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1. Introduction.

In the transferable belief model (TBM), the classical and well-known combination rule is the so-
called Dempster’s rule of combination (for the TBM, see Smets and Kennes, 1994, for
Dempster's rule of combination, see Shafer, 1976, Smets, 1990). This rule corresponds to a
conjunction operator: it builds the belief induced by accepting two pieces of evidence, i.e., by
accepting their conjunction. Besides there also exists a disjunctive rule of combination (Smets,
1993a). Finally, there is still a third rule, usually forgotten, that fits with the exclusive
disjunction. When we noticed this third rule, we came to the idea that these three rules may be
special cases of a more general combination scheme... and discovered what we will call the α-

junction rules. These new rules could be extended for combining weighted sets, nevertheless
our presentation is restricted to the domain covered by the TBM, i.e., to belief functions.

Conceptually what is a belief function within the TBM? It is a function that quantifies the
strength of the beliefs held by a given agent, called You, at a given time t. We assume a set Ω of
possible worlds, one of them is the actual world and we denote it ω0. You, the agent, do not

know exactly which world in Ω is ω0 and all You can express is the strength of Your belief that

ω0∈ A, for every A”Ω. This strength is quantified by a belief function bel:2Ω→[0,1] with

bel(A) representing the strength of Your belief that the actual world ω0 belongs to the subset A

of Ω.

These strengths result from the pieces of evidence relative to ω0 that You have accumulated.

What is a piece of evidence? Suppose a source of information, denoted S, that states that a
proposition E is true and You accept at time t that S is telling the truth. We call this whole fact a
piece of evidence, and we denote it E . So a piece of evidence E is a triple (S, E, true) where S
is a source of information, E is the proposition states by S, and true denotes that you accept as
true what the source states. To be complete 'You' and 't' should also be included, but we
neglect them as they stay constant all over this presentation.

This definition is not exactly the same as ‘accepting E’, as it will be seen once negation is
introduced. Suppose S states that E is true and You accept at time t that S is telling the false (so
S is lying). We define this piece of evidence as the negation of E. It is the triple (S, E, false)
and we denote it –E. Its meaning will become clearer once the α-junctions will have been

studied. Intuitively, it seems acceptable to defend that –E is equivalent to: S states that ¬E is
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true and You accept at time t that S is telling the truth, i.e., (S, E, false) = (S, ¬E, true). But if
we had defended that E is ‘accepting E’, than –E would have been understood as ‘not
accepting E’, whereas it is closer to ‘accepting ¬E’. So using the modal operator ‘accepting’ is
not adequate here.

Why to distinguish between E and E? Suppose two sources S1 and S2, and S1 states E1 and S2

states S2. Suppose You accept at t that at least one of S1 or S2 is telling the truth. This is
denoted here as E1∨ E2. If we had not distinguished between E and E, than we would have

written E1∨ E2. With such a notation, we could not distinguish the present situation with the

following one: suppose the source S states that E1∨ E2 is true and You accept at time t that S is

telling the truth. In the first case, the sources are precise but You accept that maybe one of them
is lying, whereas in the second case, You accept that the source tells the truth, but the source is
not very precise. The first case is a problem of uncertainty (which source tells the truth),
whereas the second is a case of imprecision (Smets, 1997). To furhter enhance the difference,
suppose You want to better Your information. In the first case, You would worry about which
source is telling the truth and collect information about the reliability of the sources. In the
second case, You would worry directly about which proposition is true. In the context model,
Gebhardt and Kruse (1993) also insist in taking in account the nature of the sources of
information, and not only what they state.

Coming back to the two sources S1 and S2 where S1 states E1 and S2 states E2. They can be
combined in three natural ways. (We use the same ∨ , ∧  and ∨ operators for combining pieces of

evidence as those used in classical logic to combine propositions. The symbol ∨  denotes the

exclusive disjunction operator.)
1. Suppose You accept at t that both S1 and S2 are telling the truth, what we denote by E1∧ E2.

We call this combination a conjunctive combination or a conjunction of two pieces of evidence.
2. Suppose You accept at t that at least one of S1 or S2 is telling the truth, what we denote by
E1∨ E2. We call this combination a disjunctive combination or a disjunction of two pieces of

evidence.
3. Suppose You accept at t that one and only one of S1 or S2 is telling the truth, what we denote
by E1∨ E2. We call this combination an exclusive disjunctive combination or an exclusice

disjunction of two pieces of evidence. (Note that in propositional logic, the exclusive
disjunction E1∨ E2 is equivalent to (E1∨ E2) ∧  ¬(E1∧ E2))

Suppose now that E is the only piece of evidence that You have accumulated about which of the
worlds in Ω is the actual world ω0. E induces in You a belief function, denoted bel[E], on Ω
that represents Your beliefs defined on Ω at t about the value of ω0. The basic belief assignment

(bba) related to bel[E] is denoted m[E] and m[E](A) denotes the basic belief mass (bbm) given
to A”Ω by the bba m[E].

Suppose two pieces of evidence E1 and E2. Let bel[E1] and bel[E2] be the belief functions on
Ω that they would have induced individually.
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1. Suppose You accept that both sources of evidence tell the truth, then You build the belief
function bel[E1∧ E2] induced by the conjunction of E1 and E2. If we assume that this new

belief function depends only on bel[E1] and bel[E2], what translates the idea that they are
'distinct' (Smets, 1992) or non interactive, then bel[E1∧ E2] is obtained by Dempster’s rule of

combination (unnormalized in this case). The bba m[E1∧ E2] satisfies:

m[E1∧ E2] (A) = ∑
X,Y”Ω: X∩Y=A

        m[E 1](X) m[E 2] ( Y ) for all A”Ω

This rule is called hereafter the conjunctive rule of combination, as it results from the
conjunction of the two pieces of evidence.

2. Now suppose instead that You accept that at least one source of evidence tells the truth, then
You build the belief function bel[E1∨ E2] induced by the disjunction of E1 and E2. You know

what would be Your beliefs if You had known which source tells the truth, they are bel[E1] and
bel[E2], respectively. But You are not so knowledgeable about E1 and E2 and You must limit
Yourself in building bel[E1∨ E2]. Just as Dempster's rule of combination fits the conjunctive

case, the so-called disjunctive rule of combination solves the disjunctive case (Smets, 1993a).
In that case the corresponding bba m[E1∨ E2] satisfies:

m[E1∨ E2] (A) = ∑
X,Y”Ω: X∪ Y=A

        m[E 1](X) m[E 2] ( Y ) for all A”Ω

3. One could also imagine the case where You accept that one and only one source of evidence
tells the truth, but You don’t know which one is telling the truth. This is the exclusive
disjunction. So we build bel[E1∨ E2]. The bba m[E1∨ E2] satisfies:

m[E1∨ E2] (A) = ∑
X,Y”Ω: X∪ Y=A

        m[E 1](X) m[E 2] ( Y ) for all A”Ω

where ∪  is the symmetric difference, i.e., X∪ Y = (X∩Y)∪ (X∩Y).

These rules can in fact be extended to any number of pieces of evidence and any combination
formula that states which source You accept as telling the true. So let E1, E2... En be a set of
pieces of evidence, with bel[Ei], i=1,2...n be the belief functions induced by each piece of
evidence individually. Suppose the pieces of evidence are non interactive, i.e., the belief
function build from the combination of the pieces of evidence is a function of the belief
functions bel[Ei]). For instance, suppose all You accept is that (E1∧ E2) ∨ E3) ∨ (E4∧ E1) holds.

It means You accept that one and only one of the two following cases holds: (E1∧ E2) ∨ E3 or

E4∧ E1. In the first case, You accept that at least one of the next two cases holds: (E1∧ E2)

orE3. It means that you accept that either S1 and S2 tell the truth or S3 tells the truth, in a non
exclusive way. In the second case, You accept that both S4 and S1 tell the truth. Given this
complex piece of evidence, the basic belief masses related to the belief function bel[((E1∧ E2)

∨ E3) ∨ (E4∧ E1)] is:

m[((E1∧ E2)∨ E3) ∨ (E4∧ E1)] (A) =
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   ∑
X,Y,Z,T”Ω: ((X∩Y)∪ Z)∪ (T∩X)=A 

               m[E 1](X) m[E 2](Y) m[E 3](Z) m[E 4](T)

for all A”Ω

This result was known for long (e.g., Dubois and Prade, 1986). It covers of course the
conjunctive rule, the disjunctive rule and the exclusive disjunctive rule, three particular cases
where there are only two pieces of evidence. Discovering these three cases that can be built with
two pieces of evidence, we came to the idea that these three cases are nothing but special cases
of a more general combination rule and we have discovered, as shown here after, the existence
of a parametrized family of combination rules (with one parameter), the three special cases
corresponding to special values of the parameter. We have called this new family of
combination rules, the α -junction where α  is the parameter of the combination rule and

-junction is the common part of both the 'conjunction' and 'disjunction' words.

The concept of negation, and its meaning, came out of our developement. Suppose the pieces of
evidence E. Dubois and Prade (1986) have suggested that if bel[E] is the belief induced by E,
then bel[–E] could be defined so that its bba satisfies:

m[–E] (A) = m[E] (A) for all A”Ω

and where A is the complement of A relative to Ω (Dubois and Prade, 1986, have used the
notation m  for m[–E]). This definition will be used later when we will study the De Morgan
properties of the α-junctions.

We have thus found out the conjunction, disjunction and exclusive disjunction operators, and
the negation. Readers might wonder if there are not other symmetrical junctions operators that
can be built from two propositions in classical logic. In fcat, there are only eight symmetrical
operators that can be built with two propositions: the tautology, the conjunction, the
disjunction, and the exclusive disjunction, and their negations, the contradiction, the disjunction
of the negations, the conjunction of the negations, and a junction without name. Figure 1 shows
these eight operators. Two elements opposed by a diagonal are the negation of each other.
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Tautology

Contradiction

 A∨ B

A∨ B  =  ¬A∨ ¬B

¬A∨ ¬B

 A∧ B

A∧ B  =  ¬A∧ ¬B

¬A∧ ¬B

∨ α

∨ α

∧ α

∧ α

α = 1

α = 1

α = 0

Figure 1: The eight symmetrical junctions operaotrs in classical logic, where ∨  denotes the

exclusive disjunction and ∧  denotes its ¬ dual (A∧ B = ¬(A∨ B) = (A∧ B)∨ (¬A∧ ¬B)).

Diagonaly opposed pairs are linked by the negation operator ¬. The four vertical lines at left
and right are the forthcoming α-conjunction and α-disjunction operaotrs.

In this paper, we present first some needed definitions and notation conventions. We proceed
by studying the α-junctive rule of combination of two pieces of evidence. Then we study the

disjunctive and the conjuncitve cases, and conclude.

2. Definitions and notations.

2.1. Belief functions

A basic belief assignment (bba) is defined as the function from 2Ω to [0,1], its values are the
basic belief masses (bbm) and their sum over the subsets of Ω is 1. To simplify the notation we
write m1, m2... for m[E1], m[E2]... and even drop the reference to the underlying piece of
evidence when it is irrelevant to the presentation.

In the TBM, the mass m(A) for A”Ω is that part of Your belief that supports that the actual
world ω0 is in A and nothing more specific. The belief function bel is defined as

bel(A) = ∑
B”Ω:Ø≠B”A

      m ( B ) .

It represents the total belief that supports that the actual world ω0 is in A.

Related to m and bel, the commonality function q:2Ω→[0,1] is defined as :
q(A) = ∑

B”Ω:A”B
    m ( B )

and we introduce the function b:2Ω→[0,1] defined as:
b(A) = ∑

B”Ω: B”A
     m(B) = bel(A) + m(Ø).

The meaning of q and b is essentially technical, even though q(A) can be understood as the
ignorance about ω0 when You know that ω0 belongs to A. Their major use is to be found in the
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combination rules. Given two bba mi, i= 1,2, with qi and bi their related q- and b-functions,
then q1∧ 2 and b1∨ 2, the q and b-functions that result from their combinations, are given by:
in the conjunctive case: q1∧ 2(A) = q1(A) q2(A) for all A”Ω
in the disjunctive case: b1∨ 2(A) = b1(A) b2(A) for all A”Ω.

Besides b[–E](A) = q[E](A) and q[–E](A) = b[E](A) for all A”Ω, a property that fits with De
Morgan law. Indeed the combination rules can be written as:

q[E1∧ E2](A) = q[E1](A) q[E2](A)

and b[E1∨ E2](A) = b[E1](A) b[E2](A).

Then: b[–(E1∧ E2)](A) = q[E1∧ E2](A) = q[E1](A) q[E2](A)

= b[–E1](A) b[–E2](A) = b[–E1∨ –E2](A)

So: b[–(E1∧ E2)](A) = b[–E1∨ –E2](A) for all A”Ω,

Similarly,
q[–(E1∨ E2)](A) = q[–E1∧ –E2](A) for all A”Ω.

These two relations are the De Morgan formulas as they show that –(E1∧ E2) and –E1∨ –E2

induce the same bba’s (and identically for –(E1∨ E2) and –E1∧ –E2).

2.2. Notation.

A bba m defined on Ω can be represented as a vector with 2|Ω| elements, so m = [m(X)] where
X is the line index of the component of the vector m and X”Ω. The order of the elements in m
is arbitrary, but one order is particularly convenient as it enhances many symmetries. This order
is a kind of lexico-iterated order. E.g. let Ω = {a,b,c}, then the transpose m’ of the vector m is
given by:
m’ = (m(Ø), m({a}), m({b}), m({a,b}, m({c}), m({a,c}), m({b,c}), m([a,b,c})).
All matrices and vectors in this paper will be organized so that their indices obey to this order.

We use the notation 1X to denoted a bba where all elements are null except the X’th element that
equals 1: it is the bba that gives a mass 1 to the set X.

We also use the following notations:
1 is a vector where all elements equal to 1.
I is the identity matrix.
J is the matrix with elements jXY where jXY = 1 if X = Y, and jXY = 0 otherwise. With Ω =
{a,b},

J = 
 




 


0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

.

The J matrix is the operator that transforms a bba m into its negation: J.m[E] = m[-E]. Indeed,
J projects m(A) on A for all A”Ω. We also have J.J = I, what corresponds to the involutive
property of the negation operator.
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Given a vector v, [diag v] is the diagonal matrix whose diagonal elements are the values of v,
all other elements being 0.

2.3. Permutation.

Let P be a permutation from Ω to Ω. Let P(X) = {y: y = P(x), x∈ X}. We define as LP the

permutation matrix from 2Ω to 2Ω obtained from the permutation P, and such that it maps the
element X”Ω onto the element P(X)”Ω. With Ω = {a,b} and P such that P(a) = b and P(b) =
a, LP is:

LP = 
 




 


1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1

.

Lemma 1: P(A) = A for all P defined on Ω iff A = Ø or A = Ω.

The only subsets of Ω that are mapped onto themselves whatever the permutation are Ø and Ω.
Permutation matrix also satisfies (LP)-1 = L(P-1) (hence the parenthesis can be dropped without
the risk of a typographical confusion).

2.4. Combination rules in matrix notation.

The three combinations rules can be represented under matrix forms. The conjunctive
combination is introduced in Klawonn and Smets (1992). Suppose Ω = {a,b}. Let D(m) be the
following matrix:

D(m) = 

 




 


1 m(Ø)+m(b) m(Ø)+m(a) m(Ø)

0 m(a)+m(Ω) 0 m(a)

0 0 m(b)+m(Ω) m(b)

0 0 0 m(Ω)

Then the bba m1 = D(m).m0 is equal to the bba one would obtained by combining m0 and m
by the conjunctive rule of combination (i.e., Dempster's rule of combination, but

unnormalized). In general, the A,B element of D(m) is m(A|B) = ∑
X”Ω: X∩Β=Α

      m(A ∪ X ) ,

i.e., the B’th column is the vector obtained by conditioning m  on B, or equivalently
conjunctively combining m with the bba 1B.

Similar results are derivable for the disjunction combination described in Smets (1993a). Let
E(m) be the following matrix:
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E(m) = 

 




 


m(Ø) 0 0 0

m(a) m(a)+m(Ø) 0 0

m(b) 0 m(b)+m(Ø) 0

m(Ω) m(b)+m(Ω) m(a)+m(Ω) 1

Then the bba m1 = E(m).m0 is equal to the bba one would obtained by combining m0 and m

by the disjunctive rule of combination. In general, the A,B element of E (m ) is

∑
X”Ω: X∪Β=Α

      m(A∪ X), i.e., the B’th column is the vector obtained by disjunctively

combining m with the bba 1B.

For the exclusive disjunction combination, the matrix is given by:

F(m) = 

 




 


m(Ø) m(a) m(b) m(Ω)

m(a) m(Ø) m(Ω) m(b)

m(b) m(Ω) m(Ø) m(a)

m(Ω) m(b) m(a) m(Ø)

.

It can be verified that the bba m1 = F(m).m0 is indeed the bba one would obtained by
combining m0 and m by the exclusive disjunction.

3. The α -junctions.

3.1. The matrix K(m).

Let m1 and m2 be two basic belief assignments on Ω. We assume that there exists an operator
[K(m1)] induced by m1 so that, when applied to m2, it produces a combination m12 of m1 with
m2.

m12 = [K(m1)] m2

The first step consists in showing why [K(m1)] is a linear operator. Suppose three bba m0, m1

and m2. Let [K(m0)] be the operator induced by m0. Suppose m1 (m2) is the bba that would
describe Your beliefs if You accept that S1 (S2) tells the truth: m1 = m[E1] and m2 = m[E2]. It
happens You know that one of E1 or E2 will be accessible to You. Which one will be decided
by a random device (such as tossing a coin). In case of success, E1 will be the piece of
evidence You will hold, otherwise E2 will be the piece of evidence You will hold. Let p be the
probability that a success occurs and q = 1 - p. Before knowing the outcome of this random
experiment, Your bba is m12 = p.m1 + q.m2 (for a justification of this linear relation, see
Smets, 1993b). Consider the results of the combination of [K(m0)] with m1 and m2

individually. We postulate that before knowing the outcome of the random experiment, the
result of combining [K(m0)] to m12 would be equal to the same linear combination of
[K(m0)]m1 and [K(m0)]m2. We assume that combining and averaging commute.
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Assumption A1: Linearity.
[K(m0)](p.m1 + q.m2) = p.[K(m0)]m1 + q.[K(m0)]m1

This assumption is sufficient to conclude that [K(m0)] is a linear operator and can thus be
represented by a matrix that we denoted by K(m0). So the operation [K(m0)]m1 is nothing but
the matricial product of K(m0) with the vector m1.

We next assume that the combination of m1 and m2 commute, i.e., combining m1 with m2 or
m2 with m1 leads to the same result.

Assumption 2 : Commutativity.
K(m0) m1 = K(m1) m0

Theorem 1: Under assumptions A1 and A2,
K(m) =  ∑

X”Ω
  m(X) K X .

where the KX matrices are matrices which coefficients do not depend on m.

Proof:
By A1, K(m0) (p.m1 + q.m2) = p.K(m0) m1 + q.K(m0) m2.
By A2, K(m0) (p.m1 + q.m2) = K(p.m1 + q.m2) m0

K(m0) m1 = K(m1) m0

K(m0) m2 = K(m2) m0

This being true whatever m0, we get:
K(p.m1 + q.m2) = p K(m1) + q K(m2)

 It implies that  is linear in m, thus the theorem. QED

From A2 we can also derive another constraint that the KX matrices must satisfy . Let KX =

[ kAB
X ] where A, B”Ω. So kAB

X denotes the element of KX at line A and column B.

Theorem 2: kAY
X  = kAX

Y  for all A,X,Y”Ω.

Proof: The requirement 
K(m1) m2 = K(m2) m1 (3.1)

becomes for A”Ω,

 ∑
X”Ω

  m 1(X) ∑
Y”Ω

  kAY
X .m2(Y)  =  ∑

Y”Ω
  m 2(Y) ∑

X”Ω
  kAX

Y .m1(X) (3.2)

Being true whatever m1 and m2, one has kAY
X  = kAX

Y  for all A,X,Y”Ω. QED

So the Y-th column of KX is equal to the X-th column of KY.
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3.2. KX is a stochastic matrix.

Theorem 3: For all X”Ω, KX is a stochastic matrix.

Proof:  Suppose the following bba: m1 = 1X and m2 = 1Y. Then (3.1) becomes:

K(m1) m2 = K(1X) 1Y = kAY
X

So the resulting bba is the column vector with elements kAY
X  for A”Ω. Being a bba, its

elements must be non negative and add to 1.

kAY
X  ≥ 0 and ∑

A”Ω
  kAY

X  = 1 QED

Thus each column of KX can be assimilated to a probability distribution function over 2Ω (in
fact each column is a bba).

3.3. Anonymity.

Let P be a permutation of the elements of Ω. Let LP be the permutation matrix as defined in
section 2.3. When applied to a bba m, LP produces a new bba mP that differs only from m by
the fact that, for every A in Ω, the mass initially given to A is given after permutation to P(A).

For instance let Ω = {a,b} and P:Ω→Ω so that P(a) = b, P(b) = a. Then:

LP m = 

 




 


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 

 




 


m(Ø)

m(a)

m(b)

m(a,b)

 = 

 




 


m(Ø)

m(b)

m(a)

m(a,b)

.

We assume that a renaming of the elements Ω will not affect the results of the combination.

Assumption 3 : Anonymity.
Let P be a permutation of Ω to Ω and let LP be the permutation matrix that permutes the subset
A into the subset P(A). Then

K(LPm1) LPm2 = LPK(m1)m2. (3.3)

This assumption translates the following idea. Suppose we permute the elements of Ω in both
m1 and m2, then the result of the combination is nothing but the permutation of the results of
the combination of m1 with m2.

3.4. Symmetry.

Theorem 4: KP(X) LP = LP KX

Proof: Suppose m1 = 1X. Then LP1X = 1P(X). Replace m1 by 1X in (3.3) and note that it is
true for all m2. QED
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3.5. Vacuous belief.

We assume the existence of a bba (denoted mvac) which combination with any bba leaves it
unchanged, i.e., a neutral element for the combination.

Assumption A4. Vacuous belief.
There exists a bba mvac so that for any bba m, K(m) mvac = m.

Theorem 5: K(mvac) = I.

Proof: By A2, A4 implies: K(mvac) m = m for all m, hence the theorem. QED

3.6. Associativity.

We assume that the combination is associative. This property means that the order with which
the bba are combined is irrelevant.

Assumption A5: Associativity.
Let m1, m2 and m3 be three bba on Ω. Then:

K(m1) (K(m2)m3) = K(K(m1)m2) m3.

Theorem 6: KXKY = K(KX1Y) for all X,Y”Ω.

Proof: Let m1= 1X and m2 = 1Y. From A5, we get:
KX (KYm3) = K(KX1Y)m3.

This being true for any m3, thus the theorem. QED

Theorem 7: There exists an X”Ω so that KX = I.

Proof: By theorem 5, we have: ∑
X”Ω

   mvac(X)  kAA
X  = 1.

As kAA
X ∈ [0,1] (theorem 3), so ∑

X”Ω
mvac(X) kAA

X  is a weighted average of kAA
X  which values

are also in [0,1]. The only way to get a sum equal to 1 is:

Case 1. kAA
X =1 for all X (and all A), in which case KX = I for all X, and thus K(m) = I, a

degenerated (and uninteresting) solution that will be rejected by theorem 8.

Case 2. mvac(B) = 1 for some B”Ω and the other values of mvac are null. Then kAA
B  = 1 for all

A”Ω. As KB is a stochastic matrix, kAC
B  = 0 if A≠C , so KB = I. QED

3.7. Reversibility.

We assume that different bba induce different operators.
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Theorem 8. Reversibility. Let m1 and m2 be two bba on Ω.
If m1≠m2, then K(m1) ≠ K(m2).

Proof: Let m1≠m2, and suppose K(m1) = K(m2). In that case, K(m1) mvac = K(m2) mvac ,
hence, by assumption A4: m1 = m2, contrary to the initial assumption. So the theorem. QED

This is just an assumption of reversibility for the K operator. It implies that KX ≠ KY if X≠Y
(take m1 = 1X and m2 = 1Y). It eliminates also the degenerated solution (theorem 7, case 1) for
the mvac determination.

Theorem 9: mvac = 1Ø or mvac = 1Ω.

Proof: Consider now the KB = I and mvac = 1B (theorem 7, case 2). Let P be any permutation
of the element of Ω, we have by construction

KP(B) = LP-1 KB LP = LP-1 LP = I.
Thus KP(B) = KB for all P, and this means that B is either Ø or Ω (lemma 1). QED

We have just rediscovered the existence of two vacuous bba that are well known in the TBM.
Indeed, 1Ω is the classical vacuous belief function of the TBM, the one initially described by
Shafer and the one commonly called the vacuous belief function. It is the neutral element of the
conjunctive rule of combination.

The other solution 1Ø for the vacuous bba is the negation of the previous solution. It is the
neutral element of the disjunctive rule of combination (Smets, 19893a).

We call 1Ω the and-vacuous bba and 1Ø the or-vacuous bba. In section 4, we will study in
details the or-vacuous bba, hence the familly of disjuncitve combinations. All results obtained
with it will be extended to the conjunctive case by an appropriate use of the negation operator
and of the De Morgan formula (section 5).

3.8. Focused bba.

Suppose a bba on Ω so that:
m(X) ≥ 0 if X”A,
m(X) = 0 otherwise.

This bba corresponds to the case where You know (fully believe) that the actual world ω0

belongs to A. We will say that such a bba is focused on A. In such a case, Your beliefs would
be the same if You had built them on A instead of Ω.

Suppose the two bba m1 and m2 are focused on A, then we assume that their combination is
also focused on A. Once a world is ‘eliminated’ by both m1 and m2, it stays ‘eliminated’ after
their combination.
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Assumption A6. Context preservation.
Let m1 and m2 be two bba’s on Ω so that:

m1(X) = m2(X) = 0 for all X /”A,
then (K(m1) m2)(X) = 0 for all X /”A.

Theorem 10: kAB
X = 0 for all A /”X, B”X”Ω.

Proof: Immediate. QED

3.9. Summary:

In summary, we have derived that K must satisfy:

P1: K(m) = ∑
X”Ω

 m(X) KX Linearity

P2: kAY
X  = kAX

Y Symmetry from commutativity

P3: kAB
X  ≥ 0, ∑

A”Ω
 kAB

X  =  1 Stochastic matrix.

P4: KP(X) = LP-1 KX LP Symmetry from anonymity
P5: K(KX1Y) = KXKY = KYKX Associativity

P6: kAB
X  = 0 for all A /”X, B”X Context preservation

P7: KØ = I, mvac = 1Ø (disjunctive case) or or-vacuous bba
KΩ = I, mvac = 1Ω (conjunctive case) and-vacuous bba

4. The α -disjunctive combination.

In this section, we assume that the vacuous bba is the or-vacuous bba 1Ø. We first deduce the
KX matrices for the case |Ω| = 1 and |Ω| = 2, and proceed with the general case.

4.1. Case Ω = {Ω}.

Suppose Ω has only one element. We have KØ = I. As KΩ is stochastic, there are α,β∈ [0,1]

such that:

KΩ = 
 



 

β 1-α

1-β α
.

By P2, 
 



 

β

1-β
 =  

 


 
0

1
, so β = 0, and

KΩ = 
 



 

0 1-α

1 α
.

These two matrices satisfy all the required properties.
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4.2. Case Ω = {a,b}.

We look now to the case Ω = {a,b}. We have KØ = I. Let

Ka = 

 


 


0 1-α x p

1 α y q

0 0 z r

0 0 t s

The block of 0 results from P6. Let P be the permutation P(a) = b and P(b) = a. Then LP is
given in section 2.3 and LP-1 = LP.
With Kb = LP-1 Ka LP (P4) and Ka Kb = KbKa  (P5), one has:

Ka LP-1 Ka LP = LP-1 Ka LP Ka .
So (Ka LP-1 Ka ) = LP-1 (Ka LP Ka) LP-1.

A (very) tedious analysis of the last equality leads to the solution to x = y = z = 0, t = 1, p = q =
0, s = α. So we obtain unique solutions for Ka and Kb.

Ka = 

 


 


0 1-α 0 0

1 α 0 0

0 0 0 1-α

0 0 1 α

Kb = 

 


 


0 0 1-α 0

0 0 0 1-α

1 0 α 0

0 1 0 α

Consider K(Ka1b) = KaKb (P5). We have Ka1b = 1Ω, so K(Ka1b) = K(1Ω) = KΩ. Hence

KΩ = KaKb = 

 


 


0 0 0 (1-α)2

0 0 1-α α(1−α)

0 1-α 0 α(1-α)

1 α α α 2

.

 We have thus obtained all the needed matrices, K(m) is fully defined... and depends only on
one parameter α which varies on [0,1]. In particular, when α  = 0, K(m) = F(m), and when

α  = 1, K(m) = E(m) (see section 2). So α = 0 corresponds to the exclusive disjunction and

α  = 1 to the disjunction. All other values of α  in [0,1] correspond to new disjunctive

combination operators.

4.3. The canonical decomposition of K(m).

It is worth looking at the canonical decomposition of K(m) into its eigenvalues - eigenvectors
structure when Ω = {a,b}, as a nice structure will emerge. Let



Alpha-Junctions July 27, 1999 15

ΛØ = I, Λa = 

 


 


1 0 0 0
0 -α 0 0
0 0 1 0
0 0 0 -α

, Λb = 

 


 


1 0 0 0
0 1 0 0
0 0 -α 0
0 0 0 -α

, ΛΩ = 

 




 


1 0 0 0

0 -α 0 0
0 0 -α 0
0 0 0 α2

.

Let G = 

 




 


1 1 1 1

1 -α 1 -α
1 1 -α -α
1 -α -α α 2

.

Then G-1 ΛX G = KX for all X”Ω.

It happens that all KX for X”Ω share the same left and right eigenvectors. This decomposition
allows to derive a nice representation of m12 = K(m1)m2.

Lemma 2: Let g1 = Gm1, g2 = Gm2, g12 = Gm12. Then :
g12(X) = g1(X) g2(X) for all X”Ω.

Proof: We have:

m12 = ∑
X”Ω

   m 1(X) K X m 2

=  ∑
X”Ω

   m1(X) G -1 Λ X G  m 2

and Gm12 = ∑
X”Ω

   m1(X) Λ X G  m 2.

With g1 = Gm1, g2 = Gm2, g12 = Gm12,

so g12 = ∑
X”Ω

   m1(X) Λ X g2.

The relation between G and ΛX is such that

 ∑
X”Ω

   m1(X) ΛX  = [diag g1]

Thus g12(X) = g1(X) g2(X) for all X”Ω. QED

The lemma 2 relation is nothing but the analogous of the relation for Dempster’s rule of
combination when g is the commonality function. So g = Gm  is the analogous of the
communality function within the generalized context of the α-disjunction.

The vector g = Gm is nothing but the vector of eigenvalues of the matrix K(m), and G is a
matrix which lines are the left-eigenvectors of K(m).

4.4. Extending the results to any Ω.
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The generalization to any Ω is obtained by iteration. The next theorem describes the strucutre of
K(m).

Theorem 11: For any Ω, the KX matrices are:
1) for X = Ø, KØ = I, ΛØ = I,

2) for x∈Ω  and K{x} = [ kAB
x ], we have:

if x∉ B, kAB
x = 1 if A=B∪ {x}

0 otherwise

if x∈ B, kAB
x = α if B=A

(1-α) if x∉ A, B=A∪ {x}

0 otherwise,
and the diagonal elements of the Λ{x} matrices are:

if x∉ B λx(B,B) = 1 

if x∈ B λx(B,B) = α−1. 
3) and for any Ø≠X”Ω:    KX = ∏

x∈ X
 K{x},    ΛX =  ∏

x∈ X

Λ{x}.

4) The X’th column of G is ΛX1.

Proof: Obtained by iteration. Let Ω = {a,b,c}. We have KØ = I. By considering bba focused

on {a,b}, one obtains kXY
a = 0 for X /”{a,b}, Y”{a,b}. Then using bba focused on {a,c}, one

gets the values of kXY
a  for Y = {c} and {a,c}. The values of kXY

a  for Y = {b,c} and {a,b,c}

are derived by as very tedious computation as in section 4.2. The values of K{b} and K{c} are
derived through the application of LP matrices. Finally the property P5 allows the derivation of:

KX = ∏
x∈ X

 K{x} for all X”Ω.

Going from spaces Ω with three to four elements and more is performed identically. QED

The fact that the combination can be achieved by pointwise multiplications as with the
commonality functions is shown in the nest theorem. This property is very usefull as the Fast
Möbius Transform could be adapted to compute g and m from each other. Then the computation
of the combination is obtained by transforming each bba into its corresponding g vector,
combining the g vectors by pointwise multiplications, and transforming back the result into a
bba (Kennes and Smets, 1990, Kennes, 1992).

Theorem 12: Let g1 = Gm1, g2 = Gm2, g12 = Gm12,
then g12(A) = g1(A)g2(A) for all A”Ω.

Proof: We still have the property that KX = G-1ΛXG, and proof proceeds as in lemma 1. 

QED

5. The α -conjunctive combination.
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We consider now that the vacuous bba is the and-vacuous bba 1Ω.

In order to distinguish between the conjunctive and the disjunctive families of α-junctions, we

introduce the notation K∨ α(m) for what we had derived in the previous section. We define
K∧ α(m) as the operator dual to K∨ α(m) that we would have obtained if we had started with the
and-vacuous belief function.

The same derivation as for the disjunctive case can be repeated using KΩ = I, instead of KØ =
I. All results happen to be similar.

Theorem 13: For any Ω, the K∧ αX matrices are:
1) for X = Ω, K∧ αΩ = I, Λ∧ αΩ = I,

2) for x∈Ω  and K{x} = [ kAB
x ], we have:

if x∈Β , kAB
x ∧ α = 1 if x∉ A, B=A∪ {x}

0 otherwise

if x∉Β , kAB
x ∧ α = α if A=B

(1-α) if A=B∪ {x}

0 otherwise,
and the diagonal elements of the Λ{x} matrices are:

if x∉ B λ∧ α x(B,B) = 1 

if x∈ B λ∧ α x(B,B) = α−1. 
3) and for any Ω≠X”Ω:    K∧ αX = ∏

x∉ X

 K ∧ α{ x},    Λ∧ αX =  ∏
x∉ X

 Λ∧ α{ x}.

4) The X’th column of G∧ α is Λ∧ αX1.

The links between K∧ α and K∨ α are shown in the next theorem, that is at the core of their De
Morgan nature.

Theorem 14: K∧ α(m) = J.K∨ α(J.m).J.

or equivalently: for any A,X,Y”Ω, kA Y
X ∧ α = kA Y

X ∨ α .

This relation leads to the analogous of the De Morgan formula extended to α-junctions. We use

the obvious notations:
m[E1]∧ αm[E2] for K∧ α(m[E1])m[E2], and

m[E1∧ αE2] for m[E1]∧ αm[E2].

Similarly, we define:
m[E1]∨ αm[E2] for K∨ α(m[E1])m[E2], and

m[E1∨ αE2] for m[E1]∨ αm[E2].

Then with J.m[E] = m[–E], we have:

K∧ α(m[E1])m[E2] = J.K∨ α(J.m[E1])J.m[E2].
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It becomes: 
m[E1]∧ αm[E2] = m[E1∧ αE2] = J.(m[–E1]∨ αm[–E2])

= J.m[–E1∨ α–E2] = m[–(–E1∨ α–E2)].

So the bba induced by E1∧ αE2 and –(–E1∨ α–E2) are identical, what translates that E1∧ αE2

and –(–E1∨ α–E2) are equal, what is the De Morgan property.

In particular, when α = 1, K∨ 1(m) is the disjunctive operator and K∧ 1(m) is the conjunctive

operator. The bba m1∧ 1m2 is the one obtained by applying the conjunctive rule of combination

(Dempster's rule of combination unnormalized) to m1 and m2.

Deriving α  = 1.
How to derive the conjunctive and disjunctive rules of combination (hence the K∧ 1 and K∨ 1

operators)? Thus how to justify α = 1? It happens that the only α-junction operator that acts as

a specialization (generalization) is obtained with the 1-conjunction (1-disjunction) operator
(Klawonn and Smets, 1992). So requiring that K(m) acts as a specialization (generalization) on
any bba implies that α = 1, thus leads to the conjunctive rule of combination (and its disjunctive

counterpart, the disjunctive rule of combination).

The case α  = 0.
Suppose two pieces of evidence E1 and E2 and their induced bba m and m. We mentioned in
section 1 that:
1) the 1-conjunction (K∧ 1) correponds to the case where You accept that both sources tell the
truth,
2) the 1-disjunction (K∨ 1) correponds to the case where You accept that at least one source tells
the truth,
3) the 0-disjunction (K∨ 0) correponds to the case where You accept that one and only one
source tells the truth, and You don’t know which is which.
The K∧ 0 operator does not have a name: it fits with the case where You know that either none
of or both sources tell the truth, a quite artifical case in practice.

The practical interest of the α  = 0 cases are limited. This might explain why they were not

introduced previously. In any case, α = 0 should not be understood as intermediate between the

1-conjunctive and 1-disjunctive rules. In fact, the K∨ α operator is intermediate between the K∨ 1

and the K∨ 0 operators, and the  K∧ α operator is intermediate between the K∧ 1 and the K∧ 0

operators.

Remark: In set theory, two operators, the joint denial and Sheffer’s stroke, can be used to
represent the AND, the OR and the negation with a unique symbol. We cannot extend this result
to the α-junctions. Indeed their definition bears strongly on the idempotency property and

K(m) usually does not satisfy K(m)m  ≠ m . Hence it seems to be hopeless to find the
analogous of these two special operators.
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6. Some comments.

6.1. Explaining the negation ––––E .

Suppose the bba 1Ω defined on Ω. Then K∨ 0(1Ω) = J. So K∨ 0(1Ω)m[E] = J.m[E] = m[–E].
As 1Ω can be seen as the bba induced by the piece of evidence that supports nothing specific on
Ω, we can define 1Ω as m[T] where T denotes the vacous piece of evidence, i.e., the triple (S,
T, true) where T is a tautology. In particular, E∨ T = T and E∧ T = E for any E. Therefore

K∨ 0(1Ω)m[E] = K∨ 0(m[T])m[E] = m[–E]. So we obtain an explanation of the meaning of
m[–E] as being the bba induced by an exclusive disjunction between E and T: –E = E∨ T.

In practice, –T is impossible (hopefully, if one hopes to develop a realistic model: the souce
states a tautology and if –T  holds, it means You accept that the source tells the false). So when
E∨ T holds, it means You accept that the source that states E is telling the false. So –E

represents the bba that would be induced if You know that the source is telling the false:
whenever the source give a support that the actual world ω0 belongs to A, You give that support

to A.

6.2. Spread of m1(X)m2(Y) on Ω.

The relations K∨ α(m1)m2 and K∧ α(m1)m2 can also be represented in such a way that one
realizes that both combination operators correspond to a distribution of the product m1(X)m2(Y)
among some specific subsets of Ω. In fact the Y’th column of K ∨ αX and K ∧ αX is the
probability distribution according to which the mass m1(X)m2(Y) is distributed on the subsets

of Ω. So the terms kA Y
X ∨ α and kA Y

X ∧ α are the proportions of m1(X)m2(Y) that is allocated to

A after the ∨ α and ∧ α combinations of m1 and m2, respectively. The symmetry of the product

m1(X)m2(Y) is translated by the fact that both kA Y
X ∨ α and kA Y

X ∧ α are both symmetric in X and

Y.

6.3. Measure of the impact of K(m).

A natural measure of the impact of the operator K(m) is its determinant |K(m)|. It happens that
|K(m)| = ∏

X”Ω
  g(X) where the g(X) terms are the eigenvalues of K(m) (see section 4.3). This

relation was already obtained for the 1- conjunction (Smets, 1983) where we understood the
product as a measure of the information contains in m. We think this was inappropriate and the
idea of ‘impact’ is better.

7. Conclusions.

In conclusion, we have discovered a family of α−junction operators that include as particular

cases the conjunctive rule of combination, the disjunctive rule of combination, the exclusive
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disjunctive rule of combination, and their negations. The operators K∨ α (and its dual K∧ α)
generalize the classical concept of conjunction and disjunction within the context of belief
function, i.e., a particular context of weighted sets. The requirements that underlie the
derivation of the structure of this operator are those expected by a belief function. Their
extension to other theories are not obvious. For instance, using our approach for fuzzy sets and
possibility theory will probably be inadequate as the linearity requirement is not the kind of
requirement assumed within these two theories.

The meaning of K∨ α and K∧ α is clear with α = 0 or 1. With other values of α, their meaning

need further study. At least, we have shown that the classical conjunction and disjunction
operations are just extreme cases of a general theory and that a continuum of operators can be
built between the conjunction and ∧,  and between the disjunction and the exclisive disjunction.
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We can also define the concept of ‘equivalence at a static level’. We can often describe several
combinations of sources and propositions that would induce the same state of belief for You.
As an example, consider the conjunctive combination E1∧ E2. Consider another source S* that

states E1∧ E2, and You accept S* tells the truth. In both cases You would be in the same state of

belief, as You get the same information. But further information could show the differences
between the two cases. With the two sources story, You might receive a new information that
states that the source S2 is not telling the truth, in which case You would retract the piece of
evidence E2 and keep only E1. So even though You seem to be in a similar state of belief with
the two sources and with the one source stories, the two cases are potentially different.

Coming back to the two soureces S1 and S2 where S1 states E1 and S2 states S2, we have:
1. E1∧ E2 is equivalent at the static level to one source stating E1∧ E2 and You accept it tells the

truth. It is equivalent to ‘You accept E1∧ E2’.

2. E1∨ E2 is not equivalent at the static level to one source stating E1∨ E2 and You accept it tells

the truth. This implies that You accept E1∨ E2, but it means more as the reverse implication is

not valid.
3. E1∨ E2 is equivalent to two source stating E1 and E2, respectively and You accept that at

least one is telling the truth and another stating E1∧ E2, and You accept that the frist is telling the

truth and the second is telling the false. So You accept E1∨ E2 (the disjunctive disjunction, what

is equivalent to  (E1∨ E2) ∧  ¬(E1∧ E2))


