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Summary: The use of belief functions has recently been advocated as an alternative
to the use of probability functions in order to represent quantified beliefs. Such a
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belief functions. The assessment of the validity of these requirements provides a tool
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1. Introduction.

To build a ‘thinking robot’ can be seen as the ultimate aim of artificial intelligence. To
be ‘viable’ such a robot should be able to reason and act within an uncertainty-riddled
environment. Uncertainty assumes numerous forms (Smithson, 1989, Smets, 1991) and
usually induces ‘beliefs’, i.e. the graded dispositions that guide ‘our’ behavior. If the
robot is to hold such ‘beliefs’, then a mathematical model representing beliefs is
needed. This paper develops such a model. Our approach is normative. The ‘robot’ -
the agent that holds the beliefs - henceforth called You, is an ideal rational subject. We
propose requirements that should be satisfied by the beliefs held by such an agent.
These requirements are satisfied if beliefs are quantified by belief functions (Shafer,
1976). The derived model is the transferable belief model (Smets and Kennes, 1994).

As far as we know, this is the first axiomatization that justifies the use of belief
functions to represent quantified beliefs.  Wong et al. (1990) have proposed qualitative
axioms for a belief ordering and shown that it can always be represented by belief
functions, but they fail to show that only belief functions can represent such an
ordering. Of course, using belief functions clashes with the current trend advocated by
the Bayesian School that claims that quantified beliefs must be represented by
probability functions. What makes our axiomatization interesting is that the analysis of
the proposed requirements provides a tool for comparing competing normative models.

                                                
1Research work partly supported by the Action de Recherches Concertées BELON funded by a grant
from the Communauté Française de Belgique and the ESPRIT III, Basic Research Action 6156
(DRUMS II) funded by a grant from the Commission of the European Communities.



N.Rep.Q.Bel BF July 27, 1999 2

After summarizing the necessary technical information, we present the proposed
requirements together with a few illustrative examples by way of illustration. Proofs
are omitted2. We focus essentially on the rationality constraints that underpin the
requirements and that really justify them.

2. The credibility domain.

The aim of this paper is to develop the mathematical structure of a function Cr,
temporarily called a credibility function that quantifies Your beliefs that the actual
world belongs to such or such subset of possible worlds. Beliefs can equivalently  be
allocated to 'propositions’, to the subsets of worlds that denote the propositions or to
events. Our presentation is based on the possible worlds approach (Bradley and
Swartz, 1979, Ruspini, 1986).

The strength of the beliefs entertained by You at time t is defined relatively to a given
evidential corpus (ECt

Y), i.e., the set of evidence in Your mind at time t. This ECt
Y is

equivalent to the 'background knowledge' used by the Bayesians, and intuitively just
means 'all You know'. Only one belief holder, You, is considered in this paper, and
time t is unique except when belief revision is studied.

2.1. The propositional space.

Let L  be a finite propositional language, supplemented by the tautology and the
contradiction, denoted T and ⊥ , respectively, and closed under the usual Boolean

connectives ¬, ∨  and ∧ . Let Ω be the set of worlds that correspond to the

interpretations of L and built so that no two worlds denote logically equivalent
propositions. For any proposition X in L,  let “X‘” Ω be the set of worlds identified
by X (i.e., those worlds where X is true).

Let ℜ  be a Boolean algebra of subsets of Ω (thus closed under union, intersection,

complement, and containing Ω and Ø). Let At(ℜ ) be the set of atoms of the algebra ℜ ,

i.e., the non-empty elements of ℜ  whose intersection with any element of ℜ  is either

themselves or the empty set. The atoms of ℜ  are the elements of a partition of Ω.

When ℜ  is the power set 2Ω of Ω, the atoms of ℜ  are the singletons of Ω.

We assume that among the worlds of Ω a particular one, denoted ω0, corresponds to

the actual world. You do not know at t which world is ω0. You can only express Your

beliefs at t that the actual world ω0 does or does not belong to various subsets of

worlds. By definition the actual world ω0 is an element of Ω.

                                                
2Proofs are presented in a Technical Report that can be obtained from the author.
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The domain of Your beliefs is assumed to be a Boolean algebra of subsets ℜ of Ω.

Indeed whenever You can express Your belief that ω0 belongs to a set A and to a set

B, You can also express Your belief that ω0 belongs to their complement (relative to

Ω), union and intersection. We do not assume that ℜ  is 2Ω. Because of Your limited

reasoning power, Your beliefs that result from Your evidential corpus at time t are not
necessarily so detailed that every subset of Ω can be assigned a belief. In Smets
(1995), we further examine the case where the credibility is defined only on a
subalgebra Ω' of Ω, in which case the belief holder is not even sure that ω0 is an

element of Ω'. For simplicity's sake, that particular case will not considered here.

We call Ω the frame of discernment (the frame for short). We call the pair (Ω, ℜ ) a

propositional space.

2.2. Doxastic equivalence.

We now introduce the concept of doxastic equivalence, i.e., equivalence relative to the
evidential corpus ECt

Y. As an example, suppose You want to decide whether to go to a
movie or stay at home tonight. You have decided to toss a coin, if it is heads, You will
go to the movie, and if it is tails, You will stay at home. (These are the pieces of
evidence in ECt

Y). Then 'heads' and 'going to the movie' are doxastically equivalent as
they share the same truth status given what You know at t. Of course, they are not
logically equivalent (Kyburg, 1987a). Logical equivalence implies doxastic
equivalence, not the reverse.

Formally, in propositional logic, two propositions p and q defined on L are logically
equivalent iff “p‘ = “q‘. They are doxastically equivalent (for You at t, i.e., given
ECt

Y) iff the sets of worlds “p‘ and “q‘ that denote them share the same worlds among
those in “ECt

Y
‘, i.e., “ECt

Y
‘∩“p‘ = “ECt

Y
‘∩“q‘, where “ECt

Y
‘ denotes the set of

worlds where all the propositions deduced on L from ECt
Y
 are true.

Doxastic equivalence under ECt
Y is denoted by: “p‘  = ECt

Y  “q‘.

2.3. Change in the evidential corpus.

A piece of evidence is defined here as a proposition that You will accept as true once
You learn it. Adding a piece of evidence Ev to Your evidential corpus ECt

Y leads to a
new evidential corpus, denoted ECt

Y∪ {Ev}. The piece of evidence ¬Ev is the negation

of the piece of evidence Ev, i.e., the proposition that would characterize Ev is accepted
as false. By construction, “Ev‘∩“¬Ev‘ = Ø, and ECt

Y∪ {Ev∪ ¬Ev} = ECt
Y. The last

equality results from the fact that Ev∪ ¬Ev is a tautology and adding a tautology to an

evidential corpus will leave it unchanged.
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We say that Ev is compatible with ECt
Y if “ECt

Y
‘∩“Ev‘≠ Ø.

2.4. Belief functions

We will derive that quantified beliefs are represented by 'belief functions' (Shafer,
1976). Given a propositional space (Ω, ℜ ), a belief function is a function bel from ℜ  to

[0, 1] such that :
1) bel(Ø) = 0
2) for all A1,A2,...An ∈ℜ,

      bel(A1∪ A2∪ ...An)≥∑
i

bel(Ai)  - ∑
i>j

bel(Ai∩Aj) ....-(-1)nbel(A1∩A2∩...An) (2.1)

Usually, bel(Ω) = 1 is also assumed. It can be ignored and we will only require that
bel(Ω) ≤ 1.

3. Axiomatic justification for the use of belief functions.

Let F denote the set of functions that could be used to quantify someone's beliefs and
let us call ‘credibility functions’ the elements of F. Initially, credibility functions can
be any set-function. We then introduce requirements that we feel any measure of belief
should satisfy. Each requirement increasingly limits F, up to the point where F reduces
itself to the set of belief functions. Even though probability functions are special cases
of belief functions, the family of probability functions is not expressive enough to
satisfy all requirements (see section 3.5).

3.1. The credibility function.

The first requirement states that beliefs are pointwise valued, non negative and
monotone for inclusion.

Requirement 1: Let (Ω, ℜ ) be a propositional space. Your beliefs allocated to the

elements of ℜ are quantified by a pointwise function Cr: ℜ→ [0,1], where Cr(Ø) = 0,

and Cr is monotone for inclusion, i.e., for all A, B∈ℜ , if A” B, then Cr(A)≤Cr(B).

The triple (Ω, ℜ , Cr) is called a credibility space. As Cr is induced by ECt
Y, the belief

state of You at t is fully described by (Ω, ℜ , Cr, ECt
Y) and we call that quadruple a

belief state.

That Cr is a pointwise function is not without consequence as it leads to rejecting
belief representations based on interval valued probabilities or sets of probability
functions (Kyburg, 1987b, 1993, Voorbraak, 1993, Levi, 1980, Waley, 1991).
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We introduce the strong but obvious requirement that propositions doxastically
equivalent for You at t receive the same beliefs (Kyburg, 1987a).

Requirement 2: Doxastic Consistency.
Let (Ω, ℜ i, Cri), i=1,2, be two credibility spaces induced by the same ECt

Y. Let

A1∈ℜ 1, A2∈ℜ 2.
If A1  = ECt

Y  A2, then Cr1(A1) = Cr2(A2).

Requirement 2 implies that those subsets of Ω that belong to both algebras will receive
the same belief: indeed the propositions that denote them are doxastically equivalent.
Hence the belief given to a subset of Ω does not depend on the structure of the algebra
to which the subset belongs.

3.2. Convexity of the set of credibility functions.

We first accept that probability functions belong to F. This could be either directly
assumed, or equivalently derived from the Hacking frequency principle that claims:

If Chance(X) = p, then Belief(X) = p.
where Chance corresponds to Objective Probability, and Belief to Cr.

Requirement 3: Probability functions are credibility functions.

We then proceed by showing that the linear combination of two credibility functions is
a credibility function.

Example 1: The Horse Race. Suppose a horse race involving three horses:
Allan, Blues and Carol. Tomorrow at 7 AM, it will be decided depending on the
outcome of a coin tossing experiment, if the race will be run at 10 AM or 4 PM. Let α
be the probability that the race is run at 10 AM. The time of the race influences Your
beliefs about which horse will win. Let Cr1 and Cr2 be the credibility functions that

describe Your beliefs about which horse will win if the race is run at 10 AM or at 4
PM, respectively. You must buy a ticket now. Let Cr12 be the credibility function that

describes Your beliefs held by now about the winner. We essentially assume that
Cr12(A) for A”  {Allan, Blues, Carol} depends only on Cr1(A), Cr2(A) and α . The

next requirement formalizes this constraint. ·

Requirement 4:  Let an evidential corpus ECt
Y and the pieces of evidence Ev1 and

Ev2 where Ev2 = ¬Ev1, and where both are compatible with ECt
Y. Let α  be the

probability that You learn Ev1 and 1-α the probability that You learn Ev2. Let Cr1, Cr2

and Cr12 be the credibility functions that represent Your beliefs on a propositional

space (Ω, ℜ ) as induced by ECt
Y∪{ Ev1},  ECt

Y∪{ Ev2}, and ECt
Y

, respectively.

Then there exists a function F : [0,1]3→[0,1] such that for all A∈ℜ, 
Cr12(A) = Fα(Cr1(A), Cr2(A))
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where Fα(x,y) is continuous in (x,y)∈ [0,1]2, strictly monotone for both components
and idempotent (Fα(x,x) = x).

Under requirements 1, 3 and 4, we prove that:

Cr12(A) = α Cr1(A) + (1-α) Cr2(A)  for all A∈ℜ (3.1)

Thus F is a convex set, a property shared by subjective probability functions and belief
functions, but neither by the set of possibility nor by the set of necessity measures.
Hence requirements 3 and 4 eliminate possibility and necessity measures for
representing beliefs.

3.3. Uninformative changes of ℜ .

Example 2: The Killer's Nationality. Suppose a person was murdered. Let
Cr0 represent Your beliefs that the killer (k) is    E   nglish,     G    erman,    F   rench or   I  talian. Cr0

is defined on the subsets of {E, G, F,  I}. We consider how Cr0 will be adapted when

the domain of Your belief is changed. Two transformations are considered: coarsening
and refinement. In the first case, suppose French and Italian are grouped into the set
‘    M    editerranean’. The new space {E, G, M} is a coarsening of the initial space. In the
second case, suppose the set ‘French’ is partitioned into two subsets, the sets
‘FrenchTuc’ (FT) and ‘FrenchPic’ (FP). The new space {E, G, FT, FP, I} is a
refinement of the initial space. These transformations of the frames on which Your
beliefs are defined are said to be 'uninformative' inasmuch as Your evidential corpus
ECt

Y is unchanged for what concerns Your beliefs about the killer's nationality. To
change the granularity of the frames does not modify Your beliefs for those
propositions that are doxastically equivalent.

Let Cr1 and Cr2 represent Your belief on {E, G, M} and {E, G, FT, FP, I},

respectively. By Doxastic Consistency, Cr1(E) = Cr0(E), Cr1(M) = Cr0(F∪  I), etc...

and in fact Cr1 is entirely defined from Cr0. Identically, Cr2(E) = Cr0(E), Cr2(FT∪ FP)
= Cr0(F), ... but some values of Cr2 are not derivable from Cr0 by Doxastic

Consistency: this is the case for Cr2(FT), Cr2(FT∪ E)... Hence extra requirements will

be introduced.  ·

Formally, we have the next definitions.

Coarsening: Let (Ω, ℜ ) be a propositional space. A coarsening C is a mapping from

ℜ  to ℜ ”, where ℜ ” is an algebra also defined on Ω, such that one or several atoms of

ℜ  are mapped into one atom of ℜ ” and each atom of ℜ  is mapped into one and only

one atom of ℜ ”.
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Refinement: Let (Ω, ℜ ) be a propositional space. A refinement. R is a mapping

from ℜ  to ℜ ' where ℜ ' is an algebra on Ω' such that each atom of ℜ  is mapped into

one or several atoms of ℜ ' and each atom of ℜ ' is derived from one and only one atom

of ℜ . Let R(A) be the image of A∈ℜ  in ℜ ', and let R(Ø)=Ø.

The nature of the frames Ω and Ω’ is irrelevant to our presentation. The only important
components are the algebras. In practice, we can always redefine Ω and Ω’ such that
the resulting frames are equal.

Coarsenings and refinements are called uninformative if they do not modify the
evidential corpus ECt

Y held by You at t. Uninformative change fits in with the idea that
only the structure of the algebra on which beliefs are held is modified; no further
information is added to the evidential corpus.

The uninformative nature of the changes is formalized in the next requirement that
states that the credibility function induced by such mappings from an initial credibility
function Cr depends only on Cr and the mapping.

Requirement 5: Let (Ω, ℜ , Cr, ECt
Y) be a belief state. Let R be a refinement from

(Ω, ℜ)  to (Ω, ℜ ’) and let C be a coarsening from (Ω, ℜ)  to (Ω, ℜ ”). Let the belief

states (Ω, ℜ ’, Cr’, ECt
Y) and (Ω, ℜ ”, Cr”, ECt

Y). Then Cr’ and Cr” are completely

determined by Cr and by R and C, respectively. So there are g and h functions such
that:

Cr’ = g( Cr, R ) and Cr” = h( Cr, C ).

3.3.1. Uninformative Coarsening.

The derivation of the nature of the h transformation is immediate as illustrated in
example 2. The only difference between Cr” and Cr is that Cr provides more detailed
information on Ω than Cr”. Indeed Cr describes a belief over an algebra ℜ  whose

granularity is finer. The next theorem is proved by the direct application of the
Doxastic Consistency Requirement.

Theorem 1. Let (Ω, ℜ ”, Cr”, ECt
Y) be the belief state derived from the belief state

(Ω, ℜ , Cr, ECt
Y) by the uninformative coarsening C from (Ω, ℜ ) to (Ω, ℜ ”). Given

Requirements 1, 2 and 5,
Cr”(A) = Cr(C-1(A)) for all A∈ℜ ” (3.2)

where C-1(A) denote the union of the atoms of ℜ  which are mapped by C into an atom

of A.
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3.3.2. Uninformative Refinement.

In requirement 5, some of the values of Cr' are derived by the direct application of the
Doxastic Consistency Requirement. But this does not work for the elements of ℜ ' that

are not the image of some elements of ℜ  under R. They will be deduced once we study

the conditioning process to which we now turn our attention. We only need one
requirement: it states that if an atom of ℜ  is refined into a very large number of new

atoms in ℜ ’ by the refinement R, then the credibility given to this new atoms should be

very small.

Requirement 6: Let (Ω, ℜ n, Crn, ECt
Y) be the belief state derived from  the belief

state (Ω, ℜ , Cr, ECt
Y) by the uninformative refinement Rn from (Ω, ℜ ) to (Ω, ℜ n),

where Rn is so defined that it refines a given atom ω of ℜ  into n atoms of ℜ n. Let ωn

be one of the atoms of ℜ n that belongs to Rn(ω). Then:

lim n→∞ Crn(ωn) = 0.

3.4. Informative changes of ℜ: Conditioning.

Let ECt
Y

 be the evidential corpus held by You at time t and let (Ω, ℜ , Cr, ECt
Y) be Your

belief state. Suppose You revise ECt
Y by adding to it the piece of evidence EvA where

EvA is the proposition: ‘all worlds in A” Ω are impossible’. How do You revise Your

beliefs, hence Cr, after adding EvA to ECt
Y? For simplicity's sake, we assume that EvA

is compatible with ECt
Y. Generalization for EvA not compatible with ECt

Y is possible

but useless here. The fact that EvA is compatible with ECt
Y implies that we are

restricting ourselves to the expansion process (Gärdernfors, 1988), i.e., to the
conditioning process usually described in probability theory.

Let CrA be the credibility function (qualified as conditional) that results from the

adjunction of EvA to ECt
Y. It is postulated that CrA is completely determined by the

credibility function Cr based on ECt
Y and by A.

Requirement 7: Markovian Axiom.  Let the belief state (Ω, ℜ , Cr0, EC0). For

A∈ℜ , let EvA be a piece of evidence compatible with EC0. Let ECA = ECt
Y∪{ EvA} be

the evidential corpus obtained by adding EvA to EC0.  Let (Ω, ℜ,  CrA, ECA) be the
belief state after EvA has been added to EC0. It is assumed that CrA is completely
determined by Cr0 and A.

To derive the conditioning process, we use the idea of iterated conditioning. Let A,B”
Ω, and the three pieces of evidence EvA, EvB and EvA∩B. Suppose You learns 1) EvA

and then EvB, or 2) EvB and then EvA, or 3) directly EvA∩B. In order to satisfy

Doxastic Consistency, the final conditional credibility functions must be the same in
the three cases. This is obtained by accepting that the order with which pieces of
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evidence are taken into consideration is irrelevant. Furthermore, the Doxastic
Consistency Requirement allows us also to prove that the conditional credibility
function CrA depends only on a few terms of Cr.

Theorem 2: Let the belief state (Ω, ℜ , Cr, ECt
Y).  For A∈ℜ , let EvA be a piece of

evidence compatible with EC. Let (Ω, ℜ,  CrA, ECt
Y∪{ EvA}) be the new belief state

obtained after conditioning the previous belief state on EvA. Then CrA satisfies:

1: CrA(B) = 0 for all B” A, B∈ℜ
2: CrA(B) = CrA(B∩A) for all B∈ℜ

and there is an f function such that for all B∈ℜ
3: CrA(B) = f (Cr(B∩A), Cr(B∩A), Cr(A), Cr(A), Cr(B∪ A), Cr(B∪ A), Cr(Ω)).

We introduce the principle of doxastic stability through example 2.

Example 2 Continued.
Consider the refinement of example 2. Let Cr0 and Cr2 denote the credibility function

defined on {E, G, F, I} and {E, G, FT, FP, I}, respectively. Two types of
conditionings, called generic and factual conditionings, can be considered (Dubois and
Prade, 1994). The first results  from an information relative to a set of worlds to which
the actual world belongs, the second from an information relative to the actual world
itself. For the generic conditioning, suppose You learn that there was no FrenchTuc
(FT) at the place where the killing occurred. For the factual conditioning, suppose You
had a perfect witness who can only recognize if someone is FT or not.  The witness
saw the killer, and states that the killer is not FT. Are these two types of conditioning
equivalent? As far as You are concerned, they are. Both state that the killer is not FT.
For the factual conditioning, the situation would have been different if the killer had
been randomly selected from a population and You had learned that the killer was not
FT, a good reason for such an event being that the killer is not French, and the
resulting probabilistic analysis would be appropriate. Here we are not concerned with a
randomly selected killer, but with one killer. And the two pieces of conditioning
information are equivalent as far as Your beliefs about the killer's nationality are
concerned.

Once You know that the killer is not a FrenchTuc, 'the killer is French' and 'the killer is
FrenchPic' are doxastically equivalent. Similarly, Your belief that the killer is German
was not affected by the refinement of the French into FP and FT: neither was it
affected by the knowledge that the killer was not FT. So: CrnotFT(G) = Cr2(G) =
Cr0(G) .

Similarly, that the killer is 'German or FrenchPic' is doxastically equivalent to the fact
that the killer is 'German or French' (as French and FrenchPic are doxastically
equivalent once You know the killer is not FrenchTuc). So: CrnotFT({G, FP}) =

Cr2({G, F}) = Cr0({G, F}).
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These equalities are natural but must nevertheless be assumed. Formally, we have the
next requirement.

Requirement 8: Doxastic Stability.
Let the belief state (Ω, ℜ , Cr, EC0). Let R be an uninformative refinement from ℜ  to

ℜ '. Let ω be an atom of ℜ , and R(ω) = A∪ B where A∩B = Ø, A≠Ø, B≠Ø. Let EvB  be
the piece of evidence that states that all atoms in B are impossible and let EC1 =

EC0∪ {Ev B}, so R(ω)∪ A =EC1 Ω. Then under EC1, R(X) ∩B and R(X) are

doxastically equivalent for every X in ℜ : R(X)∩B =EC1 R(X).

Gärdenfors (1988) suggests two compelling properties for probabilistic revision
functions: homomorphism and preservation, whose meanings are illustrated hereafter.

Example 1 Continued. In the horse race example, suppose that You learn that
Carol is a sure loser. You can derive the conditional credibility function either directly
from the combined credibility function Cr12 or from the linear combination of the
individual credibility functions Cr1 and Cr2. This requirement would have been

satisfied in probability theory if probabilities had not been normalized, i.e., if the
axiom P(Ω) = 1 were abandoned, and the Bayesian conditioning rule were P(A|B) =
P(A∩B) instead of P(A∩B)/P(B). ·

Requirement 9: Homomorphism:
If Cr = pCr' + (1-p) Cr", p∈ [0,1], then CrA= pCr'A + (1-p) Cr"A for any A∈ℜ .

The Preservation Requirement asserts essentially that a proposition as much believed
as a tautology will be as believed as the conditioning proposition after conditioning.

Example 1 Continued. Consider the horse race example involving four horses:
Allan, Blues, Carol and Daisy. Suppose You learn that Daisy is a sure loser. Then
{Allan, Blues, Carol} and{Allan, Blues, Carol, Daisy} are Doxastically Equivalent,
hence Cr({Allan, Blues, Carol}) = Cr({Allan, Blues, Carol, Daisy}). Then if You also
learn that Carol is a sure loser, then {Allan, Blue, Carol}, {Allan, Blue} and {Allan,
Blue, Daisy} are Doxastically Equivalent, hence Crnot-Carol({Allan, Blues, Carol}) =
Crnot-Carol({Allan, Blues, Daisy}). Furthermore, once I know that Daisy is a sure loser,

no new information about other sure losers could change this knowledge, hence
Cr(Daisy) was nul and cannot become positive by learning that Carol is a sure loser. ·

Requirement 10: Preservation:
If Cr(B) = Cr(Ω), then CrA(B) = CrA(A) for any A,B∈ℜ ,

and if Cr(B) = Cr(Ω) and Cr(B) = 0, then CrA(B) = 0 for any A,B∈ℜ .



N.Rep.Q.Bel BF July 27, 1999 11

Given requirements 1 to 10, we can establish the exact mathematical relations that
represent the impact of both the conditioning and the coarsening processes.

Theorem 3. Let the belief state (Ω, ℜ , Cr, EC).  Let R be an uninformative

refinement from (Ω, ℜ)  to (Ω, ℜ '). Let Cr’ be the credibility function derived from Cr

on ℜ ' by R. For A∈ℜ , let CrA be the conditional credibility function induced from Cr
by the evidence EvA. The only solutions for the coarsening and conditioning processes

that satisfy Requirements 1 to 10 are respectively:
Cr’(X) = max Y:R(Y)” X Cr(Y)   for all X in ℜ '.

CrA(B) = Cr(B∪ A) - Cr(A) for A,B∈ℜ (3.3)

3.5. Why probability functions and plausibility functions  are
inadequate?

Before going on to prove that all credibility functions are belief functions, we consider
some of the consequences of requirements 1 to 10, and in particular why probability
functions and plausibility functions are inadequate to represent quantified beliefs.

To show that probability functions are not adequate, we consider the problem of
iterated uninformative  refinements. As an illustrative example, take Ω0 = {a, b}, Ω1 =
{a, b1, b2}, and Ω2 = {a, b1, b21, b22}. Let R1 be a refinement from (Ω0, 2Ω0) to (Ω1,
2Ω1) such that R1(a) = {a}, and R1(b) = {b1, b2}. Let R2 be a refinement from (Ω1,
2Ω1) to (Ω2, 2Ω2) such that R2(a) = {a}, R2(b1) = {b1} and R2(b2) = {b21, b22}.

Let the belief state (Ω0, 2Ω0, Cr0, EC0). Let Cr1 (Cr2) be the credibility function
induced from Cr0 (Cr1) on 2Ω1 (2Ω2) by the uninformative refinement R1 (R2).

Consider the refinement R12 from (Ω, 2Ω) to (Ω2, 2Ω2) such that R12(a) = {a}, R12(b)
= {b1, b21, b22}, and let Cr12 be the credibility function induced from Cr0 on 2Ω2 by
the uninformative refinement R12. R12 is nothing but the result of combining R1 with
R2. By the Doxastic Consistency Requirement, Cr2 = Cr12.

In order to achieve such an equality in probability theory, we need to know how Cr0(b)
is distributed among b1 and b2, and how Cr1(b2) is distributed among b21 and b22. That
knowledge contradicts the Markovian Requirement that states that Cr1 should depend
only on Cr0 and R1, not on some extra information like the distributions of Cr0(b)
between b1 and b2. The Markovian Requirement can only be satisfied if Cr0(b) is
equally distributed between b1 and b2, in which case Cr1(b2) should also be equally
distributed between b21 and b22. Thus Cr2(b21) would be equal to Cr0(b)/4. The same
rule applied to Cr12, using R12, implies that Cr12(b21) = Cr0(b)/3, hence Cr12 ≠ Cr2, an

inequality that contradicts the Doxastic Consistency Requirement. Hence equi-
repartition cannot de defended. So probability functions are not adequate to represent
beliefs once iterated uninformative refinements are applied.
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The Preservation Requirement is not satisfied by plausibility functions, the dual of the
belief functions.  This rejection seems adequate because we feel that Cr should behave
like the modality used to represent categorical beliefs, i.e., the ‘box’ operator
encountered in doxastic logic. Using plausibility functions to represent quantified
beliefs would be equivalent to representing categorical beliefs by the ‘diamond’
operator. Of course, such an interpretation of categorical ‘belief’ could be defended.
The question is in defining what is meant by beliefs: we follow the classical
interpretation described in doxastic logic  (Hintikka, 1962).

In conclusion, probability functions are not expressive enough to satisfy our
requirements, and plausibility functions do not cover our interpretation of the belief
modality.

3.6. Credibility functions are belief functions.

That belief functions satisfy all requirements 1 to 10 is immediate. The problem is to
prove the reverse. We prove it by studying the concept of deconditionalization, i.e., the
inverse of the conditioning process, and adding a final requirement. Suppose You had
some initial credibility function Cr defined on ℜ  and You had conditioned it on EvX

for X∈ℜ , which resulted in the credibility function CrX. Then You learn that the
conditioning on EvX was inappropriate, i.e., that all the reasons that lead You to
condition on EvX were unjustified. You want to erase the impact of EvX from CrX and
rebuild a credibility function Cr from which CrX could have been obtained by its
conditioning on EvX.

Formally, let (Ω, ℜ ) be a propositional space. Let Cr be the set of credibility functions

defined on ℜ . For X∈ℜ,  let CrX be the set of conditional credibility functions obtained
by conditioning the elements of Cr on EvX by (3.3). The impact of conditioning the

elements of Cr on X can be described by an operator SX : Cr→CrX such that:

CrX = SX o Cr for all Cr∈ Cr

SX is a linear operator and is uniquely represented by a matrix operator (Klawonn and

Smets, 1992)

Consider now the deconditioning operators. The matrix  SX is a singular matrix, so it

admits only generalized inverses. Let S  - X be such an operator. S - X is a generalized
inverse of SX and satisfies:

SX o S  - X o SX = SX. (3.4)

The relation translates the idea that re-conditioning after deconditioning annihilates the

effect of the deconditioning. Besides S - X is also idempotent:

S  - X o S  - X = S - X (3.5)

Indeed, deconditioning twice has the same  impact as deconditioning once.
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Given SX, there are many operators S - X satisfying (3.4) and (3.5). Let s - 
X be the set

of such deconditioning operators.

Example 3: In order to explain the origin of the next requirement, suppose that CrX

quantifies Your beliefs over ℜ  based on an evidential corpus ECt
Y that contains the

conditioning evidence EvX for X ∈ ℜ . You then learn that the evidence EvX was

unjustified and its impact must be erased. Which operator S - 
X should You use?

Suppose another agent You* has some opinion about which operator S - X∈ s - 
X is to

be used by You. The opinion of You* is represented by a credibility over s - 
X.

Suppose You* is sure about which S - X∈ s - 
X should be used by You to decondition

CrX. Suppose You had no a priori about which operator is appropriate and You trust in

You*. So You accept the opinion of You* that the appropriate  operator is indeed S  - X*

 and You use S  - 
X* to decondition CrX. Of course, the result must be a credibility

function over ℜ . We want You* to be able to choose S  - X* independently of the value

CrX representing Your belief over ℜ . Thus, for every CrX and every S  - X∈ s - 
X, S -

X o CrX must be a credibility function. This requirement is sufficient to prove that the

credibility functions are belief functions. If Cr is not a belief function, then it is always

possible to find a S - X  so  that S - X o CrX allocates negative beliefs to some elements of

ℜ . ·

The next requirement just formalizes the requirement detailed in example 3.

Requirement 11. Let  (Ω, ℜ ) be a propositional space. Let Cr  be the set of

credibility functions defined on ℜ . For X∈ ℜ , let CrX be the set of conditional

credibility functions defined on ℜ after conditioning the credibility functions in Cr on

the evidence EvX. Let s - 
X be the set of operators deconditioning the elements of CrX

on EvX. For every S - X in s - 
X and every CrX in CrrX, one has:

S  - X  o CrX ∈ Cr.

Requirements 1 to 11 imply that credibility functions are belief functions.

Theorem 4: Every function that satisfies requirements 1 to 11 is a belief function.

This concludes our task.
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4. Conclusions.

In conclusion, we have justified the use of belief functions to represent quantified
beliefs. The model we obtain corresponds to the transferable belief model, i.e., a model
for the representation of beliefs based on belief functions and developed independently
of any probabilistic assumption. This is to be contrasted with Dempster's model
(Dempster, 1967) that is also based on belief functions, but they are strongly linked to
some underlying probability function. Indeed, the belief function derived within
Dempster’s model on some given space Y results from a one-to-many mapping
between a space X and the space Y, and the existence of a probability measure on X.
This probability measure imposes constraints that we have not included in our
modelization.

Similar reasons hold for the random sets interpretation of belief functions. The model
we develop does not require any idea of subjective probability. It is derived directly
from general rationality principles unrelated to some underlying probability function,
as is the case with the transferable belief model.

The value of the model we derive for representing quantified beliefs can be assessed by
analyzing the validity of each requirement and assessing their adequacy. No objective
test seems to exist to evaluate normative models for quantified beliefs. Hence the
interest of the axiomatic justification we propose.
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