G) < Cr(GOP) < Cr'(GOPOW) = Crg(AOB). O

The combination of iterated refinements and Doxastic Consistency Principle (A2.2) allows us
to greatly ssimplify the probelm of deriving the impact of an uninformative refinement on the
credibility functions. Let (Q, g, Cro, Ed) be Your belief state at time t . Suppose two
uninformative refinements Ry and Ro from (g to (01, and (01 to [, respectively. Let the
refinement R12 from g to [ be defined as the refinement obtained by applying successively
R1, and then R2: R12 = Ry=R1. Let Crp, Crp and Cry2 be the credibility functions induced on
the algebra (14, (12 and [2 by the uninformative refinements Ry, R2 and R12, respectively.
By the Doxastic Consistency Principle, Cri2 is equal to Cro. Indeed they concern the same
propositional space and the evidential corpus Ed has not changed. The only difference is
how Cr, and Crq2 were built, iteratively for Crp and directly for Cryo. This property highly
simplifies proofs.

Let uscall 'elementary’ the refinement where only one atom of the initial space is split into two
atoms in the refined space, all other being kept unsplit. We say that an elementary refinement
actson wif wisthe atom to be split: we denote it wR. Every refinement can be represented by
some sequence of elementary refinements.

In order to derive the impact of the refinement process on a credibility function, it is sufficeint
to study the impact of an elementary refinement. Studying the evolution of the credibility
functions through the elementary refinements will allow us to find the overal impact of any
refinement.

Another consequence of the Doxastic Consistency requirement is that the credibility function
derived from an uninformative refinement is fully characterized by only a few terms of the
initial credibility function. To seeit, consider the belief state (Q, 1, Cr, EC}(). For wll , let
wR be an uninformative elementary refinement from 0 to 0’ with wR(w) = {w1, wy}. Let
ATl with Anw=@, andlet B = w O A . We then build the coarsening C of O such that the
atoms of the resulting algebra 1" are{w, A, B}. Let the elementary refinement wR" from 1"
to 0*. The credibility function Cr* derived from Cr by the coarsening C followed by the
refinement wR" depends only on CrC (requirement A4.1). Let Crc be the credibility function
induced from Cr after applying the coarsening C and let Cr* be the credibility function induced
from Crc after applying the refinement wR". Let Crr be the credibility function derived from
Cron 0’ by wR. By Doxastic Consistency, Crr(Ald ) = Cr*(Ald ). Asfar as Cr*(Ald )
depends only on Crc, so does Crr(Ald ). Hence thereisag fiunction so that:
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Crr(Ald ) =g(Ald, Cr(w), Cr(A), Cr(B), Cr(Ald ), Cr(Bld ), Cr(AB ), Cr(Q))

To illustrate the next equality, suppose [ has only two atoms w1 and wgp, and let R1 and
R2 be elementary refinements (see figure X X) with:

R1(wo1) = {w11, w12}, Ri(wo2) = {wo2},

R2(wn11) = {wp1, wpo}, Ro(wi2) = {wi2} and Ro(woz) = { woz}-

Do Woy Wo2
VRN Y

U,y 0y 0y W2
K \J \J

U, 01 0 P W2

Figure XX. Iterated refinement used for the analysis.

We assume that Cri(w11) = Cr1(w12) and Cr(wg2ld 11) = Cri(wo2ld 12). This assumption
could be assimilated to a principle of Indifference under Refinement that trand ates the idea of
uninformativeness for arefinement. Its generalization is given in the next requirement.

Requirement A4.2: Indifference under Refinement.
Let (Q, O, Cr, Ed) be abelief state. Let R be an uninformative elementary refinement from
(Q, D to(Q’, 0) acting on atom w of 1. Let Bl ' where BnR(w) = @. Let R(w) = {w1,
wy}. Let Cr' bethe credibility function derived from Cr on O’ by R. Then:

Cr(Bld 1) =Cr(Bld 9).

A consequence of this principle and the comments about the iterated refinement is that:
Cri2(wp1) = Criz(wg2) = Criz(wi2)

and Cry(w11) = Cry(w12).

Weadsohave  Cry(wi2) = Cri(w12)

and Cra(w1ld 21) = Cry(w11).

Hence: Cra(we1) = Cra(wp2) = Cro(w11ld 21),

and similar relations that can be written as Cr(A) = Cr(B) = Cr(AIB), an equality normally
not satisfiable in probability theory. In fact, uninformative refinement is at the core of the
divergence between our model and the probabilist models.

Another consequence of the Doxastic Consistency requirement is that the credibility function
derived from an uninformative refinement is fully characterized by only a few terms of the
initial credibility function. Let (Q, [J, Cr, EC}”) be a belief state. Let R be an uninformative
elmentary refinement from [ to O0’. For X[ ', define A = R"1(X) as the 'smallest' subset of
[0 such that its image under R contains X: A = n gm , xcRr(g) B. Let Cr’ be the credibility
function derived from Cr on 0’ by R. Then Cr'(X) depends only on the terms Cr(A), Cr(A)
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and Cr(Q). In the illustrative example, Cra(w21) would be the same if compute from Crq
defined on the algebra [ or from its coarsening defined on the algebra with atoms w17 and
w12l g2 (seetheorem 3). Thusthere are functionsfy, f ... such that:

Cra(w21) = f1(Cra(w11), Cri(wi2ld 02), Cri(Q))
With: Cry(w11) = f2(Cro(wo1), Cro(woz), Cro(Q))

Cri(w12ld 02) = f3(Cro(wo1), Cro(woz), Cro(€2)),
one has: Cro(wz1) = fa(Cro(wo1), Cro(wo2), Cro(Q)).
Iterating the procedure through the set of appropriate el ementary refinements, the property is
extended to any refinement.

Proof: Let (Q, O, Cr, Ed) be abelief state. Let R be an uninformative refinement from [
to’. For X ', let A =n gm , xcRr(B) B. Let Cr’ be the credibility function derived from
Cron[J’ by R.

the value Cr'(X) of the credibility function Cr' induced from a credibility function Cr defined
on [ by arefinement R from O to (0" is fully defined from Cr(

This equality has the consequence that
Cra(o21) = g(we1, Cro(wo1), Cro(woz), Cro(woild 02))

Another consequence of requirement A4.2 is that Crp(wp1) is fully defined by Cri(w11),
Cri(w12ld g2) and Cri(w11ld 12l o).

Indeed, by requirement A4.1, Crq isfully defined by Cro(wp1), Cro(wg2) and Cro(wo1ld o2),
and Crp(wp1) = Cra(wp1)

Cr1(

The impact of the uninformative refinement, i.e., the nature of the g function in requirement
A4.1, isexamined in the next section, simultaneously with the belief revision process. With a
few extrarequirement, we could find the mathematical structure of the g function introduced in
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requirement A4.1, but the proof is laborious (Smets, 1993c). As far as the conditioning
process will have to be also analyzed and as the derivation of the g function is much simpler
when both refinement and conditioning are studied simultaneously, the derivation of the g
function will be deferred to the next section.

5. Belief Revision.
5.1. The conditioning process.

We consider now what happens to Cr when the evidential corpus EC:f changes. We will not
study all possible forms of changes of ECI. We restrict ourselves to the form of changes
encountered in probability theory, i.e., conditioning. Thisform of belief revision results from
the adjunction to EC? of anew piece of evidence assumed to be true (Gérdenfors, 1988). The
only pieces of evidence considered in the revision process are those met classically in
probability theory, those that only constraint the truth status of some propositions that belong
to the credibility domain (called the *explicit conditions in Wang (1993)). We do not consider
revision on propositions like: ‘the belief of proposition A is .7’ (Domotor, 1985) or ‘the
principle of maximum entropy is applicable’. Besides the revision should neither be confused
with updating (Katsuno and Mendelzon, 1992) nor with imaging, its probabilistic counterpart
(Lewis, 1976, Gardenfors, 1988). The evidential corpus is not updated in order to keep it up
to date when the world described by it changes (Dubois and Prade, 1994b, Léa Sombe,
1994). It isrevised by the adjunction of new information (Dubois and Prade, 1994a). Worlds
do not change, only our knowledge about which is the actual world changes.

Toillustrate the revision considered here, we continue with the failure diagnosis of example 3.

Example 3. Continuation 1. Generic Revision. You learn that none of the circuits
made at factory Fg used in the failed equipment were painted pink. This piece of evidenceis

denoted Ev1. Let EC1 denote Y our evidential corpus after Ev, has been added to ECp. Under
EC1, B =gc; W, asknowing that the circuit has been made at factory Fg is now equivalent to

knowing that the circuit is white. The impact of the conditioning information Ev4 resultsin a
transformation of the belief state (Q, [I’, Cr’, ECp) into anew belief state (Q, [I’, Crq1, ECy),
i.e.,, Cr’ istransformed into a new credibility function Cr1. Crq must satisfy certain constraints
in order to comply with Doxastic Consistency (requirement A.2.2).

Before learning Evy, we had: A =gc, G, B =gc, WOP, and Crg was quantifying Y our beliefs
over Q ={A, B}. After learning Ev1, we have: XUP =g¢; X for X being @, G, W or GLW.
We aso have A =gc; G, B =gc; W, and Cr1 quantifies Your beliefs over [I'. By Doxastic

Consistency we have now:
Cr1(G) = Cro(A), Cry(P) =0, Cry(W) = Crg(B)
Cr1(GOP) = Cro(A), Cr1(GOW) = Crg(ALIB), Cr1(POW) = Crg(B)

and Cry1(GOPOW) = Crg(ALB). (5.2)
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O

Formally Youisin aninitial belief state (Q, U, Cr, ECg) where Cr quantifies Y our beliefs at
time tg about which subsets of worlds of Q among those in O include the actual world wy.
Then at time t1>tg, You learn for sure that ‘the actual world wg isnot in A’ for A0 . We
denote this information by Eva. We also suppose that, between tg and t1, You have not
learned anything relevant to Y our knowledge about which world is the actual one. So Eva is
the first information relevant to the actual world wg obtained by Y ou since tg. Y our evidentia
corpus at t; results from the revision of ECq by the information Eva. We denote the revised
evidential corpus by ECa, and the *addition’ is symbolized by 0, so ECa = ECoOEVA.

We assume that Eva is compatible with ECo, i.e., that An[ECol#@. This is classically
required in probability theory where the conditioning process is considered only for events
with non zero probabilities.> The operator O corresponds to the expansion operator of
Gérdenfors (1988).

The type of revising information considered in this paper is limited to those pieces of evidence
that only say that wg does not belong to some subset of Q. In particular, in this section, we
do not consider pieces of evidence that imply that other pieces of evidence already included in
the evidential corpus must be eliminated from it (what we called a deconditionalization
process, a process similar to a contraction process and analyzed in section 6 (Gardenfors,
1988)), or partially discounted (as studied in Shafer, 1976, pages 251 et seq., Smets, 1993b).

The information Eva can be understood equivaently as: ‘all worldsin Q and not in A are
accepted as impossible’ or ‘the actual world wg isnotin A’ or ‘A =ec, Q'. The revising
evidence Eva iscalled the conditioning evidence and the particular revision processis called a
conditioning process. Conditioning ECgon Eva is synonymous to adding Eva to ECo.
Beware we distinguish between ‘the actua world wp isnotin A’ and ‘the actual world wyisin
A’. Thedigtinction isirrelevant if Q = Q| (see section 2.1:2). Aswe accept that Q might be a
strict subset of Q; , the second expression is stronger than the first. Indeed the second
expression impliesthefirst but it implies also that the credibility given to A should be maximal
after revision, what is translated by the normalization process described in probability theory
and in Shafer’ s work.

5 We could relax this compatibility assumption and consider cases where Evp is not
compatible with ECQ. The result can be expressed in the TBM, but it is not very useful asit
only gives a zero belief to every proposition (Smets, 1992a). Such a belief state represents a
state of ‘completely inconsistent belief’.
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5.2. Markovian Revision.

In the belief state (Q, [, Crg, ECp), Crg described Your belief given ECo. How do You
change Y our beliefs given the addition of Eva to ECpo? Let Cra denote the credibility function
(qualified as conditional) that results from the adjunction of Eva to ECo.

It isassumed that Cra is completely determined from the credibility function Crg and on Eva.
This markovian property is classical. It reflects alack of memory about how Y ou obtained
Your beliefs. All that counts in a belief state is where You stay for what concerns Y our
beliefs, not how Y ou got there. Building a non markovian model leads either to the necessity
to memorize al past beliefs, up to Y our creation, or to use one-to-one transformation between
Crg and Crp (what is neither the case in probability theory nor in the TBM).

Requirement A5.1: Markovian Requirement. Let the belief state (Q, [0, Crg, ECp).
For Al , let Eva bethe proposition A =gc, Q where Eva be compatible with ECo. Let (Q,
[J Cra, ECoOEva) be the belief state after Eva has been added to ECy. It is assumed that
Cra iscompletely determined by Crg and A.

5.3. A second form of revision.

We reconsider the failure diagnosis of example 3 as presented in section 4.2. Instead of
considering the generic revision, we consider another form of revision, called the factual
revision.

Example 3. Continuation 2. Factual Revision. We are in the situation as described in
example 3, section 4.2, so the revision information considered in continuation 1 is not taken in
consideration. Instead, Y ou possess a fully reliable sensor that is only able to detect if the
color of acircuit is pink or not, so it cannot distinguish between green and white circuits. You
learn that Y our sensor has been applied to the broken circuit and has reported that the broken
circuit is not pink. This new piece of evidence is denoted Ev;. Let ECy be Your evidential
corpus after Evo has been added to ECp. Under ECp, B =gc, W, as knowing that the broken
circuit has been made at factory Fg is now equivaent to knowing that the broken circuit is
white. Let Cro be the credibility function obtained after conditioning Cr’ on Eva. By the
Doxastic Consistency, Cr, satisfiesrelations similar to (5.1):

Cro(G) = Cro(A), Crp(P) =0, Cra(W) = Crg(B)
Cra(GP) = Crg(A), Cro(GOW) = Cro(AIB), Cro(POW) = Cro(B)
and Cry(GOPOW) = Cro(AOB). (5.2)

O

The difference between the sets of doxastic equivalencies described in the two revisions
resides in the fact that the second concerns only the broken circuit, whereas the first concerns
all circuits made at factory Fg. But asfar as Your beliefs concern only the broken circuit, the
two cases are equivalent for the problem You tries to solve.
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The two cases would be different if You had selected one circuit at random and bet on its
color. In the case of generic revision, Y ou would start with some probability that the circuit
that will be selected has been made in Fa (in Fg). Then learning about the three colors, You
would build a probability measure over the three colors. Finally, learning that all B-circuits are
in fact white, Y ou would reassess Y our beliefs over the two remaining colors and obtain the
same solution as we obtained (5.1). What Y ou had built over the three colors was based on
the assumption there were three colors, an assumption that turns out to be erroneous, and thus
probabilities must be reassess from scratch, i.e., from Your state of belief You had before
learning about the three colors.

In the case of factual revision, Y ou would build the same probability measure over the three
colors asin the previous case. Then Y ou would learn that the selected circuit is not pink. You
would condition Your beliefs over the two remaining colors through the Bayesian
conditioning rule.

But these stories are not those we are considering. The generic revision solution is
uncontroversial and will not be further discussed. In the factual revision case, we do not have
any underlying random selection: there is a broken circuit and we learn information about it.
For instance, does the information about the colors and the fact that the broken circuit happens
not to be painted in the pink give any reason to modify Y our belief that the broken circuit isan
A-circuit? We don't think so. Y ou had some reasons to believe that the broken circuit was an
A-circuit, and the factua information should not change Y our beliefs about it, i.e.,
Cr(G) = Cro(A),
By asimilar argument, we get the equalities (5.2).

The mathematical consequences of the equalities (5.2) are enormous. They ailmost imply the
mathematical structures of both the conditioning and the uninformative refinement processes.
We will get:
for the uninformative refinement process:

Cr(P)=Cr(wW) =0,

Cr(GOP) = Cr'(GOW) = Crg(A), etc...
for the conditioning process:

Crp(G) = Cr'(GOP) - Cr'(P) = Cro(A)

Cro(W) = Cr'(WOP) - Cr’(P) = Cro(B), etc...
These are the solutions described in the TBM and in every Dempster-Shafer models (except
for the normalization). In particular, the markovian requirement is satisfied by the conditioning
process. It looks like Cro depends on Crg, but this is achieved only through Cr’, and Cro
depends only on Cr’, as requested by requirement A5.1.

5.4. The meaning of ‘credibility’.
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The argument relative to the factual conditioning as developed here is central to understand
where our theory departs from the classical probabilistic approach.

Consider the medical diagnostic process. Frequentists assume that the patient has been
selected at random from the population of patients presenting the observed symptoms, an
assumption usually void of any reality: the patient’ s presence does not result from any random
selection. Bayesians claim that probabilities appear because they describe the clinician a priori
opinion about the disease Y our patient could be suffering from. From thisa priori probability,
other probabilities result after appropriate conditioning. Thisis the solution we would obtain
in the TBM if such a priori probability was adequately representing the clinician’s a priori
opinion. But thisis exactly the point we are not accepting. We claim that a priori opinions are
usually not adequately represented by probability functions, arguing belief functions are more
adequate, even though the idea of ‘family of probability functions' might be another aternative
(Walley, 1991, Voorbraak, 1993). The fact that the patient comes from a population where
there are 999 cases with disease A and one without does not mean this proportion is relevant
to the clinician’s a priori belief about the fact the patient presents disease A. It would if the
clinician knew the patient had indeed been selected at random in such a population. But we are
studying the case where such a selection has not been used (or at least is not known by usto
have been used). The credibility function we develop are quantifying the beliefs obatined in
such general cases.

The measure of credibility we study is analogous to the one encountered in judiciary context
when culpability has to be assessed. Consider the rodeo paradox where out of 1000
persons who attend it, only one paid the entrance fee, the others having forced the gate. Police
does not know who paid. Police arrests one person who attended the rodeo. | am the judge to
whom the policeman bring the arrested person who claims - of course - he is the one who
paid. If | had to bet on Y our culpability, | surely would bet with high probability on it, but this
does not mean | accept that he is culprit. | would bet he did not pay (because almost nobody
paid) but | have no reason whatsoever to believe that this person did pay or not (because no
evidence is brought forward that would justify such abelief). This difference between betting
and belief parallelsthe difference we introduce between the pignistic and the credal levels. The
guantification we focus at represents the strength of ‘good reasons' in the expression ‘I have
good reasons to believe . In the TBM, we accordingly define Cr(A) as the amount of ‘justified
specific support’ given to A (Smets and Kennes, 1994). Similar, if not identical, ideas explain
the origin of the evidentiary value model (Gérdenfors et al., 1983).

The credibility we study is not unsimilar to the concept of provability, and it has even
been suggested that the degree of belief that a proposition is true represents the probability of
proving its truth (Pearl, 1988), except the revision processes are more subtle than the one
considered here (Smets, 1991). Indeed the underlying probability measure introduces extra
congtraints that must be handled appropriately.

5.5. Iterated Conditioning.
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To derive the impact of the conditioning process on the credibility function, we introduce the
idea of iterated conditioning. Let ECg be the initial evidential corpus held by You at t. Let
A,BI , and Evp (Evg) be the piece of evidence that states that the actual world is not in A
(B). Suppose You adds 1) Evpa to ECg, and then Evg to the revised evidential corpus, or 2)
Evg to ECp, and then Eva to the revised evidential corpus, or 3) directly Eva g to ECo. The
final evidential corpora are the same in the three cases, i.e., (ECoOEvaA)OEvVRE =
(ECoOEVB)OEVA = ECoOEVA,B. This property is satisfied by the expansion process. It
means that the three belief states obtained by these conditionings are the same, hence the order
under which credibility function are conditioned isirrelevant. Thisis proved in Theorem 4.

Theorem 4: Let the belief state (Q, [0, Cr, ECp) . Let Eva, Evg and Eva~g be the
propositions A =gy, Q, B =gyg Q, AnB =gy, g Q. respectively. Then the three revision
processes:

1) conditioning the credibility function Cr on Eva, and the result on Evg,

2) conditioning the credibility function Cr on Evg, and the result on Eva,

3) conditioning the credibility function Cr on EvanB
induce the same conditional credibility function.

Proof. The three conditioning processes result in adding the same information in ECq. The
resulting conditional credibility functions are equal by Doxastic Consistency (requirement

A2.2.) QED

We can also prove that the conditional credibility function Cra(B)® depends only on the beliefs
obtained by coarsening O into the algebra built on the three atoms Bn A, Bn A, A, and after
conditioning, Cra(B) = Cra(BnA) for any A,BIT .

Theorem 5: Let the belief state (Q, O, Cr, EC). For A , let Eva be the proposition A
=gvpy Q. Let (Q, [J Cra, ECOEva) be the belief state obtained after conditioning the
previous belief state on Eva. Then:
1: Cra(B) =0 OBCA, B
2: Cra(B) =Cra(BnA) 0B
and 3:thereisanf function suchthat B0l BcA,
Cra(B) =f (Cr(BnA), Cr(BnA), Cr(A), Cr(A), Cr(BOA), Cr(BOA), Cr(Q))

Proof. It results from requirement A2.2 and an appropriate coarsening of [ detailed in the
appendix.

6 We use Crp to denote the conditional credibility function, but in the proof presented in the
appendix, we will also use the notation Cr(.]A). Both notations are equivalent here.
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5.6. Doxastic Stability.

The forthcoming theorem 6 formalizes the idea developed in example 3. An uninformative
refinement of one atom w of O (factory fg in example 3) into two sets of new atoms A and B
in 0" (pink and white) followed by a conditioning on B (not pink) brings Y ou back into the
same belief state as 'Y ou were before applying the refinement. Hence, the credibility function
will stay ‘unchanged’ (except the algebras has changed). This requirement is called the
requirement of Doxastic Stability, i.e., the stability of the belief state after eliminating some of
the aternatives created by an uninformative refinement.

Requirement AS5.2: Doxastic Stability.

Let the belief state (Q, [, Cr, ECp). Let R be an uninformative refinement from [J to [I'. Let
w be an atom of [, and R(w) = ALIB where AnB = @, A20, B£d. Let Evy be the piece of
evidence that states that all atomsin B are impossible and let EC, = ECoOEV R, so R(w)UA
=gc; Q. Then under EC1, R(X)n B and R(X) are doxastically equivalent for every X in O:
R(X)nB =gc; R(X).

5.7. Homomorphism and Preservation.

Gardenfors (1988) suggests two compelling properties for probabilistic revision functions, the
homomorphism and the preservation requirements. Homomorphism states that revision and
convex combination commute. Homomorphism is not satisfied in probability theory because
of the normalization. We first illustrate the meaning of the homomorphism requirement in the
next continuation of the horse-race of example 1.

Example 1. Continuation 2. In the horse race example, suppose that Y ou learn that Carol
isasure loser. You can derive the conditional credibility function either directly from the
combined credibility function Crq2 or from the linear combination of the individual credibility
functions Crq and Cr. This requirement would have been satisfied in probability theory if
probabilities had not been normalized. O

The homomorphism requirement corresponds to the case where Cr’ and Cr” represent Y our
beliefs on abelief domain [ in context C; and Cy, respectively. The context will be chosen at
random (with chance a). Cr represents Y our beliefs over [ before selecting the context and
Cr isindeed acredibility function as was shown in section 3.

Requirement A5.3: Homomorphism: Given a propositional space (Q, J) and three
credibility functions Cr, Cr’ and Cr” defined on [0 and based on the evidential corpus EC. Let
Al andlet Cra, Cr'a and Cr” a be the conditional credibility functions induced by adding
Eva to EC.

If Cr=a Cr + (1-a) Cr”, alJ[0,1], then Cra=a Cr' a + (1-a) Cr" .
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The Preservation Requirement asserts essentially that a proposition as much believed as a
tautology will be as believed as the conditioning proposition after conditioning. We illustrate
what is meant by the preservation requirement.

Example 1. Continuation 3. Consider the horse race example involving four horses:
Allan, Blues, Carol and Daisy. Suppose You learn that Daisy is a sure loser. Then {Allan,
Blues, Carol} and{ Allan, Blues, Carol, Daisy} are Doxastically Equivalent, hence Cr({ Allan,
Blues, Carol}) = Cr({ Allan, Blues, Carol, Daisy}). Thenif You also learn that Carol isasure
loser, then { Allan, Carol} and { Allan, Carol, Daisy} are Doxastically Equivalent, hence Crpgt-
carol({ Allan, Blues, Carol}) = Crpot-carol ({ Allan, Blues, Daisy}). O

Requirement A5.4: Preservation: Given the credibility space (Q,0,Cr),
if Cr(B) = Cr(Q) for some Bl , then Cra(B) = Cra(A) for all AlD .

In order to follow Géardenfors' initial presentation of the preservation principle, we should add
the hypothesis Cr(A)<Cr(Q). It can be relaxed in the present context as we do not normalize,
(hence no division is involved). If it happened that Cr(A)=Cr(Q), then we would get
Cra(B)=0 OBIO , in which case Cra(Q)=0, a belief that describes a state of complete
contradiction not dissimilar to the one encountered in logic when Y ou simultaneously know
something and its contrary. This problem is studied in Smets (1992a).

We are now ready to prove the theorem that states the mathematical structure of both the
uninformative refinement and the conditioning process. They turn out to be those described
for belief functions. In particular, the conditioning rule is Dempster's rule of conditioning
(except for the normalisation factor).

Theorem 7: Let the belief state (Q, [, Cr, EC). Assume the requirements A2, A3, A4, A5.1
to A5.4. Let R be an uninformative refinement from [0 to [0’ and Cr’ be the credibility
function derived from Cr on [0' by R. Then:

Cr (X) =max y:r(y)cx Cr(Y) foral Xin[". (5.3
For Al , let Eva be the conditioning information A =gy, Q and Crp be the conditional
credibility function obtained from Cr after adding Eva to EC. Then:

Cra(B) = Cr(BOA) - Cr(A) for all BII (5.4)

** 5.8. Factual conditioning and deductive logic.

The way we treat the factual conditioning is at the core of our modelization, and deserves
further explanation as it clashes with the a priori opinions of the classical bayesian approach.
We are going to reanalize the broken circuit example, using predicate logic notation. We will
show that our factual conditioning is related to deduction, whereas the Bayesian approach is

related to abduction.

1.1 [Ox: C(x) ( AX)=B(x)) O (-A(x)B(x))) Circuits are either from Fa or from Fg.
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1.2 [Ox: C(x) OBrk(x) Onecircuit is Broken.

1.3 C(a) OBrk(a) Itsnameisa.

2.1 Ox: AX) OG(X) Fa circuits are Green.

2.2  [Ox: B(xX) O( W(X)O=P(x))[I =W(x)OP(x))) Fg circuits are either White or Pink.
Gen [x: C(x)UB(x) O =P(x) None of the Fg circuits are Pink.
Fact -P(a) The broken circuit is not Pink

The initial step of example 3 (section 4.5) is summarized by expressions 1.1 to 1.3 that
formalize ECp. Based on this knowledge, Y ou build the credibility function Crg on the origin
of the broken circuit. The terms Crg(A(a)) and Crg(B(a)) denote the strength of Y our belief
that the broken circuit comes from factory Fa and Fg, respectively. For simplicity sake, we
use the grounded propositions as arguments of the credibility functions, their relation to a set
of world being immediate.

The next information is the uninformative refinement described by expressions 2.1 and 2.2.
Expressions 1.1 and 2.1 imply that Ox: A(X) = G(x). Identically expressions 1.1 and 2.2
imply that Ox: B(x) = (W(X)[(:=P(x)) [0 -W(x)[IP(x))). Let Cr’ denote Y our belief about the
color of the broken circuit. Given these two logical equivalences, Cr' must satisfy: Cr’' (G(a))
= Cro(A(a)), Cr(W(a)OP(a)) = Cro(B(a)). Some values of Cr’, like Cr'(W(a)), cannot not
be deduced form the Doxastic Consistency. They will be obtained in theorem 7.

The generic revision (section 5.1, example 3, continuation 1) results from the information
given by the expression Gen. Expressions 2.2 and Gen imply that [Ix: B(x) = W(x). Let Crp
denote Y our belief about the color of the broken circuit given expressions 1.1 t0 1.3, 2.1, 2.2
and Gen. Crq satisfy: Cr1(G(a)) = Cro(A(a)), Cri(W(a)) = Cro(B(a)), €etc... (see 5.1).

The factual revision ((section 5.3, example 3, continuation 2) results from the information
given by the expression Fact. Expressions 2.2 and Fact imply that B(a) = W(a). Let Cro
denote the credibility function that represents Y our belief given expressions 1.1 to 1.3, 2.1,
2.2 and Fact. In section 5.3, we had assumed that Cry satisfy also Cro(G(a)) = Cro(A(a)),
Cra(W(a)) = Cro(B(0)), etc... (see 5.2). It was based on the logical equivalences A(a) =
G(a) and B(a) = W(a). Some critics might feel that these equalities are inappropriate and
should be replaced by inequalities. Cro(G(a)) > Crg(A(a)), Cra(W(a)) < Cro(B(a))... The
origin of the divergence can be found in the difference between deduction and abduction.

These two schemes are:

1) abduction schema: observing the consequent of an implication increases the support that the
antecedent holds.

2) deduction schema: observing the consequent of an implication does not tell anything about
the fact that the antecedent holds.

In the present context, these two schemes become:
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1) abduction schema: from Cx: A(x) O =P(x) and =P(a), Y our belief that the broken circuit
o was made in Factory Fa increased, hence Cro(G(a)) > Cro(A(1)).

2) deduction schema: from [x: A(x) [0 =P(x) and =P(a), Y ou can deduce nothing on A(a),
hence the belief that the broken circuit o was made in Factory Fa is unchanged, hence
Cro(G(a)) = Cro(A(a)).

In a certain sense, our model to represent quantified beliefsis an extension of deductive logic,
not of abductive logic.

For sake of completeness, we propose the following scenario to represent the case where a
circuit israndomly selected, and then we learn it is not pink. We accept that every circuit has
the same chance of being selected, adapting the story to cope with non equal selection chances
isimmediate.

1.1 Ox: C(x) ( AX)=B(x)) O (-A(X)IB(x))) Circuits are either from Fa or from Fg.

1.2 [Ox: C(x) OS(x) Onecircuit is Selected.

1.3 C(a) OSe(a) Itsnameisa.

2.1 Ox: AX) OG(X) Fa circuits are Green.

2.2  [Ox: B(xX) O( W(X)O=P(x))[I =W(x)[OP(x))) Fg circuits are either White or Pink.
Fact -P(a) The selected circuit is not Pink

Let |A|, [W]... denote the number of distinct circuits in the equipment that were made at Factory
Fa, that were painted White..., respectively. By assumption, Y our belief that the selected
circuit a was made at Fa iS|A|IA+||B| (accepting Hacking frequency principle (1965) that
numerically equates belief and chance). The information about the color (2.1 and 2.2) implies

. . . (€] .
that Your belief that the color of the selected circuit is Green |S|G| + W[+ [P what is of

course equal to |A||A+||B| . After learning that the selected circuit was not pink (Fact), Y our

belief that the color of the selected circuit is Green becomes |G||J(f3||VV| Once |P>0, an

acceptable fact, this new belief islarger than the belief Y ou had before learning Fact, just as
with the abduction schema.

The reason why the Bayesian schema clashes with our approach of the factual revision laysin
the necessity to feed into the Bayesian model an a priori belief for each circuit that expresses
Your apriori belief that this circuit is the broken circuit. Besides, that a priori belief must be
represented by a probability function (something like the equi a priori chance). It happens that
probability functions cannot represent states of partial or total ignorance aswe need in fact. In
our analyzis, we never used the information about the numbers of Fa, W... circuits (nor about
some measure of their corresponding sets).

** 5.8. Convex Capacities.
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So far we have derived what are the impacts of uninformative refinement and conditioning on
a credibility function, but Cr is not even a capacity monotone of order 2 (called convex
capacities, Choquet 1953, Chateauneuf and Jaffray, 1989). Convex capacities could be
justified by assuming that conditioning does not decrease relevant credibilities. Consider
Cra(C) and Cr(C) for A,Cl , CSA. You had some belief Cr(C) that wgoldC. Then You
learns Eva, i.e., that wg is not in A. So some of the worlds Y ou had considered potentially
believable are to be rejected as impossible by Eva. It seems that Y our values of the revised
belief for C should not decrease. Why eliminating some atoms not in C (those in A) should
decrease Y our belief that wgisin C? Therefore we propose requirement A5.5 that generalizes
that idea. That requirement impliesthat Cr isaconvex capacity.

Requirement A5.5: Convex capacities.
Let (Q, U, Cr) be a credibility space. For A,B[I , let Cra and Cra B be the conditional
credibility functionsinduced from Cr by the evidence Eva and Eva . Then:

OB ,CcAnB  Crang(C) = Cra(C).

Theorem 8. Let (Q, [, Cr) be a credibility space where Cr satisfies requirements A2, A3,
A4 and A5.1to A5.5. Then Cr isaconvex capacity.

In fact, requirement A5.5 is not necessary for our task. It is given just to show how we can
show that Cr is a convex capacity. We shall show in section 6 that Cr is in fact a belief
function, a property that impliesthat Cr is a convex capacity, without using requirement A5.5.

** 5.9. Why are probability functions and plausibility functions inadequate?

Before proving that all credibility functions are belief functions, we consider why probability
functions and plausibility functions are inadequate to represent quantified beliefs.

To show that probability functions are not adequate, we consider the problem of iterated
uninformative refinements. As an illustrative example, take Qg = {a, b}, Q1 ={a, by, by},
and Qo = {a, by, bpy, bpo}. Let Ry be a refinement from (Qg, 2920) to (Q1, 291) such that
R1(a) ={a}, and Ry(b) = {by, by}. Let R, be arefinement from (Q1, 221) to (Q2, 292) such
that Ro(a) = {a}, Ra(b1) = {b1} and Ra(b2) = {b21, b22}.

Let the belief state (Qg, 220, Crg, ECp). Let Cry (Cro) be the credibility function induced from
Cro (Cry) on 281 (2€22) by the uninformative refinement Ry (Ry).

Consider the refinement R12 from (Q, 29) to (Q2, 2922) such that R12(a) = {a}, R12(b) = {by,
bo1, b2o}, and let Crio be the credibility function induced from Crg on 292 by the
uninformative refinement R12. R12 is nothing but the result of combining R1 with Ro. By the
Doxastic Consistency Requirement, Crp = Cro.
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In order to achieve such an equality in probability theory, we need to know how Crg(b) is
distributed among b1 and by, and how Crq(by) is distributed among bo1 and b2o. For one, that
knowledge contradicts the Markovian Requirement that states that Crq should depend only on
Cro and R1, not on some extra information like the distributions of Crg(b) between by and by.
The Markovian Requirement can only be satisfied if Cro(b) is equally distributed between by
and by, in which case Crq(b2) should also be equally distributed between by1 and by,. Thus
Cro(b21) would be equal to Crg(b)/4. The same rule applied to Cr12, using R12, implies that
Cr12(b21) = Cro(b)/3, hence Cry12 # Crp, an inequality that contradicts the Doxastic
Consistency Requirement. Hence equirepartition cannot de defended. This implies that
probability functions are not fitted to represent beliefs once iterated uninformative refinements
are introduced.

The Preservation Requirement is not satisfied by plausibility functions, the dual of the belief
functions. This rejection seems adequate. We feel that Cr should represent the strength of
belief and should behave like the modality used to represent categorical beliefs (the ‘box’
operator encountered in doxastic logic). Using plausibility functions to represent quantified
beliefs would be equivalent to representing categorical beliefs by the ‘diamond’ operator. Of
course, such an interpretation of ‘belief’ could be defended. The question isin defining what
is meant by beliefs: we follow the classical doxastic logic interpretation (Hintikka, 1962).

In conclusion, probability functions are not expressive enough to satisfy our requirements,
and plausibility functions do not cover our interpretation of the belief modality.

6. Credibility functions and belief functions.

6.1. Belief functions are credibility functions.

We want to show that the set of credibility functions is the set of belief functions. We first
show that every belief function satisfies requirements A2, A3, A4 and A5. The reverse
theorem requires the introduction of the concept of deconditionalization.

Theorem 9: Every belief function satisfies requirements A2, A3, A4 and Ab5.

Proof: see appendix.

6.2. Deconditionalization.

The aim of this paper is to determine the mathematical structure of the credibility functions.
We now prove they are belief functions (monotone capacities of order infinite) by studying the
concept of deconditionalization, i.e., the inverse of the conditioning process. Let the belief

state (Q, [, Cr, EC). Let Crx be the credibility function defined on [0 after conditioning Cr
on the evidence Evx for X that means X =gy Q. Suppose Y ou learn that conditioning on
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Evx was inappropriate, i.e., that all the reasons that lead Y ou to condition Cr on Evy were
unjustified. Y ou want to erase the impact of Evx from Cry, and rebuild the credibility function
Cr from which Crx had been obtained by its conditioning on Evy. This processis a special
form of contraction (Gardenfors, 1988). We call it adeconditionalization of Crx for Evy.

If You had memorized the value of Cr before its conditioning on Evy, the deconditioning
process would be trivial: the result would be Cr. But because of the markovian requirement
A5.1, such a memorization is absent, and Cryx is all what You know when You must
deconditionalize it. The memory of Cr islost and the transformation (relation 5.4) between Cr
and Crx that reflects the impact of Evy is not one-to-one, but many-to-one, so knowing Crx
is not sufficient to recover Cr.

Formally, let (Q, ) be a propositiona space. Let Cr be the set of credibility functions defined
on 0. For XII] let Crx be the set of conditional credibility functions obtained by
conditioning the elements of Cr on Evx by (5.4).

The impact of conditioning the elements of Cr on Evx can be described by an operator
Sx : Cr- Crx such that:

Crx =Sx o Cr for all CrCr (6.2)
By theorem 4, iterating conditioning on Evy and Evz is equivalent to directly conditioning on
Evx ~z. Hence the conditioning operator satisfies for al X,Z[II :

Sx 0Sz =Sxnz (6.2)

Consider now the deconditioning operators for Evy  i.e., the operator that maps Crx into Cr.
Let Sx be such an operator. If conditioning had been one-to-one, Sx would just be the inverse
of Sy, but given Sy is many-to-one, Sx isageneraized inverse. Sy must satisfy:

Sx 0 Sx 0 Sx = Sx (6.3
and SxoSx=Sx (6.4)
Indeed re-conditioning after deconditioning annihilates the effect of the deconditioning (6.3)
and deconditioning twice has the same impact as deconditioning once (6.4), just like
conditioning twice on the same piece of evidence was equal to conditioning only once on that
piece of evidence: Sx o Sx = Sx.

Even though Sx is unique, there are many operators Sx satisfying (6.3) and (6.4)7. Let Tnx
be the set of deconditioning operators Sx satisfying (6.3) and (6.4).

Example 4: In order to explain the origin of the next requirement, suppose that Crx
guantifies Y our beliefs over [ based on an evidential corpus EC that contains the conditioning
evidence Evy for X . You then learn that the evidence Evx was unjustified and its impact
must be suppressed. What operator Sx will Y ou use? Suppose another agent Y ou* has some

7 Sx and Sy are linear operators and can be written under matricial notation. Then Sx is a
generalized inverse of Sx and both Sy and Sx are idempotent (Klawonn and Smets, 1992).
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opinion about which operator Sx 1%k isto be used by You. You*’s opinion is represented by
acredibility over mx. Suppose You* is sure about which Sx[1%x should be used by You to
decondition Crx. Suppose Y ou had no a priori about which operator is appropriate. Y ou trust
inYou*. So You accept You*’s opinion that the appropriate operator is Sx* and You use this
Sx* to decondition Crx. Of course, the result must be a credibility function over [1. We want
that the choice of Sx* by You* can be made independently of the value Crx representing Y our
belief over [1. Thus, for every Crx in Crx and every Sx[0%x, Sx oCrx must be a credibility
function. This constraint is sufficient to prove that the credibility functions are belief
functions. m}

The next requirement just formalizes the requirement detailed in example 4.

Requirement A6.1. Let (Q, [1) be a propositional space. Let Cr be the set of credibility
functions defined on [J. For X[ , let Crx be the set of conditional credibility functions
defined on [J after conditioning the credibility functionsin Cr on the evidence Evy. Let Tix be
the set of operators deconditioning the elements of Crx on Evy. For every Sx in &nx and
every Crx in Crx, onehas. Sx o Crx O Cr.

This requirement means that the set of operators for deconditioning on an evidence Evx does
not depend of the credibility function to which they are applied. We want that if Sx is a
deconditionalization operator so that it produces a credibility function when applied to some
CrxOCrx, than it produces a credibility function when applied to any CrxOCrx. This
requirement is sufficient to prove that credibility function are belief functions. Details are given
in appendix 3.

Theorem 10: Every function that satisfies requirements A2, A3, A4, A5.1to A5.4 and A6.1
isabelief function.

This concludes our task.
** 6.3. Other proofs that Cr is a belief function.

6.3.1) The proof that Cr isabelief function can be achieved differently. In particular, section
6.2's results can be derived by using the inverses of the coarsening operators instead of the
inverses of the conditioning operators. We feel deconditioning is a clearer concept that de-
coarsening, hence our choice.

We present several other sets of requirements that prove that credibility functions are belief
functions. Unfortunately for most of them we cannot provide some definitive argument based
on the primitive concept of credibility that would justify their acceptation. They only enlighten
the danger incurred if Cr isanot abelief function.
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6.3.2) In Smets (1993c) we show that credibility functions are belief functions by
postulating the following closure property.

Let C, bethe set of credibility functions defined on an algebra [J with r atoms and that satisfy
all the properties developed up till section 5. Let [’ be a refinement obtained from [ by
refining only one atom of [ into two new atoms. Let Ext(C;) be the set of credibility functions
on ' that can be obtained by the application of such refinement operators from the credibility
functions in C;. Let Clos(Ext(C;)) be the closure of Ext(C;) that contains all credibility
functions that can be obtained from those in Ext(Cy) through conditioning and convex
combinations. In Smets (1993c), we postul ated:

Requirement A6.2. Closure Property. Cr+1 = Clos(Ext(Cy)).

l.e., any credibility function in Cy+1 could be derived from some credibility functionsin C;
through refinement, conditioning and convex combinations. As far as the M6bius transform of
acredibility function defined on aframe of discernment with one atom is always non negative,
and the considered transformations preserve the non negativity of the Mdbius transform,
credibility functions are thus belief functions.

6.3.3) Requirement A6.3. Let (Q, O, Cr) be a credibility space. For X,YII , XY, let
Crx and Cry gy be the conditional credibility functions derived from Cr after conditioning on
Evx and Evy, respectively. Let v, vx and vygqy be the Mobius transforms of Cr, Crx and
Cry, respectively. Then,

A6.3a vx(X) = vy(Y).

A6.3b vx(A) = vy(A), AcX, AllD .

Both requirements imply that v(X)=0 for all XIIII , hence Cr is a belief function. But the
M 6bius transform has no natural interpretation so far. The meaning of v appears only once Cr
is a belief function in which case, v(A) for ATl isthe part of belief that supports that the
actual world isin A without supporting the fact it belongs to any strict subset of A (Smetsand
Kennes, 1994). Requirements A6.3 are only technical and are not useful to justify that
credibility functions are belief functions.

6.3.4) Equivalently, one can introduce the concept of a commonality function, a very useful
mathematical object in the TBM. Given acredibility function and its Mdbius transform v, the
commonality function g on [ is defined by:

qA)= 3 Vv(B).
B:BSA

Requirement A6.4. Let (Q, O, Cr) be a credibility space. For X,Y[II , XCY,
a(X)za(Y).
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Requirement A6.4 is equivalent to requirement A6.3.a as q(X) = vx(X) for X . In the
TBM, q(X) isthat part of belief kept uncommitted in a context where Evy is accepted. But just
as with the Madbius transforms, the commonality functions have no natural interpretation
before Cr is accepted as a belief function.

6.3.5) Shafer (1976) assumes that any measure of belief Cr on algebra [0 should satisfy the
following inequalities:

On>1, A1,A92,...An D]
Cr(A1DA2D...An)ZZCr(Ai) - ZCr(Ai nAj)....-(-l)”Cr(Alm Aon..Ap),
[ 1>]

what means of course that Cr isabelief function. In the TBM (Smets and Kennes, 1994), we
assume the existence of parts of beliefs that support a proposition without supporting more
specific propositions. These parts of belief are in fact the values of the Mobius transform of
the belief function. Both approaches are strictly equivalent. We introduced the second in
response to the criticism that the inequalities of Shafer were too artificial and difficult to accept
as natural requirements for ameasure of belief, hoping ours would be more * palatable’ .

6.3.6) It can be proved that the following inequalities among conditional credibility functions
are satisfied iff Cr isabelief function.

Requirement A6.5. Let (Q, O, Cr) be a credibility space. For any n, any A1, Ao, ...
Al andany XS njA;j
> ()™M Crioa(X) 20
1c{1,2...n}

But how can these inequalities by justified? They are even worse than those initially defended
by Shafer (1976).

6.3.7) Dubois and Prade (1986) have introduced the idea of complementary belief functions.
Given a credibility function Cr on [0 with v its Mdbius transform and q its commonality
function, they propose to define the set-function Cr* also defined on U such that its Mobius
transform v* satisfies v*(A) = v(A) for all Al . Then Cr*(A) + m*(&) = q(A) and Cr(A) +
m(2) = o* (A) where g* isthe commonality function computed from Cr*. In order that Cr* be
acredibility function, Cr must be a belief function. If it were not the case, it isaways possible
to generate another credibility function by coarsenings and refinements such that its
complementary function would not be a credibility function as some of its values would be
negative. The problem with such ajustification is that the transformation Cr* does not have a
natural interpretation unless the Mobius transform gets one, what is not the case as Cr is not
yet proved to be abelief function.

6.3.8) Wong et a. (1990) have presented an axiomatic justification based on the
representation of a belief-order relation > (>) where B>C (B>C) means ‘B is not less believed
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than C' (‘B ismore believed than C’). They replace the digoint union requirement assumed in
probability theory (Koopman 1940, Fine, 1973):

An(BOC)=@ O (B=C = AOB=AIC)
by aless restrictive requirement:

C<B,AnB=@ 0 (B>CO AOB=ALC).
Under this last requirement, the > belief-ordering can always be represented by a belief
function. Unfortunately, other functions like the convex capacities can also represent the >
ordering. The fact Wang et al. could not prove that the > belief-ordering can only be
represented by belief functions prompted us into devel oping the present axiomatization.

We hope future work might show that some of the alternative requirements can find a natural
judtification. This hope explains why we present these properties.

7. Conclusions.

We conclude this paper by first summarizing the major results (table 1), then answering
severa questions that could arise from our presentation.

1) We have been able to show under which conditions credibility functions are belief
functions. We show that the set of credibility functionsis a convex set, which was essentially
achieved by accepting the existence of a chance setup, i.e. of objective probabilities. The
major requirement is the doxastic stability that must be satisfied after eliminating some of the
alternatives created by an uninformative refinement (requirement A5.2), the homomorphism
(requirement A5.3) and preservation requirements for conditioning (requirement A5.4).
Finally, we assume that the domain of the deconditionalization operators does not depend on
the credibility functions to which deconditionalization is applied (requirement A6.1). Together
these requirements imply that credibility functions are belief functions.

It could be argued that the maybe large number of requirements might be misleading, and in
any case might reduce the confidence one has in their adequacy. It should be noted that we
have derived many properties: the convex combination, the uninformative coarsening, the
uninformative refinement, the conditioning and the deconditioning.

In probability theory, about the same number of requirements would be needed to derive the
same set of properties. An enterprise similar to oursto justify probability theory would require
something like the Koopman set for qualitative probabilities (Koopman, 1940) and their
extensions for conditional probabilities (Fine, 1973). Besides the concept of uninformative
refinement in not obvious within the probabilistic framework. So the critic that there are “too
many requirements’ is either not acceptable or should be applied identically to probability
theory!
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Definition. Cr definition.

A2.1:* Existence. Cr is pointwise.
*  Domain. [apg, aT]
*  Monotonicity. If ASB, then Cr(A)<Cr(B)
*  Lower limit. Cr(9) =ap

A2.2:* Doxastic consistency. If A1=gc A2, then Cr1(A1) = Cro(A2)
Convexity. Cri2 =a .Crp + (1-0).Cr2

A3.1: * Compositionality. Cri2=Fq(Cr1,Cr2)
A3.2:* Continuity. Fa(X,y) continuous.
A3.3:* Strict monotonicity. Fa(X,y) strictly monotone.
A3.4:.* ldempotency. Fa(x,X) =X

A3.5:* Probability Functions.  Probability functions are credibility functions.
Uninformative Coarsening

A4l * Cr"=h(Cr,C)

Uninformative Refinement

A4.1: Cr=g(Cr,R)

Conditioning

A5.1:* Markovian Requirement. Cra dependsonly on Cr and A.

A5.2: Doxastic Stability. Eliminating atoms built from an uninformative refinement.
A5.3: Homomorphism. Conditioning and convex combination commute.

A5.4:* Preservation. If Cr(B) = Cr(Q), then Cra(B) = Cra(A).

Deconditioning
A6.1. Free deconditioning OSxO%x, OCrxOCrx, Sx o Crx O Cr.

Table 1: List of requirements, their numbers, names and major properties. * indicates those
requirements satisfied in probability theory.

It might also be worth emphasizing that most requirements are satisfied by probability
functions (those requirementsindicated by * in table 1).

2) Decision making. In section 1, we mention the existence of a credal and a pignistic
level. In Smets (1990b) and Smets and Kennes (1994), we develop and justify the so called
pignistic transformation that permits the construction of the probability function needed at the
pignistic level for decision making from the credibility function held at the credal level. This
construction protects the TBM against any criticism based on Static Dutch Book. In Smets
(1993a) we aso show how Diachronic Dutch Books are also avoided.

3) Combining belief functions. Classically, a mgor component of the models for
qguantified beliefs based on belief functionsis the rule of combination by which two distinct
pieces of evidence are combined in order to build a new belief function that reflects the impact
of both pieces of evidence.
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The conjunctive rule of combination, called the Dempster's rule of combination, has been
proposed by Shafer (1976). He justifiesit by assuming the initial Dempster model based on an
underlying probability function, a one-to-many mapping and some stochastic independence
(Shafer 1984, Shafer and Tversky, 1985). Later on, Smets (1990a), Klawonn and Schwecke
(1992) and Hajek (1992) have presented justifications within the TBM where no underlying
probability measure is assumed. They assume the same conditioning rule as derived in section
5 and justify Dempster's rule of combination by symmetry and associativity arguments. In
Klawonn and Smets (1992), both the conditioning and the combination were derived by
postulating the least commitment principle and the fact that the revision of a belief function
results from a specialization process, i.e., aflow of the basic belief masses to their subsets.

The digunctive rule of combination and the generalization of Bayes theorem to belief functions
was introduced in Smets (1978, 1981), and was fully justified in Smets (1993Db).

4) It might surprise that our credibility functions are not normalized. Indeed, we neither
assume that Cr(Q) =1, nor that Cra(Q) = Crg(Q). Thefirst case reflects the fact that Q might
be different from Q| (see section 2.2). The impact of such a difference is that the degree of
belief given by You at t to Q can be smaller than the degree of belief that could have been
givento Q| . Nevertheless the difference 1-Cr(Q) is still better understood once conditioning
is introduced. Suppose Cr(Q) = 1, the difference 1-Cra(Q) quantifies then the (partial)
inconsistency present in ECOEvA (Smets, 19924a). The difference contains the belief that was
giveninitially to aset A that turns out to be impossible given the revising information. Given
Your initial evidential corpus EC, Y ou had given some belief to A. You then learns that A is
impossible. This new piece of evidence Eva is partially contradictory with EC as it says that
the belief that was given to A was inappropriate. The larger that belief, the larger the
contradiction, the larger 1-Cra(Q). The fact that the amounts of contradiction between EC and
Eva or Evg can be different explainswhy Cra(Q) and Crg(Q) can be different. Asfar as any
credibility function result from the conditioning on EC, the difference 1-Cr(Q) that reflects the
difference between Q and Q| can be explained in the same way as a measure of internal
inconsistency, of internal contradiction present initialy in EC, i.e., when building Cr on .

In conclusion, this paper has shown that under quite general conditions, the measures of
guantified beliefs are belief functions. It provides afirst detailed axiomatization that justifies
the use of belief functions. It leads to the TBM described in Smets and Kennes (1994), a
model for representing quantified beliefs that we feel more appropriate than the Bayesian
model that restrictsitself to the use of probability functions. Its use for statistical inference will
be studied. This papers provides the justification of the model, ajustification required before it
can be applied to practical problems.
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APPENDIX.

Appendix 1. The Choquet Capacities.
Let Q beaset and let (] be aBoolean agebra of subsets of Q. A (Choquet) monotone capacity
of order nfor n=2 isafunction C from O to [0, 1] such that

1) C(@)=0

2) DA1,A2,..Ap

C(A1DA2D...An)2ZC(Ai)-%C(AinAj)....-(-l)nC(AlmAzn...An) (Appl.1)
[

When C is amonotone capacity of order n, it is aso a monotone capacity of order m for every
m<n. A monotone capacity of order 1 is defined as a capacity monotone for inclusion (asin
requirement A2.1). A monotone capacity of order 2 is called a convex capacity. A belief
function is a monotone capacity of order infinite.

Notice that we do not require that C(Q) = 1 asis usually accepted. We can have C(Q)<1. All
properties of capacities used in this paper do not depend on C(Q) being 1 or less than 1.

The Mobius transform v of a capacity is the function on O with:
V(A) = > (-1IAFBIC(B) OAD Az#Q (Appl.2)
B:BIl ,d#B<A
V(@) =1-C(Q)

If C is monotone capacity of order n, then v(A) = O for every A in O with |Al<n.

The functions C and v are in one-to-one correspondence with:
CA) = S v(B) DA AzQ (Appl.3)
B:BII ,@#BcA

C(@) = 0.

Our definitions are based on C(&) = 0, whereas v(d) might be positive. Adaptation with
C(@)>0 is straightforward, but unused in this paper.

Appendix 2: Proofs of the theorems.

Proof of Theorem 5.
1. Let (Q, O, Cr, EC) and (Q, [J, Cra, ECOEva) be two belief states where Al and Eva
is the piece of evidence such that A =g, Q. AsA =gvp D, requirement A2.1 implies that

Cra(A) = 0 where o = 0 (see section 3.3) and for BIIII , Cra(B) = 0 OBCA.
2: After conditioningon A, AnB =g, B for al Bl . Then by requirement A2.2,
Cra(B) = Cra(AnB).
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3:Let A, Bl BZA. Letacoarsening C from [ to [I' such that [I' has three atoms. C(B),
C(BnA) and C(A). Consider the belief states (Q, O0', Cr', EC) and (Q, O', Cr'a, ECOEva)
derived from (Q, I, Cr, EC) and (Q, [, Cra, ECOEva) by the coarsening C, respectively.
As ' has only three atoms, Cr' is completely defined by its values on the seven elements of
' (on @, Cr()=0). Hence by requirement A5.1, Cr'a is defined by these seven values of
Cr'. AsA =gc C(A), B =gc C(B), ...
Cra(B) = Cr'c(a)(C(B)).

The equality results from the fact that Cr'c(a) is a coarsening of Cra.

As the RHS depends only on these seven values of Cr', so the LHS depends only on the
corresponding elements in [ as presented in property 3 of theorem 5, except it has been
written for any B. But thanks to property 2 of theorem 5 the difference isirrelevant. QED

Lemma 1. Given two belief states (Q, [I’, Cr’, EC) and (Q, 00", Cr”, EC) where |[At(0")] =
|At(O”)] and the elements X; and Yj, i=1,2...n, of At((0’) and At((") are so ordered that X;
=gc Yjfor al i=1,2...n. Then for any pairs (X,Y) and (A,B) where X[ ’, Y ", Al ’,
BII ", X =gcY and A =gc B, we have:
Crx(A) =Cr'y(B).

Proof: Write Cr’ x(A) and Cr”y(B) with the function f of theorem 5.3. Given the doxastic
equivalence between the elements of [1’ and [1”, corresponding terms in the two f functions
share the same numerical value. Hence the two functions are numerically equal. QED

Lemma 2: Let (Q, ) be a propositional space and Cr, Cr’ and Cr” be three credibility
functions defined on [J with:

Cr=aCr +(1-a) Cr",
for alJ[0,1]. Let the conditioning proposition Eva, and let Cra, Cr'a and Cr’a be the
conditional credibility functions induced by the conditioning of Cr, Cr’ and Cr” on Eva,
respectively. The homomorphism requirement A5.3 implies:

Cra(X)= 3 cax(Y) Cr(Y),

Y [

where the coefficients ca x(Y') do not depend on Cr.
Proof. By the requirement A5.1, there exists afa function such that:

Cra =fa({Cr(X): XD }).
The homomorphism requirement becomes:
fa{a Cr(X) + (1-a) Cr'(X): XD })

=a.fa({Cr(X): X }) + (1-a).fa{Cr(X): X })

where fa is bounded. Hence fa is alinear function of its components (see Aczel, 1966,
Chapter 5.1., theorem 2 and Chapter 2.1.1, theorem 1) QED

Lemma 3. Given lemma 2 and theorem 5, there exists coefficients y; , i=0, 1...7 and aj,
i=0,1,2,3, such that for Azd, BUA, A,BID ,

Cra(B) = yo+y1Cr(Bn A)+y>Cr(B n A)+y3Cr(A)+y4Cr(A)+ysCr(BOA)+ysCr(BOA)+y7Cr(Q),
Cra(A) = ag+a1Cr(A)+a2Cr(A)+a3Cr(Q).
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Proof: By theoram 5 and lemma 2, we know that Cra(B) and Cra(A) depend linearly only
on those Cr terms listed in the relations of this lemma. By definition of the conditioning
process, Azd. Given the invariance of the results to coarsening, the only relevant casesfor A
and B are:

1: A=Q, in which case Cro(B) = Cr(B), for al B .

2: AzQ, Az0, B=A, in which case Cra(A) depends on coefficients ca a(Y) that depends on
Y and A, asit isthe case with the a; coefficients.

3: Az2Q, Az@, BLOA, in which case Cra(B) depends on coefficients ca g(Y) that depends on
Y, A and B, asit isthe case with the y; coefficients.

4: AzQ, Az@, B=@, in which case Cra(9) = 0.

So there are only two relevant relations, those in the present lemma. QED

Lemma 4. The preservation requirement implies that
X1 Yotvyitystys+yr=1
Xo. dp+ta1+az=1
X3 Yotystystyst+y7=0
X4 ag+oaz2+a3=0
X5 Y2-Y3+y4-ys5=0.
X6: Yo+tY2+ya+tYs+y7=0
Proof: Consider an algebra 0 with four atoms A1, Ao, A3z, Ag. If Cr(A10A) =
Cr(A10A20A30A,), the preservation requirement implies that:
Cra;0a3(A1) = Cra nag(A1UA3). *)
The results are obtained by explicitating the various terms with lemma 3 results, and studying
particular cases.
Suppose Cr(A1) = 1, then Cra,qa5(A1) = 1 impliesthe equalities X1 and X2.
Suppose Cr(Ao) = 1, then (*) impliesthat yo+ y3+ Y5+ Vs + Y7=0g+ 02 + O3,
Suppose Cr(A2) = p and Cr(A3) = 1-p. Then Cra,ga,(A1) = 0, what implies the relations X3
and X4. Relation Xg results from X3 and Xs. QED

Lemma 5. In lemma 3, the coefficients of Cra satisfy:

(co) Yo = Yo * Yo.(Y1 + Y2t Y3+ Yat Y5+ Ye) + y7.00
(c1) Y1=VY1.Y1+ Y2.Y6

(c2) Y2 = Y1.Y2 + Y2.Y5

(c3) 0=y1.Y3+ Y2.y4

(ca) 0 =vy3.(y1 + Y2t Y3+ Yat Y5+ Ye) + y7.02

(c12) Ya=Y1.Ya+ Y2.Y3

(c13) 0=vy1.Y5+Y2.y2

(C14) 0=VY1.Y5+ Y6.Y6

(c23) 0=vy1.Y6 +Y1.Y2

(C24) 0=Y2.Y5+ VY5.¥6

(c34) Y3 =Y3.Y5 + Ya.Ye

(c123) 0 =vya.(y1 + y2t Y3+ yat+ Y5+ ¥p) + y7.01
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(C124) 0 =vY4.Y5+ Y3.Ye.
(C134) 0=Y2.Y6+ Y5.Ys5.
(c234) 0=vy1.Y6 + Y5.6.
(C1234) Y7 =V7.(Y1 + Y2t Y3+ Yat+ Y5+ Y6t V7) + ¥7.03

(20) Yo (01 +02) =-0p03

(&) a1=0a1yr+02y2

() O=0a1y2+02v1

(29) O0=(ap+02) ys+oz03
(13) O=(ap+ap) ys+ayas
(294) O=a1ys+02VYe

(a34) O2=01Ys+02Y5

(134) az = (01 +ap) y7+0a303.

Proof. Let (Q, [J Cr) be credibility space where Aj: i=1,...4 are the atoms of . Let ¢j =
Cr(Aj), cij = Cr(Aj0Aj) , cijk = Cr(AjOAj0Ak), c1234 = Cr(A10A20A30A4) where
izjzk0{1, 2, 3, 4}
By conditioning on A1[JA2 or successively on A10A20A3 and the result on A100A, we get
the same result by theorem 4. Using the function f of theorem 5 (3) and using the notation
Cr(BJA) for Cra(B), we get:
Cr(A1JA10A2) =f( cq, C2, €34, C12, C134, C234, C1234) = f( a1, &, &g, a1, &3, &3, 8123)
with &= Cr(A1|A10A200A3) =f( c1, C23, C4, C123, C14, C234, C1234)

a2 = Cr(A2lA10A20A3) = f( c2, €13, C4, C123, C24, C134, C1234)

ag = Cr(A3lA10A20A3) = f( c3, C12, C4, C123, C34, C124, C1234)

a12 = Cr(A10A2|A10AL0A3) = f( €12, €3, C4, C123, C124, C34, C1234)

a3 = Cr(A10Az|A10A20A3) = f( c13, €2, C4, €123, C134, C24, C1234)

a3 = Cr(A2U0A3|A10A20A3) = f( €23, €1, Ca, C123, €234, C14, C1234)

a123 = Cr(A10A20A3IA10A200A3) = f( 123, 0, Ca, C123, C1234, C4, C1234)
Rewriting each term with the relation of lemma 3, and collecting the coefficients of the c terms
indicated in the label of each equality of the lemma, one obtains the requested equalities.
Repeating the construction after eliminating A form Q and considering Cr(A1]JA1), one gets
the (g) equalities. QED

Lemma 6. Given lemmas 3 and 4, there are only three solutions for Cra.

1) Cra(B) =Cr(AnB)

2) Cra(B) = Cr(BOA) - Cr(A)

3) Cra(B) = B.Cr(BnA) + (1-B).(Cr(BLA)-Cr(A)) + a.(Cr(Q)-Cr(A)-Cr(BOA)+Cr(BnA)),
where -a2 = B3.(1-B).

Proof: In this proof, X denotes the lemma 4 equalities, and (cj) denotes the lemma 5

equalities. Relations (c13) and (c14) of lemma5 imply that y2 = yg Or Y2 = - V6.
Case 1: Supposey2 =Yg =0.By (c1),y1=0o0ry; = 1.
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Case 1.1: let y1 = 1. By (c13), Y5 = 0. By (c3), Y3 = 0. By X5, Y4 = 0. By (cp), (C4), (C123)
and (c1234), we obtain: yg + y7.00=0, y7.02=0, y7.01 =0, y7.03=0. If y7 20,01 = 0o =
a3 =0. then by X5, ag =1 what contradicts X4. Hence y7 = 0. By Xg, Yo = 0.

Hence Cra(B) = Cr(AnB) if BUA.

By (ag), a2 =0. By (a134), az =1 or 0.

Casel.la if ag=1, by X4, ag = -1, what contradicts (ag) where apgaz = 0.

Case 1.1..b: If az =0, by X4, ag =0, and by X5, a1 = 1.

Hence Cra(A) = Cr(A).

Case 1.2: let y; = 0. By (C12), Y4 =0. By (C134), Y5 =0o0r ys = 1.

Casel.2.a: lety5=0. By (c34), y3=0. By X1, Yo + Y7 = 1, in contradicion with X3.

Case 1.2.b: letys = 1. By X1, Yo+ y7=1. By X3,y3 =-1. By (a1), a1 = 0. By X2, ag + a3
= 1. By X4, 02 =-1. By (cg), y7 = 0. Then yo = 0. By (a4), a3 = 1. Then, ag = 0. Hence
Cra(B) = Cr(BOA) - Cr(A), for all BCA, B .

Case 2: Letyo =yg =a # 0. By (c23), y1 = 0. By (c1), 0 = a2, what contradicts the initial
assumption.

Case 3: Letyo, =-yg =0 # 0. Let y; = B. Then (c1) gives: B(1-B) = -a2, and a0 implies that
B0,1] . By Xg, Yo+ Y5+ Y7 =0. Then by X1, y1 + y5 = 1, hence ys = 1-3.

Case 3.1: Lety7=0. By (a134), 03=0o0r az=1.

Case3.1.1: Let a3z =0.

Case3.1l.1a letag + az # . By (ag), (a4) and (a14), Yo =Y3=Y4=0. By X3, (1-B) -a =0.
As B(1-B) = -a2, we get -B(1-B) = (1-B)2, thus B = 1, what is not alowed as B[[D,1] .

Case 3.1.1.b: let a; + a2 = 0. By X2 and X4, 0g = a1 =-a2 =.5. By (ag), a = 3. Together
with B(1-B) = -02, it means 3 = 0, what is not allowed as B[[D,1] .

Case3.1.2: Letaz=1.

Case3.1.2.a Let 1 +y3+ys#0. By (Co), (Ca) and (c123), Yo=Y3=Y4=0. By X3, (1-B) - a
= 0, what has been shoxn to be not acceptablein case 3.1.1.a

Case3.1.2.b: Let1+y3+ys4=0.Let d=yy thenyz =-1-9, and yg = -6 by X1. By X3, 20 +
o + B =0. By (c12) and (c34), 8(1-B) + a(1+d) = 0 and (1+0) = ad. Hence, 6+a+p = 0.
So 28 = 9§, hence d = 0. By (c12), a = 0, contrary to the initial assumption.

Case3.2: Lety; 20.Letx =y3. Thenby X5,y4=x+1-a - 3. By (c3), y4 = -Bx/a. Hence,
X = (a+B-1L)a/(a+p). Given B(1-B) = -02, it reduces to x = B—1. Hence y3 = B-1 and y4 =
-0. By (c1234), a3 = 1+a-[. The difference of the products of 1-B by X, and of a by X4
gives. ag = 0. By (cp), Yo = 0. By Xg4, a2 = [3-1-a. By Xo, a1 =[3-a. By X1, y7 =-a. In
such acase:

Cra(B) = B.Cr(BnA) - (1-B).(Cr(BOA)-Cr(A)) + a.(Cr(Q)-Cr(A)-Cr(BOA)+Cr(Bn A)).

QED
CHANGER NUMERO XXXX

Theorem 6: Assume the conditions and notations of requirement A5.2. Let Cr’ be the
credibility function derived from Cr on ' by R. Then for all DX :
Cr'r(p)n B(R(X)nB) = Crp(X).
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Proof: R(D) and D, R(X) and X are doxastically equivalent by construction. Hence
Cr'rp)(R(X)) = Crp(X). R(X)nB and R(X) are doxastically equivalent under ECq by
requirement A5.2, hence Cr’ (R(X)nB) = Cr’(R(X)). This equality persists after conditioning
both terms on R(D), hence Cr’ r(p)(R(X)nB) = Cr'r(p)(R(X)). R(D) and R(D)n B are aso
doxastically equivalent under EC1 by requirement A5.2, hence Cr'r(p)n B(R(X)NB) =
Cr'r)(R(X)n B). Combining these equalities proves the theorem. QED

Lemma 7. Let (Q, [J Cr) be credibility space where [J has two atoms A1, Ao. Let R bea
uninformative refinement from O to [’ such that [0 has three atoms B1, B2 and B3 with
R(A1) =Bz and R(A2) = Bo[1B3. Let Cr' be the credibility function induced from Cr by R on
[1’. Then according to the three solutions of lemma 6, Cr’ satisfies:

1) Cr'(B2) = Cr(A2) and Cr’(B10B>) = Cr(A10AY)

2) Cr'(B2) =0and Cr’(B10B2) = Cr(A1)

3) no solution.

Proof: By theorem 6, with D=Q and B being successively B1[01B» and B1[1B3, we have
Cr(A1) =Cr' (B1/B10B2) = Cr’'(B1|B10B3) *
Cr(A2) = Cr'(B2|B10B) = Cr'(B3|B1UB3) *x
Cr(A10A)) = Cr'(B10B5|B10By) = Cr' (B10B3|B10B3) ***

We consider successively the three solutions of lemma 6.

Solution 1: Cra(B)= Cr(AnB).
By **, Cr(Ap) = Cr’'(B) = Cr'(B3).
By *** Cr(A10A») = Cr'(B10B>) = Cr’(B10B3).

Solution 2 : Cra(B) = Cr(BOA) - Cr(A)

By **, Cr(A2) = Cr'(B2IB3) - Cr'(B3) = Cr'(B2UB3) - Cr'(By),
hence Cr’(B2) = Cr’'(B3). As Cr’'(Bo[0B3) = Cr(A»), then Cr’ (Bo) = 0.
By *, Cr(A1) = Cr'(B10B3) - Cr'(B3) = Cr’(B10B>) - Cr'(B»),
hence Cr(A1) = Cr'(B10B3) = Cr'(B1B>).

Solution 3: Cra(B) = B.Cr(BnA) + (1-B).(Cr(BLA)-Cr(A))

+ 0.(Cr(Q)-Cr(A)-Cr(BOA)+Cr(Bn A)).
Replacing the different termsin ** by their solutions, we get Cr’ (B2) = Cr’'(B3).
Doing the same with * and using the last equality leads to (a+1-3).(Cr’(B10B>)-
Cr'(B10B3)) = 0. Asa+1- = 0 is not compatible with a2 = -B+p2, (see the assumptions
that led to solution 3 in lemma6), Cr’(B1[0B») = Cr'(B1UB3).
Introducing these constraintsin *, ** and ***, one gets respectively:
0=(1-B).(Cr'(B10B2)-Cr'(B2)-Cr(A1)) + a.(Cr(A10A2) - Cr'(B10By) - Cr(A2) + Cr'(B2))
0=-(1-B).Cr'(B2) - B.(Cr(A2) - Cr'(Bp) ) + a.(Cr(A10A) - 2.Cr'(B10B>) + Cr(Aq))
0=[B.Cr(B11B>2) - Cr'(B2) -B.(Cr(A10A) - Cr'(By)) +
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a(Cr(A10A2) - Cr'(B10By) - Cr'(B2))

The solution of these three equations are:

Cr’ (B2) = a.(Cr(A10A2)-Cr(Aq)) + B.Cr(A2)

Cr'(B10Bp) = (1-B).Cr(A1) + a.Cr(A2) + B.Cr(A10AY)
Let R' be auninformative refinement from [0’ to [0” such that 0" has four atoms Cq, Co, C3
and C4 with R’(B1) = C1 and R’ (B2) = Co[C3, and R’ (B3) = C4. Let Cr” be the credibility
function induced from Cr’ by R* on 0”. Applying the previous procedure with a conditioning
on C10Cy leads to:
Cr'(Cp) =a.(Cr(B10By)-Cr'(By)) + B.Cr'(B2)

=a.(Cr(A10A2) - Cr(A1)) + B.Cr(A2)
and
Cr'(C10Cp) =(1-B).Cr(By) + a.Cr'(Bp) + B.Cr'(B10By)
= (1-B).Cr(A1) + a.Cr(A2) + B.Cr(A10A)

where the second equalities in both relation results from considering the direct refinement from
0 to”.

Collecting the terms, one gets:
0 = (2aB-a).(Cr(A10A2)-Cr(A1))+ 2a2.Cr(A2)
0=2a2.(Cr(A10A2)-Cr(A7)) + (20B-0).Cr(A>).

If Cr(A10A2)-Cr(A1) = Cr(A>) (like with probability functions), one gets:

20B - a + 202 = Q, i.e., either a=0 or a+P=1/2,

otherwise, one gets:

0 = (202-20B+a).(Cr(A10A2)-Cr(A1)-Cr(Ao)), i.e., a=0 or a-p=-1/2

In both cases, the solutions for a and B are incompatible with a0 and a2=-B+p2 that
underlies the third solution of theorem 5. Hence the third solution does not admit a solution.

QED

Lemma 8. In lemma 7, solution 1 does not satisfy the preservation requirement, solution 2
doesit.
Proof:
Solution 1: Let (Q, O, Cr) be a credibility space where [ has two atoms. A1 and Ao, with
Cr(A1) =0and Cr(A2) = 1. ThisCr function isindeed a credibility function asit corresponds
to the probability function with probability 1 given to Ao, and probability functions are
credibility functions.
Let R be an uninformative refinement from [ to [’ where [0’ hasthree atoms B1, B> and B3
such that R(A1) = B1, R(A2) = Bo[0B3, and let Cr’ be the credibility function induced from Cr
by Ron . Then Cr’'(B1) = Cr(A1) =0, Cr'(B200B3) = Cr(Ap) = 1.
Under solution 1 and with the results of lemma 7, Cr’(B2) = Cr'(B3) = Cr'(B2[IB3) = 1.
Hence Cr’(B10B2) = Cr'(B10B20B3) = Cr'(Q).
By lemma 7, solution 1,

Crg,0B3(B1B2) = Cr'(B1) =0,
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Crg,0B3(B1UB3) = Cr'(B10IB3) = 1,
Preservation would have required that Crg,1B5(B10B2) = Crg;0B5(B100B3), what is not
satisfied. Hence, solution 1 violates the preservation requirement.
Solution 2: By lemma 5, solution (2) gives:
Cra(B) = Cr(BOA) - Cr(A)
Cra(A) = Cr(Q) - Cr(A).
By the monotony requirement in A2.1,
Cr(Q) = Cr(BUA) = Cr(B).
If Cr(Q) = Cr(B), then Cr(BLA) = Cr(Q) in which case Cra(B) = Cra(A). QED

Proof of theorem 7: Immediate as it presents the solutions of lemma 6 and 7 that satisfy
lemma 8. QED

Comments: Solution 1 (2) corresponds to the formula encountered in Dempster-Shafer
models and the TBM if Cr is a plausibility (belief) function. The case of the plausibility
function is regjected as it violates the preservation solution. The only solution left over is the
belief function solution. The next lemma generalized the previous results and is obtained by
iterating both the conditioning and the refinement processes.

Proof of theorem 8. Let X, YOI . Let A=XnY,C=XnY,B=XnY.
By construction, A, B, CIIII . Then
Crang(C) = Cr(COBOA) - Cr(BOA) = Cra(C) = Cr(CUA) - Cr(A)
Thus: Cr(XOY) = Cr(X) + Cr(Y) - Cr(XnY),
which provesthat Cr isaconvex capacity. QED

Proof of Theorem 9: Take the highly degenerated propositional space (Q, [1) such that [
contains only one atom, Q. As far as probability functions are credibility functions, the
credibility function with:

Cr(Q) =1, Cr(@) =0
belongs to the set of credibility functions over this highly degenerated space.
Through uninformative refinements and conditionings, one can generate for any Al , the
credibility function Cra such that:

Cra(X) =1 if AcX, XD

=0 othewise

Let bel be abelief function defined on [ and let v be its Mobius transform. By definition of a
belief function (appendix 1), v(X)=0 for every Xl and Y v(X) = 1. Build the

X
function Q on O such that:
QX)= 3 V(A) Cra(A).
Al
By construction Q(X) = bel(X) for every X[ .
By theorem 2, Q isacredibility function. Hence bel is a credibility function on [J. m}
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Proof of theorem 10: The proof is just a formal repetition of the arguments presented in
appendix 3.

Appendix 3. The deconditionalization.

Let (Q, ) be apropositiona space and let N = 2" where n is the number of atomsin [J. Let
Cr be the set of credibility functions defined on [J. For X1 let Crx be the set of conditional
credibility functions obtained by conditioning the elements of Cr on Evx (see section 5).
Given CrCr and Crx[ICry, let v and vy be their Mobius transforms, respectively. Relation
(5.4) gives:

vx(A) = z V(ADB), (App3.1)

B:BSX

arelation proved in Shafer (1976) (with v being Y our ‘basic probability assignment’).

Let v and vy be the column vectors which elements are the values of v and v, respectively.
We call them Mdbius vectors. For simplicity sake, we write vCICr (vx[Crx) to mean that the

vector corresponds to acredibility function that belong to Cr (Crx).

Relation (App3.1) expressed for v can be written under matricial notation. Let Sy be the
NxN matrix which elements s.[Ix[- [0,1] are:

s(AB)=1 if AcX, andthereisaCcX such that B=AOC.

0 otherwise.

Then (App3.1) becomes:

Vx = Sx.V (App3.2)
and (6.2) becomes:

Sx.Sz = Sxnz

Let nx be the set of NxN matrices Sx which satisfy the constraints expressed by (6.3) and

(6.4), i.e.,
Sx.S%.Sx = Sx (App3.3)
SX%.Sx = Sk (App3.4)

We first show that if one element of vy is negative, then there is amatrix Sy [1%x such that
Sx.vx isnot the Mobius transform of a credibility function. Suppose vx(A) < 0 for Al .
Let Sx*, with elements s *(B,C), be such that:

s*(AA)=1

s*(BOX,B)=1 for al BEX, BZA, B
s*(CC)=1 foral CZX

s*B,0) =0 otherwise.

By construction, Sx* satisfies App3.3 and App3.4, hence Sx* 1% x. Theimpact of Sx* is
such that all vy are transferred to sets not contained in A, except vx(A) that isleft allocated to
A. So the value given to A by the credibility function build from the M&bius vector Sx * .vx
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IS negative, thus violating the credibility functions properties obtained in section 3.3. Hence
none of the elements of vx may be negative. Therefore the elements of Crx must be belief
functions. As any set of credibility functions Cr results itself from a conditioning on an
evidential corpus EC, what has been proved for Crx can be extended directly to any Cr,
therefore every Crisaset of belief functions.

We can also prove that the elements of Sx are non negative. For A,BII , let s"(A,B) be a
component of Sx with s"(A,B) < 0. Then takes vx such that vx(A) = 1, and vx(B) = 0O for
all B#A. Such vy is induced by a credibility function as shown in theorem 9. Let v =S~
x.Vx. By construction, the elements of v are:
v(C) =s (A0 for al ClI
So v(B) < 0. Hence, the deconditioning of v could lead to a result that is not a credibility
function. In order to avoid it, the elements of Sx must be non negative.

It remains to show that every Sx 1% x maps any belief function into abelief function. Thisis
immediate as the elements of Sx are non negative.
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