UNIVERSITE LIBRE DE BRUXELLES

Faculté des Sciences Appliquées

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

The Problem of Tuning Metaheuristics

as seen from a machine learning perspective

Mauro Birattari

Promoteur: Thése présentée en vue de 'obtention du
Prof. Marco Dorigo titre de Docteur en Sciences Appliquées

Année académique 2004—-2005

The Problem of Tuning Metaheuristics
as seen from a machine learning perspective

The Problem of Tuning Metaheuristics

as seen from a machine learning perspective

Mauro Birattari

* X %
* Doctor *
* Communitatis *

* Europee *
* e X

UNIVERSITE LIBRE DE BRUXELLES

This dissertation was discussed in a public defense held at the Université Libre de
Bruxelles, Brussels, Belgium, on December 20, 2004. In this occasion, Mauro Birattari
was awarded a Furopean Doctorate title in applied sciences.

Composition of the jury:
Hugues Bersini

Professor, Université Libre de Bruxelles, Brussels, Belgium
Secretary of the jury

Andrea Bonarini
Associate Professor, Politecnico di Milano, Milan, Italy
Foreign expert

Gianluca Bontempi
Associate Professor, Université Libre de Bruxelles, Brussels, Belgium
Member of the jury

Christine Decaestecker
Senior Research Associate of the Belgian National Fund for Scientific Research (FNRS)
Member of the jury

Marco Dorigo
Research Director of the Belgian National Fund for Scientific Research (FNRS)
Thesis supervisor

Philippe Van Ham
Professor, Université Libre de Bruxelles, Brussels, Belgium
Chairman of the jury

External referees:
Wolfgang Bibel

Professor, Technische Universitdt Darmstadt, Darmstadt, Germany

Ben Paechter
Professor, Napier University, Edinburgh, United Kingdom

Copyright (© 2004 by Mauro Birattari
All rights reserved.

{D vvv('ﬁ)ﬂ‘ner
w\no ?fov(alecL me wl“\ o

oloper onid s\'s'rew\ for
me;s\;r\'mé the. aorld

The thesis

The problem of tuning a metaheuristic can be profitably
formalized and solved as a machine learning problem

Summary

A metaheuristic is a generic algorithmic template that, once properly instanti-
ated, can be used for finding high quality solutions of combinatorial optimization
problems. For obtaining a fully functioning algorithm, a metaheuristic needs to
be configured: typically some modules need to be instantiated and some parame-
ters need to be tuned. For the sake of precision, we use the expression parametric
tuning for referring to the tuning of numerical parameters, either continuous or
discrete but in any case ordinal. On the other hand, we use the expression struc-
tural tuning for referring to the problem of defining which modules should be
included and, in general, to the problem of tuning parameters that are either
boolean or categorical. Finally, with tuning we refer to the composite structural
and parametric tuning.

Tuning metaheuristics is a very sensitive issue both in practical applications
and in academic studies. Nevertheless, a precise definition of the tuning problem
is missing in the literature. In this thesis, we argue that the problem of tuning
a metaheuristic can be profitably described and solved as a machine learning
problem.

Indeed, looking at the problem of tuning metaheuristics from a machine learn-
ing perspective, we are in the position of giving a formal statement of the tuning
problem and to propose an algorithm, called F-Race, for tackling the problem it-
self. Moreover, always from this standpoint, we are able to highlight and discuss
some catches and faults in the current research methodology in the metaheuristics
field, and to propose some guidelines.

The thesis contains experimental results on the use of F-Race and some ex-
amples of practical applications. Among others, we present a feasibility study
carried out by the German-based software company SAP, that concerned the
possible use of F-Race for tuning a commercial computer program for vehicle
routing and scheduling problems. Moreover, we discuss the successful use of
F-Race for tuning the best performing algorithm submitted to the International
Timetabling Competition organized in 2003 by the Metaheuristics Network and
sponsored by PATAT, the international series of conferences on the Practice and
Theory of Automated Timetabling.

X

Original contributions

The following is a summary of the main contributions proposed in the thesis:

The framework: The thesis defines the framework in which the problem of
tuning metaheuristics emerges, and describes this problem as a generaliza-
tion problem presenting a number of features that are akin to those that
characterize machine learning problems.

Formal position of the tuning problem: The thesis gives a formal definition
of the tuning problem in which the key role is played by the notion of a
probability measure P; defined over the space of the instances.

Formal analysis of the evaluation problem: The thesis proposes a formal
analysis of the Monte Carlo estimation of the performance of a metaheuris-
tic on the basis of a number of observations.

Definition of tuning algorithms: The thesis introduces a number of tuning
algorithms. Beside the trivial brute-force approach, the class of racing al-
gorithms for tuning and, in particular, F-Race are introduced.

Empirical analysis: The thesis proposes an accurately designed and statisti-
cally sound experimental evaluation of the tuning algorithms introduced.
An innovative re-sampling methodology is adopted for the first time in the
context of the empirical analysis of metaheuristics.

Applications: The thesis discusses a number of successful applications of F-Race
and of related algorithms. Among them, the use of a racing algorithm for
designing a hybrid metaheuristic that outperformed all competitors in the
International Timetabling Competition, and a feasibility study carried out
by the German-based software company SAP, that concerned the possible
use of F-Race for tuning a commercial computer program for vehicle routing
and scheduling problems.

Experimental methodology: The thesis discusses a number of methodologi-
cal issues and, in particular, some catches related to the practice of tuning.
The notion of over-tuning is introduced that parallels the already well un-
derstood machine learning concept of over-fitting.

x1

Moreover, the following contributions are contained in the Annexes:

Analysis of ant colony optimization: An original description of ant colony op-
timization is proposed in the terms of optimal control and dynamic program-
ming. Moreover, the model-based search framework is introduced which
accommodates a number of combinatorial optimization methods including
ant colony optimization.

Lazy learning for local regression: An original lazy learning algorithm is de-
scribed and some evidence is provided that it can be an effective alternative
to state-of-the-art supervised learning methods for tackling the regression
problem.

Finally, two software packages, lazy and race, have been developed to be used
with R, the free software suite for statistical computing and graphics. These
packages, which are distributed, free of charge, under the GNU General Public
License, are available for download from the official site of The Comprehensive R
Archive Network.

xii

Statement

This thesis describes an original research carried out by the author. This work
has not been previously submitted to the Université Libre de Bruxelles or to any
other university for the award of any degree. Nevertheless, some chapters of this
thesis are partially based on articles that, during his doctoral studies, the author,
together with a number of co-workers, has published or submitted for publication
in the scientific literature.

Preliminary versions of the formal statement of the tuning problem given in
Chapter 3 and of the description of the F-Race algorithm given in Chapter 4 are
contained in:

Birattari, M., Stiitzle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algo-
rithm for configuring metaheuristics. In Langdon, W. B., Cantu-Paz, E., Math-
ias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph,
G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F., Burke, E.,
& Jonoska, N. (Eds.), Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 11-18, Morgan Kaufmann. San Francisco, CA, USA.

Footnote 5, page 70, is inspired by the following work:

Piscopo, C. & Birattari, M. (2002). Invention vs. discovery. A critical discussion.
In Lange, S., Satoh, K., & Smith, C. H. (Eds.), Discovery Science. 5th Interna-
tional Conference, DS2002, volume 2534 of LNCS, pp. 457-462, Springer-Verlag.
Berlin, Germany.

The formal analysis of the problem of the empirical estimation of the performance
of a metaheuristic given in Section 4.1 has been already made public in:
Birattari, M. (2004). On the estimation of the expected performance of a meta-
heuristic on a class of instances. How many instances, how many runs? Technical
Report TR/IRIDIA /2004-01, IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium.

The description given in Chapter 5 of the computing environment in which the
experimental analysis proposed in the thesis was performed, is based on:

Labella, T. H. & Birattari, M. (2004). Polyphemus: De abacorum racemo. Techni-
cal Report TR/IRIDIA /2004-15, IRIDIA, Université Libre de Bruxelles, Brus-
sels, Belgium.

xiil

The analysis given in Section 5.2.1 of the metaheuristics for the UNIVERSITY-

COURSE TIMETABLING problem developed by the Metaheuristics Network is

based on:

Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-

bardella, L. M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete,
L., & Stiitzle., T. (2003). A comparison of the performance of different meta-
heuristics on the timetabling problem. In Burke, E. & De Causmaecker, P.
(Eds.), Practice and Theory of Automated Timetabling, 4th International Con-
ference, PATAT 2002, volume 2740 of LNCS, pp. 329-351, Springer-Verlag.
Berlin, Germany.

In particular, the graphs given in Figure 5.18, page 153, were obtained by Michael
Samples and are reproduced in the thesis by courtesy of their author:
Sampels, M. (2002). Metaheuristics for the timetabling problem. Results of a
comparison within the Metaheuristics Network.
http://iridia.ulb.ac.be/~msampels/ttmn.data/.

The discussion proposed in Section 5.2.2 on the use of the F-Race algorithm
for designing hybrid metaheuristics for the UNIVERSITY-COURSE TIMETABLING
problem is based on the following two works:
Chiarandini, M., Socha, K., Birattari, M., & Rossi-Doria, O. (2003). International
timetabling competition. a hybrid approach. Technical Report AIDA-03-04,
FG Intellektik, FB Informatik, Technische Universitdt Darmstadt, Darmstadt,
Germany.
Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2004). An effec-
tive hybrid approach for the university course timetabling problem. Journal of
Scheduling. Accepted for publication.

The description of the racing algorithm for feature selection given in Section 5.2.3
is based on:

Bontempi, G., Birattari, M., & Meyer, P. E. (2004). Combining lazy learning,
racing and subsampling for effective feature selection. Technical Report 527,
Département d’'Informatique, Université Libre de Bruxelles, Brussels, Belgium.
Submitted for publication.

The analysis of the experimental methodology proposed in Chapter 6 is partially
based on:

Zlochin, M., Birattari, M., & Dorigo, M. (2004). Towards a theory of practice
in metaheuristics design. A machine learning perspective. Technical Report
MCS04-01, Computer Science and Applied Mathematics, The Weizmann Insti-
tute of Science, Rehovot, Israel. Submitted for journal publication.

The proof given in Appendix 6.A, page 192, of the biasedness of the best of the
realizations of a set of random variables as an estimator of the corresponding
random variable itself, has been refined through a number of interesting and
useful discussion with Gianluca Bontempi, Mark Zlochin, T. Halva Labella, Bruno

Xiv

Marchal, Daniele Catanzaro, and Philippe Smets.

The concept of mental image plays an important role in the analysis given in
Annex A of ant colony optimization from the point of view of optimal control
theory and reinforcement learning. The use of this concept in Aristotle and
Thomas Aquinas, and more in general in Ancient and Medieval epistemology has
been deeply discussed with Carlotta Piscopo. The precise meaning of the Ancient
Greek term phantasma, and a research of occurrences of this term in the original
Greek and Latin texts were provided by Scilla Goria.

The description of ant colony optimization given in Annex A is based on the
following works:

Birattari, M., Di Caro, G., & Dorigo, M. (2000). For a formal foundation of the Ant
Programming approach to combinatorial optimization. Part 1: The problem, the
representation, and the genearl solution strategy. Technical Report TR-H-301,
ATR-Human Information Processing Labs, Kyoto, Japan.

Birattari, M. (2001). On the formal foundation of ant programming. Mémoire de
DEA, Université Libre de Bruxelles, Brussels, Belgium.

Birattari, M., Di Caro, G., & Dorigo, M. (2002). Toward the formal foundation
of ant programming. In Dorigo, M., Di Caro, G., & Sampels, M. (Eds.), Ant
Algorithms, 3rd International Workshop, ANTS 2002, volume 2463 of LNCS,
pp. 188-201, Springer-Verlag. Berlin, Germany.

Dorigo, M., Zlochin, M., Meuleau, N., & M.Birattari (2002). Updating ACO
pheromones using stochastic gradient ascent and cross-entropy methods. In
Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., & Raidl, R. (Eds.), Ap-
plications of Evolutionary Computing, EvoWorkshop 2002: EvoCOP, EvolASP,
FEvoSTIM/EvoPLAN, volume 2279 of LNCS, pp. 21-30, Springer-Verlag. Berlin,
Germany.

Zlochin, M., Birattari, M., Meuleau, N., & Dorigo, M. (2004). Model-based search
for combinatorial optimization: A critical survey. Annals of Operations Research,
131(1-4):373-395.

The description of the lazy learning algorithm given in Annex B is based on:

Birattari, M., Bontempi, G., & Bersini, H. (1999). Lazy learning meets the re-
cursive least-squares algorithm. In Kearns, M. S., Solla, S. A., & Cohn, D. A.
(Eds.), Advances in Neural Information Processing Systems 11, pp. 375381,
MIT Press. Cambridge, MA, USA.

Birattari, M. & Bontempi, G. (1999). Lazy learning vs. Speedy Gonzales: A fast
algorithm for recursive identification and recursive validation of local constant
models. Technical Report TR/IRIDIA/1999-6, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium.

Bontempi, G., Birattari, M., & Bersini, H. (1999). Lazy learners at work: The
lazy learning toolbox. In EUFIT’99: The 7th European Congress on Intelli-
gent Techniques and Soft Computing, Abstract Booklet with CD Rom, ELITE
Foundation. Aachen, Germany.

XV

Two software packages have been developed by the author and made available in
the public domain under the GNU General Public License! of the Free Software
Foundation:

Birattari, M. (2003). The race package for R. Racing methods for the selection of
the best. Technical Report TR/IRIDIA /2003-37, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium. Package available at:
http://cran.r-project.org/src/contrib/Descriptions/race.html.

Birattari, M. & Bontempi G. (2003). The lazy package for R. Lazy learning for local
regression. Technical Report TR/IRIDIA /2003-38, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium. Package available at:
http://cran.r-project.org/src/contrib/Descriptions/lazy.html.

The latter had been previously released as a package for Matlab™:
Birattari, M. & Bontempi, G. (1999). The lazy learning toolbox. For use with

Matlab. Technical Report TR/IRIDIA/1999-7, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium.

This thesis was typeset by the author using IXTEX. The research work de-
scribed in the body of the thesis was carried out using exclusively free software:
GNU Emacs, R, CVS, gce, among others. In particular, all computers used for
developing code, running experiments, writing reports, articles, and the thesis
itself were running a GNU /Linux operating system, mostly the Debian distribu-
tion, but also Red Hat and Suse. The author warmly endorse all the software
adopted.

No animals were harmed during the making of this thesis.

Brussels, October 2004

'http://www.gnu.org/copyleft/gpl.html

Xvi

Acknowledgments

[acknowledge financial support from a number of institutions: The very ini-
tial phase of my Ph.D. studies was funded by the Région wallonne through a
FIRST Project carried out at IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium, under the supervision of Prof. Hugues Bersini, and in collaboration
with the FaFer Usinor steel company in Charleroi, Belgium. For six months
my research was funded by the AASS lab, Orebro Universitet, Orebro, Sweden,
where I have been working under the supervision of Prof. Alessandro Saffiotti
and Dr. Tom Duckett. From April 2001 to June 2004, my Ph.D. studies have
been supported by the Metaheuristics Network, a Training and Research Net-
work funded by the Improving Human Potential Programme of the Commission
of the European Communities, under contract number HPRN-CT-1999-00106.
In the framework of the Metaheuristics Network, I had the unique opportunity
of working with two different research groups: I have been for one year with
INTELLEKTIK, Technische Universitat Darmstadt, Darmstadt, Germany, where
my work has been supervised by Prof. Wolfgang Bibel and Dr. Thomas Stiitzle.
Since April 2002, I have been with IRIDIA, Université Libre de Bruxelles, Brus-
sels, Belgium, where I have been supervised by Prof. Marco Dorigo. Starting
from July 2004, my Ph.D. studies have been funded by the actions de recherche
concertées of the Communauté francaise de Belgique through the research project
ANTS directed by Prof. Marco Dorigo.

[started my research career back in 1996 with my Master’s thesis at the Politec-
nico di Milano, Milan, Italy, under the supervision of Prof. Andrea Bonarini and
Prof. Gianluca Bontempi. [really owe much to Gianluca: I have learned from
him many of the tricks that compose my repertoire and that have been so useful
in the research that led to this thesis.

While I was working at my Master’s thesis, Gianluca introduced me to IDSIA,
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Lugano, Switzerland,
where I met Prof. Luca Maria Gambardella and Prof. Marco Dorigo. Later on,
[had the great pleasure to work with Luca within the Metaheuristics Network,
and Marco became my Ph.D. supervisor at IRIDIA.

Always thanks to Gianluca, I joined IRIDIA as an exchange undergraduate
student. There I had the chance to be supervised by Prof. Hugues Bersini.
Hugues has an extraordinary talent in charming students and in making them

Xvil

involved in his fascinating researches in the domain of artificial intelligence.

[am much indebted to the great friend of mine Gianni Di Caro, for introducing
me to ant colony optimization back in 1998. The never-ending discussions we had
on the issue played a major role in shaping my point of view on metaheuristics.

With Dr. Mark Zlochin I shared my interest for the analysis of metaheuristics
from the machine learning point of view. Mark is extremely knowledgeable in
statistics and machine learning theory: Working with him has been very useful
for the development of my thesis ... and very fun, indeed!

This work would have been simply impossible without the support of Dr.
Thomas Stiitzle. [t was Thomas who attracted my attention to the problem of
tuning metaheuristics and who suggested that my machine learning background
could be profitably employed on this problem. Thomas has been very helpful in
these years: In all phases of my research I could rely on his advice and on his
great experience.

Prof. Marco Dorigo has supervised this work of mine, and more in general my
research activities since 2000. Marco has been the perfect supervisor: He has been
extremely supportive and his advice on all aspects of my research and my scientific
activity has been really invaluable. Most of all I want to acknowledge here the
value that Marco kept adding to my research through comments, discussions,
and brainstorming sessions: Extremely knowledgeable in ant colony optimization
(bien sir!), metaheuristics, machine learning and, in general, in all topics I touch
in my work, Marco really seemed taking pleasure in diving into the gory details of
my work. During these years, [had much to learn from Marco, and not only on
scientific issues directly related to my thesis. Indeed, Marco gave me the chance
to assist him in various tasks such as writing reports and project proposals,
managing research projects, supervising students, organizing events, etc. I had
therefore the opportunity to observe his activities from a privileged position and
to acquire skills that will be very useful in my future career.

Beside Marco and Thomas, I wish to thank the senior scientists in charge of the
other nodes of the Metaheuristics Network, in particular, Prof. Luca M. Gam-
bardella and Prof. Ben Paechter. A special thanks goes to the young researchers
of the Metaheuristics Network and to all other researchers that have been some-
how involved in the research activities of the network: Leonora Bianchi, Dr.
Christian Blum, Dr. Thomas Bousonville, Marco Chiarandini, Dr. Matthijs den
Besten, Dr. Irina Dumitrescu, Dr. Stefka Fidanova, Dr. Joshua Knowles, Philip
Kostuch, Max Manfrin, Dr. Monaldo Mastrolilli, Dr. Nicolas Meuleau, Fabrizio
Oliverio, Luis Paquete, Dr. Marco Pranzo, Dr. Andrea Roli, Dr. Olivia Rossi-
Doria, Dr. Erol Sahin, Dr. Michael Sampels, Tommaso Schiavinotto, Krzysztof
Socha, and Klaus Varrentrapp. These years of research together have been blood,
toil, sweat, and tears (and admittedly also a couple of beers) but they have been
a great pleasure and a great satisfaction to me: Thank you all!

Moreover, I wish to thank all (previously unmentioned) people I have been

xviii

working with at IRIDIA: Prof. Philippe Smets, Dr. Bruno Marchal, Vittorio
Gorrini, Dr. Edy Bertolissi, Dr. Nick Bradshaw, Antoine Duchateau, Dr. Jorge
Gasos, Francesco Allevi, Emanuele Persico, Prof. Philip Miller, Thomas Halva La-
bella, Vito Trianni, Roderich Grof, Shervin Nouyan, Christos Ampatzis, Daniele
Catanzaro, Julia Handl, Dr. Patrice Latinne, Prof. Masaaki Minagawa, Roberto
Pirotta, Dr. Mohamed Ben Haddou, Dr. Tom Lenaerts, Colin Molter, Pierre
Sener, Christophe Philemotte, Pierre Philippe, Utku Salihoglu, Dr. Frank Vanden
Berghen, Nathanéel Ackerman, Francois-Xavier Willems, Maria J. Blesa, Fabiola
Boldrini, Michela Lunghi, Roberto Ghizzioli, and Muriel Decreton; and all (pre-
viously unmentioned) people I have been working with at INTELLEKTIK: Dr.
Gunter Grieser, Dr. Peter Grigoriev, Dr. Ulrich Scholz, Dr. Sergey Yevtushenko,
Dr. Hesham Khalil, and Maria Tiedemann.

On a more personal basis, I wish to thank Grzegorz Cielniak, Danae Riveros,
Candice Roufosse, Elena Lanzoni, Scilla Goria, Luca Di Mauro, Johann Sebas-
tian Bach, Jacques Brel, Jean-Pierre Van Roy of Cantillon, Jean-Luis Dits of La
Brasserie a Vapeur, Armand Debelder of Drie Fonteinen, Le Musée du Cinéma
of Brussels, Aldo Piatti, all my old friends at Bu-Sen Bresso judo club, Bouzian
El Amri, Lionel Hebrant, and the ULB judo club.

[thank all my family for their love and support: Giulia, Francesco, Adriano,
Lorena, Filippo, Rita, Giuseppe, my grandparents Franco, Valeria, Meri, and
Lino, my brother Luca and Stefania, my mother Anna, my father Claudio,
Vladimiro and Carlotta.

Carlotta, in particular, has shared with me each single good or bad moment in
the last ten years: For this reason, and for many others, I really love her very
much ... and I deeply appreciate her perseverance :-)
* * *

This work of mine is dedicated to my father for all what he gave me and for all
what he taught me. Especially for explaining me, many years ago, what happens
to the steps of an escalator when they get to the top ... and most of all, for
managing to teach me to ask this kind of questions! My father taught me to pay
attention to things, to take pleasure in wondering first, and to look for rational
explanations immediately afterwards. My approach to the issues discussed in this
thesis, proudly reflects his teachings: Wonder en is gheen wonder.t

M. B.
Brussels, October 2004

T What appears a miracle is not a miracle, the motto of the scientist and civil engineer Simon
Stevin (1548-1620).

XixX

XX

Contents

Summary

Original contribution

Statement

Acknowledgments

Contents

1 Introduction

2 Background and state-of-the-art

2.1 Metaheuristics for combinatorial optimization

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7
2.1.8

A philosophical and historical perspective
The optimization problem
Combinatorial optimization
On the computational complexity of algorithms
On the a priori equivalence of search algorithms
Exact algorithms, heuristics, and metaheuristics
A bird’s-eye view of most popular metaheuristics
Current practice in tuning metaheuristics

2.2 The problem of supervised learning

221
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

A philosophical and historical perspective
The three main problems of machine learning
Supervised learningo
The minimization of the empirical risk
The theory of generalization
Supervised learning in practice
Racing methods for model selection

2.3 DiIscussiono

XX1

ix

xi

xiii

xvii

xxi

3 Statement of the tuning problem 67

3.1 An informal example 67
3.2 The formal position of the problem 72
3.3 Possible variants and extensions 74
3.3.1 Problem subclasses and a prior: information 74
3.3.2 Generic probabilistic models 75
3.3.3 The single-instance case 77
3.3.4 The optimization of generic statistics 80
3.3.5 Time versus cost, 80

3.4 Discussion e e 80
4 F-Race for tuning metaheuristics 83
4.1 How many instances, how man runs? 85
4.1.1 Formal position of the estimation problem 85
4.1.2 First order analysis of the estimator fis, 88
4.1.3 Second order analysis of the estimator fis, 89
4.1.4 Yet another possible estimator 94
415 Remarks 99

4.2 The brute-force approach 100
4.3 The racing approach 102
4.4 The peculiarities of F-Race 108
4.5 Discussion 113
5 Experiments and applications 115
5.1 Empirical analysis of F-Race 116
5.1.1 [terated local search for QUADRATIC ASSIGNMENT 122
5.1.2 Ant colony optimization for TRAVELING SALESMAN 138

5.2 Some applications of the racing approach 151
5.2.1 Tuning metaheuristics for timetabling 151
5.2.2 The International Timetabling Competition 154
5.2.3 F-Race for feature selection 160
5.2.4 Further applications 166

5.3 Discussion 168
6 Some considerations on the experimental methodology 171
6.1 Some fundamental methodological issues 172
6.1.1 On some measures of performance 172
6.1.2 On the concept of class of instances 174
6.1.3 On the empirical comparison of algorithms 175
6.1.4 On the over-tuning phenomenon 177

6.2 Towards a theory of practice 184
6.2.1 The real-life setting 186
6.2.2 The proposed methodology and some alternatives 189

Xxil

6.3 Discussiono 191

Appendixo 192
6.A Bestisbiased 192

7 Conclusions 197
Annexes 207
A A machine learning point of view on ant colony optimization 209
A.1 Formal foundation of ant programming 210
A.1.1 Optimization, optimal control, and shortest paths 212

A.1.2 Markov and non-Markov representations 214

A.1.3 Ant programming 218

A.1.4 Discussion 223

A.2 Model-based search L 224
A.2.1 The model-based search framework 227

A.2.2 Ant colony optimization 232

A.2.3 Model-based genetic algorithms 239

A.2.4 Discussion 244

B Lazy learning for local regression 247
B.1 Lazy learning and recursive least squares 247
B.1.1 Local weighted regression 249

B.1.2 Recursive local regression 250

B.1.3 Local model selection and combination 251

B.1.4 Experiments and results 252

B.2 Constant models in a local setting 255
B.2.1 Local constant models and local assessment 255

B.2.2 The recursive algorithm 256

B.2.3 Discussion 258

B.3 The lazy package and its applications 259
References 263

Xx11i

XX1V

Car sans généralisation, la prévision est im-
possible. Les circonstances ot ['on a opéré ne
se reproduiront jamais toutes o la fois. Le
fait observé ne recommencera donc jamais;
la seule chose que l'on puisse affirmer, ¢’est
que dans des circonstances analogues, un fait
analogue se produira. Pour prévoir il faut
donc au moins tnvoquer [’analogie, c¢’est-a-
dire déja généraliser.t

Henri Poincaré

Chapter 1

Introduction

Aiming at the best is one of the most fundamental traits of intelligence. In all
activities, human beings tend to maximize benefit or, equivalently, to minimize
inconvenience in some context-dependent sense. The pursuit of the best appears
so connatural with the human mind that when we do not recognize it in some-
body’s behavior we readily qualify him/her as irrational.

Quite naturally, along the centuries man has devoted much effort to the de-
velopment of formal tools that help in spotting optimality. Mathematical opti-
mization, as we know it nowadays, is the result of this effort: A collection of
powerful methods and algorithms for tackling a large variety of different prob-
lems. In the contemporary world, optimization plays an extremely important
role in all branches of engineering and has therefore a huge economical relevance.
During the last two decades in particular, the ever increasing availability of com-
puting power has further enlarged the set of optimization problems that can be
effectively handled.

The history of optimization methods has been dominated by two different and
possibly competing concerns: On the one hand, an optimization method should
be efficient, that is, it should be able to find some highly satisfactory solution and
it should be able to do it quickly. On the other hand, it should be manageable,

t Because without generalization, prediction is impossible. Circumstances in which we have
operated will never reproduce all together at the same time. Therefore, an observed event will
never reappear; the only thing we could state is that in analogous circumstances, an analogous
event will happen. In order to make a prediction, it is therefore necessary to resort at least to
analogy, that is, indeed, to generalize.

2 Chapter 1. Introduction

that is, it should be easy to use and, in case, easy to adapt with possibly some
minor modifications, to other optimization problems different from, but somehow
similar to the one for which it was originally developed.

Of these two concerns, efficiency appears as the most basic one while man-
ageability is a concern of a higher order related to the problem of engineering
and optimizing the process of developing optimization algorithms themselves.
Nevertheless, the manageability concern had a major role in shaping the whole
optimization field. It should be indeed recognized that the very existence of opti-
mization subfields—such as, for example, continuous vs. discrete optimization—
or the concept of optimization problem as a collection of instances, are the most
noticeable implications of the manageability concern. As a matter of fact, the
ultimate goal of optimization is to solve specific problems emerging in the real-
world. Nevertheless, rather than solving each single specific problem by itself
and re-starting from scratch with the research when a new problem is given, it
seems advisable to recognize that different specific problems have some common
structure and can be profitably considered as different instances of a same prob-
lem. This abstraction step, although seemingly obvious, is fundamental for the
formal development of optimization. It opens indeed the way to the development
of optimization algorithms and to the formal analysis of their properties.

In the development of combinatorial optimization—the optimization subfield
that is the focus of this thesis—the role played by the manageability concern
emerges clearly and is tightly connected with the deepest motivations underly-
ing the research presented in the thesis itself. Many combinatorial optimization
problems of great economical relevance are believed to be particularly difficult to
solve. This belief is formally expressed in the computational complexity theory
by saying that they are NP-hard.! As a practical consequence, an exact solution
to instances of such problems can possibly require a huge amount of computation
time in order to be produced. For such problems it is customary to have recourse
to heuristics, that is, problem-specific algorithms that implement some reason-
able strategy for obtaining a sufficiently good solution in a suitably short amount
of time: Heuristics do not provide any theoretical guarantee on the quality of
the solution they might produce and, at most, they come with some positive
record of successful applications to instances of the problem for which they had
been devised. Notwithstanding this lack of theoretical support, heuristics have
met some notable success on many different problems of practical relevance and
have therefore proven, in practice, to be able to provide a positive answer to the
efficiency concerns.

The major drawbacks of heuristics derive from their problem-dependent na-
ture: Although ideas that were proven successful in tackling other problems might
be useful when a new problem is given, each problem presents its own peculiar-

!See for example Garey & Johnson (1979). An introduction to these concepts is given in
Section 2.1.4.

ities and pitfalls. As a consequence, in order to design an effective heuristic for
a given problem, a wealth of problem-specific information is needed. Moreover,
often the development of a heuristic is a labor-intensive activity and a great in-
tellectual challenge that requires the attention of a highly skilled practitioner and
therefore entails major economical costs. Clearly these drawbacks substantially
limit the manageability of heuristics.

In the last two decades, a new class of algorithms emerged, the so called
metaheuristics (Glover, 1986). Metaheuristics are general algorithmic templates
that can be easily adapted to solve the most different optimization problems.
In other words, a metaheuristic defines some high-level and abstract principles
for organizing a search in the space of the solutions of a generic optimization
problem. When a given new optimization problem has to be tackled, some steps
need to be taken before the metaheuristic is operational. From the point of view
of the practitioner that adapts a metaheuristic to a problem, the metaheuristic is
best seen as a modular structure coming with a set of components, each typically
provided with a set of free parameters. The task of the practitioner consists in
properly selecting the components to be included in the actual implementation,
assembling them, and finally providing values for their free parameters. In any
case, these steps require much less effort than the development from scratch of an
ad hoc heuristic and, in this sense, metaheuristics are apparently more manageable
than their forerunner heuristics.

Most often, even a quick-and-dirty implementation of a metaheuristic is able
to obtain fairly good results. Nevertheless, an out-of-the-box implementation of a
metaheuristic for a given problem does not typically equal the performance of an
ad hoc heuristic, when the latter is available. The high flexibility of metaheuristics
allows fairly good results on a large class of potential problems but, at the same
time, it prevents from obtaining excellent results on each of them: Clearly, a sort
of efficiency/manageability trade-off must exist.

If state-of-the-art results are needed, some extra effort is often necessary. In
such a case, the practitioner should inject some problem-specific knowledge in
the implementation of the metaheuristic and, most of all, should take extra care
in properly designing the structure and in tuning the free parameters of the
metaheuristic in order to match the specific features of the problem at hand and
of the specific class of instances that one wishes to solve. Typically, practitioners
craft a good structure supported only by their own experience and tune the
parameters by hand in a ¢rial-and-error procedure guided by some rules-of-thumpb.
No formal tool or statistical methodology is usually adopted in this phase and
much rests upon personal feelings and sensations. This approach, beside being
extremely tedious, is error prone, scarcely reproducible, and expensive.

The research presented in this thesis aims precisely at defining an automatic
procedure for configuring and fine-tuning metaheuristics. Our involvement in the
issue stems from the conviction that the development of an automatic tuning
procedure is a conditio sine qua non for fully accomplishing the “revolution” of

4 Chapter 1. Introduction

the combinatorial optimization field that began with the introduction of meta-
heuristics: Since the ultimate goal of metaheuristics is to drastically reduce and
eventually get rid of the effort needed for designing effective optimization algo-
rithms when new problems arise, automatic configuration and tuning should be
considered as an integral part of the research on metaheuristics. We are confident
that a proper automatic tuning procedure would indeed allow the definition of
a general-purpose optimization approach that conjugate high manageability with
state-of-the-art efficiency.

Although the crucial role of tuning is acknowledged in the literature, see
for example Barr et al. (1995), relatively little attention has been given to the
issue. Admittedly, some works have been published describing tuning methods
and even if some of them are manifestly brilliant (Coy et al., 2001; Adenso-
Diaz & Laguna, 2002) and possibly very promising, our personal analysis of the
literature led us to the conclusion that the very nature of the tuning problem
remained so far misunderstood. The main contribution of the thesis consists in
a formal definition of the tuning problem: As it is made clear in the body of the
thesis, the tuning problem has the characteristics of a machine learning problem.
Indeed tuning consists in finding the best possible configuration of the algorithm
at hand, where with best configuration we mean the one which is deemed to
yield the best results on the instances that the algorithm will be eventually faced
with, once operational. Clearly, these instances are not known beforehand, and
in particular during the tuning phase itself. Tuning has therefore to rely on
other instances, tuning instances in the following, that should be reasonably
considered as representative of the whole class of instances that the algorithm
will eventually encounter. This process of substitution entails the assumption
that the results obtained on the tuning instances by the metaheuristic, indeed
by each of its configurations, can be extended to the whole class of interest.
To be more explicit, when tuning a metaheuristic we are ready to accept the
hypothesis that since tuning instances are somehow similar to the instances that
could be possibly encountered once in operation, the results obtained on the
former should be, in turn, similar to those that would be obtained on the latter.
In this precise sense, the tuning problem is a genuine generalization problem that
can be profitably framed, formalized, and solved in a machine learning setting.

Accordingly, machine learning concepts and methods play a key role in the
thesis: The definition of the tuning problem, the tuning algorithms proposed,
and the experimental methodology adopted, liberally take inspiration from the
machine learning literature and bring therefore some fresh ideas to the optimiza-
tion community. In particular, the definition of the tuning problem rests on the
concept of class of instances, which is formally captured by considering a prob-
ability measure over the space of the instances of the optimization problem at
hand. An exhaustive discussion of the issue is given in the thesis, it suffices
here to notice that the adoption of a probabilistic model in this context is rather
atypical and, according to our personal experience, almost disturbing for opti-

mization practitioners. When we adopted this probabilistic approach for the first
time in Birattari et al. (2002), we were convinced it was absolutely novel in the
optimization literature. Only afterwards, we became aware that, although with
different aims and in a different context, it had been already used by Wolpert &
Macready in their seminal works on the no free lunch theorem (1996; 1997). Ap-
parently, this element was so unusual for the optimization community that it went
unnoticed—and not only to us. Indeed, subsequent works on the no free lunch
theorem presented by other author have developed many elements of the original
results by Wolpert & Macready (1996, 1997) but have dropped all reference to
a probability measure over the space of instances—see for example Radcliffe &
Surry (1995), Schumacher et al. (2001), Igel & Toussaint (2003), and Corne &
Knowles (2003). It is interesting to notice that the adoption of a probabilistic
model of the space of the instances must be really some characteristic trait of
an analysis of optimization issues from a machine learning point of view: It is
indeed a key element in this thesis as it is, even if with very different aims, in the
work of Wolpert & Macready (1996, 1997), authors that have a strong machine
learning background and are mostly active, David Wolpert in particular, within
the machine learning community.

Another original element in the thesis, that also stems from a well established
practice in machine learning, is the experimental methodology adopted. In the
machine learning literature, great attention is payed to a clear separation between
data used for training a learning machine and data used for its assessment. Ma-
chine learning practitioners are well aware of the risks associated with a violation
of this separation, that is, the risk of seriously overestimating the performance
of a learning approach. Qwer-fitting is the concept that is typically invoked for
describing this phenomenon and different theoretical works have been devoted
to its analysis—see for example Geman et al. (1992) and Vapnik (1995, 1998).
Unfortunately, no similar awareness exists within the optimization community
of the risks deriving from assessing the performance of a metaheuristic on the
same instances that where used for tuning its parameters. In the thesis we call
over-tuning the over specialization of a metaheuristic for a specific instance, or
group of instances: In particular, we stress the need to assess the performance
of a metaheuristic on fresh instances that where not previously used for config-
uring or fine-tuning the parameters of the metaheuristic itself. This ensures an
unbiased evaluation of the metaheuristic under analysis.

Always concerning the experimental methodology adopted in the thesis, a
further original element borrowed from the machine learning practice is the re-
sampling strategy that was used in the comparison of the tuning algorithms
discussed in the thesis and in the analysis of the risks associated with the afore-
mentioned over-tuning concept. Re-sampling methods (Good, 2001) such as, for
example, the bootstrap (Efron & Tibshirani, 1997), are statistical methods that
are effectively used for enhancing the significance of the conclusions that can be
drawn from a given data sample. Rather than using the given sample directly,

6 Chapter 1. Introduction

re-sampling methods prescribe that a number of pseudo-samples be generated by
sampling, possibly with replacement, the original data. All subsequent analysis is
then performed on the so obtained pseudo-samples. These methods are commonly
employed by machine learning practitioners but, to the best of our knowledge,
they have never been adopted before in the empirical analysis of metaheuristics.
Nevertheless, re-sampling methods are particularly suitable for research in meta-
heuristics and in the thesis they allow to simulate an extremely large number of
runs of the metaheuristics under analysis and to draw therefore conclusions that
would have been impractical to reach by actual computation.?

The structure of the thesis

Beside this Chapter 1, also Chapter 2 is of a marked introductory nature. It is
composed of two parts: On the one hand, Section 2.1 introduces some background
knowledge about combinatorial optimization and metaheuristics. In particular,
this section provides a critical review of the literature concerning the empirical
evaluation of metaheuristics and the fine-tuning of their parameters. On the other
hand, Section 2.2 introduces the supervised learning problem and in particular
the racing class of algorithms that were originally proposed within the machine
learning community for solving the model selection problem. These algorithms
serve in this thesis as a source of inspiration for tackling the problem of tuning
metaheuristics.

Chapter 3 gives a precise definition of the tuning problem that is considered
in the rest of the thesis. First, an informal definition is given through an example
of a typical situation in which the tuning problem emerges. Then, a formal
position of the problem is proposed, which gives a precise mathematical meaning
to each of the elements highlighted in the informal example. The role played by
Chapter 3 is of key importance for the development of the thesis: To the best of
our knowledge, our definition of the tuning problem is the first formal definition
of this problem given in the literature. It has the merit of revealing the true
nature of the problem of tuning metaheuristics and to show its tight relationship
with the supervised learning problem and in particular with model selection.

Chapter 4 presents the racing class of algorithms for solving the tuning prob-
lem defined in Chapter 3. These racing algorithms are inspired by some algo-
rithms introduced within the machine learning community for solving the model
selection problem. In particular, the F-Race algorithm is introduced. F-Race
belongs to the family of racing algorithms but it is characterized by the adop-
tion of a novel statistical test, the Friedman two-way analysis of variance by

2As an example, the analysis summarized in Figure 6.2, page 182 of Chapter 6, is based on
80600 simulated runs of iterated local search, each taking 10s of computations on the kind of
machine adopted, an AMD Athlon™ XP 1400-based personal computer. If actually executed,
these runs would have taken more than 8x10'%s, that is, more than 2.5 million years: Quite a
considerable time ... especially when you wish to include the result in your Ph.D. thesis!

ranks (Conover, 1999), that had never been considered before in the design of
racing algorithms. As it is explained in the body of the chapter, the Friedman
test appears particularly suitable in the context of metaheuristics tuning. The
chapter defines also some simpler brute-force algorithms that for their charac-
teristics, as it will be made clear in the chapter itself, serve in our research as
an appropriate yardstick for measuring the performance of the tuning algorithms
developed in the thesis. As a by-product of the development of F-Race and of
the other tuning algorithms presented in the chapter, Section 4.1 proposes a for-
mal analysis of the problem of evaluating the expected performance of a generic
stochastic algorithm, such as a metaheuristic or one of its configuration. This
analysis has a major impact on the empirical study described in Chapter 5 and
informs the discussion on the experimental methodology proposed in Chapter 6.

Chapter 5 proposes an empirical evaluation of the tuning algorithms intro-
duced in the thesis. The chapter is composed of two parts aiming both, each on
the basis of different pieces of evidence, at showing the effectiveness of the algo-
rithms under analysis: On the one hand, Section 5.1 proposes a formal empirical
analysis in which the racing algorithms discussed in the thesis are compared, un-
der controlled conditions, with some brute-force methods that serve as a yardstick.
In this section, two tuning problems are considered. In the first, the metaheuris-
tic to be tuned is iterated local search and the optimization problem considered
is the QUADRATIC ASSIGNMENT problem. In the second, the algorithm is ant
colony optimization and the problem is the TRAVELING SALESMAN problem. For
both tuning problems, the differences in the performance of the algorithms under
analysis are assessed through appropriate statistical tests of significance, and a
number of graphs are proposed that help visualize and understand the charac-
teristics of the algorithms themselves. On the other hand, Section 5.2 reports
some examples of practical applications of the racing algorithms presented in the
thesis. These examples do not provide any formal comparison with other meth-
ods and are more of a qualitative rather than quantitative nature. Their goal is
to show that the proposed algorithms have the flexibility and usability that are
necessary to make them appealing for practical applications.

Chapter 6 is of a rather philosophical nature and proposes a critical discussion
of the experimental methodology currently adopted in many works that present
empirical analysis of metaheuristics. On the basis of the definition of the tuning
problem given in Chapter 3, and in particular of the formal analysis of the problem
of evaluating the expected performance of a metaheuristic given in Section 4.1,
we are in the position of highlighting some pitfalls in the current methodology
and proposing an alternative approach.

Each chapter of the thesis is concluded by a section devoted to a discussion
and a critical evaluation of the material presented in the chapter itself. Final
conclusions are drawn in Chapter 7, which proposes an overview of the results
presented in the thesis, puts them in perspective, and highlights possible exten-
sions and future research directions.

8 Chapter 1. Introduction

The Metaheuristics Network

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

INTELLEKTIK, Technische Universitdt Darmstadt, Darmstadt, Germany
CSG@G, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Manno, Switzerland
ECRG, Napier University, Edinburgh, United Kingdom

EuroBios, Paris, France

AntOptima, Lugano, Switzerland

Table 1.1: Five academic research groups and two companies have been involved
in the activities of the Metaheuristics Network that covered the time period
between September 2000 and August 2004.

Further material is given in the annexes: They cover topics that, although
directly related to the issues discussed in the thesis, have been judged not strictly
necessary for following the logical flow of the arguments. In particular, Annex A
proposes an original analysis from a machine learning perspective of ant colony
optimization, one of the metaheuristics discussed in the thesis. On the other
hand, Annex B is an overview of lazy learning, a supervised learning method that
is mentioned on several occasions in the thesis.

The Metaheuristics Network

The research presented in this thesis was carried out in the framework of the
Metaheuristics Network which provided the original motivations, the research
environment, and the necessary funding. The Metaheuristics Network is a Train-
ing and Research Network funded by the Improving Human Potential Programme
of the Commission of the European Communities, under contract number HPRN-
CT-1999-00106. According to the official contract of the Metaheuristics Network
(2000):

The goal of the Metaheuristics Network is to deepen the understanding
of metaheuristics so that they can be applied more effectively to the
solution of important practical combinatorial optimisation problems.

The activities of the Metaheuristics Network started in September 2000 and were
accomplished in August 2004. A total of seven nodes have been involved: five
academic research groups and two companies—see Table 1.1 for a list of the
participants.

The research method of the Metaheuristics Network has been mostly exper-
imental. Along the four year life period of the project, different combinatorial
optimization problems were studied. The network tackled first some well under-
stood academic problems such as MAXIMUM SATISFIABILITY and QUADRATIC

ASSIGNMENT. Once the network was properly set up, the focus moved to more
challenging problems: one year was devoted to scheduling problems, in partic-
ular GROUP SHOP SCHEDULING (Sampels et al., 2002), one year to timetabling
problems, in particular UNIVERSITY-COURSE TIMETABLING (Rossi-Doria et al.,
2003), and finally one year to vehicle routing problems, in particular VEHICLE
ROUTING WITH STOCHASTIC DEMAND (Bianchi et al., 2004). For each of the
aforementioned problems, a number of metaheuristics were implemented includ-
ing simulated annealing, tabu search, evolutionary computation, iterated local search,
and ant colony optimization.> The study of each problem has been organized in
three phases. During the first phase, one single node would conduct a pre-
liminary analysis of the problem. This node would be the one with the most
significant background experience on the problem at hand. The goal of the first
phase would be to highlight the most interesting features of the problem itself,
point out possible pitfalls, define a class of instances of interest, and implement
a common software library including data structures, an input/output interface
and other software components such as an appropriate local search.* In the sec-
ond phase, each of the academic research groups would implement a different
metaheuristic on the basis of the common software library developed in the first
phase. These versions of the algorithms were supposed to be bare-bone imple-
mentations of the basic principles of each metaheuristic aiming at providing an
understanding of their potential, without a direct concern to performance. The
second phase would conclude with an empirical analysis of the metaheuristic
implemented. In the third phase, a stronger interaction among the network
nodes would take place with the aim of designing some high-performing, possi-
bly hybrid, metaheuristics based on the experience gathered during the first two
phases.

Parallel to the activity of the academic nodes, the industrial nodes would
study the possibility of adopting the metaheuristics under analysis for the solu-
tion of real-world problems similar to those studied by the academic partners. A
continuous exchange of information and experience between academic and indus-
trial partners resulted to be highly beneficial for both since it gave the academic
researchers the chance to measure the practical relevance of their work, and gave
the industrial researcher a wealth of new and promising ideas.

The author of this thesis joined the Metaheuristics Network in April 2001 and
spent 12 months with INTELLEKTIK in Darmstadt, Germany, and 28 months
with IRIDIA in Brussels, Belgium. The original analysis of the tuning problem
and its formal definition were produced while the author was with INTELLEK-
TIK. The tuning algorithms presented in the thesis were first employed for tuning
the parameters of the two metaheuristics, namely simulated annealing and iterated

3These algorithms are introduced in Section 2.1.7.
4See Section 2.1, in particular Sections 2.1.6 and 2.1.7, for an introductory discussion on the
role of local search in the implementation of metaheuristics.

10 Chapter 1. Introduction

local search, developed by INTELLEKTIK for the second phase of the research
on UNIVERSITY-COURSE TIMETABLING. When the author moved to Brussels,
the same tuning approach was adopted for re-shaping the ant colony optimization
algorithm implemented at IRIDIA. During the third phase of the research on the
timetabling problem, a joint research involving IRIDIA, INTELLEKTIK, and
ECRG was set up with the aim of producing a high-performing algorithm for
timetabling by combining features of different metaheuristics that were proven
successful during the second phase. In this effort for producing an hybrid meta-
heuristic, a fundamental role was played by a semi-automatic tuning procedure
derived from the methods presented in this thesis. The resulting algorithm out-
performed all algorithms submitted to the International Timetabling Competi-
tion organized in 2003 by the Metaheuristics Network and sponsored by PATAT,
the international series of conferences on the Practice and Theory of Automated
Timetabling. Moreover, the ideas presented in this thesis had a major impact in
refining the experimental methodology adopted by the Metaheuristics Network
for the empirical assessment of the algorithms developed within the network. In
particular, the analysis of the problem of evaluating the expected performance of
a metaheuristic, as presented in Section 4.1, led to the definition of a novel exper-
imental protocol that was first adopted for the assessment of the metaheuristics
developed for the vehicle routing problem.

Denn wer, ohne ein bestimmtes Problem vor
Auge zu haben, nach Methoden sucht, dessen
Suchen ist meist vergeblich.t

Dawvid Hilbert

Chapter 2

Background and state-of-the-art

Although the problem of tuning metaheuristics is highly relevant in practical ap-
plications and notwithstanding the general acknowledgment of this fact, no well
defined and established methodology exists for tackling it. Indeed, the most strik-
ing element emerging from the literature is that the problem even lacks of a clear
and explicit definition which, in our opinion, indicates that a full understanding
of its very nature is still missing." As a consequence, the analysis of the state-
of-the-art that we propose in this chapter will be unavoidably “in the negative:”
It will be characterized more vividly by what is missing in the literature rather
than by what is present.

This chapter is composed of two parts: On the one hand Section 2.1 introduces
some background knowledge about combinatorial optimization and metaheuris-
tics. More in the specific, Section 2.1.8 describes the current practice in tuning
metaheuristics, and some related issues discussed in the literature, such as, for
example, the definition of an experimental methodology. On the other hand, Sec-
tion 2.2 introduces the supervised learning problem while Section 2.2.7 describes
a class of model selection methods adopted by the machine learning community.

These two parts, which might admittedly seem quite unrelated, are connected
precisely by the definition of the tuning problem that, despite (and indeed due to)
its absence from the literature, is the pivot of this chapter and of the whole thesis.
The connection is made clear in the main body of the thesis: The definition of
the tuning problem proposed in Chapter 3 shows that tuning metaheuristics can
be indeed described as a learning problem. Furthermore, Chapter 4 introduces
an algorithm that belongs precisely to the class described in Section 2.2.7, and
that can be effectively used for tackling the tuning problem, as it is shown by
some experimental results and examples of applications proposed in Chapter 5.

Y He who seeks for methods without having a definite problem in mind seeks for the most part
m vain.

!To the best of our knowledge, the first formal formulation of the tuning problem and its
description as a generalization problem akin to those faced in machine learning was given in
Birattari et al. (2002).

11

12 Chapter 2. Background and state-of-the-art

2.1 Metaheuristics for combinatorial optimization

The goal of this section is to provide some background knowledge on the use
of metaheuristics for combinatorial optimization and to report on the current
state-of the-art for what concerns the problem of tuning metaheuristics.

In this Section 2.1.1 we briefly propose some historical and philosophical facts
about optimization. In Section 2.1.2 we give a formal description of the opti-
mization problem and in Section 2.1.3 we introduce the problem of combinatorial
optimization. In Sections 2.1.4 and 2.1.5 we provide an overview of some impor-
tant theoretical results on the complexity of combinatorial optimization problems
and on the a priori equivalence of optimization algorithms. In Section 2.1.6 we
introduce the concept of metaheuristic and in Section 2.1.7 we provide a bird’s-
eye view of the most popular metaheuristics. Finally, in Section 2.1.7 we discuss
the problem of tuning metaheuristics as it appears in the literature.

2.1.1 A philosophical and historical perspective

Optimization problems are extremely relevant and arise in any human activity as
they represent the rationalization of the natural impulse of all intelligent beings
to aim at the best.

In a broad sense, to optimize means to select among a set of possibilities the
best one. In such a sense, man has always implicitly optimized since the night
of the times: Which fruit to pick from that tree? Which animal to hunt in that
herd? Which cave to spend the night in?

In a more formal sense, by optimization we mean a rational process that
involves the explicit definition, typically in the formal language of mathematics,
of a search domain and of a criterion. The first historical evidence of a rationally
posed optimization problem arrived to us through Simplicius (VIth century) who
quotes now lost works in which it appears that before Aristotle, that is before the
IVth century before Christ, it was known that among all plane figures of same
perimeter the circle is the one of largest surface and that among all solid of same
surface the sphere is the one of largest volume.

In the 19 b.C, the Latin poet Vergil reports the legend of the foundation of
the city of Carthage, about 800 b.C.:

Devenere locos, ubi nunc ingentia cernis
moenia surgentemque novae Karthaginis arcem,
mercatique solum, facti de nomine Byrsam,
taurino quantum possent circumdare tergo.*
Publius Vergilius Maro, Aneid, Book 1.

The Phoenician Queen Dido reached North African after fleeing her country to es-
cape from her brother, the tyrant Pygmalion. Once on the coasts of the Tunisian

Y Then came they to these lands where now thine eyes behold yon walls and yonder citadel
of newly rising Carthage. For a price they measured round so much of Afric soil as one bull’s
hide encircles, and the spot received its name, the Byrsa.

2.1. Metaheuristics for combinatorial optimization 13

A

Figure 2.1: The brachistochrone problem proposed by Bernoulli in 1696: Among
all possible paths joining two points A and B in the vertical plane, find the one
which minimizes the time of descent of an object moving under gravity along the
path itself.

gulf, she managed to persuade the local chief to give her as much land as she could
enclose within the hide of a bull. She is reported to have cut the hide into thin
strips, joined them into a rope, and laid the latter out along a semicircle, using
the Mediterranean coast as a supplementary boundary: By shaping the rope into
a semicircle, Dido solved the problem of mazimizing the enclosed surface while
satisfying an isoperimetric constraint.?

The great scientists of the XVII and XVIII centuries posed and solved other
optimization problems. Isaac Newton (1642-1729), Christian Huygens (1629-
1695), and Leonhard Euler (1707-1789) study the problem—sadly enough, a
military application—of maximizing the range of a projectile as a function of the
initial elevation. In 1687 Newton studies a problem of hydrodynamic: minimize
water resistance by varying the shape of an object propelled through the water.
In 1696, Johann Bernoulli (1667-1748) challenges the mathematicians of his time
to solve the brachistochrone® problem (Bernoulli, 1696): Given two points in the
vertical plane, find the shape of a wire joining the two points which minimizes the
time of descent on a small bead that slides along the wire under gravity—see Fig-
ure 2.1 for a graphical representation of the problem. Five mathematicians found
a solution using different techniques: Johann Bernoulli himself, Newton, Jacob
Bernoulli (1654-1705), Leibniz (1646-1716), and de L’Hopital (1661-1704).*

Nowadays, optimization problems emerge in all branches of engineering: the
very act of designing, which characterizes the activity of an engineer, is in its
wholeness, at least ideally, an optimization problem: Among all possible designs

2An interesting account of the history of optimization is given in the introduction of the
optimal control book by Alexéev et al. (1982).

3From the Greek Ppdytotoc, shortest and ypdvoc, time.

4Galileo (1564-1642) had already analyzed a similar problem but without obtaining a general
solution (Galilei, 1638).

14 Chapter 2. Background and state-of-the-art

find the one that satisfies a set of given constraints and minimizes the costs.’

Nevertheless, the importance of optimization problems is not restricted to
technology and to human artefacts but extended curiously also to natural sci-
ences: It appears so natural to pursue the best, that philosophers and scientists
became convinced that Nature itself, in some sense, optimizes. The least-time
principle of Pierre de Fermat (1601-1665) is a first major example in the history
of science: It asserts that the actual path between two points taken by a beam
of light is the one which is traversed in the least time. About half a century
later, in his philosophical work Théodicée (1710), Leibniz claims that the uni-
verse is the best possible.® Such a philosophical claim had a great influence on
the development of the principle of least-action which is an assertion about the
nature of motion that provides an alternative approach to mechanics completely
independent of Newton’s laws.” First formulated in 1750 by Maupertuis (1698
1759) in a somehow naive form, the principle of least-action was then refined
and further developed by great mathematicians such as Euler, Lagrange,® and
William R. Hamilton (1805-1865). This principle is indeed one of the greatest
generalizations in all physical science, although not fully appreciated until the
advent of quantum mechanics in the XXth century.® Variations on the least-
action principle have proved useful in general relativity theory, quantum field
theory, and particle physics. As a result, this principle lies at the core of much
of contemporary theoretical physics.

2.1.2 The optimization problem

Formally, an instance of an optimization problem is a pair (S, f) where S
is a generic set of solutions and f : S — R is a function that associates a cost to
each solution. The problem is to find a § € S for which:

f(3) < f(s) for all s € S. (2.1)

Such an element 5 is called an optimal solution to the given instance.' As a
shorthand notation, in the thesis we will write:

5 = arg Iglelél f(s), (2.2)

® Alternatively, a constraint is given on the costs in the form of a budget, and one wishes to
maximize some measure of performance.

SWithout being perfect, otherwise it would be indistinguishable from God.

"A remarkable introduction to classical mechanics seen from this perspective is given in
Lanczos (1985).

8Giuseppe Lodovico Lagrangia (1736-1813).

9Ernst Mach in his influential history of mechanics (Mach, 1893) does not even mention the
principle of least-action nor Hamilton’s formalization of mechanics.

10Tt is customary to formulate optimization problems as minimization problems. Clearly, any
minimization problem (.S, f) can be transformed into a maximization problem (.S, g) by simply
considering g = —f and reversing the inequality in Equation 2.1. In this case, it is said that
the function g assigns a value to each solution in S.

2.1. Metaheuristics for combinatorial optimization 15

where with “arg min” we denote the element of the set S for which the minimum
is attained.!!

For convenience, along the centuries different classes of optimization problems,
each characterized by specific properties of the set of solutions and of the cost
function, where identified and studied separately. Nonlinear programming, con-
vex programming, linear programming, calculus of variation, and optimal control
are just examples of subfields of applied mathematics that focused on a specific
class of optimization problems.!?

2.1.3 Combinatorial optimization

In this thesis, we focus on combinatorial optimization problems, which are opti-
mization problems characterized by a finite set of solutions S, that is typically
defined as a subset of all possible combinations or permutations of given com-
ponents. The following example will serve as an introduction to this class of
problems:

Brel’s Problem®

Your partner wants to visit the cities of Vierzon, Vesoul, Honfleur,
Hamburg, and Paris. You are not really happy about this trip: you
would rather visit Antwerp!

In order to make the trip slightly less unpleasant, you wish at least
to go along the shortest tour that passes through all the given cities.

In this example, which our reader will have certainly recognized as an instance
of the well known TRAVELING SALESMAN problem, the set of solutions is the set
composed of all possible permutations of the given cities.

More formally, we define an instance of a combinatorial optimization
problem to be a pair (5, f) where S is a finite set of solutions, and f: S — R
is a function that associates a cost to each solution. The problem is to find an
optimal solution § = argmingeg f(s).

As already mentioned above, an instance is typically given in terms of some
set C of components: The set of solutions S is some appropriate subset of the
power set P(C) of the components C, and the cost function f is computed on the
basis of the components themselves.*

H'We suppose here that S is closed. Under this assumption, the minimum of f on S indeed
exists. If this minimum is attained for more than one element of S, it is a matter of indifference
which one is considered. Some authors prefer thinking that “arg min” defines the set S C S of all
optimal solutions for which Equation 2.1 holds. Accordingly, they write S = argmin,eg f(s).
The two conventions are equivalent and both acceptable: In the thesis, we adopt consistently
the one defined in Equation 2.2.

12Gee Pierre (1986) for a comprehensive introduction to optimization theory.

13This problem was first illustrated, albeit not in its optimization form, in Brel (1968).

16 Chapter 2. Background and state-of-the-art

We call a combinatorial optimization problem a set of instances that
share the same structure for what concerns the set S and the cost function f,
that is, the same way of constraining the set P(C) for obtaining S, and the same
general procedure for assigning a cost to a solution on the basis of its components.

The process of defining a combinatorial optimization problem as an abstrac-
tion from single instances is clearly somehow arbitrary and it is justified solely
by convenience: Thanks to this abstraction we can developed algorithms that
apply to the whole set of instances we gather into a problem, rather than develop
ad hoc algorithms for each instance. The same holds true for the formal proofs
of properties common to all instances of a same problem.

Some combinatorial optimization problems

In addition to the already mentioned TRAVELING SALESMAN, other relevant com-
binatorial problems that are considered in this thesis are MAXIMUM SATISFIA-
BILITY, QUADRATIC ASSIGNMENT, and TIMETABLING. We give in the following
a brief description of these problems.

MAXIMUM SATISFIABILITY

A set U = {uj,ug,...,uy} of boolean variables and a set C' =
{c1,¢9,...,¢,} of clauses are given. A truth assignment for U is a
function ¢ : U — {0,1}. We say that u € U is true under ¢, if
¢(u) = 1. Otherwise, if ¢(u) = 0, we say that u is false. If u € U
is a variable, v and w are [iterals over U: The literal u is true if
and only if u is false. A clause ¢ € C' is a set of literals over U. It
represents the disjunction of its literal and it is therefore satisfied by
a truth assignment ¢ if and only if at least one of its members if true
under ¢. The problem consists in finding the truth assignment that
minimizes the number of clauses that remain unsatisfied. It is easy to
verify that the number of possible truth assignments is 2!Y! and that
the set of possible solutions is the power set of U.

“4For definiteness, we provide here a formal definition of an instance of the TRAVELING
SALESMAN problem in its asymmetric and integer version.
The set C =V U EF U D of components is the union of:
e a set V of vertices, each representing a city to visit;
o aset E={e:e= (vj,vs) wherevj,vp €V, and j#k} of edges each representing a
connection between an ordered pair of cities;
e a function D : E — Z™ encoding the distance between two cities in V', and represented
here as a set of ordered pairs: W = {w: w = (e,d) wheree € E and d € Z"}.
On the basis of the components C we can define the pair (.9, f): The set of solutions is given as
S={seP(E)CP(C):|s|=|V|-1, YveV Jeyes€s: ex=(v,v;), ea=(vk, v) for some v;,v,€V'}

and the cost function is defined as f(s) = Z D(e), where D(e) = d if JweW: w= (e, d).

ecs

2.1. Metaheuristics for combinatorial optimization 17

(QUADRATIC ASSIGNMENT

This problem consists in assigning n facilities to n locations: Two ma-
trices A and B are given, where a,,, is the distance between locations v
and w, and b, is the flow between facilities v’ and w’. The goal is to

find an optimal assignment, that is, a permutation s = {s1, s9,...,5,}
of index set {1,2,...,n} that minimizes the function:
n n
F8) =D bouts,sn,
v=1 w=1

where s, denotes the location which facility v is assigned to, and
the term b,y as,s, represents the cost contribution of simultaneously
assigning facility v to location s,, and facility w to location s,,,.

TIMETABLING

The TIMETABLING problem (Schaerf, 1995; Cooper & Kingston, 1995;
de Werra, 1995, 1997) exists in a number of variants. We consider
here the UNIVERSITY-COURSE TIMETABLING problem (Burke et al.,
1994, 1995; Schaerf, 1995; Di Gaspero & Shaerf, 2001), as defined by
the Metaheuristics Network for its research activity and for the In-
ternational Timetabling Competition.'> A set of classrooms is given
together with a set of lessons and a set of time-slots. A list of at-
tending students and a list of classroom requirements (for example, a
video-projector or a minimum size) are associated with each lesson.
Similarly, each classroom is associated with a list of requirements that
it is able to satisfy. The set S of feasible solutions contains all the
assignments lesson /classroom /timeslot that satisfy the following two
constraints: (i) no student should have overlapping courses, and (ii) no
lesson should be held in a classroom that is too small for containing
the number of student that are supposed to attend. The problem
consists in finding a feasible solution that minimizes the number of
the following events: (i) a student has only one hour of class on a
day; (ii) a student has more than two hours of class in a row; (iii) a
student has class in the last time-slot of a day. A formal description
of the problem defined by the Metaheuristics Network was given by
Manfrin (2003) and by Socha (2003b).

Combinatorial optimization problems, and in particular some of them including
MAXIMUM SATISFIABILITY, QUADRATIC ASSIGNMENT and TIMETABLING, are
particularly hard to solve in a precise sense that is made clear in Section 2.1.4.

Yhttp://www.idsia.ch/ttcomp2002

18 Chapter 2. Background and state-of-the-art

2.1.4 On the computational complexity of algorithms

When one designs an algorithm, he is in general interested in making it as efficient
as possible, where the efficiency of an algorithm is typically measured in terms
of its computation time.'

Efficiency is such a critical factor in the design of algorithms that it dictated
a criterion for classifying combinatorial optimization problems: A problem is
considered well-solved when an algorithm is available that solves efficiently all
its instances. It is an accepted and meaningful convention (Edmonds, 1965) to
call “efficient” an algorithm that computes in a time that grows not more than
polynomially in the size of the instance, where the latter is the amount of data
needed to encode the instance itself in a reasonably compact form, that is, for
example, without extra padding characters or without unnecessary information.!”
For definiteness, let us consider the TRAVELING SALESMAN problem. In order to
encode a generic instance we need to list the cities and to encode, say in binary
form, the distance between each pair of them: The amount of information needed
grows quadratically—and therefore polynomially—in the number of cities. The
number of cities can therefore be informally taken as a measure of the size of an
instance.'®

So far, no efficient algorithm has been devised for solving the TRAVELING
SALESMAN problem. The same holds for a large number of other relevant prob-
lems: Notwithstanding the efforts of the research community, there is still a class
of hard problems for which no efficient algorithm is available.

16Clearly, the computation time of an algorithm depends on the speed and on the specific
architecture of the computer on which it runs. A machine independent measure can be obtained
in terms of the number of elementary operation needed by some abstract computation model
such as, for example, a Turing machine (Mandrioli & Ghezzi, 1987). Nevertheless, in the
framework of this thesis an informal understanding of this concept will suffice. Another remark
is worth mentioning here: when studying the complexity of an algorithm, another factor to be
considered beside the computation time is the amount of memory needed by the computation.
Also this issue is beyond the scope of this thesis. We refer the reader to a text book of
theoretical computer science, such as Mandrioli & Ghezzi (1987), for a formal presentation of
these concepts.

7In the following, we will often use the wording “polynomial-time algorithm” as a short hand
for denoting an algorithm that solves each instance of a given problem in a time that is bounded
by a polynomial function of the size of the instance itself. Similarly, the explicit reference to
the size of the instance at hand will be understood in the expression “the algorithm computes
in polynomial time.”

8The actual amount of information needed to encode the instance depends on the specific
encoding we adopt. In any case, for any reasonable encoding, the amount of information will
not grow more than polynomially with the number of cities. The mismatch between what
we informally call the size—number of cities—and the actual amount of information needed to
encode the instance does not cause any harm here since we are interested in making a distinction
between the “good” algorithms that compute polynomially, and the “bad” ones that do not: an
algorithm computes polynomially in the actual amount of information needed under a specific
encoding, if and only if it computes polynomially with respect to the number of cities.

2.1. Metaheuristics for combinatorial optimization 19

It has been theoretically proved!? that if an algorithm were available to solve
in polynomial time one of the members of this class of hard problems, also all the
others could be solved in polynomial time. In fact, the problems belonging to this
class enjoy the property that each of them can be reduced to each of the others
in polynomial time; that is, each instance of each of the problems belonging to
the class can be transformed, in polynomial time, into a corresponding instance
of each of the other problems in the class. It follows that if we had an efficient
algorithm for one of the problems of the class, we could solve in polynomial time
each instance of any other problem by simply transforming it into an instance of
the problem we are able to solve, and then solve the latter: Both operations can
be completed in polynomial time and therefore the whole computation would be
polynomial. As a consequence, either all the problems in such a class are solvable
in polynomial time, or none of them is. So far, there is no formal proof of neither
of the two alternatives.

Decision problems and the NP-complete class

The concept outlined above are formalized by the theory of computational com-
plexity and in particular by the so called NP-completeness theory (Garey &
Johnson, 1979). This theory deals with the class of decision problems, that is,
those problems whose answer is either yes or no. It does not refer directly to
combinatorial optimization, which is the focus of this thesis. Nevertheless, its
results can be extended also to optimization problems as we show in the next
subsection. The TRAVELING SALESMAN problem serves also here as a valuable
example, in this case, of a decision problem:

TRAVELING SALESMAN

In the decision version of the TRAVELING SALESMAN problem, a set of
cities is given, together with the distance between each pair of them.
The question is: Does a tour exists that visits all of them once and
only once and whose length is less than a given value L?

The focus of the NP-completeness theory is more precisely on the class of decision
problems that can be solved in polynomial time by a nondeterministic machine.
By a polynomial nondeterministic machine we mean a fictious device that for any
instance admitting a positive answer is able to show in polynomial time that the
answer is indeed positive. With reference to the TRAVELING SALESMAN problem,
for example, if the instance at hand admits a tour of length less than L and
therefore the answer to the question is positive, a polynomial nondeterministic
machine needs simply to guess and hit an appropriate solution and then show,
in polynomial time, that indeed its length is less than L. This definition of a
polynomial nondeterministic machine involves some sort of magic in the ability

19See Garey & Johnson (1979) for an organic account of the subject.

20 Chapter 2. Background and state-of-the-art

of the machine to guess the appropriate solution. Clearly, no such machine exists
and the definition we gave serves solely as a formalization of the concept of
polynomial-time verifiability of solutions.

The class of all problems that can be solved in polynomial time by a nonde-
terministic machine is called NP. As a subset of NP we define the class P of all
those problems that can be solved in polynomial time by a deterministic machine,
which indeed embodies the concept of an algorithm.?® Clearly, all problems in P
are also in NP: If the instance at hand admits a positive answer, the determinis-
tic machine needs first to find an appropriate solution and then to verify that the
solution indeed satisfies the question. A corresponding nondeterministic machine
can rely on a sort of oracle for finding the appropriate solution instantaneously
and then jumps immediately to the verification phase. The verification phase for
the two machines is the same: they differ in the fact that the deterministic one
needs first to find the solution. The computation time of the nondeterministic
machine will be no longer than the one of the deterministic one. If the com-
putation time of the deterministic machine is polynomially bounded, that is, if
the problem is in P, also the computation time of the nondeterministic one will
be polynomially bounded, and therefore the problem will be also in NP. Thus,
P C NP

Now the question is whether NP\ P is empty or not. In other words, if there
exists any nherently intractable decision problem in NP, that is a decision prob-
lem whose solutions can be verified in polynomial time but for which no known or
unknown algorithm exists that can tell in polynomial time if any given instance
admits a positive answer. This is nowadays one of the most interesting open ques-
tions in mathematics and theoretical computer science, both from a speculative
point of view and for the economical relevance of its practical implications.

What we know for sure is that there are some decision problems for which
nobody so far has been able to find a polynomial-time algorithm. Moreover, it
has been shown that a specific problem known as SATISFIABILITY is, in a precise
sense we will make clear presently, the hardest problem in NP (Cook, 1971).

SATISFIABILITY
A set U = {ug,ug,...,uy} of boolean variables and a set C' =
{c1,¢9,...,¢,} of clauses are given. A truth assignment for U is a

function ¢ : U — {0,1}. We say that u € U is true under the truth
assignment ¢, if ¢(u) = 1. Otherwise, if ¢(u) = 0, we say that u is
false. If u € U is a variable, v and w are literals over U: the literal u is
true if and only if u is false. A clause ¢ € C'is a set of literals over U.
It represents the disjunction of its literals and it is therefore satisfied
by a truth assignment ¢ if and only if at least one of its members if

20Theoreticians formalize this concepts in terms of the Turing machine. We can informally
think of a normal computer program that runs on our desktop.

2.1. Metaheuristics for combinatorial optimization 21

NP-complete

P = NP P+ NP

Figure 2.2: The NP class under the two possible hypothesis. On the left hand
side: if P = NP, all decision problems in NP can be solved in polynomial time.
On the right hand side: if P # NP, the set NP \ P is at least populated by the
NP-complete class which includes, among others, the SATISFIABILITY problem.

true under ¢. The question is whether there exists a truth assignment
that satisfies all clauses.

It has been shown that all problems in NP can be reduced to SATISFIABILITY
in polynomial time (Cook, 1971; Karp, 1972). This means that any instance
of any problem in NP can be transformed, within a time bounded by a poly-
nomial function of the size of the instance itself, into a corresponding instance
of SATISFIABILITY. If we were able to solve in polynomial time all instances of
SATISFIABILITY, we would be able to solve in polynomial time any instance of
any NP problem. In this precise sense, no problem in NP can be harder than
SATISFIABILITY: If we were able to show that SATISFIABILITY can be solved in
polynomial time, NP would be a subset of P, and since the opposite holds as it
was shown above, the two sets would be equal.

On the other hand, since the proof that SATISFIABILITY is the hardest prob-
lems in NP, many other problems were proved as hard as SATISFIABILITY. In
general, a problem II; is proved at least as hard as problem Il if each instance
of I, can be transformed in polynomial time into a corresponding instance of II;.
The class of problems that enjoy the property of being the hardest in NP is
called the class of NP-complete problems: If NP\ P is not empty, it is popu-
lated, at least, by the class of NP-complete problems, as graphically illustrated
in Figure 2.2.

Optimization problems and the NP-hard class

The concepts outlined in the previous subsection concerning the computational
complexity of decision problems can be extended to any kind of problem and in
particular to combinatorial optimization problems. For definiteness, we restrict to
the latter in the rest of our discussion. A combinatorial optimization problem II,

22 Chapter 2. Background and state-of-the-art

is said to be at least as hard as a decision problem Il if for each instance i4 of 11,4,
we can define in polynomial time an instance 1, of I, such that the knowledge of
an optimal solution to 7, would enable us to answer either in the positive or in
the negative to the question associated to 74. Some examples will help clarifying
this definition.

The similarity is apparent between the optimization problem MAXIMUM SAT-
ISFIABILITY defined at page 16 and the decision problem SATISFIABILITY defined
at page 20. Given an instance of SATISFIABILITY we can immediately obtain a
corresponding instance of MAXIMUM SATISFIABILITY: the sets U of variables
and C of clauses of the latter are taken to be exactly those of the former. If an
optimal solution 5 of the MAXIMUM SATISFIABILITY instance is available, we can
compute in polynomial time its cost f(S), that is, the number of clauses that are
left unsatisfied. If f(5) = 0 the answer to the original SATISFIABILITY instance
is yes. Otherwise, since no other solution s might leave unsatisfied less clauses
than 5, we can safely conclude that the original set of clauses cannot be satisfied
and that the answer to the original SATISFIABILITY instance is no.

Even more apparent is the similarity between the decision version and the
optimization version of the TRAVELING SALESMAN problem. Also in this case,
given an instance of the decision problem where the question is whether a tour
exists whose length is less than a given L, we can immediately obtain the cor-
responding optimization version: same cities and same distances between each
pair of them. If the optimal solution of the optimization instance is available, we
can compute in polynomial time its length and we can compare it with L. If it
is shorter we answer in the positive to the original decision problem. Otherwise,
we answer in the negative.

From these examples it emerges clearly that if a polynomial-time algorithm
existed for solving the optimization problem, also the corresponding decision
problem would be solvable in polynomial time via the former. In this sense MAX-
IMUM SATISFIABILITY and the optimization version of TRAVELING SALESMAN
are at least as hard as SATISFIABILITY and the decision version of TRAVELING
SALESMAN, respectively. The class of all problems that are as hard as a NP-
complete problem is called the class of NP-hard problems.

2.1.5 On the a priori equivalence of search algorithms

Another corpus of important theoretical results on optimization algorithms goes
under the suggestive name of no free lunch theorems (Wolpert & Macready, 1996).
These results concern the problem of optimization from a rather abstract point of
view. They do not refer, at least in their original form, to any specific algorithm
or to any of the above mentioned combinatorial optimization problems. Indeed,
the no free lunch theorem holds for an abstract model of the optimization process,
and only recently some theoretical result has been proposed (Schumacher et al.,
2001; Igel & Toussaint, 2003) that aims at bridging the gap between the abstract

2.1. Metaheuristics for combinatorial optimization 23

framework of the no free lunch theorem and the actual practice in combinatorial
optimization.

Let us consider all possible mappings f : S —) between two finite sets S
and), where S is the space of solutions and) is the range of their values. The
space of all such possible mapping is F = Y°. We define a trace of length m to
be a sequence of pairs:

T =A{(s1,51), -5 (8m, ym) }, (2.3)

where y; = f(s;). Moreover, let T and TY be the sequences of the visited
solutions and of their values, respectively. Further, let 7)} [j] = s; denote the j-th
component of 7)., and TY [j] = y; the j-th component of T¥. With the notation

Tm||(sm+17 ym-i—l) = {(Sla yl)a R (Sma ym)7 (Sm—i—la ym—l—l)}a (24)

we indicate the operation of appending the pair (S,,11, Ym+1) to the sequence T,,,
in order to obtain the sequence T}, .

The set of all possible sequences of length m is given by T, = (S x))™, and
the set of all sequences of any length by T =, -, Ton.

Let us define a deterministic non-retracing search algorithm, for short simply
algorithm in the rest of the section, the mapping a : T — S that maps a sequence
T into a solution. In particular, we require a not to revisit solutions, that is,
a:T—{seS:s¢gT}.

With the notation 7,,,(a, f) we denote the sequence of length m of pairs (s;, y;)
visited by the algorithm a when dealing with the problem f. To be more explicit:

s1 = a(0), y1 = f(s1), Ti(a, f) = {(s1,y1) };
sy = a(Ti(a, f)), Y2 = f(s2), Tr(a,) = Ti(a, f)[|(s2, y2);

sj:a(Tj_l(a,f)), yj:f(sj)’ n(aaf):T,j—l(aaf)H(sj’yj);

Sm = a(Tm—l(au f))v Ym = [(sm), Tonla, f) = To—1(a, H)l(Sm, Ym)-

The performance of the algorithm a on the function f for what concerns a search
of m steps is a function ®(7TY%(a, f)) of the values y; = f(s;) associated to the
solutions s; visited by a. Typically, we are interested in the best solution found
by a during the search:

(b(T'r?%(aa f)) = m.in Y with Yj € T’r?z(a’ f) (25)
J
Let us define the quantity P(7Y|f, m,a) that is the probability of obtaining a

certain sequence of values y1,..., vy, given that we are searching the function f
with algorithm a. Indeed, since we focus here on deterministic algorithms,

P f,m,a) =6 (T3, T3 (a, f))

24 Chapter 2. Background and state-of-the-art

where § is Kronecker’s function: P(TY|f,m,a) = 1 if TY = T¥(a, f) and it is
null otherwise.?!

Having defined the abstract model of optimization, we are now able to enun-
ciate the main theorem:

No Free Lunch Theorem. For any pair of algorithms a and b:

ST Py fom,a) =S P(TL|f,m,b). (2.6)

feFr fer

A proof of the theorem is given in Wolpert & Macready (1996).

From the no free lunch theorem, it follows that, for any measure of perfor-
mance ®(TY), P(P(TY)|f, m,a) averaged over all functions f € F, is independent
from the algorithm @.?? This means that if on a subset F' C F, the algorithm
a obtains on average better results than b, on the complement ' = F \ F', b
would perform better than a.

In this sense, the no free lunch theorem has been intended as an argument in
favor of the specialization of algorithms: for a given algorithm a find a subset of
optimization problems JF, on which a obtains good results. Alternatively, for a
restricted set 7' C F of optimization problems find the best algorithm.

Since the publication of the no free lunch theorem (Wolpert & Macready,
1997), research has therefore focused on the problem of finding classes of problems
over which the no free lunch theorem does not hold. In particular, an important
question is whether the no free lunch theorem holds over the instances of a given
combinatorial optimization problem such as TRAVELING SALESMAN, MAXIMUM
SATISFIABILITY, QUADRATIC ASSIGNMENT, and TIMETABLING.

A final answer to this question is not available, yet. Nonetheless, some inter-
esting results that go in this direction have been recently published. In particular,
Schumacher et al. (2001) proposed a sharpened version of the no free lunch theo-
rem based on the concept of closeness of a set F’ of functions under permutation.

21 An important element that should be noted is that the probabilistic framework proposed by
Wolpert & Macready (1996) implicitly contains much of the elements of the tuning problem as
it is formalized in Chapter 3. In particular, it contains the idea of a distribution of probability
over the space of the instances, which is fundamental for a correct definition of the problem
of tuning metaheuristics and which is thus the key element of this thesis. Unfortunately for
the scientific community—but fortunately for us, since this gave us the chance to investigate
in this thesis some previously unexplored domain—the full implications of the adoption of a
probabilistic framework went overlooked so far.

22Qther statements descend or are equivalent to the no free lunch theorem. For example,
it holds (Radcliffe & Surry, 1995) that for any two algorithms a and b, and any function f,
there exists another function g such that: TY (a, f) = TY (b, g), that is, a function g on which b
obtains the same sequence of values that a obtains on f. Moreover, the no free lunch theorem
has been extended to multiobjective optimization in the Pareto sense (Corne & Knowles, 2003).
Such equivalent statements or extensions are extremely interesting but they are not relevant in
our discussion.

2.1. Metaheuristics for combinatorial optimization 25

Let us first define a permutation of the set S to be a one-to-one function
o:S5 — S of S onto itself. A permutation of a function f :.S —) is a function
of + S — Y such that of (s) = f(c7'(s)). The set of functions F” is closed under
permutation if for all f € F', also of € F'. Schumacher et al. (2001) proved the
following:

No Free Lunch Theorem (sharpened). The no free lunch theorem holds for
a set F' if and only if F' is closed under permutation. That is, for any pair of
algorithms a and b:

> P(TYf,mia) = P(TY|f,m,b),

feF feF
if and only if for all f € F', also of € F.

Elaborating further on the result obtained by Schumacher et al. (2001), Igel &
Toussaint (2003) formulate the conjecture that for the combinatorial optimization
problems considered in practice, the no free lunch theorem does not hold. This
conjecture is based on two orders of considerations. The first, which in our
personal view is not fully convincing, is that the fraction of subset of F =) that
are closed under permutation tends to zero when |S| grows. The second, which
we consider much more interesting, is based on topological considerations on the
space S of combinatorial optimization problems. Igel & Toussaint (2003) start
their argumentation by showing that a non-trivial neighborhood?? is not invariant
under permutation. They describe then two constraints defined in terms of the
concept of neighborhood.

1. For a given neighborhood relation v and a given function f, let the maxi-

mum steepness z2**(f) be:

Z 8 = max D si), f(sk)),

)=, mex | Dy(f(s). fla)

where Dy : Y x YV — R is some metric defined on Y. It holds that: If the
maximum steepness 2™**(f) =) of every function f € F’ is constrained
to be smaller than the range of f, than the set F’ is not closed under
permutation.

2. Let a local minimum of a function f be a solution § for which f(5) < f(s)
for all s such that v(§,s) = 1. Moreover, let the Y-histogram of a function
f be a mapping hy : Y — N such that h(y) counts the number of solutions

Z3Let a neighborhood relation on S be a symmetric function v : S x S — {0, 1}. Two solutions
sj, sk € S are called neighbors if v(sj,si) = 1. In the following we will use also the notation
sj € N(s) or s € N(sj) if v(s;,sk) = 1. A neighborhood structure is called non-trivial if
and only if there exist four solutions s;, sk, Sy, sw € S such that s; # sp Av(s;,s,) = 1 and
Sy # S A V(Sy, Su) = 1.

26 Chapter 2. Background and state-of-the-art

s € S that are mapped into y by f. Let us define now [™**(f) to be the
maximum number of local minima that any function f’ € F’, which shares
the same Y-histogram with f, can have. If the number [**(f) for every
function f € F' is constrained to be smaller than the maximum number of
local minima that a function belonging to F can have, then F' is not closed
under permutation.

According to Igel & Toussaint, these elements indicate that the no free lunch
theorem should not hold on the classes of combinatorial optimization problems
that are of practical relevance. Although these results appears very interesting,
the authors fail to indicate practical examples of classes of problem for which the
no free lunch theorem does not hold. The specific question whether the no free
lunch theorem holds true on the instances of TRAVELING SALESMAN, MAXIMUM
SATISFIABILITY, QUADRATIC ASSIGNMENT, and TIMETABLING is still open.

2.1.6 Exact algorithms, heuristics, and metaheuristics

Due to the economical relevance of combinatorial optimization problems and to
their diversity, a large number of algorithms were devised for their solution. These
algorithms can be classified as either ezact or approzimate.?*

Exact algorithms are guaranteed to find an optimal solution to any instance
within an instance-dependent run-time. Unfortunately, since many problems of
interest happen to be NP-hard, no polynomial-time algorithm is so far known
that solves them efficiently: The instance-dependent run-time cannot be bound,
for what concerns known algorithm, by any polynomial function of the size of
the instance. As a consequence, for many problems the applicability of exact
methods remains constrained to relatively small instances and a large share of
instances remains computationally intractable.

On the other hand, approximate methods are not guaranteed to find an op-
timal solution but, in practice, they are often able to find good solutions, albeit
possibly suboptimal, in a relative short time.

We need to elaborate more on this concept since it will be one of the key issues
in the development of the thesis. In practical applications we are often faced with
extremely large instances and too short time. Clearly, both qualifications large
and short for the size of the instance and for the time, respectively, are nothing
but relative: Given the available computing resources and the speed of the best
exact algorithm we can adopt for the problem at hand, we call large an instance
that cannot be solved by our algorithm within the available amount of time. Vice

24The classification of algorithms into ezact, heuristics, and metaheuristics that we adopt in
this thesis is admittedly rather simplistic. Further sub-categories could be possibly defined and
a sharper taxonomy could be given—see Papadimitriou & Steiglitz (1998). Notwithstanding
its roughness, the classification we adopt in this section will properly serve the purpose of the
thesis.

2.1. Metaheuristics for combinatorial optimization 27

versa, we say we have short time when within that amount of time we are not
able to solve the given instance with our algorithm.

In any case, when facing a practical problem we typically have to find the
best possible solution in the given amount of time, however overwhelming its size
might be. If the given time is larger than the time needed by the available exact
algorithms, practitioners have to resort to approximate ones.?

A term adopted in the operations research literature to denote an approximate
algorithm is heuristic.?® In its typical usage within the research community, this
term indicates an algorithm that comes with no guarantee of optimality but that
appears nonetheless sound and dictated by common sense, and that, first of all,
happens to work in practice.

Typically, a heuristic is tailored to a specific problem and heavily relies on
the peculiarities of the search space and of the cost function of the problem
itself. This means that designing a heuristic for a new problem is a particu-
larly labor-intensive activity. It requires to acquire a first-hand understanding of
the characteristics of the problem under analysis in order to exploit its intimate
characteristics and to delve into its depths. In the general case, the knowledge of
heuristics previously devised for other problems cannot be directly extended to
the new one and might be therefore of little help.

With the primary goal of reducing the development effort of approximate
algorithms, the so called metaheuristics were introduced.?” A metaheuristic is
a high-level and problem-independent definition of a search strategy that can
then be specialized to the specific optimization problem at hand. They are typi-
cally based on one or both of the following two non exclusive general principles:
(i) the incremental construction of a solution component by component; (ii) the
modification of a given complete solution.

For definiteness, let us give a description of the most basic metaheuristics
based on the second of the above mentioned principles: local search.?® Local search

25Waiting for faster computers to appear on the market is not an option here: Given the
nonpolynomial rate at which the time needed to solve an instance of a NP-hard problem
grows with its size, an increment of a factor 2 or even 10 in the speed of computers will have
a very little impact on the size of the largest instance we can solve. For what concerns the
computational issues relate to NP-hard problems, it appears we cannot rely on the development
of the hardware technology. Admittedly, there are a lot of rumors on quantum computing and
on its possible impact on the solution of NP-hard problems. Yet, given the current state of
development of quantum computing, it seems quite unlikely that our generation will be able to
witness its practical impact on the combinatorial optimization field.

Z6From the Ancient Greek ebpioxo, I find or I discover.

2TThe term metaheuristics |Gr. uetd, after or beyond + ebptoxo, I find or discover| was first
used in Glover (1986) but became widely adopted only more recently. Another term that has
been often used as an alternative is modern heuristics (Reeves, 1995).

28] ocal search is so basic as a metaheuristics that it could be considered as a degenerate
case. Some readers might hardly accept to call local search a metaheuristic on its own and
would rather consider it as component often included in other metaheuristics. They would
in any case agree with us that many metaheuristics, if (im)properly tuned, degenerate to a

28 Chapter 2. Background and state-of-the-art

is based on the concept of neighborhood of a solution: For using local search, we
need to define a rule to associate to each solution s € S, a set N (s) C S called a
neighborhood of s. A solution § is called a local optimum if none of the solutions
in its neighborhood has a lower cost: f(5) < f(s),Vs € N(5). Having defined
the concepts of neighborhood and of local optimum we are now in the position of
describing the algorithm. Local search is an iterative procedure that, starting from
an initial solution s, at the generic iteration j searches the neighborhood N (s;)
of the current solution s; according to some strategy. If a solution s’ € N (s;) is
found for which f(s") < f(s;) the procedure is iterated on s;11 = ', otherwise
the procedure stops and s; is returned as best solution found.

It is apparent from this description that the returned solution might at most
be guaranteed to be a local optimum and that no prove of global optimality can
be produced by the method.

Different flavors of local search might be implemented according to the way
the neighborhood of the current solution is searched: for example, we mention
here the best improvement strategy according to which we enumerate all the
solutions in the neighborhood and then we move to the one of minor cost, if
the latter is less than the one of the current solution. As an alternative, we
might adopt a first improvement strategy according to which we move the current
solution as soon as we find another solution in the neighborhood whose cost is
lower. When adopting the first improvement strategy we can either enumerate
deterministically the whole neighborhood or sample it stochastically. This second
option is appealing if the neighborhood is particularly large, however in this case
we loose the possibility of proving that the returned solution is at least a local
optimum.?’

Another element of the algorithm that was left undefined in the description
given above is the criterion adopted for generating the initial solution. In general,
when local search is intended as a stand-alone algorithm, as in the description we
give here, the initial solution is randomly selected in S.3° In this case, local
search is a stochastic algorithm in the sense that different runs of local search
return different solutions with typically different costs.?!

In order to specialize the generic local search procedure that we have described

simple local search. The reason we present here such a degenerate case is indeed the fact that it
offers the opportunity of highlighting some general traits of metaheuristics without the burden
of unessential details. Methods that are more widely-accepted as being metaheuristics are
introduced in Section 2.1.7.

29Tn general, this is not a real concern, at least in applications.

30This remark will result clearer after Section 2.1.7: Some metaheuristics adopt local search
as a component for refining solutions. In this case, the initial solution is not randomly selected
but it is indeed the solution that needs to be refined.

31Clearly, if a stochastic first improvement strategy is adopted for searching the neighbor-
hood, the overall algorithm is stochastic even if the initial solution is selected deterministically:
different run of the local search starting all from the same initial solution would typically end
in different local optima.

2.1. Metaheuristics for combinatorial optimization 29

to a specific problem we need to define, in a meaningful way for the problem itself,
what should be considered a neighborhood and what should be the strategy for
searching it. Once these element are specified, the local search for the given
problem is defined.

Having in mind local search as an example, we summarize here the key charac-
teristics of metaheuristics: Metaheuristics are stochastic, problem-independent,
approximate algorithms for tackling combinatorial optimization problems. They
are a valid alternative to more traditional methods when the available compu-
tation time is too short for adopting exact techniques and when the available
understanding of the problem is too limited for developing an ad hoc heuristic.

2.1.7 A bird’s-eye view of most popular metaheuristics

In this section we provide the reader with a brief description of the most widely
adopted metaheuristics. We do not mean our excursus to be neither complete
nor detailed: We refer the interested reader to more specific publications that
survey the metaheuristics field such as Blum & Roli (2003).3? In particular, in
the following we limit ourself to a brief description of the concepts characterizing
each metaheuristic without entering the details of the various variants in which
each of them has been implemented. For what concerns iterated local search and
ant colony optimization, the two metaheuristics we consider in our experimental
analysis, more details on the specific implementations we adopt are provided in
Chapter 5. Moreover, in Annex A we propose two contributions to the formal
analysis of ant colony optimization. In the first, we formalize ant colony optimiza-
tion in the language of dynamic programming and optimal control; in the second,
we introduce the framework of model-based search into which ant colony optimiza-
tion can be cast together with other optimization procedures such as stochastic
gradient descent and the cross-entropy method.

Random restart

The main drawback of local search is that it often returns unsatisfactory solu-
tions when the search remains trapped in a high-cost local minimum. The most
immediate (and trivial) way of tackling this drawback is random restart, which
consists in repeating a local search more than once, starting each time from a new
randomly-selected initial solution. The rationale here is that if (i) the fraction of
low-cost local minima®? is sufficiently large and if (ii) local minima are uniformly
distributed in the search space, by repeating the local search procedure a suffi-

32French-speaking readers may consider also Dréo et al. (2003).

33We adopt here and in the following the informal expression low-cost local minima to indicate
those local minima that, although suboptimal, have a cost that is sufficiently close to that of
the global optimum. They are therefore solutions that can be defined as satisfactory.

30 Chapter 2. Background and state-of-the-art

ciently large number of times the probability will be quite high of hitting at least
once a satisfactory local minimum.

Unfortunately, in many practical applications neither of the two hypotheses
is justified. Nevertheless, given the simplicity of random restart, practitioners
often implement this approach when confronted with a new problem, for having
some benchmark result to serve as a baseline against which more sophisticated
metaheuristics can be compared.

Iterated local search

Another simple approach that, contrary to random restart, is extremely effective
in practice, is iterated local search (Lourengo et al., 2002). Again contrary to
random restart, the underlying hypothesis is here that low-cost local-minima are
clustered. [terated local search consists in a sequence of runs of local search where
the initial solution of a local search is obtained by a perturbation of the local
minimum found by the previous one. In order for this mechanism to be effective,
the perturbation should not move the position of the new starting point too far
from the previous local optimum, otherwise the search will loose the focus from
the currently explored area. At the same time, the perturbation should not be
too feeble, otherwise the local search risks to converge back to the same local
optimum already reached by the previous descent.

Simulated annealing

Simulated annealing (Kirkpatrick et al., 1983; Cerny, 1985) is inspired by the
annealing process of crystals. The aim of the physical annealing process is to
obtain a perfect crystal, which is characterized by a state of minimum energy.
The process consists in heating a crystal and then in cooling it slowly: if cooling
is too fast, the final crystal will present irregularities and defects. On the other
hand, if temperature is decreased slowly, the crystal has the possibility of reaching
a minimum-energy state.

Simulated annealing for combinatorial optimization consists in a random walk
through the space S of solutions properly endowed with a structure of neighbor-
hood as the one defined for local search. A parameter called temperature regulates
the walk: given the current solution s, a candidate solution s’ is randomly selected

in A/(s). With a probability

. 1 if f(s") < f(s),
Ps,s(T) = exp (M) otherwise,

the solution s is accepted: the process moves to s’ and the procedure is iterated.

If s" is not accepted, an alternative solution s” € N (s) is sampled, and so on.
The temperature is slowly decreased during the search with the consequence

that at the beginning of the search the probability of accepting non-improving

2.1. Metaheuristics for combinatorial optimization 31

solution is higher and then it decreases over time. This device helps in quitting
the basin of attraction of high-cost local minima that might be encountered in
the early stages of the search.

Tabu search

First introduced in Glover (1986) on the basis of early ideas formulated a decade
before (Glover, 1977), tabu search is nowadays among the most cited metaheuris-
tics. In its basic implementation, tabu search adopts a device called tabu list for
trying to escape from local minima and avoid cycles. The tabu list is a first-in
first-out queue of previously visited solutions. It is used within a search ap-
proach that is somehow similar to the best improvement strategy of local search:
A neighborhood structure is defined on the set S of solutions; the search starts
from an initial solution s; and proceeds iteratively; at the generic step 7, when
the current solution is s;, the tabu list T'L; contains s;,s;_1,...,5j_r+1, that is,
the last k solutions visited, where the length of the tabu list L is a parameter
of the algorithm. The new current solution is set to s;41 = s ¢ TL;, where
f(s) < f(s), Vs € N(s;) \ TL;. The process is then iterated.

In words, tabu search keeps memory of the previously visited solutions and
moves from solution to solution selecting at each step the best option out of those
in the neighborhood, yet avoiding some tabu moves.

Evolutionary computation

Evolutionary computation is inspired by the ability shown by populations of living
beings to evolve and adapt to changing conditions, under the pressure of natural
selection (Darwin, 1859). A variety of slightly different approaches have been
developed: evolutionary programming (Fogel, 1962; Fogel et al., 1966), evolutionary
strategies (Rechenberg, 1973) and genetic algorithms (Holland, 1975; Goldberg,
1989). The latter are mainly applied in combinatorial optimization.

The terminology adopted by the adepts of evolutionary computation is peculiar
and deeply rooted in the biological metaphor: Evolutionary computation deals
with a population of individuals, which represent solutions. Each individual is
described by a chromosome, which is a collection of genes, that is, a string of
symbols—alleles in the parlance—as, for example, {0, 1} if a binary encoding is
adopted. The fitness F(s) of an individual s is an appropriate decreasing function
of the cost f(s). In other words, Fi(s") > F(s”) if and only if f(s") < f(s").

Evolutionary computation is an iterative procedure. At each step, a generation
of individual is considered. A group of individuals with a high fitness is selected
for reproduction and therefore will pass its genetic material to future generations.
Reproduction consists in mating two of the selected individuals, the parents, for
obtaining two new individuals whose chromosomes are made of segments of their
parents’ chromosomes. This operation is called cross-over. Another mechanism,

32 Chapter 2. Background and state-of-the-art

called mutation, is adopted for injecting diversity in the population. It consists in
randomly flipping, with some properly defined low probability, the value of some
genes.

A version of evolutionary computation called memetic algorithms (Moscato,
1989) prescribes that parents be refined through local search before mating. In
this way, they do not pass to future generations their original genetic material
but rather an improved version. Despite the little biological plausibility of this
Lamarckian inheritance,® the use of local search was shown to be particularly
effective (Brady, 1985; Nissen, 1994; Vaessens et al., 1996).

Ant colony optimization

Ant colony optimization (Dorigo, 1992; Dorigo et al., 1999; Dorigo & Stiitzle,
2004) is a metaheuristic inspired by the foraging behavior of ant colonies: It can
be observed (Goss et al., 1989) that, in order to find the shortest path from a
nest to a food source, ant colonies exploit a positive feedback mechanism by using
a form of indirect communication called stigmergy (Grassé, 1959), based on the
laying and detection of pheromone trails.

The goal of ant colony optimization is to find a path of minimum cost on a
weighted graph.®® To this end, a number of paths are generated in a Monte Carlo
fashion, and the cost of these paths is used to bias the generation of further paths.
This process is iterated with the aim of gathering more and more information on
the graph and eventually produce a path of minimum cost.

Each path is generated sequentially. In the pictorial description of ant colony
optimization, the generation of a path is described as the walk of an ant on the
graph. At each node the ant randomly selects which edge to traverse on the
basis of a set of parameters, called pheromone, which are associated to each edge:
A high value of the pheromone for an edge increases its probability of being
traversed. Once a walk is concluded and a solution is obtained, the ant traces
back its path and deposits further pheromone on the traversed edges. The amount
of pheromone released is some appropriate decreasing function of the cost of the
solution so that edges composing low-cost solutions get reinforced the most and
increase their probability of being selected by future ants.

The performance of ant colony optimization can be significantly improved by
using local search for refining the solution found by an ant before updating the
pheromone trail (Dorigo & Gambardella, 1997; Stiitzle & Hoos, 1998, 1999).

31 Jean-Baptiste Lamarck (1744-1829) has been a great zoologist of its times and a forerunner
of the theory of evolution. Unfortunately, his name is nowadays associated merely with a
discredited theory of heredity: The "inheritance of acquired traits" (Lamarck, 1809).

35In order to tackle, a generic combinatorial optimization problem with ant colony optimiza-
tion, the problem must be properly encoded into a shortest path problem. Such an encoding is
always possible: An overview of the many different problems that have been so far effectively
handled with this approach can be found in Dorigo & Di Caro (1999) and in Dorigo & Stiitzle
(2004).

2.1. Metaheuristics for combinatorial optimization 33

2.1.8 Current practice in tuning metaheuristics

As it appears from the brief descriptions given in Section 2.1.7, a metaheuristic is
not properly an algorithm but rather a set of concepts that serve as guidelines for
tackling an optimization problem. It is convenient to look at a metaheuristic as at
an algorithmic template that needs to be instantiated to yield a fully functioning
algorithm. In most of the cases, namely for local search-related metaheuristics, a
neighborhood structure has to be defined over the set of solutions. In all cases, a
number of parameters, either numerical or categorical or both, has to be tuned.

The importance of tuning is generally recognized by the research community:
It is apparent to anybody who has some direct experience with metaheuristics
that these methods are quite sensitive to the value of their parameters and that
a careful tuning typically improves the performance in a significant way.

In this section, we first discuss the literature on the general problem of ex-
perimentally measuring the performance of a metaheuristic. Indeed, since tuning
consists in selecting the best configuration of an algorithm, the basic ability of
comparing two (or more) alternatives plays a fundamental role. We then de-
scribe the state-of-the-art in tuning metaheuristics and finally we present some
optimization algorithms that perform a sort of on-line tuning of their parameters.
The latter are not further discussed in the thesis and are mentioned here only for
the sake of completeness.

Experimental analysis of algorithms

This section briefly reviews a number of papers that have been published about
the empirical analysis of stochastic optimization algorithms and metaheuristics in
particular. Most of these papers give some general suggestions on how to conduct
an experimental campaign, highlight some common mistakes, and propose some
guidelines. In particular, they all advocate the adoption of sound statistical
procedures and of a rigorous experimental design.

The content of these papers is not particularly original and any good book of
design and analysis of experiments such as Dean & Voss (1999) or Montgomery
(2000) covers most of the technical issues discussed therein. Nevertheless, these
papers were neither useless nor redundant: They had a fundamental didactic
role and greatly contributed to the development of metaheuristics and more in
general of operations research. Indeed, up to the publications of these papers, the
operation research community was not particularly familiar with statistics and
these papers had the merit of explaining the importance of a correct empirical
analysis and of providing useful guidelines. It is our personal opinion that the
message of these papers greatly improved the quality of published papers even
if much has still to be done in this direction: Unfortunately, still nowadays too
many of the papers published on metaheuristics feature some extremely poor,
incorrect, and inconsistent experimental analysis.

34 Chapter 2. Background and state-of-the-art

The first works on the empirical evaluation of optimization algorithms started
appearing in the eighties: Golden & Stewart (1985) and Golden et al. (1986).
McGeoch (1986) presents some case studies of empirical analysis of algorithms.
McGeoch (1992) discusses the adoption of variance reduction techniques in the
empirical analysis of algorithm. Barr et al. (1995), McGeoch (1996), and Johnson
(2002), which are considered milestones on the issue, discuss various aspects of
the design and analysis of experiments with stochastic optimization algorithms.
Gent & Walsh (1994) and Gent et al. (1997) discuss a list of typical pitfalls en-
countered when performing an experimental analysis. Hooker (1994) argues that
an empirical analysis of algorithms is more informative and practically useful
than a theoretical one. Strangely enough from our point of view, at the very be-
ginning of the paper the author disposes of the idea of considering a probability
distributions over the instances and judges it as unreflective of reality. This idea
is central in the formal position of the tuning problem we give in Chapter 3. This
definition captures a typical problem faced in practical applications where think-
ing of a probability distribution over the space of the instances is, in our view,
extremely natural. Further, as it is shown in Chapter 5, the method we develop
for tuning metaheuristics, which is based on a probabilistic model of the space of
the instances, proved to be particularly effective in practical applications. Hooker
(1995) advocates an experimental practice that should describe algorithms rather
than compare them. In particular, the author insists on the need of obtaining
a model of algorithms that should highlight the effect of one or more factors on
the performance of the algorithm itself. To this aim, a specific factor, say for in-
stance the use of local search to refine solutions in ant colony optimization, should
be singled out and two otherwise identical implementation of the metaheuristic
at hand should be compared: one including this factor and the other not. Out
of such a comparison, much can be learned about the role played by the factor
under analysis. McGeoch & Moret (1999) give general advice on how to present
experimental results in written papers and in oral presentations.

Since the above excursus on algorithm experimentation is necessarily incom-
plete, we refer the interested reader to McGeoch (2002) for a thorough bibliogra-
phy of the field.

Approaches to tuning algorithms

In the vast majority of the cases, metaheuristics are tuned by hand in a trial-
and-error procedure guided by some rules of thumb. This approach is typically
adopted in most of the research papers dealing with metaheuristics. Few re-
searchers declare it explicitly and show to be aware of the limitation of the
approach—see for instance Van Breedam (1995) and Gendreau et al. (1994)—
while the vast majority do not even spend a word on the issue.

The trial-and-error approach presents many drawbacks of different nature. It
will be sufficient to highlight here two of them concerning primarily industrial ap-

2.1. Metaheuristics for combinatorial optimization 35

plications and academic research, respectively. A major issue with this approach
for what concerns the large-scale industrial application of metaheuristics is that
it is extremely time-consuming, labor-intensive, and it requires the attention of
a particularly skilled practitioner, typically the person that implemented the al-
gorithm or in any case somebody who is well acquainted with it. On the other
hand, for what concerns academic works on metaheuristics, the adoption of this
approach risks to invalidate any conclusion drawn from the experimental com-
parison of different algorithms: Typically, researchers are not equally acquainted
with all algorithms under analysis and moreover, though acting in the best faith,
they are more keen to devote their attention to their algorithm of choice rather
than to the others.

Possibly influenced by the above mentioned paper by Hooker (1995), some
authors adopted a methodology based on factorial design, which is characteris-
tic of a descriptive analysis. Therefore, rather than solving directly the tuning
problem they pass through the possibly more complex intermediate problem of
understanding the relative importance of each parameter of the algorithm. For
example, Xu & Kelly (1996) try to identify the relative contribution of five differ-
ent components of a tabu-search.?® They disable each component one at a time,
execute the resulting algorithm on seven instances and compare the results and
draw conclusions on the effectiveness of each component. Furthermore, the au-
thors consider different values of the parameters of the most effective components
and select the best value. Parson & Johnson (1997) and Van Breedam (1996) use
a similar approach. Xu et al. (1998) describe a more general approach which is
nonetheless based on the same basic idea of a factorial analysis. It is worth men-
tioning here that in order to compare different alternatives, the authors adopt,
even if in a rather different context, the same statistical tests that we consider in
Chapter 4 for defining our tuning algorithm F-Race, namely, the Friedman test
and the Wilcoxon test (Conover, 1999).

Another approach to tuning that has been adopted for example in Coy et al.
(2001) and in Adenso-Diaz & Laguna (2002), is based on the method that in
the statistical literature is known as response surface methodology (Dean & Voss,
1999; Montgomery, 2000; Myers & Montgomery, 2002).3” This method, which
is akin to a gradient descent or a local search, consists in an iterative search in
the space of the parameters that can be roughly described as follows: A metric
is defined on the space of the parameters which assigns a distance between each
pair of configurations of the metaheuristic to be tuned. The search starts in some
point of the parameter space, that is, for some given values of the parameters,
and moves iteratively in the parameter space considering a sequences of points.

36Namely: network flow moves, swap moves, tabu short-term memory, restart /recovery strat-
egy, and a procedure based on the solution of a TRAVELING SALESMAN problem for finding the
best sequence of customers on a route.

3TA related method developed in the machine learning community for tackling stochastic
optimization problems is described in Moore & Schneider (1996).

36 Chapter 2. Background and state-of-the-art

At the generic iteration of the search process, the metaheuristic is tested for the
value of the parameters corresponding to the current point and for those corre-
sponding to neighboring points. If the results observed in the current point are
better than those observed in the considered neighborhood, the search is stopped
and the values of the parameters corresponding to the current point are returned.
Otherwise the current point is moved to the best point in the considered neigh-
borhood and the process is iterated.?® Clearly, the described search scheme is not
guaranteed to find the globally optimal value of the parameters. Nonetheless, it
typically finds good configurations.?® The main drawback of this approach is the
fact that it requires that a metric be defined in the parameter space. While this
assumption does not pose any problem if the parameters are ordinal variables,
either discrete or continuous, it does not hold in the case of categorical variables,
that is, for variables whose possible values cannot be meaningfully ordered. Un-
fortunately, when tuning metaheuristics, it often happens to deal with variables
of this kind. Let us think for example to the case of the definition of a neighbor-
hood structure for a local search. Typically, a variety of options can be considered
and no meaningful distance can be defined among them.

More in general, the major limitation of all above mentioned works is that
they lack of a clear definition of the tuning problem itself. In particular, almost all
of them—a notable exception is Coy et al. (2001)—fail to notice that tuning has
always to be conceived with respect to a specific class of instances. Moreover, they
lack of a precise statement of which specific figure of merit—such as, for example,
the average performance over the class—that the tuning process is expected to
optimize. We show in Chapter 3 that these limitations can be overcome thanks
to the definition of a probabilistic measure over the space of the instances.

On-line tuning

For the sake of completeness, we mention here a class of optimization algorithms
that perform a sort of automatic on-line tuning. They do not play any role in
the following of the thesis since they are meant to solve a problem that is quite
different from the tuning problem we define in Chapter 3, yet we briefly introduce
these methods since they bear some logical connection with the subject of the

38 An interesting feature of the method described in Adenso-Diaz & Laguna (2002) that
deserves mentioning here is the adoption of the so called Taguchi design (Taguchi, 1987; Roy,
1990): The neighborhood of the current point is defined as the collection of points that rest
on the vertices of an hypercube centered in the current point itself. This neighborhood is not
explored exhaustively but only a fraction of the vertices is considered Byrne & Taguchi (1987).

39The reader might be tempted to suggest to restart the search from other randomly selected
points in the parameters space giving rise to a search procedure akin to random restart. More in
general, all the schemes implemented by the metaheuristics described in Section 2.1.7 could be
adopted for organizing the search. In other words, this would amount to using a metaheuristic
for tuning metaheuristics but, unfortunately, this would simply beg the question generating a
regressio ad infinitum.

2.1. Metaheuristics for combinatorial optimization 37

thesis. In particular, on-line tuning is typically based on some machine learning
technique, belonging often to the reinforcement learning literature.

The key idea behind on-line tuning is to modify some parameters of the search
algorithm while performing the search itself. This approach is particularly ap-
pealing when one is supposed to solve one single instance, typically large and
complex. This contrasts with the methods we discuss in the thesis, that are
thought for handling the situation in which one is called to solve a possibly large
number of instances.

One of the first influential descriptions of on-line adjustment of the parameters
of an algorithm is given in Battiti & Tecchiolli (1994) where the authors introduce
a tabu search where the length of the tabu list is optimized on-line. In Battiti
(1996) the same idea is extended and the reactive search framework is defined as
a metaheuristic in which a feedback on the search is obtained and used to modify
some parameters, while the search itself is still in progress.

Zhang & Dietterich (1996) use a reinforcement learning method where the
value function is approximated with a neural network, in order to tackle a schedul-
ing problem.*' A more detailed description of the method is given in Zhang &
Dietterich (1998).

In Boyan & Moore (1997, 2000) the stage method is developed which is based
on the idea of predicting the outcome of a local search on the basis of infor-
mation on its starting point. The prediction is performed using a lazy learning
approach—see Section 2.2.6 for a brief introduction to this class of machine learn-
ing methods. Moll et al. (1999) extend the stage method adding the possibility of
refining off-line the informations gathered along the search. A related approach
that aims at predicting the performance of different heuristics on a given instance
is described in Allen & Minton (1996). The reinforcement learning formalism is
adopted also in Miagkikh & Punch III (1999) for tackling the QUADRATIC AS-
SIGNMENT problem. Birkendorf & Simon (1998) describe boost, a method that
learns along a search to improve given solutions. Prais & Ribeiro (2000) describe
a reactive GRASP in which the parameters of the algorithm are self-adjusted
along the search according to the quality of the solutions previously found. The
method considers a list of different acceptable values for the parameters to be
varied on-line. The actual value to be used is stochastically selected with prob-
abilities that are updated along the search on the basis of the observed results.
In Su et al. (2001), linear regression is used to predict, over multiple simulated
annealing runs, the long term outcome achieved by starting from a given initial
solution. In evolutionary computation literature, the idea of on-line tuning is much
older and can be found in Rechenberg (1973) and Schwefel (1981). More recently,
it has been proposed in the works of Toussaint (2001) and Liang et al. (2001).

10Gee Section 2.2.2 for a brief introduction to reinforcement learning. A thorough presentation
of reinforcement learning is given in Sutton & Barto (1998).

41 More precisely, the problem at hand was a job-shop scheduling problem originating from a
practical problem faced by NASA: the space shuttle payload processing.

38 Chapter 2. Background and state-of-the-art

2.2 The problem of supervised learning

Supervised learning plays a major role in this thesis as a source of inspirations
at many different levels. Among them: the definition of the problem of tuning
metaheuristics given in Chapter 3, the algorithm proposed in Chapter 4 for the
solution of this problem, the critical analysis given in Chapter 6 of the experi-
mental methodology currently adopted in evaluating metaheuristics, and finally
some elements of the experimental protocol adopted in Chapter 5.

In order to give some precise reference to the reader, this chapter introduces
and discuss the supervised learning problem. In Section 2.2.1 we propose an
historical and philosophical introduction to machine learning in general. Sec-
tion 2.2.2 introduces the three main subfield composing contemporary machine
learning: supervised learning, unsupervised learning, and reinforcement learning.
In Section 2.2.3 we restrict our attention to supervised learning and we give a
formal definition of its typical problem. Sections 2.2.4 and 2.2.5 give a formal
meaning, within the framework of supervised learning, to the concepts of induc-
tion and generalization, respectively Section 2.2.6 discusses the current practice
in supervised learning. In particular, it proposes an overviews some popular su-
pervised learning methods and a discussion of some problems that have to be
faced such as, for instance, the problem of model selection. Finally, Section 2.2.7
presents the so called racing approach for solving the model selection problem.

2.2.1 A philosophical and historical perspective

Machine learning played a central role in artificial intelligence since its very be-
ginning. With artificial intelligence, machine learning has shared a form of split
personality disorder being attracted by two competing attitudes that we call here
the mystical and the pragmatic one. The former is related to the old dream of
being as God and therefore giving life to a creature. The latter, is related to the
probably equally ancient dream of humanity of being freed from labor.

On the one hand, in the naive view of machine learning that descend from
the mystical attitude, the intelligent machine is man’s alter ego: created by
man but enjoying then an independent life, almost in competition with its cre-
ator. In particular, the machine is expected to surprise its creator by showing
it is able to learn, that is, to do things it was not designed for. This view is
deeply rooted in the myth and in the literature: The themes of the creature
is found in the Greek myth of Pygmalion and Galatea (Rose, 1928), and reap-
pears, often with moralistic connotations, in the Jewish legend of the Golem (Idel,
1983), in Frankenstein (Shelley, 1818), Pinocchio (Collodi, 1883) and then in a
large number of the science-fiction literary works and movies of the last century.
Among them R.U.R (Capek, 1920), Metropolis (Lang, 1927), the many nov-
els by Asimov—see Clarke (1993, 1994) and references therein—2001: A Space
Odyssey (Kubrick, 1968), Blade Runner (Scott, 1982), Terminator (Cameron,

2.2. The problem of supervised learning 39

1984), and Matriz (Wachowski & Wachowski, 1999).

On the other hand, in the critical view of machine learning leaning toward
the pragmatic attitude, the intelligent machine is rather an extension of man. A
useful tool, much more sophisticated than a telephone or a bulldozer, but still of
the same nature of a wedge or a lever: A device the engineer explicitly designs to
solve a specific class of problems in a given context, or possibly set of contexts.

The two attitudes have been tightly interwoven and in some sense both gave
a contribution to the field. As the reader might have already understood, we
definitely lean towards the pragmatic attitude and we are rather skeptical about
the mystical one: the very names we chose to denote the two attitudes betray
our feelings on the issue. Nevertheless, we have to recognize the pragmatic value
of assuming a mystical attitude when the point is raising funds for financing the
research: The field has always enjoyed some considerable funding, not always
justified by actual achievements. This could happen also thanks to a conspicuous
coverage by the media that have always been especially attracted by the oddity
of the project of creating an intelligent machine.

The research in machine learning has not followed a linear path and, in time,
researchers focused their attention on quite different paradigms, including con-
nectionism, symbolic learning, and inductive learning. An introduction to these
different approaches is given in Carbonell (1990) and in Shavlik & Dietterich
(1990). Among them, the one that is relevant in this thesis is the connectionist
which is closely related to the supervised learning problem discussed in Sec-
tion 2.2.3 and in the following ones.*> The connectionist approach to machine
learning started being explored in the early works of the 1950s and 1960s with
the two-fold goal of deepening the understanding of human brain and develop-
ing a learning machine taking inspiration from neurophysiology. Several works
concentrated on the development and the analysis of models of neurons. In par-
ticular, Rosenblatt (1958) proposed the model that is known under the name of
perceptron, forerunner of modern neural networks. More precisely, the perceptron
is a single-layered neural network, that is, a network whose neurons are directly
connected either with the input or with the output. For such a model Rosenblatt
(1958) was able to find a training rule; on the other hand, a general training
rule for the generic multi-layered networks seemed out of reach, at least at those
times. The perceptron attracted much of the research interests in machine learn-
ing for a decade: An account of the machine learning of those times is given in
Nilsson (1965). An abrupt stop to the research on the perceptron followed the
publication of the work by Minsky & Papert (1969) in which some severe limi-
tations of this model were highlighted. In particular, Minsky & Papert (1969)

42Indeed, the connectionist paradigm is broader than its application to supervised learning. It
includes, among others, applications to clustering (Kohonen, 1982) and dynamic systems (Hop-
field, 1982; Elman, 1990). In the framework of the thesis it is sufficient to restrict our attention
to the “classical” feed-forward neural network of which we give a description in Section 2.2.6
and, more in particular, in Figure 2.7.

40 Chapter 2. Background and state-of-the-art

showed that the perceptron is essentially a linear device and is therefore ruled out
in the large majority of practical applications. This result discouraged further
research on the perceptron and had the effect of diverting the attention of the ma-
chine learning community away from all neural inspired methods. Only 20 years
later, Rumelhart et al. (1986) were able to find a training rule for multi-layered
neural networks which, contrary to the perceptron, are known to be capable of
approximating any continuous function. Following this result, the interest of
the community switched back to the connectionist approach. During the last
15 years, the field of neural network has flourished favoring the development of
the research on supervised learning. The neural network renaissance, probably
under the pressure of the increasing amount of practical applications, has prag-
matically focused on the engineering aspects of neural networks to the detriment
of the neurological plausibility of the proposed models. Currently, most of the
approaches discussed within the neural network community, think for instance to
the support vector machines (Vapnik, 1998; Cristianini & Shawe-Taylor, 2000),
have little in common with the human brain and rest on the contrary on solid
statistical and theoretical basis (Devroye et al., 1996; Kearns & Vazirani, 1997,
Vapnik, 1998).

2.2.2 The three main problems of machine learning

Humans, and animals in general, react to their environment and perform different
actions in response to the inputs they receive. It is generally considered a sign of
the intelligence of a subject if its responses change over time and become more
and more effective. When this happens, we say that the subject is able to learn.
The field of machine learning studies learning algorithms, which specify how the
changes in the learner’s behavior depend on the inputs received and on feedback
from the environment. Depending on the feedback we can distinguish between the
following forms of machine learning: supervised learning, unsupervised learning,
and reinforcement learning. In this thesis we deal with the problem of tuning
metaheuristics that, as we make clear in Chapter 3, has much in common with
supervised learning. It is mostly for the sake completeness that we introduce in
this section also unsupervised and reinforcement learning.

Supervised learning. On one extreme, supervised learning involves some sort
of interaction between the learner and a supervisor. The learner is provided with a
set of examples of the behavior of the supervisor that it is supposed to reproduce.
Each example consists in an input/output pair, where the output is the response
of the supervisor to the given input. The learner has then the chance to directly
compare, for what concerns the given examples, its response to the one provided
by the supervisor. On the basis of this comparison, the learner can properly ad-
just its behavior in a way that is more likely to produce the appropriate response
the following time it receives the same input. As an example, we can consider a

2.2. The problem of supervised learning 41

simple classification problem: The learner is called to recognize fruits. In order
to train the learner, the supervisor provides some apples, oranges, peaches and
bananas, and show them to the learner associating to each fruit the correct name.
The learner has access to some features of each fruit, say color, smoothness of the
surface, shape, size, etc. Its tasks consists in associating a fruit name to a set of
values of the observed features. Beside the classification problem, another impor-
tant supervised learning problem is regression estimation where rather than with
categorical variables as in classification, we deal with continuous quantities. In
general, the supervised learning practice is much entangled with other well estab-
lished research fields such as statistics (Barnett, 1999), econometrics (Campbell
et al., 1997), and system identification (Ljung, 1987): The issue in supervised
learning, as in the aforementioned field, is to model some phenomenon and to
acquire the ability to perform predictions.

Unsupervised learning. On the other extreme, unsupervised learning does
not provide for passing any feedback to the learner. Instead, the learner receives
only input data and it is expected to cluster them in a meaningful way. In
unsupervised learning, the learner’s task consists in detecting similarities and
differences among the input patterns. As an example of unsupervised learning,
we can consider a perceptual system. In artificial vision a typical problem consists
in detecting and locating the objects that populate an image. This problem can
be possibly solved by a learning agent that is able to cluster the pixels of the
image in such a way that each cluster represents a different object.

Reinforcement learning. A third alternative between the two extremes is
represented by Reinforcement learning (Sutton & Barto, 1998), even if it is admit-
tedly much closer to supervised learning. In reinforcement learning the learning
agent performs a sequence of actions which change the state of the environment,
and receives a sequences of rewards and/or punishments as a feedback. What
complicates the framework is the fact that the feedback received by the agent
is typically temporally delayed and a direct action-feedback mapping cannot be
easily established. Examples of reinforcement learning problems appear in many
field such as robotics and game playing (Samuel, 1959; Tesauro, 1992). Early
research in reinforcement learning was strongly connected with psychology and
cognitive sciences. Nowadays, the strong link has been recognized between re-
inforcement learning and other fields of applied mathematics such as dynamic
programming (Bellman, 1957) and optimal control (Bertsekas, 1995a).

2.2.3 Supervised learning

The general problem of supervised learning can be defined in terms of the follow-
ing three elements (Vapnik, 1995, 1998):

42 Chapter 2. Background and state-of-the-art

<

LM

Figure 2.3: A graphical representation of the supervised learning problem. During
the training phase, the learning machine LM observes a training set composed
of input-output pairs (z,y), where y is the response of the supervisor X to the
input . On the basis of this training set, LM is supposed to learn the behavior
of the supervisor: to a new input x, LM is supposed to respond with an output 3
that should be as close as possible to the output y returned by the supervisor.

e A generator I' of random data x € R?, independently and identically dis-
tributed according to a fized but unknown distribution P(z);

e A supervisor X that, for a given input z, returns an output y € R according
to a fired but unknown conditional distribution P(y|x);%3

e A learning machine LM which is able to implement a set of functions g(z, a)
with o € A4

In this context, graphically represented in Figure 2.3, we will say that the ma-
chine LM learns the behavior of the supervisor X if it is able to select among the
possible functions g(z, «) the one that better approximates the behavior of the
supervisor. The selection is made on the basis of a training set:

zZ = {(xlayl)a (x2ay2)7 R ($NayN)}'

composed of N input-output pairs, independently and identically distributed ac-
cording to the fized but unknown distribution P(z,y) = P(x)P(y|x).
For a given input x, we can measure the so called loss function

L(y,g(x,),

43This is the most general case which includes the possibility that the supervisor selects the

output as a function y = f(z) of the input. In this case P(ylz) = §(y,f(:1c)), where ¢ is

Kronecker’s function.

44 The fact that we consider a parametric set of functions {g(z,) : « € A} is not a restriction
since the nature of « is left unspecified and A is therefore an arbitrary set: it could contain
numbers, vectors, or any other arbitrary abstract element.

2.2. The problem of supervised learning 43

which quantifies the discrepancy between the prediction § = g(z, a) obtained by
the learning machine and the actual response of the supervisor. As we will see
presently, the function £ must be properly defined in a meaningful way according
to the specific nature of the learning problem at hand.

Having defined the loss for a specific input = we can now state that the
goal of the learning machine is to minimize the expected value of £ with respect
to the joint input-output distribution P(z,y). This quantity is called the risk
functional:

R(a) = /,C(y,g(x,a)) dP(z,vy). (2.7)

More precisely, the goal of a learning process is to find among all possible functions
g(x,a), with a € A, the function f(z, &) that minimizes the functional R(a)) when
the joint distribution P(x,y) is unknown but a training set Z is given. We could
write:

@ = argmin R(a).

From this definition, the similarities and the differences are apparent between
the supervised learning problem and the optimization problem introduced in
Section 2.1.2: In both cases a set of object is given together with a criterion
that measures the desirability of each of the objects. Nevertheless, in the def-
inition of the supervised learning problem the criterion cannot be analytically
computed since the joint distribution P(z,y) appearing in Equation 2.7 is un-
known. Because of this difference, the supervised learning problem cannot be
trivially reduced to an optimization problem and a considerably different concep-
tual framework has to be developed.

The definition of the supervised learning problem we gave above is rather
general and comprises different specific subproblems. Among them, the most
studied in the literature are the problem of pattern recognition and the problem
of regression estimation.

Pattern recognition

In the pattern recognition problem (Duda et al., 2001) the supervisor observes a
pattern x and determines to which of £ classes it belongs. The learning machine
is required to learn to perform the classifications of new patterns on the basis of
a set of examples of patterns classified by the supervisor.

Using the formal apparatus defined above, we can express the pattern recog-
nition problem as follows: The patterns appear randomly and independently
according to a fized but unknown distribution P(z). The supervisor classifies
each pattern into one of k classes. We assume that the supervisor performs the
classification according to a fized but unknown conditional distribution P(y|x),
where y € {1,2,...,k}.*> Neither P(x) nor P(y|z) are known; however, we know

45The case in which the supervisor assigns a class to a pattern in a deterministic way is a

44 Chapter 2. Background and state-of-the-art

they exist and are fixed. Therefore, the joint distribution P(x,y) = P(y|z)P(x)
exists, even if it is unknown. The only source of available information is a set
Z = {x;,y;}}_, of N patterns classified by the supervisor.

The learning machine implements a set of functions g(z,), with o € A, which
might take only k values {1,2,...,k}.

In this context, it is natural to consider the following simple loss function:

0 ity =g(z,),
I iy # (e

that is, an indicator function for the subset of misclassified patterns.** When the
loss function is defined as in Equation 2.8, the risk functional,

Ly, g(z,0)) = { (2.8)

R(a) = /ﬁ(y,g(z,a)) dP(x,y).

represents the overall probability that the learning machine incurs in a classifica-
tion error.

Regression estimation

Let us consider the stochastic relation between two variables z € R? and vy € R
such that, given x, the value of y is obtained as a result of a random experi-
ment dominated by the conditional distribution P(y|z). Further, let the value
of the variable = be randomly extracted according to a distribution P(x). Nei-
ther P(y|x) nor P(x) are known but they exists and are fixed. Thus the joint
distribution P(x,y) = P(y|x)P(x) exists and is fixed, even if unknown.

Estimating the stochastic dependency between the variables z and y on the
basis of a set of independent and identically distributed examples Z = {z;,y; j-vzl
means to estimate the conditional distribution P(y|z) which is typically a par-
ticularly hard task. In many applications we do not need a complete description
of the stochastic dependency and the conditional expectation is sufficient:

Elyla] = r(x) = / ydP(y|x)

The (deterministic) function r that associates to each value of = the expected
value of y conditioned to z is called the regression function. Accordingly, the

particular case. The advantage of the general formulation is that it accounts for misclassified
patterns and/or errors in the database of examples, situations which are typical in real-world
applications.

46More complex loss functions can be considered, as well. Let us think, for instance, of the
case in which some sort of errors are to be penalized more than others. Medical diagnosis is
an example: false-negatives are usually much more dramatic errors than false-positives. The
latter typically lead to further examinations that can spot the error; on the other hand, the
former leave a disease undetected and untreated which could be possibly fatal to the patient.

2.2. The problem of supervised learning 45

problem of estimating the regression function on the basis of a set of examples is
known as regression estimation.

In can be shown that the problem of regression estimation can be solved by
a learning machines that is able to implement the functions in {g(z,«) : a € A}
and that minimizes a risk functional where the loss function is defined as

L(y,g(z,a)) = (y — g(z,0))", (2.9)

that is as the quadratic error. Indeed the minimum of the risk functional

R(a) = / (v - g(x.0))* dP(z, y) (2.10)

is attained at the regression function, that is, for the & for which g(z, &) = r(x),
if the regression function belongs to the set {g(x,«) : @« € A}. On the other hand,
if the regression function does not belong to the aforementioned set, the & for
which the risk is minimized is such that among all functions in the set, g(x, @) is
the closest to 7(x) in the Lo metric:*7

\/ / (r(z) — g(z.@))* dP(z,y) < \/ / (r(z) — g(z,0))"dP(z,y) Va €A

2.2.4 The minimization of the empirical risk

As we have shown in Section 2.2.3, the problems of both pattern recognition
and regression estimation can be reduced to the problem of minimizing the risk
functional

R(a) = /L’(y,g(m,a)) dP(z,y), (2.13)

47In order to prove the statement, let us consider the following decomposition of the loss
function defined in Equation 2.9:

(y— g(z,))* = (y — () +1(z) — g(z,a))’

,) (2.11)
=(y—r@) + (r(@) — gz,)" +2(y — r(x)) (r(z) — g(z,a)).
The risk functional is therefore
R(a) = / (y — r(z))* dP(z,y) + / (r(z) — g(z,a))* dP(), (2.12)

since the integral with respect to y of the third term in Equation 2.11 is null.

The first term in Equation 2.12 does not depend on «, therefore the minimum of R(«) is
attained at the same & at which the minimum of the second term in Equation 2.12 is attained.
It follows that the minimum of the risk is attained at the regression function if there exists
an & € A such that g(x, @) = r(x)—in words, if the regression function belongs to the set of
functions implemented by the learning machine. On the other hand, if the regression function
does not belong to the set of function spawned by A, the minimum of the risk is attained at
@ € A for which g(z, @) is the closest possible to the regression in the Lo metric.

46 Chapter 2. Background and state-of-the-art

Available sample

Figure 2.4: In this univariate example, the actual distribution P(z) is approxi-
mated by the empirical distribution P(z) based on the sample {z1,z5,..., 25},
represented by the black dots on the horizontal axis.

in the case where the joint distribution P(z,y) is fixed but unknown and a training
set

Z ={(x1,11), (2, 92), - - -, (xn,Yn) },

composed of N observations is available. Since P(x,y) is unknown, an analytical
solution to this problem is not possible: we are not able to find directly the func-
tion g(z, &) for which R(«) is minimized. It is therefore necessary to empirically
approximate the optimal solution on the basis of the available training set. A
viable solution, possibly the most intuitive, is based on the so called principle of
mazimum entropy (Papoulis, 1991) which, in this context, prescribes to approx-
imate the unknown distribution P(x,y) with its empirical counterpart obtained
from Z, that is, the stair-wise P(x,y)—see Figure 2.4 for a visual example.®® As
a consequence, we can approximate the risk defined in Equation 2.13 with the so
called empirical risk

1 N
Remp (@ /E y.g(z,a)) dP(x,y) NZ (vj, 9(;, @), (2.14)

obtained on the basis of the training set Z.
The above described procedure defines the induction principle that in the
literature is known as the empirical risk minimization:*® The original problem

48 According to the Glivenko-Cantelli theorem, when the number of observations tends to
infinity, the empirical distribution converges in probability, in the uniform metric, to the actual
distribution. See Vapnik (1998) for a proof of the theorem, its generalization, and a thorough
discussion of all implications for what concerns the formal development of the machine learning
theory.

9Together with the empirical risk minimization, a more advanced principle, the structural
risk minimization, is discussed in Vapnik (1998). This new principle stems from the analysis

2.2. The problem of supervised learning 47

of minimizing the risk R(«) is reduced to the minimization of Remp(a). Thus, in
order to reproduce the behavior of the supervisor, the learning machine rather
than using the function g(z, @) that minimizes R(«), uses the function g(z, ay)
that minimizes the empirical risk Remp(a) constructed on the basis of the N
examples contained in Z. Formally:

ay = arg 1516111\1 Repp ().

It is worth noticing here that in the case of a regression estimation problem where
the loss function is defined as in Equation 2.9, the empirical risk is:

2

Rosla) =37 3 (0 = £(a,)”.

and therefore the empirical risk minimization amounts to the classical least-
squares method. On the other hand, in the case of pattern recognition when the
loss function is defined as in Equation 2.8, it is easy to observe that the empirical
risk minimization is equivalent to the minimization of the number of classification
error on the training set, which is the most intuitive way of training a model in
pattern recognition (Duda et al., 2001).

2.2.5 The theory of generalization

We say that a machine LM is able to generalize if, on the basis of a training
set Z = {%-,yj};-v:l containing examples of the responses y1,...,yy given by a
supervisor Y to the input values x1, ..., zy, it is able to predict the responses of
> also for what concerns new values of the input variable that are not contained
in Z.

If the learning machine were able to minimize the risk functional R(«) and
could use the minimizing function g(x, @), generalization would be guaranteed
by definition. Yet, being P(z,y) unknown, the machine LM has to be content
with some approximation. As we have seen in Section 2.2.4, the empirical risk
minimization principle prescribes that LM should adopt g(x, ay), to approximate
g(x, @), that is, the function that minimizes the empirical risk defined on the basis
of Z.

The function g(x, ay) enjoys by definition the property of being the best one
in the set {g(x,) : a € A} at reproducing the responses of the supervisor when
we restrict to the training set Z. Nonetheless, no guarantee is available for what
concerns input values that are not included in Z.

of the limitations of the former.

In the next subsection, we sketch an analysis of the limitations of the empirical risk mini-
mization because it serves as an introduction to concepts that will be useful in the course of the
thesis, namely in Chapter 6. On the contrary, we do not enter in the details of the structural
risk minimization principle because this would go beyond the scope of our work. We refer the
reader to Vapnik (1998).

48 Chapter 2. Background and state-of-the-art

VC-dimension

In this paragraph we propose some introductory elements of the so called general-
ization theory (Vapnik, 1998) whose goal is precisely to define a set of conditions
under which it is guaranteed that g(x, ay) is a good approximation of g(x, @) and
therefore that a learning machine which follows the empirical risk minimization
principle is able to generalize properly to new data.

Formally, the empirical risk minimization principle is said to be consistent for
a set of functions Q(z,a) = L(y, g(z,@)) with a € A, and for the joint density
P(z) = P(x,y), if the following two sequences converge in probability to the same
limit:

prob .
Rlaw) 772 Inf Bla),

Remp(an) %} ggljf\ R(a),
where oy denotes the optimal value of a obtained by minimizing the empiri-
cal risk on the basis of a training set Z composed of N examples, and where
inf,ep R(«) is the infimum of the risk for a € A. In words, the principle is con-
sistent if for training sets of increasing size, the sequence of functions Q(z, ay),
with NV =1,2, ..., are such that both the risk and the empirical risk converge in
probability to the minimal possible value of the risk.

The key theorem of learning theory, due to Vapnik & Chervonenkis (1991),
can be stated as follows: Let {Q(z,a) : @ € A} be a set of functions such that
A < R(a) < B for all @ € A. In order for the empirical risk minimization to be
consistent, it is necessary and sufficient that Remp (o) uniformly converge to the
actual value R(«) on the whole set {Q(z, @) : @ € A}, in the following sense:

lim Prob {sup (R() = Remp(c)) > e} =0, VYe>0. (2.15)
N—oo a€cl

According to this theorem, the empirical risk minimization is consistent if and
only if Remp () uniformly converges to R(«).

It is worth noticing that the key theorem is a worst-case analysis: it states that
the consistency the empirical risk minimization depends on the worst function,
in the sense defined in Equation 2.15, among those in the set {Q(z,a) : o € A}.

Given the results stated by the key theorem and, in particular, given the
structure of Equation 2.15, the importance of defining bounds on the difference
R(c) — Remp () becomes apparent. In these bounds, a fundamental role is played
by the concept of VC-dimension of a learning machine (Vapnik & Chervonenkis,
1971) which is a scalar h, measuring the complexity of the machine itself. The
important theoretical results concerning the VC-dimension is that if A is finite,
the uniform convergence—in the sense given in Equation 2.15—of Repp(ar) to
R(«) is guaranteed and therefore the empirical risk minimization is consistent.

2.2. The problem of supervised learning 49

Risk

VC-dimension

Figure 2.5: When the VC-dimension grows, the empirical risk decreases but the
confidence interval increases. The overall result is that the bound on the actual
risk, which is the composition of the two contributions decreases initially and
then increases again.

Moreover in the non-asymptotic case, that is, when the size N of the training
set Z is finite, it can be shown that for a set @ = {Q(z, @) : a € A} of functions
for which 0 < Q(z,) < B, the following inequality holds with probability 1 — #:

BE AR epmp ()
R(an) < Remp(an) + —= (1 + \/1 - Tpg : (2.16)
where, if the cardinality of the set of functions is finite, that is, if |Q| < oo,
In|Q| —Inn
=2— 2.17
e 0 (2.17)

and therefore € is not a function of the VC-dimension h. On the other hand, if
the cardinality of Q is infinite, and the VC-dimension of the learning machine is
h, it results:
h(In2N/h +1) —Inn/4
N .
On the basis of these results we can state that the empirical risk minimization
is a valid induction principle when the size N of the training set is large, say
N > 20h. In this case, £ is small, the second summand on the right hand side
of Equation 2.16 is thus small as well, and the actual value of the risk is to be
expected to be close to the empirical risk. On the other hand, if the ratio N/h
is small, a low value of Reyp(an) does not guarantee that also the actual risk
functional R(ay) is small. In this case the second summand on the right hand
side of Equation 2.16 cannot be neglected and can be considered as a confidence
interval of the estimate of the actual risk provided by its empirical counterpart.
Figure 2.5 offers a graphical representation of the relation among the terms of
Equation 2.16 for a fixed value of N and varying h.

E=4

(2.18)

50 Chapter 2. Background and state-of-the-art

The bias/variance dilemma

Another analysis that somehow parallels the one based on the concept of VC-
dimension and that allows a useful insight into many aspects of supervised learn-
ing is known in the literature under the name of bias/variance decomposition (Ge-
man et al., 1992). The core of this analysis consists in showing that the prediction
error yielded by a function g(z, a) can be decomposed into two components: the
bias and the variance. We sketch in the following the analysis as proposed in
Geman et al. (1992).

In order to make explicit the dependency on the training set Z of the selected
function, we adopt here the notation g(x, az) in place of the previously adopted
g(z, an). Let us consider first a specific training set Z’. A measure of the quality
of the prediction for a given input 2’ yielded by g(2’, az/), where az has been
selected on the basis of the given training set Z’, is given by the expected value
of the square of the error:

E [(y—g(x,ag))Z‘x :J’JﬂZ =2z)

where the expectation is taken with respect to the marginal distribution P(y|z),
for a given input x = 2/. This quantity can be decomposed® as:

Sli-oteaaff—2-2]-
-F [(y - E[y|x])2)x =, 2= Z/] + (9(a’, az) — Blyla")”.

It can be noticed that the first summand on the right hand side does not depend
neither on the training set Z, nor on any choice that could be possibly operated
by the learning machine: Indeed, it is simply the variance of the output y given
the input x. As far as an evaluation of the prediction produced by the learning
machine is concerned, we can therefore restrict our attention to the second sum-
mand, that is, to the square of the difference between the prediction g(x’, az)
and the regression function r(2') = Ely|z']:

(9(', az) — Elyl2')”. (2.19)

Let us consider now all possible training sets. A measure of the quality of the
prediction yielded by the learning machine is given by the expected value, with
respect to all possible training sets, of the quantity given in Equation 2.19:

Bz [(9@, az) - Elyl'))’] (2:20)

where the subscript Z in Ez is there to stress that the expectation is taken with
respect to all possible training sets.

50See Note 47 and, in particular, Equation 2.11.

2.2. The problem of supervised learning ol

It might happen that for a specific training set Z’, the selected function
g(z, az) produces good predictions of E[y|z|, while for another training set Z”,
the prediction obtained by g(x,az~) is particularly poor. Formally, this concern
can be expressed by decomposing the expectation given in Equation 2.20 as:

Bz|(g(«'az) - Elyl)*| =
= (Bzlg(@',az)] - Elyl)” + Bz | (9(',az) = Ezlg(',a2)))’], (221)

where the two terms on the right hand side are the square of the bias and the
variance, respectively.”’ The bias measures the difference between the expected
prediction and the regression function.

Even if the bias component is small, that is, if on average the predictions are
good, the learning machine could be affected by a large variance: The learning
machine could be, in other words, extremely sensitive to the characteristics of
the specific set of examples used for training.

Going back to the general problem of machine learning, the conclusion that
can be drawn from the bias/variance analysis is that the choice of the structure
of the set G = {g(x,) : @ € A} to be adopted by the learning machine, always
involves a trade-off.

On the one hand, the higher is the complexity of the set G, the higher is its
flexibility and generality, and the higher is the chance that at least one of the
function in G is able to closely reproduce the behavior of the supervisor. In this
case, the bias component is small. Nonetheless, since the training set if finite and
typically relatively small, it might be difficult to identify the correct element of G:
The learning machine could be extremely sensitive to the particular realization of
the training set and the prediction could therefore be affected by a large variance.

On the other hand, if the learning machine implements a simple and more
restricted set of functions G = {g(z,a) : @ € A}, say belonging to a simple

°1Tt results:
Ez[(9(@', az) - Elyl'])’]
= B2[({0 a2) ~ Ezlgla’ 02))) + (Bzlgla’ a2)] ~ Elyla’))]
= B2[(g(¢', 02) - Bzlg(@’, a2))’] + Bz [(Bzlo(',02)] - Blyla'))*]+
+2B2 [(9(o!, az) — Ezlg(’, 02))) (Bzloe', 02)] - Blyla’))]
= Bz |(9(a', 02) — Ezlg(',a2)])’] + (Ezlg(a', az)] - Elyla’))*+
+2Bz[g(',az) - Bzlg(a',a2)]] (Bzlg(e',az)] - Blyla')

— (Bzlg@’,02)] - Elyla'))* + Bz | (9(', az) - Bzlg(a’, az)))’].

The two summands in the last line are the square of the bias and the variance, respectively.

52 Chapter 2. Background and state-of-the-art

Complexity

Figure 2.6: When the complexity of the learning machine grows, the bias de-
creases but the variance increases. The overall result is that the expectation on
the square of the prediction error, which is the composition of the two contribu-
tions, decreases initially and then increases again.

parametric family described by a small number of parameters, the risk is high
that none of the functions in G properly reproduces the behavior of the supervisor.
In this case, the bias will be high. Yet, the variance will be small since the value
of the few parameters spawning the family of functions can be identified with low
uncertainty on the basis of any possible training sets.

For a limited number of available training examples, when the complexity of
the set G increases, the bias component typically decreases while the wvariance
component increases. The overall result, graphically shown in Figure 2.6, is that
the expected value of the squared error initially decreases with the complexity of
the learning machine, and then increases again. On the basis of the bias/variance
analysis, we observe therefore a result that is qualitatively similar to the one
reached through the analysis based on the concept of VC-dimension.

2.2.6 Supervised learning in practice

We cannot expect to convey here much of the complexity of the supervised learn-
ing practice. In particular we do not enter into the details of the various learning
approaches but we limit our discussion to the general elements that appear in the
supervised learning practice irrespectively of the specific approach adopted.?® We

52For the sake of precision, the subsection From observations to data is of truly general
character while the following subsection Parametric and structural identification, refers
more properly to the approaches based on what Vapnik calls the principle of empirical risk
minimization—see Section 2.2.4 and Note 49.

Despite the central place they occupy in contemporary supervised learning, the more recently
proposed approaches that according to the classification introduced by Vapnik (1998) follow
the principle of structural risk minimization, are less relevant in the context of this thesis. For

2.2. The problem of supervised learning 23

(b) Graphical representa-
tion of a neuron: The in-
put signals are summed

(a) A feed-forward neural network with bidimensional and the result is nonlin-
input, monodimensional output, and 3 neurons in early scaled through a sig-
the hidden layer. moidal function.

Figure 2.7: Feed-forward neural networks are universal approzimators (Cybenko,
1989; Hornik et al., 1989; Hecht-Nielsen, 1989), that is, provided they are endowed
with a sufficient number of neuron in the hidden layer and the parameters w;;
and w; are properly tuned, they are able to approximate arbitrarily well any
continuous function.

need only to introduce here a quite high-level taxonomy of learning approaches,
and to mention some algorithms that are discussed in the following of the thesis.

Learning approaches can be classified according to a variety of criteria. Beside
the classification based on the dichotomy empirical/structural risk minimization,
already presented in Section 2.2.4, other orthogonal criteria exist in the literature.
One of them is based on the global/local dichotomy:

On the one hand, global approaches try to reproduce the behavior of the
supervisor using a single functional approximator that covers the whole input
space. As an example, the learning machine could try to reproduce the behavior
of the supervisor using a polynomial, say a first degree polynomial. In this case,
given an input x € R?, the learning machine would try to predict the response
y of the supervisor with an ¢ which is a linear combination of the component
of x—usually a constant term is included in order to account for an offset. In
other words, the learning machine describes the supervisor as a hyperplane in
the combined d + 1-dimensional input/output space. A classical example of a
global approach which is widely adopted in practical applications, is represented
by feed-forward neural networks (Bishop, 1995)—see Figure 2.7.

On the other hand, local approaches reduce the original problem into a set of
subproblems: The learning machine consists of a set of local models, each special-
ized on a different area of the input domain. When an input x is given, the output

a presentation and a discussion of such approaches, we refer the interested reader to Vapnik
(1998) and in particular to Cristianini & Shawe-Taylor (2000).

54 Chapter 2. Background and state-of-the-art

1 is obtained by appropriately combining the outputs of the local models whose
domain comprise the input . A variety of local methods have been proposed in
the literature. Among them the hierarchical approaches such as classification and
regression trees (Breiman et al., 1984), multivariate regression splines (Friedman,
1991), ID3 (Quinlan, 1993b), hierarchical mixture of experts (Jordan & Jacobs,
1994), radial basis functions (Powell, 1987), piecewise linear models (Billings &
Voon, 1987; Skeppstedt et al., 1992), and the neuro-fuzzy approach (Takagi &
Sugeno, 1985; Jang, 1993). Other local approaches belong to the statistics and
time-series prediction literature such as the state-dependent models (Priestley,
1988) and threshold AR (Tong, 1990), and others based on splines (Kavli, 1993).
Moreover, it is worth noticing here that some forms of gain scheduling (Shamma
& Athanas, 1990) adopted in the field of automatic control share much of the
rationale which is behind the local approach in supervised learning. Johansen &
Foss (1993) defined the general class of models called local model networks which
comprises, under certain conditions, most of the aforementioned local approaches.

A further classification which is of interest in this thesis is the one based on the
eager/lazy dichotomy:

On the one hand, eager approaches use the training set Z, as soon as it be-
comes available, in order to extract a compact representation of the phenomenon
at hand. The data are than discarded and only the compact representation is re-
tained. The latter is then used to perform subsequent predictions. All approaches
mentioned so far, both global and local, are eager.

On the other hand, lazy approaches (Aha, 1997), which are typically local,
do not provide for any training phase: When the data Z becomes available, no
computation is performed apart from properly storing the data, which are never
discarded in favor of a model. For this reason, within certain communities such as
the artificial intelligence community, lazy approaches are also known as memory-
based methods. Only when a prediction is explicitly required for a precise value 2’
of the input, the lazy method retrieves from the database a typically tiny subset
Z' C Z of examples which are considered relevant according to some criteria, and
use them to perform a prediction. In some cases, the extraction of the prediction
from Z’ is trivial: In nearest-neighbor, which is the prototypical lazy approach,
when an input 2’ is given, the subset Z’ retrieved from the database consists of
only one example, the pair (z”,y"), where, in some metric, 2” is the closest to z’
among all other x appearing in the database. The value 3" is then immediately
returned as a prediction of the output of z’. In other cases, the operations
that are performed are much more complex: In the case of the adaptive lazy
learning (Birattari et al., 1999), a complete modeling procedure including model
selection and validation is performed for each prediction. This justifies the name
Just-in-time modeling (Cybenko, 1996; Stenman et al., 1996) which is used within
the system identification and control community to address lazy methods. Lazy
learning is further discussed in Annex B.

2.2. The problem of supervised learning 25

From observations to data

In this section we briefly discuss the different logical steps that are needed to cast a
real-world problem into the formal framework of supervised learning described in
Section 2.2.3 and graphically represented in Figure 2.3. Although some elements
of these phases can be, at least partially automatized, they typically require the
intervention of the human designer of the learning machine.

Observation and analysis: The first step consists in an observation and anal-
ysis of the phenomenon at hand with the goal of spotting a set of measurable
quantities apt to give a complete description of the phenomenon itself. In gen-
eral, during this phase the available knowledge is limited and does not allow a
correct selection of the set of variables that are necessary and sufficient to repre-
sent univocally the phenomenon. This phase is typically rather gross: We try to
measure the largest possible number of variables—a limit being imposed by the
economical cost of measurements—postponing the selection of the most informa-
tive to following stages of the learning process. The partial result produced by
the observation and analysis phase is a set of raw data which represent the first
possible form of representation of the phenomenon at hand. Notwithstanding
its seeming triviality, this phase is particularly delicate since in the observation
of the phenomenon we introduce some a priori knowledge that can be possibly
groundless. The critical aspect of the phase is connected to the fact that a non
accurate selection of the variables to be measured and therefore the exclusion
of some possibly relevant ones, makes the most sophisticated learning algorithm
powerless. The lack of a variable might be rather expensive since it requires,
when already in subsequent phases of the learning process, to go back to the
observation and analysis of the phenomenon and to redesign the criteria for data
acquisition.

Preprocessing: During this phase the raw data are treated and prepared for
the training of the learning machine. The preprocessing of data is not always
necessary even if it is typically recommendable. Preprocessing operations might
depend on the characteristics of the data, of the problem at hand, and of the spe-
cific learning approach that one wishes to adopt. The operations that are more
often performed consist in removing seasonal trends if the data come from the
observation of time-series, scaling, filtering out noise, and possibly suppressing
outliers (Fayyad et al., 1996). Experience indicates that a good data preprocess-
ing allows for a more rapid and robust training of learning machines—see for
instance Masters (1995).

Feature extraction: The goal of this phase is to extract from the pre-processed
data a limited set of predictors of the phenomenon at hand. We wish to find
the most economical representation of the information contained in the data

56 Chapter 2. Background and state-of-the-art

that is necessary for training the learning machine. This phase is necessary for
avoiding collinearity of data (Montgomery & Peck, 1992) in the input space, and
to reduce the effects of the phenomenon that is known in the literature as the
curse of dimensionality (Bellman, 1961), that is, the exponential explosion of the
size of the problem with the growth of the number of variables considered. The
typical ways that are followed in order to reduce the number of variables include
feature selection, which consists in selecting the most predictive input variables,
and principal component analysis (Myers, 1994) which consists in an appropriate
linear combination of the original variables.

The result of the phases we just described is a set Z = {(z;,y;)}}2, of in-
put/output pairs, as described in Section 2.2.3, that can be fed to the learning
machine for its training.

Parametric and structural identification

Let us consider now the practical problem of finding the function in G = {g(z, o) :
a € A} that minimizes the empirical risk Remp(a) = Z;.V:l(yj —g(zj,)% If the
class G is particularly simple, it is typically possible to search it directly. The
following two examples will serve to clarify this issue.

Linear models
Let us consider the case in which

d
g(z,a) = ap + Z oy, (2.22)
I=1

where 2!, with [= 1...d, are the component of the input z € R%; and
oy, with [= 0...d, are the component of the parameters vector a €
A = R™! In this case, an analytical solution is immediately avail-
able in closed form.?® The same holds true for all classes of functions
that are linear in their parameter o such as, for instance, the class

53The derivation is particularly simple in matrix notation. Let Y be a vector whose j-th

component is y; and X a N x d + 1 matrix whose j-th row is 1, x;, :E? . ,x‘;—l, that is, the vector

z; with a prefixed 1 that accounts for the constant term in Equation 2.22. It results:

N d
Remp(a) = Z (yj —ag — Zazx§)2 = (Y — Xa)T(Y — Xa).
j =1

Jj=1

In order to minimize Remp(c), it is necessary and sufficient for & to be a zero of the gradient
VRemp(a) = —2X7T 4+ 2XT X of the empirical risk. Since the gradient of Remp(a) is linear
in «, it follows immediately that: & = [XTX] 'XTY. In words, in order to find the function
that minimizes the empirical risk it is sufficient in this case to solve a linear system of equations
of order d + 1, where d is the dimensionality of the input space.

2.2. The problem of supervised learning o7

of the polynomials ¢(z, o) = lelz...lk iy, 1,722 2 of generic de-
gree k> or more in general all classes of functions that can be rep-
resented as a linear combination of terms: g(z,a) = ZlL:O ¥ (x),
where U;, with [= 0...L are a set of basis functions.

Neural networks with a fixed number of neurons

Let us consider a neural network whose hidden layer contains ezactly
k neurons. For a given training set Z, training the network amounts
to a search in the space of the parameters

— k(d+1
o= (wll...wlk,wgl...wgk...wdl...wdk,wl...wk) GR(),

where the meaning of wy,,, and wj is the one given in Figure 2.7. In this
case, a closed-form solution to the problem of minimizing the empiri-
cal risk is not available since, given the nonlinearity of the response of
the neurons—see Figure 2.7(b)—the gradient of the empirical risk is
not linear in the parameters. Nevertheless, an iterative search based
on gradient descent can be performed through the so called back-
propagation algorithm (Rumelhart et al., 1986, 1995). Even if such a
search is not guaranteed to find the global minimum of Ry, (), it is
typically able to find good local minima.

At first sight, these two examples appear conclusive: Given a training set and a
parametric family of models—polynomials in the first example, neural networks
in the second—we are able to find a set of parameters that minimizes the em-
pirical risk. In the first of the examples, the optimal parameters are even given
in closed form. Moreover, both polynomials (Weierstrafs, 1885a,b) and neural
networks (Cybenko, 1989; Hornik et al., 1989) enjoy the property of being wuni-
versal approximators: Provided the degree for polynomials, or the number of
hidden neuron for neural networks, is sufficiently high, these models are able to
approximate arbitrarily well any continuous function.

Unfortunately, at a closer analysis the situation is not so reassuring and the
supervised learning practice is much more complex than that. The property of
being a universal approzimators enjoyed by a class of models, is in practice much
more a curse rather than a blessing. It results indeed in a high wvariance of the
fitted model that, as previously showed in Figure 2.6, washes out the advantages
of being a universal approximator, that is, of having an arbitrarily low bias.

Practitioners call this phenomenon over-fitting: If the class G is too rich and
expressive the fitted model will whimsically follow the noise, that is, the acci-
dental peculiarities of the given training set, rather than extracting the essential
traits of the underlying regression function.

> Here the indexes l1ls ...l range between 0 and d, a1, 1, = Qunyma..my if MAM2 . ..My
is a permutation of 1l ...l, and we adopt the convention that 2z = 1, so that the resulting
g(x,) is a non homogeneous polynomial of degree k.

58 Chapter 2. Background and state-of-the-art

Ga) G3 Ga

Figure 2.8: The class of functions is organized as a structure of nested subclasses.

In order to handle this problem, the supervised learning practice prescribes a
two-level procedure composed of a parametric identification and of a struc-
tural identification: The overall class of function G = {g(z,a) : a € A} is
structured into a nested sequence of subclasses G C Gy C --- C Gk, where
Gr = {g9(z,a) : @ € Ay}—see Figure 2.8 for a graphical representation of the
concept. The subclasses are such that each of them is easily searchable: Going
back to the two examples discussed above, G, could be the class of all poly-
nomials of degree k or the class of all neural networks whose hidden layer is
composed of k neurons. The parametric identification consists in finding,
within each of the subclasses Gy, the value af; of the parameters that minimizes
the empirical risk. On the other hand, the structural identification consists in
selecting the best among the functions g(z, o)), g(z, a%), ..., g(z, ak), which in-
directly amounts to selecting the best of the subclasses Gy, Gs, ..., Gx. While the
parametric identification relies on the empirical risk minimization principle, the
structural identification has to be based on some other criterion of selection. In-
deed, since the functions g(z,ak), g(z,a%), ..., g(z, ak) belong to subclasses of
increasing complexity, the associate values of the empirical risk is an approxima-
tion more and more by defect of the actual risk. On the basis of Inequality 2.16,
it is to be expected that the difference R(a%) — Remp(k;) increases with k. For
this reason, the selection of the best among g(z,ak), g(x,a%),...,g(z,ak) is
performed on the basis of the mean squared error these models present over a
set, of examples, called validation set or test set, that were not used during the
parametric identification phase. The mean squared error on a fresh dataset is
indeed an unbiased estimate of the actual risk.

To summarize, the two-level learning procedure consists in the following steps:

1. Split the original set Z of examples into two subsets: a training set Z;. and
a validation set Zi;

2. Define a structure of nested subclasses of models: G C Go C -+ C G,

2.2. The problem of supervised learning 29

MSE

|
[
[
\
[Training set
|
T

k Complexity

Figure 2.9: Mean squared error on the training set and on the test set. The error
on the training set decreases monotonically with the complexity while the error
on the training set, which is an unbiased estimate of the actual risk, decreases
initially and then increases again.

with G, = {g(z, @) : a € Ay};

3. Within each subclass Gy, find the function g(z, %) which minimizes the
empirical risk calculated on the basis of the training set Zi,;

4. Validate on the test set Z each of the functions g(z, o), withk =1... K.

5. Select among the K functions g(z,a%), with k& = 1... K, the function

g(x, Ozkztr) that obtains the best measure of performance on the validation
set.”

The separation between a parametric identification and a structural identification
phase results particularly effective in practice. In particular, the validation of the
fitted models plays a fundamental role in avoiding over-fitting. The typical trend
of the error on the training set and on the test set with increasing complexity
is shown in Figure 2.9. The error on the training set decreases monotonically
with the complexity of the subclass: the larger is the class, the lower is the bias
component of the error and the lower gets the value of the empirical risk. On the
other hand, the error on the test set, which is an unbiased estimate of the actual
risk, decreases initially and then increases again: In a first phase, the increasing

55 More complex schemes exists. One which is frequently applied in practice is called cross-
validation (Stone, 1974; Kohavi, 1995) and counsists in splitting the original set of example Z
into L subsets Z1, Z9, ..., 21, of approximately the same size. In turn, one of these subsets, say
Z; is held-out and the others Z \ Z; are used for performing a parametric identification. Let
g(x,a’") be the model fitted on Z\ Z; and MSE; = 1/|Z)| Y.z, (vj — g(xj,a'l))2 the mean
squared error on Z; used as validation set. The same procedure is iterated over all the subsets.
The overall performance index is given by MSE = 1/L Zlel MSE;.

60 Chapter 2. Background and state-of-the-art

complexity of the considered class of functions improves the performance. Passed
a certain optimal value for the complexity, the model starts over-fitting and the
overall performance deteriorates.

2.2.7 Racing methods for model selection

In this section, we present and discuss a class of algorithms, known as racing al-
gorithms, proposed within the machine learning community for solving the model
selection problem (Maron & Moore, 1994). These algorithms are particularly rel-
evant in this thesis because they serve as source of inspiration for tackling the
problem of tuning metaheuristics. In particular, Chapter 4 introduces F-Race,
an algorithm we developed which proved to be able to handle effectively the
tuning problem and which, as its name suggests, belongs to the class of racing
algorithms.

In Maron & Moore (1994) Hoeffding race is proposed as a method for accelerat-
ing model selection in supervised learning.® In particular, Maron & Moore are
interested in selecting the set of best structural parameters for a memory based
method. The measure of performance is here the mean squared error computed
through the leave-one-out validation method which is an extreme form of cross-
validation®” where the held-out sets consist of just one example. In other words,
leave-one-out consists in predicting each example in the available set on the basis
of all other examples; a measure of the accuracy of the model structure at hand
is then given by the average of the IV observed squared errors, if V is the number
of examples in the data set. Formally, the leave-one-out mean squared error of a

given model is:
1 2
~loo ~-l
= N ;1 (yz - yz) ’ (2.23)

where ¢ is the prediction of the output y; obtained by the model at hand on the
basis of all available examples but (z;, ;).

In the general case, leave-one-out is a very expensive procedure: it requires
training N times the model structure, once on each of the NV subsets of size N —1
that can be extracted from a database of N examples. Memory-based approaches
are an exception in this respect: In memory-based methods no real training phase
is involved and the computation time needed for performing & predictions, each
on the basis of a different set of examples, amounts exactly to the time needed for
performing % predictions, all of them on the basis of the same set of examples.®®

56The main idea behind the method had been previously exposed in Maron’s Master’s the-
sis (1994).

TSee note 55.

8 This is clearly not true in the general case. For instance, in case of neural networks the
training phase is rather time consuming: When given a new set of examples, a neural network
is not able to directly perform predictions on the basis of this set. A training phase, typically

2.2. The problem of supervised learning 61

Candidates

Examples

Figure 2.10: Graphical representation of the amount of computation involved in
Hoeffding race. The leave-one-out evaluation of the candidate model structures
is performed incrementally: One often the other, the examples of the dataset
are put aside, each of the candidates performs a prediction of the output of
the held-out example and the estimate of the leave-one-out measure for each
candidate is updated. As soon as sufficient evidence is gathered that a candidate
is suboptimal, it is discarded from further evaluation. As the evaluation proceeds,
it focuses thus more and more on the most promising candidates.

The main idea introduced in Maron & Moore (1994) with Hoeffding race—idea
that then characterized the whole class of racing algorithms—is that the search
for the best model structure can be speeded up by discarding inferior candidates
as soon as sufficient evidence is gathered against them. Indeed, the evaluation
of the leave-one-out measure [i'°(#) concerning the generic candidate 0, can be
performed incrementally: Being the average of N squared errors, each regarding
one of the N examples in the dataset, this quantity can be approximated by the
average fiy°(#) which is calculated on any subset of size k of these errors. It
should be noted that, irrespectively of the size k of the sample considered, the
average calculated on this sample is an unbiased estimate of the mean squared
error p(6) and that, moreover, the variance of such an estimate decreases with k.
As the computation proceeds and the estimate of the leave-one-out measure for
the candidates gets sharper and sharper, a statistical test of hypothesis can be
adopted for deciding if the observed difference in the leave-one-out estimates
of the given candidates is significant. In this case, the inferior candidates are
discarded from the race and will not be further evaluated—see Figure 2.10 for a
graphical representation of a race.

The original racing algorithm, Hoeffding race, adopted as statistical test one
based on a Hoeffding’s formula (Hoeffding, 1963) concerning the confidence on
the empirical mean of £ positive numbers ¢y, . . ., ¢, sampled independently from
the same distribution, when an upper bound on the random variable ¢ is known.
The probability that the true mean p of the random variable ¢ is more than ¢

based on some variant of the back-propagation algorithm, is needed before the neural network
is operational.

62 Chapter 2. Background and state-of-the-art

from the empirical mean ji; = 1/k S5 ¢ is:
Prob — | > e} < e 2ke?/B? 2.24
= fi

where B is an upper bound on c¢. On the basis of Inequality 2.24 it is possible to
define an interval [fix, — €, iy + €] around the empirical mean fi;, in which the true
mean g should be with a confidence 1 — 4, formally:

Prob {|p — (k)| > €} < 4.

It follows that after having observed k£ numbers cy, ..., ¢x, we are able to establish
that, with confidence 1 — 9, the true mean p is within a distance e from the

empirical estimate [i;, where:
B?log(2/9)
=1/ —=. 2.25
VT (2.25)

The Hoeffding race algorithm exploits Hoeffding’s bound and defines, for each
candidate @, an interval

1:(0) = [Li(0), Ur(0)] = [(0) — €, 1" (0) + €], (2.26)

where f17°(0) is a leave-one-out estimate based on k predictions of the true mean
squared error u(6) associated with candidate . On the basis of 2.25, the interval
I1(0) is such that it contains the true value of 1(6) with confidence 1 — 4.

Hoeffding race starts with a collection of candidates and proceeds considering
iteratively the examples in a given dataset of size N. At step k the k-th example
in the dataset, (z,y), is held-out and all candidates in the race are called to
predict the output y; on the basis of all other examples in the dataset. For the
generic candidate 6, the error e;(0) = yx — 43%(0) is used to update the estimated
leave-one-out mean squared error i (0) = 1/k Zle e?(6). Moreover, thanks to
Equation 2.26, an upper bound Uy () and a lower bound L (6) are given for the
true mean square error u(6) of candidate 6. After completing step k and before
iterating the procedure, all candidates whose lower bound rests above the upper
bound of the best candidate so far are eliminated from the race and will not be
considered for further evaluation. See Figure 2.11 for a graphical representation.
On the basis of Equation 2.25, the elimination of each candidate configuration
is performed with confidence at least equal to 1 — §, that is, the probability of
eliminating a candidate whose true mean square error is indeed better than the
one of the best candidate so far, is less than 1 — §. As the evaluation of the
surviving candidates proceeds and more and more examples are considered in
the leave-one-out procedure, the intervals [(f) around the empirical estimates
get tighter and the selection procedure gets sharper and sharper.

The main advantage of the adoption of a selection procedure based on In-
equality 2.24, is the nonparametric nature of this inequality which implies that

2.2. The problem of supervised learning 63

e (2)

. Mean squared error

Threshold

R e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Candidates

Figure 2.11: An example: After say k steps, candidate 6 is the best in the
group and the upper bound on its estimate defines the value of the threshold.
All candidates whose lower bound rest above the threshold are discarded. In
this specific example, candidates 2, 3, 7, 9, 11, and 12 are eliminated. For each
candidate 6, upper and lower bound are both e-far from the estimated mean

7y loo

squared error [(6).

its validity is guaranteed irrespectively of the distribution of the stochastic vari-
ables involved. The down side is represented by the fact that in most applications
either no bound B is given on the observations, or the available bound is so loose
to make Inequality 2.24 unusable. In their original works, Maron & Moore adopt
an estimate of the unknown bound. This detail of the algorithm is indeed left
unexplained in the first paper on Hoeffding race and is described only in a sub-
sequent paper (Maron & Moore, 1997). The estimate is obtained empirically as
the maximum squared error observed on an initial number of test examples. In
Maron & Moore (1997), the authors describe a Hoeffding race procedure that
starts discarding inferior candidates only after having observed their behavior
on 30 test cases. During this preliminary phase, the bound is estimated. This
solution is rather questionable from different points of view. First, the empirical
estimation of the maximum of a distribution is particularly problematic.”® Sec-
ond, the Hoeffding bound given in Inequality 2.24 is is not valid in this context
since the upper bound B is unknown and it is replaced here by an approxima-
tion by defect. Third, the 30 initial evaluations of all candidates can be a large

591t is indeed always biased, since all possible observations are by definition less or equal the
quantity to be estimated. Even worse, the uncertainty on the estimate does not decrease with
the size of the sample—as it does, for instance, in the case of the estimation of the expected
value. Indeed, irrespectively of the size of the sample, it is always possible that the observed
variable might assume an arbitrary large value which might emerge with very low probability:
In virtue of its low probability, such a large value might fail to reveal itself in samples of any
arbitrary size.

64 Chapter 2. Background and state-of-the-art

amount of computation time if the number of candidates is large and this reduces
the practical applicability of the method.

Notwithstanding these issues with the use of the Hoeffding bound, the idea
behind the racing approach is very appealing. In order to overcome the above
mentioned problems while still exploiting the core racing idea, some new racing
algorithms based on a different statistical tests were proposed in Moore & Lee
(1994). Among them, BRACE is based on Bayesian statistics and implements
a statistical technique known as blocking (Box et al., 1978; Dean & Voss, 1999;
Montgomery, 2000). A block design is an experimental setting that is possibly
adopted when two or more candidates have to be compared and that improves
the precision with which the comparison is made. A block is a set of relatively
homogeneous experimental conditions under which all candidates are tested.® In
the context of the selection of the best candidate on the basis of a leave-one-out
validation, adopting a block design is particularly natural and simple: Indeed
each of the surviving candidates is tested on the same examples. Each example
is therefore a block in the considered design.

In BRACE, for each example (xy, yx) in the dataset and for each pair of candi-
dates still in the race, say candidates € and #’, we are interested in the quantity
hi(6,0") defined by:

hii(0,0") = €x(0) — ez (0).

where e;(0) = yp—3;*(0) and e, (0') = y,—7;"(0') are the errors yielded on the k-th
example by candidate 6 and 0’ respectively. The sign of hy.(6, 0’) indicates which of
the two candidates obtained a better performance on example k: if it is negative,
candidate f was better than ¢’; if it is positive, the other way around. During
the race, the algorithm incrementally estimates the mean value fi(6,6') and the
variance 6(0,0') of hi(0,0'), for each pair § and ¢ in the race. On the basis of
these estimates a set of statistical tests is performed at each step of the algorithm
to check if some candidate is significantly worse than any other. In this case, the
inferior candidate is discarded from the race. Under some general conditions,
the statistical test adopted in BRACE is equivalent to a paired t-test (Sheskin,
2000) performed between each pair of surviving candidates. Contrary to the test
adopted in Hoeffding race, the t-test is a parametric procedure and therefore it
relies on some assumptions concerning the stochastic variables involved, namely,

60An example might help here. Let us suppose we wish to compare the braking distance of
three different cars under a variety of conditions. A block is here the definition of each of these
conditions: initial speed, temperature and humidity of the road surface, wear and tear of tires,
etc. A block design prescribes that the three cars should be tested in the same conditions. For
instance, the experiments concerning a block could be performed in the following way: A road
segment is selected and one after the other, possibly in a randomly selected order, the three
cars, which have previously covered the same number of kilometers, are driven at a predefined
speed along the road segment and when a predefined position is reached the brakes are applied.
On a given block the cars should be tested within a reasonably short period of time to minimize
the variations of the atmospheric and road surface conditions.

2.3. Discussion 65

it assumes that the quantities hy (6, 0’) are normally distributed. Notwithstanding
these limitation, BRACE proved to be very effective and is reported to yield
better results than Hoeffding race (Moore & Lee, 1994; Maron & Moore, 1997).
We definitely agree with the proponents of the method when they ascribe the
observed superiority to the effectiveness of the block design.

It is worth noticing here that the strength of Hoeffding race is the adoption of a
nonparametric test, even if the adopted test requires the knowledge of a bound on
the observed error and this reduces dramatically the range of applicability of the
method. On the other hand, BRACE proves that the adoption of a block design
is particularly effective in a racing setting. Nonetheless, in order to include this
feature, the authors had to adopt a parametric statistical test whose applicability
is restricted by the hypothesis that the quantities involved should be normally
distributed. F-Race (Birattari et al., 2002), the racing method we propose in
Chapter 4 for tuning metaheuristics, joins in one single algorithm the best features
of Hoeffding race and of BRACE. Indeed, F-Race is based on the Friedman two-
way analysis of variance by ranks, also known simply as Friedman test, which
implements a block design in an extremely natural way and, at the same time, is
nonparametric and therefore does not rely on any assumption on the distribution
of the stochastic quantities under analysis.

2.3 Discussion

This chapter has introduced two research fields: combinatorial optimization,
and supervised learning. These two fields are somehow related: as we pointed
out in Section 2.2.3 while solving a learning problem, an optimization problem
has to be solved as a subproblem. Nonetheless, supervised learning cannot be
trivially reduced to optimization and requires the development of a considerably
different conceptual framework. The presence of an introduction to these two
different fields is justified by the interdisciplinary character of the thesis: The
focus of the thesis in on the problem of tuning metaheuristics but most of the
contributions, both in the formal definition of the tuning problem and in the
development of a tuning algorithm, come from machine learning ideas.

The problem of tuning metaheuristics emerged in the optimization field only
quite recently. Metaheuristics are a relative young class of algorithms which
present features that are quite different from those of other optimization algo-
rithms. In particular, most optimization algorithms are designed for solving a
specific optimization problem. On the other hand, metaheuristics are problem-
independent approaches to optimization: Rather than as algorithms, they should
be more properly seen as general algorithmic templates that need to be instan-
tiated on the specific problem at hand in order to yield a fully functioning algo-
rithm. It is precisely in this process of instantiation that the need of some tuning
procedure emerges: In order to be a true multi-purpose approach and to lend

66 Chapter 2. Background and state-of-the-art

itself to the solution of a wide range of different optimization problems, a meta-
heuristic comes with a set of different modules that may be possibly included or
not, and with a variety of parameters to be tuned. So far, metaheuristics have
been tuned by hand on the basis of some rules-of-thumb: Such a manual approach
is without doubts time-consuming and tedious and relies completely on human
experience and intuition. Although viable in academic studies, this approach
to tuning does not fit the needs of a large scale adoption of metaheuristics in
real-world applications.

To overcome these limitations, some energy has been devoted by the research
community to the definition of some automatic tuning procedures. In our view,
much of the effort in this direction has been frustrated by the fact that a precise
definition of the tuning problem is still missing and that its true nature has not
been completely understood.

The main contribution of this thesis consists precisely in giving a formal def-
inition of the tuning problem which, as we will see in Chapter 3, happens to
highlight the similarities between the tuning problem itself and the supervised
learning problem. Moreover, the tuning algorithm F-Race, presented in Chap-
ter 4, belongs to the class of racing algorithms introduced in the machine learning
community for solving the model selection problem—see Section 2.2.7. Further
contributions discussed in the thesis that derive from machine learning ideas are
the experimental methodology adopted in Chapter 5, and much of the analysis
proposed in Chapter 6.

Galileo formulated the problem of determin-
ing the wvelocity of light, but did not solve
it. The formulation of a problem is often
more essential than its solution, which may
be merely a matter of mathematical or ex-
perimental skill. To raise new problems, new
possibilities, to regard old problems from a
new angle, requires creative tmagination and
marks real advance in science.

Albert Finstein and Leopold Infeld

Chapter 3

Statement of the tuning problem

Metaheuristics are general algorithmic templates whose components need to be
instantiated and properly tuned in order to yield a fully functioning algorithm.
We call a configuration of a metaheuristic any possible instantiation of this tem-
plate while with the expression tuning problem we denote the problem of properly
instantiating the template, that is, the problem of choosing among the set of pos-
sible components and assigning specific values to all free parameters.

As practitioners know, metaheuristics are in general quite sensitive to the
value of their parameters and a careful fine-tuning typically improves the perfor-
mance in a significant way. This chapter is devoted to the definition of a formal
framework in which the tuning problem can be cast and solved. Before entering
in the technical details, an informal description of a typical situation in which the
tuning problem arises is given in Section 3.1. In Section 3.2 we give the formal
position of the problem and in Section 3.3 we discuss some possible extensions
and variants. Section 3.4 summarizes and discusses the results presented in the
chapter.

3.1 An informal example

The tuning problem is best introduced by an informal example: MARIO’S PIZZA
DELIVERY problem. This simple example has the merit of including all the ele-
ments that characterize tuning problems as they occur in the real-world. These
elements are cast into a formal framework in Section 3.2.

67

68 Chapter 3. Statement of the tuning problem

MARIO’S PIZZA DELIVERY

Mario has a very successful wood-oven pizza restaurant that delivers
pizzas all over the city to his many customers. Mario’s is open around
the clock and collects orders on the phone. Every 30 minutes, a
delivery boy packs on the back of his motorbike the pizzas to be
delivered to the customers that called during the last 30 minutes,
he has a quick look of 1 minute at the city map for scheduling the
delivery tour, and then he hits the road to deliver a still smoking pizza
to Mario’s aficionados.

Despite the exceptional amount of work at the restaurant, Mario reads
a lot: He learned about metaheuristics and he wants to give them a
try. What metaheuristic should he use for scheduling the delivery
tours? What should be the values of the free parameters? In order
to have an answer to these questions, he makes a deal with your lab:
If within one month you produce a high-performing metaheuristic for
scheduling his delivery tours, you will have 1000 coupons, each valid
for one of Mario’s famous pizzas.

We are already in the position of highlighting the following elements of MARIO’S
problem that start shedding light on the problem of tuning metaheuristics in
general:

1. Scheduling each of the delivery tours is a combinatorial optimization prob-
lem, namely a TRAVELING SALESMAN problem, that can be solved with a
metaheuristic.?

2. Every 30 minutes a new instance has to be solved: MARIO’S problem is
indeed characterized by a stream of instances.

3. A limited amount of time of 1 minute is available for solving each instance:
The boy has to leave fairly quickly in order to be able to deliver a still
smoking pizza.

4. Another time constraint is given: we are supposed to produce a fine-tuned
metaheuristic within one month.

Before proceeding further in our analysis of the tuning problem, an important
point has to be made clear. In the example, we are supposed to produce a “high-
performing” metaheuristic for scheduling Mario’s delivery tours but no precise
meaning has been given, so far, to this sentence. In order to explicitly define

LOur choice to refer to TRAVELING SALESMAN in our informal presentation of the tuning
problem was mostly guided by the sake of clarity: Since we expect our readers to be fairly
familiar with it, they will not be distracted by its details and will rather focus on the tuning
problem which is the real issue in the example.

3.1. An informal example 69

a criterion for measuring the quality of a metaheuristic, two different orders of
considerations are needed, the first pertains to the evaluation of the performance
on a single instance, while the second extends the measure of the performance
to a whole class of instances. While the former is rather simple to handle, the
second is of a more subtle nature and is intimately related to the actual original
contribution of the whole chapter.

Measuring the performance on a single instance

For what concerns the evaluation of the performance of a metaheuristic on a
single instance, two issues have to be considered.

First, an appropriate cost function has to be defined. In Mario’s example, the
length of the tour found by the metaheuristic in the given amount of time appears
as a natural and reasonable choice. Other functions could be equally reasonable.
For example, the expected time needed for completing the tour is a measure that
is somehow related to the tour length but that could be more appropriate if some
streets are known to be particularly congested and therefore require, in order to
be covered, a longer time than other of equal length, but typically less congested.
Yet another cost function for which similar considerations hold is the amount
of fuel needed by the boy’s motorbike for completing the tour. The selection
among these and other possible cost functions is very problem-specific and does
not have any direct impact on the definition of the tuning problem. In this thesis,
we always take for granted that an appropriate cost function has been defined for
the underlying optimization problem.

Second, a metaheuristic is a stochastic algorithm and therefore different runs
on a same instance will typically produce different solutions, each characterized
by a different cost. When observing a stochastic quantity, as in this case the cost,
we are typically interested in its expected value.? A single run of the algorithm
on the instance at hand produces by itself an unbiased estimate of the expected
value.> If we were interested in a better estimate for what concerns a specific
instance, we would consider the average of more runs in order to have a reduced
variance.

Measuring the performance on a whole class of instances

For what concerns the evaluation of the performance over a whole class of
instances, a deeper insight has to be gained. Before proceeding further, we need
to elaborate on the very notion of class of instances. To this aim, we need to define

2The possibility of adopting other statistics different from the expected value is discussed in
Section 3.3.4.

3An estimator ¢ of a quantity ¢ a is said to be unbiased if E[q]
biased with bias b = E[g] — q. The variance o7 of is 07 = E [(¢
et al. (1986) for an organic introduction to estimation theory.

= q. Otherwise, it is called
— E[4))?]. See Mendenhall

70 Chapter 3. Statement of the tuning problem

some sort of model of how the stream of instances observed by Mario is generated.
It should be noticed that among all possible TRAVELING SALESMAN instances,
some will be more likely to occur than others. For example, the morphological
features of the city itself rules out a large share of possible instances: An instance
presenting nodes that fall outside the urban area will never occur. The same
applies if a node of the instance is placed in a non residential area, such as the
middle of a park, an industrial area, the bed of a river, and so on: no customer
will ever request a delivery in such areas. On the contrary, an instance is more
likely to occur if one of the nodes is placed, for example, at the university dorms:
students are known to consume large amounts of pizza. Similarly, if Mario has
heavily (and successfully) advertised in some neighborhoods, it is to be expected
that instances that present nodes in these neighborhoods will occur more likely
than those that do not.

The above discussion makes quite natural the introduction of a probabilistic
model of the stream of instances. We consider here a simple probabilistic model,
namely one in which the instances in the stream are independently and identically
distributed. This simple model will serve the purpose of this section and of most of
the thesis. A discussion of more general models is given in Sections 3.3.1 and 3.3.2.
In the terms of a probabilistic model it is now possible to give a meaning to the
notion of performance over a whole class of instances: we define the performance
over a class of instances to be the expected value* of the performance over the
instances of the class or, more roughly speaking, the average of the performance
obtained on each instance, weighted by the probability that each instance occurs.

Having defined an appropriate way for measuring the performance of a meta-
heuristic both on a single instance and on a whole class of instances, we are now
in the position of stating the tuning problem.

The ultimate goal of tuning

With respect to the concept of stream of instances we can state that the ultimate
goal of tuning is to select a proper configuration that maximizes the performance
on the instances that we will face in the future.

It goes without saying that future instances are not known in advance and,
in particular, they are not available during the tuning phase. Nevertheless, some
statistical properties of future instances can be extracted from past observations.
Such a statement rests on the very basic assumption underlying any scientific
investigation or any technological development: the hypothesis of reqularity of
nature.” On the basis of this typically implicit hypothesis, we expect that in

4Also for what concerns the performance over a class of instances, different statistics can be
considered. A discussion is given in Section 3.3.4.

This is not to endorse a vision of science based on induction (Piscopo & Birattari, 2002).
Indeed, even if we question the idea that inductive inference, justified on the basis of the

3.1. An informal example 71

Juture. ..

past

Figure 3.1: When tuning a metaheuristic, we aim at optimizing its performance
on future instances, but only past instances are available. On the basis of an hy-
pothesis of reqularity of nature, we assume that future instance will be generated
by the same mechanism that generated the ones observed in the past. Namely,
we assume that both past and future instances are extracted according to the
same probabilistic model.

some sense the past informs on the future and that it is therefore possi-
ble to generalize past experience to future events. In this precise sense, tuning a
metaheuristic is a genuine learning problem. This observation justifies the formal
position of the tuning problem we give in Section 3.2 and the tuning algorithm we
present in Chapter 4, which are both heavily influenced by concepts and meth-
ods pertaining to the machine learning field. On the other hand, the successful
position of the problem and the applications of the algorithm will clarify the full
implications of the statement and all its practical relevance.

In practice, the tuning process is a selection of the best configuration, per-
formed on the basis of instances observed in the past. With reference again to
MARIO’S problem, we may observe that the actual reason for developing a meta-
heuristic for scheduling delivery tours is that it will be then (hopefully) employed
in practice at the restaurant. The life-cycle® of our metaheuristics is composed
of two phases:

hypothesis of regularity of nature, is a solid ground for a final validation of scientific theories,
we have to recognize to this hypothesis a fundamental regulative role. This position is already
clear in Hume’s writings: David Hume addressed the issue in the 18th century in a particularly
influential way, and no analysis has managed to evade Hume’s critique ever since. Hume became
skeptical on the possibility of giving a logical justification to the practice of inferring knowledge
about future events from past experience. He pointed out that all justifications of induction
present some major logical flaw, in particular, justifying induction on the grounds that it has
worked in the past relies on a circular argument.

According to Hume (1748), any inference from the past to the future is based solely on what
he calls custom or habit and to which, in any case, he confers great practical relevance:

Custom, then, is the great guide of human life. It is that principle alone which
renders our experience useful to us, and makes us expect, for the future, a similar
train of events with those which have appeared in the past. Without the influence
of custom, we should be entirely ignorant of every matter of fact beyond what is
immediately present to the memory and senses. We should never know how to
adjust means to ends, or to employ our natural powers in the production of any
effect. There would be an end at once of all action, as well as of the chief part of
speculation. David Hume.

6A discussion of the notion of life-cycle model for metaheuristics is given in Chapter 6.

72 Chapter 3. Statement of the tuning problem

A development phase which takes place at our workshop and during which
we develop the code and we tune the algorithm.

A production phase during which the algorithm is located in its production
environment, that is, Mario’s pizza restaurant.

These phases are disjoint in time and separated by the moment in which the
metaheuristic leaves the workshop to enter the location of exploitation. Of these
two phases, the former relies on past instances while the latter will have to deal
with future ones. The link between the two is ensured by the hypothesis that the
future will be in some sense similar to the past. Namely, both past and future
instances belong to the same class of instances and are therefore generated
according to the same mechanism: They are independently sampled from the
same unknown distribution.

3.2 The formal position of the problem

In order to give a formal definition of the general problem of tuning a metaheuris-
tic, we consider the following objects:

e O is the set of candidate configurations.

I is the typically infinite set of instances.

e P is a probability measure over the set I of instances: With some abuse
of notation, we indicate with P;(i) the probability that the instance 7 is
selected for being solved.”

e {: I — R is a function associating to every instance the computation time
that is allocated to it.

e c is a random variable representing the cost of the best solution found by
running configuration 6 on instance 4 for ¢(i) seconds.®

e (' C R is the range of ¢, that is, the possible values for the cost of the best
solution found in a run of a configuration # € © on an instance i € I.

e Pc is a probability measure over the set C: With the notation® Pg(c|6,1),
we indicate the probability that c is the cost of the best solution found by
running for ¢(i) seconds configuration 6 on instance i.

"Since a probability measure is associated to (sub)sets and not to single elements, the correct
notation should be P;({i}). Our notational abuse consists therefore in using the same symbol
both for the element i € I, and for the singleton {i} C I.

8In the following, the dependency of ¢ on ¢ will be often implicit.

9The same remark as in Note 7 applies here.

3.2. The formal position of the problem 73

e C(0) =C(0|O,1, Py, Pc,t) is the criterion that needs to be optimized with
respect to 6. In the most general case it measures in some sense the desir-
ability of 6.

e T is the total amount of time available for experimenting with the given
candidate configurations on the available instances before delivering the
selected configuration.

On the basis of these concepts, the problem of configuring a metaheuristic can
be formally described by the 7-tuple (©, I, P, Pc,t,C,T). The solution of this
problem is the configuration # such that:

0= argmeinC(é?). (3.1)

As far as the criterion C is concerned, different alternatives are possible—see
Section 3.3.4 for a discussion of the issue. In the following, we consider the
optimization of the expected value of the cost c¢. This criterion is adopted in
many different applications and, besides being quite natural, it is often very
convenient from both the theoretical and the practical point of view. Formally:

C(6) = Ercle] = / cdPo(cl0, 1) dP;(3), (3.2)

where the expectation is considered with respect to both P; and Pg, and the
integration is taken in the Lebesgue sense (Billingsley, 1986).

The measures P; and P are usually not explicitly available and the ana-
lytical solution of the integrals in Equation 3.2, one for each configuration 6, is
not possible. In order to overcome this limitation, the integrals defined in Equa-
tion 3.2 can be estimated in a Monte Carlo fashion on the basis of a training set
of instances, as it is shown in Chapter 4.

It is worth noticing here that a possible difficulty might arise with Equation 3.2
if for a given configuration 6, an instance ¢ with Pr(i) > 0 exists, such that the
probability is non null that # fails to find any feasible solution of ¢ within the given
amount of time ¢(7). Since it results natural to assign an infinite value to ¢ in case
of failure in retrieving a feasible solution, the integral given in Equation 3.2 does
not converge under this circumstances, and we should assign an infinite value to
the criterion C(#). In any case, notwithstanding the unaesthetic nature of dealing
with infinite quantities, this does not cause any major theoretical nor practical
problem.!?

100ften an upper bound B(i) on the cost of the solutions of instance i is available. In such
a case, one might wish to assign the value B(7) to ¢ if configuration 6 fails to find any feasible
solution of ¢ within time ¢(¢). In this case the problem of dealing with infinite quantities does
not even arise.

74 Chapter 3. Statement of the tuning problem

3.3 Possible variants and extensions

The formal definition of the tuning problem that is provided in Section 3.2 is
general enough to cover a wide range of practical problems. Nevertheless, it
does not directly include all possible specific tuning problems that practitioners
are called to face in the real-world when tackling optimization problems with
metaheuristics.

This section describes some possible cases and discusses how to describe them
in the terms of the formal definition given in Section 3.2.

3.3.1 Problem subclasses and a priori information

In the definition of the tuning problem given in this chapter, a tacit assumption
is made that instances are a priori indistinguishable. In such a case, the tuning
problem is stated as the problem of finding the configuration 6 that provides the
lowest expected cost over the whole class of instances. On the other hand, if an
indicator is available which provides a way to distinguish among instances and to
cluster them into subclasses in a meaningful way, such information can be used
to reformulate the original tuning problem into a collection of subproblems, each
referring to one of the subclasses.

If the partition of the space of the instances is properly done, an instance
will be more similar in some profitable sense to the instances belonging to the
same cluster rather than to others. It is reasonable to expect in this case that
the configuration selected for a given subclass will obtain on that subclass a
better performance than the generic configuration selected for the whole class
of instances: The collection of specialized configuration is therefore expected to
produce better results than the generic configuration.

In this case the underlying model of how instances in the stream are generated
is a hierarchical one, as the one represented in Figure 3.2. By adopting this model,
we accept the working hypothesis that instances are generated in two steps:

1. At the top-level, possibly according to a random experiment, the selection
is made of the subclass to which the instance to be generated will belong;

2. At the bottom-level, the instance is actually generated according to the
probability measure defining the subclass selected at step 1. Within each
subclass, instances are identically and independently distributed.

For each instance in the stream we observe the instance itself, together with the
indicator of the subclass to which it belongs.

MARIO’S problem provides an example of how problem subclasses can be
defined: We could expect day-time instances to be somehow different from night-
time ones. Let’s say that we expect, or we know on the basis of past experience,
that night-time instances tends to be smaller in terms of number of customers to

3.3. Possible variants and extensions 75

Py

Py Py

Figure 3.2: Graphical representation of a hierarchical model. At the top-level,
a subclass is extracted; the actual instance is then extracted according to the
probability measure characterizing the selected subclass.

be served, and are characterized by a larger number of calls from the university
dorms. On the other hand, day-time instances are larger and customers tend to
concentrate downtown, in the business area of the city, where streets are narrow
and traffic jams are a standard. On the basis of this a prior: information, we
expect that rather than considering a single tuning problem we would better
look for two configurations, each one specialized for one of the two subclasses of
instances. A graphical representation of the decomposition of MARIO’S problem
into two subproblems is given in Figure 3.3.
A further generalization of this issue is given in the Section 3.3.2.

3.3.2 Generic probabilistic models

In this thesis, we consider a simple model of how instances occur, namely, we as-
sume that all instances in the stream are independent and identically distributed.
In Section 3.3.1 a first possible extension is discussed. However, the assumption
can also be removed by considering more complex models that allow temporal
correlation in the characteristics of the instances.

The most general model that presents this feature is the hidden Markov
model (Rabiner, 1989). By adopting this model, we accept the working hypoth-
esis that an underlying finite-state machine evolves in time from state to state.
At each state transition, an instance is generated by sampling an unknown dis-
tribution associated with the current state. For convenience, we distinguish here
two cases: the one in which the underlying finite-state machine is deterministic
and the more general case in which it is stochastic.

An hidden Markov model with an underlying deterministic process is graph-

76 Chapter 3. Statement of the tuning problem

day-time night-time

day night
P I P 1

Figure 3.3: Graphical representation of the decomposition of MARIO’S prob-
lem into two subproblems. The indicator, in this case, is the time at which the
instance emerged. Within each subclass, instances are identically and indepen-
dently distributed. In order to decompose the problem, we made use of a priori
knowledge about the temporal characterization of the instances.

ically represented in Figure 3.4. Figure 3.5 re-proposes the example, already
discussed in Section 3.3.1, of the decomposition of MARIO’S problem into two
subclasses. Here, the generation of instances is modeled as a hidden Markov
model with an underlying deterministic state evolution.

On the other hand a graphical representation of a (4-state) hidden Markov
model, characterized by nondeterministic state-transitions, is given in Figure 3.6.
In this case, the underlying process can be described in probabilistic terms: A
set, of states

X ={x1,29,..., 2.} (3.3)
is given, together with the quantities
pow = P(x(k + 1) = z,|z(k) = 2,), with 1 <ov,w <n, (3.4)

representing the probability that the state at time &k + 1 will be x,, given that it
is z, at time k.'

Even if hidden Markov models with nondeterministic state-transitions are ex-
tremely powerful and capable of accurately model the most diverse streams of
instances, their application to the problem of tuning metaheuristics appears, at

'We assume here that the state transition probabilities are time independent. The model
can be further complicated by considering time-varying probabilities. This extension goes far
beyond the aims of this thesis.

3.3. Possible variants and extensions 7

X1 i) XT3 Tn—1 Tn
PI PI PI PI PI

X T X I T

Figure 3.4: The generation of instances represented as a hidden Markov model.
In this figure, the underlying finite-state machine is deterministic.

least at the current state, rather impractical. The downside of these models is
precisely represented by their very generality and power that makes their practical
application cumbersome: The adoption of a hidden Markov model with underly-
ing nondeterministic state-transitions would requires to solve two different orders
of difficulties:

e The state-transition probabilities have to be estimated. This is particularly
difficult since we are given only sequences of instances that the process
actually produces but we are not given the associated state transitions that
occur. Unfortunately, no analytic method exist for solving this class of
problems which are therefore tackled through iterative techniques such as
the Baum-Welch algorithm or the EM algorithm—see Rabiner (1989) and
references therein.

e Even once an estimate of the state-transition probabilities is available, the
underlying state of the system cannot be directly observed. Some sort of
filtering is necessary in order to determine the current state on the basis of
the observed sequence of instances. This class of problems is usually solved
through the Viterbi algorithm (Viterbi, 1967; Forney, 1973).

These two problems are far from being trivial.

It is our opinion that the use of simple hierarchical models, as those described
in Section 3.3.1, or of hidden Markov models characterized by a small number
of states and deterministic state-transition is perfectly viable and even advisable
when a priori knowledge is available. On the other hand, given the difficulties
outlined above, we expect that hidden Markov models with underlying nondeter-
ministic state-transitions could be profitably adopted only in a restricted number
of applications.

3.3.3 The single-instance case

In some applications, practitioners face the problem of solving one single instance
rather than a stream. Clearly, the whole conceptual apparatus developed in this

78 Chapter 3. Statement of the tuning problem

C 77777777777777 7 PIdGZ/

Pm’ght N

Figure 3.5: The decomposition of MARIO’S problem into two subproblems mod-
eled here through a finite-state automaton: Every 30 minutes a new instance is
generated and a state-transition occurs.

3.3. Possible variants and extensions 79

i) T3
PI PI

ZT1 L4
PI PI

Figure 3.6: A graphical representation of a hidden Markov model with 4 states.
When the process is in state x,, an instance is generate according to the distribu-
tion P/”. From state z,, a transition to state x,, might occur with probability p,.
In this example, self-transitions are possible.

chapter does not apply to this case. Still, in some sense, also in the single-instance
case some sort of tuning might be meaningful.

Before proceeding with this problem, some seemingly trivial issues need to be
made clear to avoid possible misunderstandings:

1. Also in the single-instance case, a time constraint needs to be given. Oth-
erwise we could, possibly in an extremely large amount of time, find the
global optimum by exhaustive enumeration of the solutions.

2. The instance must be large enough to guarantee that no exact algorithm is
able to find the provably optimal solution within the available time.

In such a context, a choice has to be made on whether to tackle the instance with
one given configuration during the whole time available, or whether to try more
configurations.

A typical solution—see for example McAllester et al. (1997)—that is often
adopted in practice consists in splitting the available time in two segments: a
tuning phase and an actual search. During the tuning phase, a selection is made
among a number of different configurations on the basis of the results obtained
on some short pilot runs. The selected configuration is then used in the actual
search.

It is worth pointing out here that also in the selection based on pilot runs
a sort of generalization is implied. The only difference is that, in this case, the
generalization rests on the stronger hypothesis that what is observed on short
runs extends to longer runs.

A part from this remarks, the main methods developed in Chapter 4 for
tackling the problem defined in Section 3.2 can be adopted also for the tuning of

80 Chapter 3. Statement of the tuning problem

metaheuristics through pilot runs.

3.3.4 The optimization of generic statistics

Rather than considering the optimization of the expected value, other statistics
may be considered as well. As an example, the third interquartile or the median
are known to be more robust statistics and in some application this property
could be particularly appealing. The definition of the tuning problem given in
Section 3.2 is not bound to the expected value and can be easily reformulated in
terms of other statistics.

Nevertheless, while the expected value can be easily estimated on the basis
of a sample, the estimation of other statistics might be problematic and data-
inefficient: On the basis of a given finite sample, the estimate of the expected value
is affected by a smaller variance compared with the estimate of other statistics.

The method we present in Chapter 4 is based on the optimization of the
expected value but it can be possibly modified to handle different statistics. Re-
search in this direction is currently ongoing.

3.3.5 Time versus cost

So far, we have considered the case in which the search time is a prior: fixed, and
a metaheuristic is evaluated on the basis of its ability in finding a low-cost solution
within the given amount of time. For some applications, the dual problem is of
interest: a given threshold cost is fixed, and a metaheuristic is evaluated on its
ability in finding in a short time a solution whose cost is equal or smaller than
the threshold. The formulation given in Section 3.2 can be easily modified to
handle the optimization in the time-to-threshold sense.

Also here, as it is the case with the minimization of costs, the criterion to be
optimized becomes infinite for a configuration 6, if an instance ¢ with Pr(i) > 0
exists, for which the probability is non null that € fails to reach the cost threshold
in finite time. Also in this case, no major theoretical nor practical problem follows.

A further extension of the problem consists in formulating it as a bi-objective
optimization in the Pareto sense. Research in this direction is currently ongoing.

3.4 Discussion

The cornerstone of the whole chapter, and possibly of the whole thesis, is the
probability measure P;. The notion of a probabilistic model for the generation
of instances, previously missing in the literature, is of paramount importance for
a precise definition of the tuning problem and for the development of algorithms
to tackle it effectively.

3.4. Discussion 81

The role played by the measure P; is to define what are the “typical” instances
for each of the different practical tuning problems that one has to solve. Thanks
to Pr it is possible to give a meaning to the notion of expected behavior of a
metaheuristic over the class of instances at hand, and therefore to select the
most appropriate configuration for each application.

The current literature tends to focus the attention on “difficult” instances
rather than on “typical” ones.'? One could speculate that the reason of this
tendency is a cultural legacy of the research on deterministic algorithms of the
early days of operations research. Traditionally, operations research used to deal
mostly with deterministic algorithms, exact or approximate, whose properties
were usually studied through a formal worst-case analysis. Possibly due to such
a legacy, when practitioners nowadays tune or assess their metaheuristics or, more
in general, their stochastic algorithms, they tend to focus their tests on instances
that are known to be particularly difficult. When interviewed on the issue,?
they appear perfectly aware that the conclusions they might draw on “difficult”
instances do not necessarily extend to “easy” ones; still, they follow this practice
and try to justify it typically on the basis of the argument that on easy instances
all algorithms—or all configurations in the case of a tuning problem—behave
essentially the same, and possible differences are not easily observed.

An empirical analysis that focuses on what are considered difficult instances
fails to attach a clear and well defined meaning to the outcome of the experi-
ments. On the contrary, a methodology based on the notion of a probabilistic
measure over the space of the instances provides such clear and well defined
meaning: When referring to a probability measure P;, the empirical mean of the
performance on a sample of instances independently and identically distributed
according to P; is an unbiased estimate of the expected performance on any
other sample of instances independently and identically distributed according to
the same measure. In this precise sense, the conclusions drawn on the first sample
do extend directly to any possible sample of instances extracted from F.

On the other hand, the typical criticism moved within the operations research
community against the notion of probability measure P is that this probability
is not available.!* Indeed, as a rule, P; is unknown but as we show in Chapter 4,
the knowledge of this probability measure is not needed. Actually, to tackle the
tuning problem we do not even need to model it explicitly. Nevertheless, in order

12See for example Monasson et al. (1999)—and references therein—for an outline of a research
direction aiming at characterizing “difficult” instances. One of the explicitly declared goals of
these studies is to define the classes of “difficult” instances on which research on search algorithm
should focus.

13We report here the personal experience of the author of this thesis, gathered during some
informal coffee-break discussions with colleagues. Clearly, what reported in the following does
not have the value of a rigorous sociological study, and should be simply accepted as a, possibly
debatable, sample of the attitude toward the issue within the operations research community.

1 Also in this case we report the personal experience of the author: The same remark ex-
pressed in Note 13 holds here.

82 Chapter 3. Statement of the tuning problem

to give a meaning to the whole position and solution of the tuning problem, P;
must be supposed, even if no direct knowledge of it, nor an explicit model are
needed: All the information we need about Py is contained in the performance of
the metaheuristic at hand on the samples we extract and the hypothesis of the
existence of P; is needed simply to guarantee that all subsequent samples will
have the same statistical properties.

-
ES

B3 oy e

T ol 5%
Dl

T

Jigoro Kano

Chapter 4

F-Race for tuning metaheuristics

This chapter is devoted to the definition of a number of algorithms for solving
the tuning problem as posed in Section 3.2.

In the tuning problem, formally described by the tuple (O, I, P, Po,t,C,T),
a finite set © of candidate configurations is given together with a class I of
instances. The instances appear sequentially and at each step an instance ¢
is generated with a probability defined by the measure P;. The cost of the best
solution of 7 found by a candidate 6 in a time ¢(i) is a stochastic quantity described
by the conditional measure Po. The tuning problem consists in finding, within a
time T, the best configuration according to the criterion C, when the measures P;
and Pg are unknown but a sample of instances can be obtained on which to test
the candidate configurations.

We assume in the following that the set © of configuration is finite. This
assumption does not pose any problem in the case of categorical parameters and
in the case of discrete parameters which are defined on a finite interval. On the
other hand, continuous parameters need to be discretized in order to adopt the
methods described in this thesis.!

For definiteness, in our treatment of the tuning problem we restrict our atten-
tion to the case in which the criterion C to be minimized is the expected cost p of
the solution found by a candidate # on an instance. This expected cost, formally

t Mazimum-efficient use of power, mutual welfare and benefit.

!The definition of a tuning method that handles continuous parameters directly, without the
need of a preliminary discretization, is the subject of ongoing research. Such a method should
result from an hybridization of the racing approach with the response surface methodology (Box
& Draper, 1987; Myers & Montgomery, 2002).

83

84 Chapter 4. F-Race for tuning metaheuristics

expressed as the integral

u(0) = / cdPe(c|0, 1) APy (i), (4.1)

cannot be computed analytically for each candidate € since the measures Po
and P; are unknown.? Nonetheless, since we are able to sample observations
according to these measures, the quantities p(6), for 6 € O, can be estimated in
a Monte Carlo fashion (Rubinstein, 1981). Indeed, with reference to the notion
of stream of instances introduced in Chapter 3, any instance appearing in the
stream in a random sample from P;. On the other hand, any run of the given
configuration ¢ on an instance ¢ is a random sample from the conditional measure
Po = Pg(cl@,7). On the basis of such samples, we can immediately obtain a
Monte Carlo estimate [of the expected value.> More details on the definition of
i are given in Section 4.1.1.

In the following, we treat for simplicity the case in which the computation time
is constant for all instances, that is, t(i) = ¢ for all 7. In this case, the constraint
imposing that the selection of the best configuration must be done within a
time 7' is equivalent to a constraint on the maximum number of experiments
we are allowed to perform, where an experiment consists in a single run of a
given configuration on a given instance. Let us denote with M = |T'/t| the total
number of experiments that we are allowed to perform.®

The most intuitive approach for solving the tuning problem is the brute-force
approach consisting in allocating an equal share of computational power to each
candidate configuration, that is, to perform the same number N = [M/|O]]
of experiments on each of them. Section 4.2 formalizes Brutus, a brute-force
approach for tuning metaheuristics that serves in Chapter 5 as a baseline in our
experimental analysis.

In order to define an algorithm implementing the brute-force approach, an
important element has first to be discussed, notably how to estimate the expected
performance of a candidate configuration using the finite number of experiments,
say N, that have been allocated for its evaluation. In particular, the question
concerns the number of instances that should be considered for its evaluation and,
as a consequence the number of runs to be performed on each of these instances.
Section 4.1 provides a formal answer to this question.

2See Section 3.2 for the formal definition of the tuning problem. The expected cost given
in Equation 4.1 has been already introduced in Equation 3.2, page 73, and is reproduced here
only for convenience.

3This is akin to the approximation of the risk functional by the empirical risk in machine
learning. We refer the reader to Section 2.2.4 and in particular to Figure 2.4.

4This constraint is not strictly necessary and can be easily eliminated. We restrict to such
case only for clarity since under this condition, the comparison results more intuitive and direct
between the two classes of approaches to the tuning problem that we discuss: the brute-force
approach and the racing approach described in Sections 4.2 and 4.3, respectively.

>The notation |7'/t| indicates the largest integer which does not exceed T'/t.

4.1. How many instances, how man runs? 85

The brute-force approach is possibly not the optimal solution to the tun-
ing problem.® A more refined and efficient way of tuning metaheuristics can
be obtained by streamlining the evaluation of the candidates and by dropping
during the evaluation process those that appear less promising. This is the rac-
ing approach to tuning. Section 4.3 presents the main idea of racing for tuning
metaheuristics and introduces the four racing algorithms we consider in our ex-
perimental evaluation. Section 4.4 gives more details on the most original of these
algorithms, namely the F-Race algorithm.

Finally, the brief discussion proposed in Section 4.5 concludes the chapter.

4.1 How many instances, how man runs?

When it comes to defining an experimental setting for estimating the expected
performance of a given configuration 6 of a metaheuristic given that we can
perform a maximum number N of runs, practitioners are often embarrassed.”
The question is invariably: How many instances, how many runs? The answers
typically cover a wide range. Often it is believed that some sort of trade-off is
involved in the choice: If, given an instance, the configuration 6 tends to be quite
erratic and produces rather different results on subsequent runs, practitioners
typically feel the need to perform more runs on each instance and are therefore
inclined to trade instances for runs. On the other hand, if 6 shows a quite stable
behavior, they feel like considering less runs and more instances. In any case,
most of them would be quite unhappy at the idea of performing one single run on
each instance: They would argue that a metaheuristic is in any case a stochastic
algorithm and that if you want your conclusions to be somehow meaningful,
you need to average the results of more runs. They would probably add that
it is pointless to average across more instances if the results you average, each
concerning a different instance, are spoiled by a large margin of uncertainty.

The theorems presented in this section prove them wrong on the issue.?

4.1.1 Formal position of the estimation problem

The framework we consider is based on the concept of a stream of instances
introduced in Chapter 3: An instance 7 is selected from a class I of instances.
The given configuration 6 is supposed to run for ¢ seconds on i and return the
best solution s found during the run; that is, the solution whose cost ¢ is not

6Indeed it is not, as our experimental comparison presented in Chapter 5 indicates.

"We refer here to some informal conversations with colleagues. Nevertheless, also a number
of published papers contain wrong statements and/or adopt some improper experimental setting
that betrays a lack of understanding of the issues discussed in this section. See for example Yuan
& Gallagher (2004).

8The results presented in this section were previously made available in Birattari (2004a).

86 Chapter 4. F-Race for tuning metaheuristics

larger than the cost associated to any other solution s’ visited during the run.
The process is then iterated ad libitum.

It is worth repeating here that we deal with the case in which instances
belonging to I are a priori indistinguishable. In particular, if we are given 3
instances—say 4., %, and i.—prior to running the metaheuristic on them we are
not able to predict if the cost of the best solution we will obtain for i, will be
closer to the one we will obtain for i, or the one we will obtain for i.. Such
a hypothesis is not too restrictive. Indeed, in the case we are able to a pri-
ori distinguish among instances, we can consider a partition of / into disjoint

subsets Iy, I, ..., I; within each of which instances are indistinguishable—See
Section 3.3.1 for an example. The discussion we present here holds within each
of the sets I, Is, ..., I;. The partition of the original set and the decomposition

of the original estimation problem into subproblems is connected to the notion of
stratified sampling which is a well known variance reduction technique adopted
in Monte Carlo estimation—See for example Rubinstein (1981).”

Definition 1. We call a scenario for the estimation of the expected behavior of
the configuration 6, the joint probability measure P(c,i) = Pc(c|i)Pr(i).*°

The estimation problem. Estimate on the basis of N runs of the configura-
tion 0 its average behavior on the class I, that is, the expected value of the cost ¢
with respect to the scenario P(c,i) = Po(c|t)Py(i):

uw= FElc = /chC(c|z') d Py (i), (4.2)

where the operator E denotes the expectation taken with respect to the joint prob-
ability P(c,i)."

To this aim, we run a set J of experiments, with |.J| = N. For each experiment
J € J we observe a cost ¢;. The quantity u can be estimated by the estimator /i:

9This issue, which goes beyond the aims of this thesis but is nonetheless its natural extension,
is currently the subject of ongoing research.

10For the sake of an improved readability, in the whole Section 4.1 we drop from the notation
the direct reference to the configuration 6 at hand. This reference will remain implicit: we will
therefore write Po(c|i) rather than Po(c|6,4), pu rather than u(6), o? rather than o2(6), and
so on. This should not generate any confusion since the whole section concerns the estimation
of the expected performance of a given and fized configuration 6. Starting from Section 4.2,
where we compare the performance of different configurations, we will switch back to the full
notation that makes explicit which configuration we refer to.

HEquation 4.2 is precisely Equation 4.1 where the reference to a specific configuration 6 is
implicit. See Note 10.

4.1. How many instances, how man runs? 87

To be more precise, let us suppose we sample K distinct instances i1, 29, ..., 1k,
with K < N, and we run the configuration 6 for n; times on instance i1, for ns
times on instance 79, and so on. This amounts to considering a set of experiments
J which is partitioned in subsets Jy, Jo, ..., Ji, where |Ji| = nj and >, ny = N:
each element j in the generic subset Ji is an experiment consisting in running 6
once on instance .

Definition 2. We call an experimental setting, or more simply a setting, the
sequence of natural numbers Sy = (K, nq,no,...,ng), that is, the specification
of how many instances have to be considered, together with the number of runs
to perform on each of them.

For convenience, we also introduce the following notation:

Definition 3. If K divides N, we denote with H x| n/k the homogeneous setting,
that is, Sy = (K,nq,ng,...,ng), where ny, = N/K for all k. In particular,
Hyp = (N, n1,ng,...,ny), with n, = 1 for all k, is the setting “V instances, one
run per instance.” Similarly, Hyx = (1, N) is the setting “one instance, N runs.”

Definition 4. In a given scenario P(c,i) = Pc(c|i)Pr(7), and for a given experi-
mental setting Sy = (K, nq,na, ..., ng), the estimator fis, of the expected value
1 of the cost ¢ is given by:

K

. 1

Hsy = N Z Z Cj> (43)
k=1 jeJi

where N = Zszl | k|, |Jk] = nk, and instances i, and costs c¢; are extracted
according to P(c,1).

The following quantities are used in the following:

Definition 5. The expected value of the cost ¢ within instance 7 is given by:
w; = Elcli] = /chC(c|i).
Definition 6. The variance of the cost ¢ within instance 7 is given by:
7t = Elle~ Pl = [(e~ m) dPo(ch).
Definition 7. The expected within-instance variance is:
#h = [o),

that is, the expected value with respect to the distribution of the instances of the
variance of ¢ within a same instance.

88 Chapter 4. F-Race for tuning metaheuristics

Definition 8. The across-instance variance is:
= = ari),

that is, the variance across the instances of the expected value of the cost for
each instance.

4.1.2 First order analysis of the estimator /s,

Lemma 1. In a given scenario P(c,i) = Po(c|,i)Pi(i), and for a given experi-
mental setting Sy = (K,n1,ne,...,nk), the probability of obtaining the specific

instances i1, 19, . . ., 1x and the specific results c1, ca, ..., cy on which fis, s based
s given by:
K
P(?:l,ig, e ,?;K, C1,Coy. .., CN) = H P](Zk> H PC(Cj|7;k>7
k=1 j€Jk

where Pr(iy) is the probability of sampling instance iy, and Po(c;liy) is the prob-
ability of obtaining the cost c; as best result in a run of the configuration 6 on
mstance iy,.

Proof. The K instances are sampled independently according to the probability
measure Pr(i). Similarly, the costs ¢ obtained on a given instance i are sampled
independently according to Po(c|i). The joint probability is therefore the product
of the terms. O

Theorem 1. In all scenarios, irrespectively of the setting Sy, that is, of how K
and ny, with k =1... K are selected, [is, s an unbiased estimator of p.

Proof. The proof is immediate and is given only for the sake of completeness:'?

/gsN dP(jis,) = / %Z > i (D) dPi(in) () dPe(cslin)

k=1 jeJi Jj€Jk
1 K
= > /cj dPe(c;lix) dPr(iy) = p.
k=1 jeJy

12In the following, with the notation:

L
/f(xlax%--wa) @dP(«Tl)»
=1

we denote the sequence of nested integrals

//.../f(xl,@,.,,,IL)dp(xl)dp(xQ)... dP(z1).

4.1. How many instances, how man runs? 89

In particular, /iy, ,, based on a single run on a single instance, is an unbiased es-
timator of u, irrespectively of which instance is considered, provided it is selected
from I according to the unknown probability Pr(i).!* Similarly, the estimator
i,y based on N runs on one single instance is unbiased as well as fiz(y 0,
which considers N/10 instances, 10 runs per instance.

4.1.3 Second order analysis of the estimator /is,

All possible estimators that can be written in the form given in Equation 4.3
are therefore equivalent for what concerns their expected behavior. Nonetheless,
they differ for what concerns second order statistics. We are therefore interested
here in finding the best minimum-variance estimator when the total number N
of experiments is fixed. In simple words, we want to answer the question:

If I can run N = 100 experiments, should I consider (i) 1 instance
and 100 runs; (ii) 10 instances and 10 runs on each; (iii) 100 instance
and 1 single run on each; or what else?

Lemma 2. In a given scenario P(c,i) = Po(c|i)Pr(i), and for a given exper-
imental setting Sy = (K,ny,na, ..., nk), the variance of the estimator fis, is

given by:
. . S n?
/(MSN — 1)?dP(fisy) = N T +]}V; L oir

Proof. 1t results:

K
N N 1
/(/LSN - U)Q dP(MSN) = N Z cj— p @dPI 1, @ dPq(C_]|Zk‘
1 K
= 2 D (e — iy + i —) @sz (ix) (D) dPe(ejlin),
k=1jeJ jEJ

It follows that:

/ sy — 1) AP (jisy) =

N2 Z > / — pi) (e — pay,) dFe(c5lin) APy (ix) dPe(cjlir) APy (in)+
kK=1 jETy
EJk/
(4.4a)

13The fact that P;(i) is unknown does not pose here any problem: in order to obtain an
instance 7 extracted from I according to the unknown Pj(i) it is sufficient to take randomly
any of the instances that appear in the above described stream of instances: let’s say the next
one!

90 Chapter 4. F-Race for tuning metaheuristics

K
1 . .
TNz > 2 / (b = 1) (i, —) APy (i) APy (i) + (4.4D)
k,k'=1 jeJy
leJk’
1 K
T2 o> 2 / (¢j — iy) (i, —) dPc(ejlix) APy (ig) APy (ig)- (4.4c)
kk'=1 jeJ,
jIEJk/

Let us now consider one by one the three addends given in 4.4a, 4.4b, and 4.4c.

Addend 4.4a: if k # £/, it results:

/ (¢j — iy)(cjr — piy,) dPo(cjlir) dPr(ix) dPo(cj iy) APy (igr) =
0 0

= /(Cj — ni AP (cjlin) APy (i) /(Cj' —W%'ka) dPy (i) = 0.

Similarly, if & = k" but j # j/, it results:

/(Cj — iy)(cjr — iy,) dPo (i) dPr(ix) dPo(cj iy) APy (ipr) =

= / </(Cj — M C(C?Iik) /(Cj’ —WC?’W)) dP(ix) = 0.

On the other hand, if £ = k" and j = 7', it results:

/(Cj — iy,)(cjr — iy,) dPe(cjlix) dPr(ix) dPo(cjlig) APy (i) =
= /(Cj — Mik)2 dpc(Cj‘ik) dP[(lk)

Thus, addend 4.4a amounts to:

K
1 ' '
N2 Z Z (¢j — pi)* dPc(cjlix) APy (i)

k=1j€Jx

Addend 4.4b: since the integrand is independent from j and j', it results:

K
1 . .
m Z Z /(:U*Zk - N)(Mik/ - ,U«) dP[(lk)dPI(zk/) —
kol =1 jey
j,GJk./

K
1 . .
= 2 il el [, = s, —) APr(ix) AP (i)
kk'=1

4.1. How many instances, how man runs? 91

If k # K, it results:

[= 1), =) A1) AP =
0

- /(’”’“ £ I(iko)/(’uik’wk’) = 0.

Otherwise, if k = £/, it results:

/ (pi, —) (piy, — p) dPr(ig) dPrp(igr) = / (ki — 1) dPr(ix).

Thus, addend 4.4b amounts to:

N2 Z|Jk| / Hiy, — dPI Zk‘)

Addend 4.4c: it results:

[€3 = i) = 1 dPeleslin) dPr(ix) dPr(ix) =

— / ((Nik/ — 1) /(cj — 1 C’(C(])|Zk)> dPy(ix) dPr(ix) = 0,

Thus, addend 4.4c is identically null.

It results therefore:
K
R 9 . 1 9 .)
/(MSN —)" dP(fisy) = N2 E /(Cj — i) dPo(cjlin) dPr(iy)+

|Jk| / i —) AP (i),

On the basis of Definitions 7 and 8 we can write:

K
N 1
[sy = 4Plis,) = 5 Z] G+ 2 D0 e
k=1
Remembering that Y70 |Ji| = N and that |Ji| = ny, it results:

R R S n?
/(MSN — 1)?dP(fisy) = N Ty + l}vé L odr

92 Chapter 4. F-Race for tuning metaheuristics

Let us go back to our original question: With the constraint that the total number
of runs must be N, what is the optimal number of instances to consider and how
many runs to perform on each?

Theorem 2. The variance of fis, is minimized by the experimental setting Sy =
Hn1, that is, by the setting “N instances, one run per instance.”

Proof. According to Lemma 2, the variance of fis, is:

. . 1 SE 02
[s = aPlis,) = 5 o+ S5 o,

Since the first addend does not depend on Sy = (K, nq,...,ng), we can focus
on the minimization of the second. Moreover, since N is fixed and o3; is out of
our control, we focus on the minimization of:

K K
C(Sy) = Z ng, under the constraint: an = N.
k=1 k=1

Let us assume now, by way of contradiction, that an experimental setting
Sy = (K,ni,...,ng) exists which is different form Sy = Hnp, satisfies the
constraint, and which minimizes C; that is, Sy is such that C(Sy) < C(Sy),
for all S}. Clearly, it must be K < N—otherwise the constraint would not be
satisfied. Indeed, more precisely, it must be K < N because otherwise it would
be mandatory, in order to satisfy the constraint, to set np = 1 for all £ and, in
this case, we would fall back to the original statement to be proved. If K < N,
in order to satisfy the constraint, there must exist at least an index ¢ for which
ng > 1.
On the basis of the experimental setting Sy we can construct another setting
N = (K',)nf,...,nk) where K' = K + 1, nj, = ng— 1, nf, = 1, and n} =
n; otherwise. It is immediate to check that this second sequence satisfies the
constraint if Sy does. Moreover, it results:

K’ K
C(Sy) =) ng =Y nj—nl+nl+1=C(Sn)—nl+(ng—1)°+1=C(Sy)—2(ng—1).
k=1 k=1

Since n, > 1, the term 2(n, — 1) is strictly positive and the experimental setting
Sy is thus better that Sy, which is a contradiction. O

Corollary 1. The variance of the best estimator [y 18-

. L/
B (i, = 1)) = (78 + o41).

Proof. Tt follows trivially from Lemma 2. O

4.1. How many instances, how man runs? 93

Corollary 2. jiy, is a consistent estimator of i, that is, it converges in prob-
ability to p:

Jim Prob { Jiirey,, =l > ¢} =0, Ve >0

Proof. The proot descends directly from Corollary 1. Indeed, fiz,, converges
to u in the mean square sense: Provided that 6%; and o%; are finite, as N
tends to infinity, E[([LM1 — ,u)ﬂ converges to zero. The statement follows, since

convergence in mean square implies convergence in probability (Papoulis, 1991).
O

It is interesting to consider here a numerical example that compares the best
estimator fip,, with other possible estimators of p. For definiteness, let us
assume in this example that the total number of runs is fixed to N = 100, and
let us study the variance of the estimators that are obtained under the following
three different experimental settings: (i) N instances, one run per instance, (ii) 10
instances, 10 runs per instance and, finally, (iii) one single instance, 100 runs.
From Lemma 2 it results:

Setting 1: 100 instances, 1 run per instance—best estimator according
to Theorem 2.

N 1 _ 1
E[(/’Lﬁloo‘l - N>2:| = m U\2NI + m 0-12\1'

Setting 2: 10 instances, 10 runs per instance.

N 1 _ 1
E[(MHH)“O - N>2:| = m U\%VI + E O-il'

Setting 3: 1 instance, 100 runs.

E[(IELHIHOO - ”)2} = ﬁ 5-\27VI + 012“'
While the three settings act in the same way on the coefficient of the first term, a
difference emerges for what concerns the coefficient of the second term: Settings
2 and 3 fail to efficiently reduce the contribution of the across-instance variance.
The variance yielded by the three settings is equal only in the trivial case in
which the across-instance variance is null, that is, when all instances share the
same expected cost u = pu;, for all 2 € I.

Remark 1. Although the estimator fiz,,, considered in Setting 2 is less data-
efficient than the best fiz(,,, considered in Setting 1, it is nonetheless consistent.
On the other hand, the estimator fiy, ., given in Setting 3 is not consistent—
apart for the trivial case in which o%; = 0.

94 Chapter 4. F-Race for tuning metaheuristics

Remark 2. 1t should be noticed that no scenario exists in which the estimator
[y, yields a higher variance than any other estimator fis,. That is, no better
setting exists than “/N instances, one run per instance,” irrespectively of the
measures P; and Fp.

Corollary 3. The variance of the cost ¢ obtained by the given configuration 6
on the whole class I of instances can be decomposed in two terms, the expected
within-instance variance and the across-instance variance:

o? = E[<C - N)Z} = Twr + OAr-

Proof. The result follows immediately Corollary 1 if we notice that the variance
of the cost ¢ is equal to the variance of an estimator fi3,, = ¢ based on a single
sample. O

The expected within-instance variance G, measures how different can be the
costs ¢ obtained by the configuration 6 of the metaheuristic in different runs on
the same instance; this quantity is averaged over all instance in /. On the other
hand, the across-instance variance o%; measures how different the instances are
one from the other for what concerns the expected value of the cost obtained by
the given configuration 6.

Remark 3. Taken together, Corollaries 1 and 3 are just the statement, in a mul-
tivariate setting, of a basic and well known property of the variance of empirical
estimates of univariate quantities: Given an univariate stochastic variable x with
Elz] = pand E[(z — p)?] = o, the variance of iy = 1/N Zjvzl x;, where x; are
independently realizations of z, is given by E[(fix —)] = 0*/N.

4.1.4 Yet another possible estimator

Somebody might wish to consider the average across different instances of the
averages of the results obtained for each of the considered instances. Formally,
this estimator is:

Definition 9. The estimator fis, is given by:
K
_ 1 1
MSN:§§ <— § :Cj)-

n
k=1 k J€JL

Remark 4. It can be immediately verified that if the experimental setting is
homogeneous, that is, if Sy = H vy, then fig v e = Bty i

4.1. How many instances, how man runs? 95

Theorem 3. [is, is an unbiased estimator of L.

Proof. The proof is immediate and is given only for the sake of completeness:

/MgNdP ,U/SN = ZZ 5 @dP] Zk @dpc CJ|Zk

k=1 j€J} J€JK

K 1
=> K/cj dPe(c;lix) APy (ix) = p.

k=1 jEJy
U
Lemma 3. In a given scenario P(c,i) = Po(c|i)Pr(i), and for a given exper-
imental setting Sy = (K,ny,na, ..., ngk), the variance of the estimator fis, is
given by:

K
. Z 1 _ 1
/(/’LSN) dP(IU"SN = K — n \ZNI + ? UiI'

Proof. 1t results:

2
K
/(ﬂSN_M) dP IU’SN /(Z <’I’LkK ZCJ> M)
k=1 j€Jk

2
/(iz% Mzk—{_/‘zkﬂ)
K
k=1j€eJi
It follows that:

/(ﬂsN — p)? dP(fisy) =

dP[(Zk) @ ch(Cj|ik) =
J€Jk

O 10O+

dPy(ix) () dPe(c)lix).
1 JjeJk

=
Il

) i.C"_ D11
= S S [G E P P (egliy) dPy(i) dPoleplin) APy (i) + (4.50)

kk'=1 jedy ek K
jIEJk/
> iy, — iy = P
+ >y o d Py (i) APy (i) + (4.5b)
kk—=1 e, k k!
jIEJk/
= Cj — Wiy Migy = 1
)) (P . . .
+ Z Z 2]n sz T];,K ch(Cj|Zk)dP[(Zk)dP[(Zk/). (4.5C)
kk'=1 jeJ k k
jIEJk/

Let us now consider one by one the three addends given in 4.5a, 4.5b, and 4.5c.

96 Chapter 4. F-Race for tuning metaheuristics

Addend 4.5a: if k # K/, it results:

CJ_MZij,_MZkI g ; 7, i) =
/ K K dPC(C]‘Zk) dP[(Zk) dpc(c] ‘Zk)dPI(Zk)

0 N 0
Ci — s . . Cit i,) .
B /jniﬂ% C(thk)dpl(lk)/Wcj/|zk/)dPI(zk/) —0.

Similarly, if £ = k" but j # j/, it results:

Cj — iy &' — Higs s ; Py i) =
/ ’I’LkK nle ch(C]‘Zk) dP](Zk) ch(C] ‘Zk)dP[(Zk)

P 0 A 0
) / (f% C(Cj’ik)/ JHW@’WO dP (i) = 0.

On the other hand, if £k = &’ and j = j/, it results:

Cj — Wiy, Cj7 — Miy, s . e Y —
/ TLkK nle ch(C] ‘Zk) dP](Zk) ch(C] ‘Zk) dP[(Zk)

¢ — piy,)? . .
:/%dPg(cﬂzde[(zk).

Thus, addend 4.5a amounts to:

1 & (1) , ,
ﬁz) > /(Cj — i) dPe(cjlin) dPr(ir) | -
k=1 k

JEJk

Addend 4.5b: since the integrand is independent from j and j’, it results:

K
SN [BT BE R P (i) dPi(iy) =

k=1 jE; npl np K
jIEJk/
1 K
el > / (pti, — 1) (phi, —) APy (ix) APy (igr).
k,k'=1

If £ # K, it results:

/ (i —)i, — 1) AP1(ig) APy (igs) =

— /(Mz‘k Mko)/(mk, MIS) —0.

4.1. How many instances, how man runs? 97

Otherwise, if k = £/, it results:

/ (pi, —) (piy, — p) dPr(ig) dPrp(ip) = / (b — 1)? APy (i)

Thus, addend 4.5b amounts to:

Addend 4.5c: it results:

/cj — i B 2 G P (e lin) dPrin) APy (i) =

npK npg K
B Fiyy — [G — Py, (CQ‘Z') | dPr(ig) dPr(igr) =0
- ng K HW%J k k) SEICK) = 5

Thus, addend 4.5c is identically null.

It results therefore:
K
k=

[sy = w2aPis,) = 15 Y (

3
o T

Z /(Cj - Mik)Qch(CjWk)dPI(ik)) +

J€Jk
| K
T Z/(Nzk — p1)* APy (ir,).
k=1

On the basis of Definitions 7 and 8 we can write:

K
- . 1 1 _ 1
/(MSN — 1)* dP(fisy) = e Z e Twi + K TAr
k=1

Let us consider the coefficient of the first term.

Lemma 4. For a given K < N and under the additive constraint Zszl ng =N,
the quantity C(Sy) = Zle(l/nk) is minimized if and only if maxy ny—ming nj <
1, that is, ny = N/K Yz when K divides N, or n, = n for K —r distinct n, and
Ny = n + 1 for other r distinct n,,, where n and r are quotient and rest of the
integer division of N by K, respectively. For the given K, the optimal value of
the function C is therefore

K—r r

C(Sy|K) = ==+ .

98 Chapter 4. F-Race for tuning metaheuristics

Proof. In order to prove the statement, let us assume by way of contradiction,
that the setting Sy = {K,nq,...,ng} with max;ny — mingn; > 1 minimizes
C(Sy) while satisfying the additive constraint. Let further M = arg maxy n; and
m = arg ming ng, we have thus ny —n, —1 > 0. We can generate a setting
Sy ={K,n},...,n} with n}, = nn + 1, nj, = ny — 1, and nj, = ny, otherwise.
Clearly Sy satisfies the additive constraint. Moreover, it results:

@(va)—f:n%—e(&v)—<%+i>+<nil+i> _

7
nv m Ty

k=1
nm+ny 0 +n Nm+ny nm+1l+ny—1
NN M nimny NmNMm (nm+ 1)(npy—1)
:G(S)_nm—i-nM Nm + Ny
N NmNMm N +npg — N — 1

Since the ny — n, — 1 > 0, the second fraction is smaller than the first and
thus C(Sy) < C(Sw), which is a contradiction. To conclude the prof we need to
observe that for a given K, all possible settings for which max; ny — mingn;, <1
is satisfied are just permutations of the same set {ni,ns, ..., ng}, where the first
r elements have value n + 1 and the other K — r elements have value n. All
such settings share therefore the same value of the function C, which is clearly
invariant under permutation of the addends, and thus all of them minimize it.
The condition is therefore necessary and sufficient. The rest of the statement
follows trivially. O

Lemma 5. For any possible setting Sy = {K,n1,...,ng} that satisfies the ad-
ditive constraint Y, ny = N, it results:

K
1 1 1
_ o>
K2 Z n, ~ Kn’
k=1
where n is the result of the integer division of N by K.

Proof. From Lemma 4 it follows that for any generic setting Sy,

1i1>1 K—r v N_1(K-rl r 1
K24&=n, = K>\ n n+l) K\ K n Kn+l)’

The two addends in parenthesis in the last term represent a weighted average of
1/n and 1/(n+ 1), with weights (K — r)/K and r/K, respectively. The value in
parenthesis is therefore constrained to stay between 1/n and 1/(n + 1), thus:

1 1 (K—-r1 r 1 1
— < = —+ — < :
Kn — K K n Kn+1 K(n+1)

The statement follows. O

4.1. How many instances, how man runs? 99

Theorem 4. In any scenario P(c,i) = Po(c|i)Pi(i), for any given number of
total runs N, the estimator fisy is not better than the estimator fiy,, for what
concerns the variance of the estimate.

Proof. Let us recall that according to Corollary 1, the variance of fiz, is

. 1 1
E((firy, —)] = N G + N TAr-

According to Lemma 3, the variance of jis, is:

i S R | NS
E[(MSN — 1) } K2 Z Owr + 7 K OAr-

Let us compare the coefficients of 0% and o%; in the two equations. According to
Lemma 5, 1/K? Zszl 1/ny, > 1/Kn, where n is the result of the integer division
of N by K. Therefore Kn < N and

Z ni > — (4.6)

On the other hand, K < N and therefore

1 1
— > —. 4.7
*ZN (4.7)
In both inequalities 4.6 and 4.7, the equal sign holds if and only if fisy = fizy,, -
O

4.1.5 Remarks

Concerning the problem of estimating on the basis of NV runs the expected behav-
ior of a given configuration 6 of a metaheuristic on a class of instances, performing
one single run on N different instances guarantees that the variance of the esti-
mate is minimized. Any other experimental setting fails being efficient in terms
of reduction of the variance. In particular, we have shown that the total variance
can be decomposed in two terms: the expected within-instance variance and the
across-instance variance. A suboptimal experimental setting fails to act on the
latter.

Contrary to popular belief, there is no trade-off involved in the definition of
the experimental setting when the total number of runs is fixed. The setting
“N instances, one run per instance” is shown to be uniformly the best across all
possible scenarios, that is, irrespectively of the ratio between expected within-
instance variance and across-instance variance.

100 Chapter 4. F-Race for tuning metaheuristics

4.2 The brute-force approach

If the overall time available for tuning is 7" and each single experiment runs for a
time ¢, the total number of experiments that can be performed is M = |T'/t]. In a
brute-force approach, the computational power is evenly allocated to the different
candidates in ©. Each of them is therefore tested N = [M/|©|] times in order to
obtain the estimates fi(6,), fi(f2), . . ., fi(0)e]) of their expected performance on the
class I of instances. Following the theoretical results presented in Section 4.1,
the optimal allocation of the allowed N experiments to be performed on each
configuration consists in running each configuration once on N different instances
sampled according to the unknown measure P;.

On the basis of these elements, we can define Brutus, the optimal algorithm in
the sense defined in Section 4.1, implementing the brute-force approach. In Bru-
tus, N instances are randomly sampled according to the unknown distribution Fj.
All given candidate configurations of the metaheuristic at hand are tested once on
the selected instances. On the basis of the observed results, for each candidate 6
an estimate fi(0) of the expected performance y(¢) on the class I with respect to
the underlying measure P; is computed. The candidate 6 for which the estimated
expected performance is the best, is than selected. Figure 4.1 gives a description
of the algorithm Brutus in pseudo-code.

It is worth noticing here that the memory requirements of Brutus are partic-
ularly limited. Since the only piece of information we need to retain about each
candidate configuration is just an estimate of its expected performance—that is,
the empirical mean of the results observed on N different instances—and since
the mean of N values can be computed incrementally,'* we simply need to store
the current estimate for each candidate. An array of length |O| contains therefore
the whole information on the ongoing computation.

Since the algorithm Brutus appears as the most direct, admittedly trivial,
though perfectly legitimate and correct way of solving the tuning problem de-
fined in Section 3.2, it will serve as a baseline in the experimental evaluation
we propose in Chapter 5: Clearly, we cannot be satisfied with any tuning al-
gorithm if it does not show to be able to outperform Brutus. Always with the
aim of measuring the relative efficiency of tuning algorithms with respect to the
brute-force approach, we define the family Cheat as a collection of rather unfair
algorithms. In particular, we consider Cheat2, Cheath, and Cheatl0 which are
simply the same algorithm Brutus but with a number of total experiments con-
sidered which is two, five, and ten times larger, respectively. The pseudo-code of
these algorithms, though particularly trivial, is given for the sake of completeness
in Figure 4.3.

14See the pseudo-code of the function update mean given in Figure 4.2.

4.2. 'The brute-force approach 101

function Brutus(M)

Number of experiments for each candidate

N = floor(M/|6)])

Allocate array for storing estimated
expected performance of candidates
A = allocate_array(|©))

for(k=1; k< N; k++) do
Sample an instance according to Fr
i = sample_instance()

foreach 0 in © do

Run candidate 0 on instance i
s = run_experiment (6,)

Evaluate obtained solution
¢ = evaluate_solution(s)

Update estimate of expected
performance of candidate 6
A[f] = update_ mean(A[f], ¢, k)
done

done

Select best configuration

f = whichmin(A)

return 0

Figure 4.1: Pseudo-code of the Brutus algorithm for tuning metaheuristics.

function update mean(a,c, k)

return (ax (k—1) +¢)/k

Figure 4.2: For the sake of completeness, we give here the definition of the func-
tion update_mean, notwithstanding its triviality.

102 Chapter 4. F-Race for tuning metaheuristics

function Cheat2(M) function Cheat5(M) function Cheat10(M)
return Brutus(2x M) return Brutus(5% M) return Brutus(10x M)

Figure 4.3: The functions Cheat2, Cheatb, and Cheatl(simply implement the
brute-force approach in a rather “unfair” way: They indeed amount to a call to
the function Brutus with a number of allowed experiments that is respectively 2, 5,
and 10 times larger than M. These algorithms are considered in the experimental
comparison presented in Chapter 5 for measuring the relative efficiency of the
racing approach with respect to the brute-force approach.

4.3 The racing approach

This section introduces a family of algorithms for solving the problem of tuning
metaheuristics as defined in Section 3.2: the family of racing approaches (Birat-
tari et al., 2002). These algorithms are inspired by the algorithm Hoeffding race
introduced by Maron & Moore (1994) for solving the model selection problem in
machine learning.'®

The main idea underlying a racing approach is that the evaluation of the
performance of a candidate configuration ¢ of the metaheuristic at hand can be
performed incrementally. Indeed, the empirical mean

of the results obtained on any k experiments is an unbiased estimate of the
criterion

1(0) = / cdPo(cl8, i) AP, (i), (4.8)
provided that the instances i1, %o, ..., i, which are considered are sampled accord-
ing to the measure P, and the observed costs ¢, c5, ..., c% of the best solutions

found in a run of time ¢ by the configuration 6 of the metaheuristic at hand
for these instances are a realization of stochastic variables described by the un-
known conditional measures Pc(c|0, 1), Po(c|0,is),. .., Po(c|0, i), respectively.
Both these conditions are satisfied by definition if we simply consider one af-
ter the other the instances that appear in the stream of instances described in
Chapter 3, and on each of them we run once the configuration 6 of the meta-
heuristic. Moreover, on the basis of the results given in Section 4.1, following
such a procedure that prescribes to perform one single run on each instance,

15Gee Section 2.2.7 for a description of the original racing approaches as introduced in the
machine learning literature, and more in general Section 2.2 for a brief presentation of the main
issues in machine learning and supervised learning.

4.3. 'The racing approach 103

we are guaranteed that the estimate we obtain of the criterion given in Equa-
tion 4.8 is the one with the least variance possible. It can be further observed
that, according to Corollary 1, page 92, the variance decreases with 1/k.

On the basis of these elements, we can conclude that a sequence of unbiased
estimates f1,(6), fi2(6), ... can be constructed where fi;(0) = ¢ is simply the cost
obtained by the configuration 6 in a single run of time ¢ on an instance i; sampled

according to Py, and the generic term fi;(0) of the sequence is given by

(k= Vju1(6) + ¢
]{:)

ﬂk((g) =

where ¢ is the cost obtained by the configuration @ in a single run of time ¢
on the k-th instance i, appeared in the stream of instances, which is therefore
sampled according to Py, by definition. In other words, jix(6) is the empirical
mean of an array of observations

k 0 0 0
c”(0) = (01,02, .. .,ck),
and this array is obtained by appending the term ¢! to the array
k—1 0 0 0
A (01,02,...,ck_1),

whose mean is the estimate fi;_1(f). The variance of this sequence of estimates
decreases with 1/k and therefore the estimation of the performance of candi-
date 0 gets sharper and sharper when k& gets larger and converges to the true
expectation (0).

Given the possibility of constructing the above described sequence of unbiased
estimates fi1(0), f12(0), ... for each candidate § € ©, a racing algorithm can be
defined that incrementally constructs in parallel such sequences for all candidates
in © and, as soon as sufficient evidence is obtained that the criterion u(6") for
a given candidate ¢ is larger that the criterion p(6) of some other candidate 6,
discards @’ from further evaluations.

A racing algorithm therefore generates a sequence of nested sets of candidate
configurations:

026,260, ...,

starting from ©g = O. The step from a set ©,_; to Oy is obtained by possibly
discarding some configurations that appear to be suboptimal on the basis of
information available at step k.

At step k, when the set of candidates still in the race is O;_1, a new instance iy,
is considered. Each candidate 6 € ©;_; is tested on i;, and each observed cost cz
is appended to the respective array ¢®*~1(6) to form the different arrays c*(6), one
for each 6 € ©,_1. Step k terminates defining set ©; by dropping from ©,_; the
configurations that appear to be suboptimal in the light of some statistical test
that compares the arrays c*(6) for all § € ©,_;. The above described procedure

104 Chapter 4. F-Race for tuning metaheuristics

is iterated and stops either when all configurations but one are discarded, or
when a given maximum number of instance have been sampled, or finally when
the predefined total number M of experiments has been performed. The pseudo-
code of the generic racing algorithm is given in Figure 4.4.

The apparent advantage of the racing approach over brute-force is that it pro-
vides for a better allocation of computational resources among candidate config-
urations: Rather than waisting computing time to precisely estimate the perfor-
mance of inferior candidates, the racing approach focuses on the most promising
ones and obtains lower variance estimates for these latter. This allows for a more
informed selection of the best candidate. Figure 4.5 proposes a graphical repre-
sentation of the different strategies adopted by the two approaches for organizing
the evaluation of the given candidate configurations.

Along the race, some sufficient statistics (Mendenhall et al., 1986) of the
results obtained by the surviving candidates has to be maintained. The amount
of information to be stored depends on the specific statistical test to be used for
deciding whether the observed differences in the performance of the candidates
is significant or not. In the worst case, all observed results need to be stored
for the surviving candidates. The memory requirement for a racing approach is
therefore bounded by M times the amount of memory needed for storing the cost
of the solution found in a single run of the metaheuristic.!®

A variety of statistical tests can be considered in the implementation of a
racing algorithm. In the context of our discussion, it is convenient to classify
such statistical tests according to 3 different criteria:

Parametric vs. nonparametric tests: Parametric tests rely on some assump-
tions concerning the stochastic quantities at hand, namely their normality.
On the other hand, nonparametric tests are distribution independent.

When the assumptions of a parametric test indeed match the reality, the
parametric test is typically more powerful than his nonparametric counter-
part; that is, the parametric test is able to detect significance on the basis
of a set of observations that is smaller than the set needed by the nonpara-
metric one. On the other hand, if the assumptions are not matched, the
parametric test may lead to wrong conclusions (Siegel & Castellan, 1988).

Blocking vs. non-blocking design: In the context of the problem of tuning
metaheuristics, the adoption of a blocking design (Dean & Voss, 1999; Mont-
gomery, 2000) appears both natural and appealing.!” Instances in I might
be quite inhomogeneous and might present a quite large variability in the

16Typically much less, since the results obtained by the discarded configurations before elim-
ination can be discarded ad well.

TFor an example of the adoption of a blocking design, we refer the reader back to Note 60,
page 64.

4.3. 'The racing approach 105

function generic_race(M, use_test)

Number of experiments performed so far
experiments_soFar = 0

Number of instances considered so far
instances_soFar = 0

Allocate array for storing observed
performance of candidates
C = allocate_array(max_instances, |O))

Surviving candidates

§=06

while(experiments_soFar + [8| < M and
instances_soFar + 1 < max_instances) do
Sample an instance according to Pr
i = sample_instance()
instances_soFar +=1

foreach 0 in 8 do
Run candidate 6 on instance ¢
s = run_experiment (0, i)
experiments_soFar +=1

Evaluate solution and store result
Clinstances_soFar, #] = evaluate_solution(s)
done
Drop inferior candidates according to
the given statistical test
§ = drop_candidates($, C,use_test)
done
Select best surviving configuration
f = select_best_survivor(S, C)
return

Figure 4.4: Pseudo-code of a generic racing approach for tuning metaheuristics.

106 Chapter 4. F-Race for tuning metaheuristics

Candidates

Instances

Figure 4.5: Graphical representation of the different ways adopted by the racing
approach and by the brute-force approach of allocating computational power
among the different candidates to be tested. In the racing approach, as soon
as sufficient evidence is gathered that a candidate is suboptimal, such candidate
is discarded from further evaluation. As the evaluation proceeds, the racing
approach focuses thus more and more on the most promising candidates. On
the other hand, the brute-force approach tests all given candidates on the same
number of instances. The shadowed figure represents the computation performed
by the racing approach, while the dashed rectangle the one of the brute-force
approach. The two figures cover the same surface, that is, the two approaches
are allowed to perform the same total number of experiments.

cost of their solutions.'® In the terminology introduced in Section 4.1.1, we
say that we are confronted with a large across-instance variance.

If not handled properly, such across-instance variance could wash-out the
differences in the performance of the various configurations.

Family-wise vs. pair-wise tests: When comparing more than two candidates
among them, two different approaches might be followed. In the family-
wise approach one answers first the question whether all observed results,
irrespectively of which candidate they belong to, might have been extracted
from the same distribution. If, and only if, the answer to this question is
negative, that is, if we have elements to believe that the candidates indeed
differ, one can proceed to the so called post-test in which candidates are

8For definiteness, let us consider again MARIO’S PIZZA DELIVERY problem where the in-
stances in I are instances of the TRAVELING SALESMAN problem representing delivery tours to
be scheduled—see Section 3.1. Some of these instances could require visiting a small number
of customers while other could be much larger. Clearly, the cost of the typical solutions of the
small instance is smaller than the one of typical solutions of larger instances.

4.3. 'The racing approach 107

compared one with the others to tell which are better and which are worse.

On the other hand, in the pair-wise approach one infers a statement on the
family-wise difference among candidates from their pair-wise comparison.
When a pair-wise approach is adopted, a correction of the p-values has to
be performed.?

In our treatment of the racing approach for tuning metaheuristics, we consider
four different tests yielding each a specific implementation of a racing algorithm:

tNo-Race: The statistical test adopted here is the classical t-test in its paired
version. According to the taxonomy of statistical tests introduced above,
this test is parametric, it implements a blocking design, and it is a pair-wise
test that, in the form considered here does not consider any correction
of the p-values for multiple comparisons. It should be noted that, in this
context, the fact of not considering any correction for multiplicity is to be
considered quite an improper practice, as it is pointed out in Note 19. The
tNo-Race algorithm can be seen as the direct application to the problem of
tuning metaheuristics of the BRACE algorithm for model selection described
in Section 2.2.7.

9Details on the issue can be found in Sheskin (2000), Hsu (1996), or in any manual of
probability theory such as, for example, Papoulis (1991). For the convenience of the readers
who are not particularly familiar with statistical tests of significance, we briefly recall here some
elements that are useful in our discussion. Let us consider the case in which two candidates 6,
and 6 are given and the sets of observations c(6;) and c(62) are available. We wish to conclude,
for example, that 6, is better than 6> for what concerns the central attitude, that is, their mean
(or median) performance. Let us say that indeed the observed mean value fi(6;) results smaller
than /1(f2). The question is whether the observed difference is significant or is just to be
ascribed to chance.

To answer this question, the null hypothesis Hy is formulated that states that 6; and 6. are
equivalent. Then the probability p is computed that under hypothesis Hy one might obtain a
difference between fi(61) and [i1(62) which is at least as large as the observed one. If this value p,
known as p-value, is smaller that a predefined a—typically o = 0.05 in most applications—the
null hypothesis Hy is rejected and we are rather in favor of accepting that 8, and 6, differ. This
procedure implies that when Hj is true, we might reject it with probability a: Indeed, when
we reject Hy, we state that we are confident with our conclusion at a degree of 1 — a.

In order to understand the reason why a correction of the p-values is needed when performing
multiple simultaneous tests, let us consider the following example: |©| candidates 61,05, ...,0|g
are given which are all equivalent, that is, the corresponding observations gathered in the
arrays c(01),c(62),...,c(fe|) are all extracted from the same population. If we perform all

= [0](|0] — 1)/2 pair-wise tests on the given candidates, the probability that at least one
of the p-values is less than a—and therefore the probability to reject the hypothesis that
the candidates are equivalent—is 1 — (1 — a)*. Since 1 — a < 1, such probability can be
made arbitrarily close to 1 by increasing the number |0| of candidates. We conclude that the
outlined procedure will reject with an arbitrarily high probability the hypothesis that a group
of candidates are equivalent provided that the number of such candidates is sufficiently large.
Hence, the necessity arises of rescaling the pair-wise p-values when multiple tests are performed.

108 Chapter 4. F-Race for tuning metaheuristics

tBo-Race: Also in this case, the test adopted is the classical t-test in its paired
version. Contrary to tNo-Race, in tBo-Race a Bonferroni’s correction for
multiplicity (Bonferroni, 1935, 1936) is adopted for rescaling the p-values
of each of the pair-wise comparisons that are performed. Apart for the
fact that here a proper correction of the p-values is adopted, tBo-Race is
identical to tNo-Race.

tHo-Race: Also in this case, the test adopted is the classical t-test in its paired
version. As in tBo-Race, but contrary to tNo-Race, in tHo-Race a proper
correction for multiplicity is adopted. In this case, the correction considered
is the one proposed by Holm (1979). This correction is known to be less
conservative than the one proposed by Bonferroni.

F-Race: The statistical test adopted here is the Friedman two-way analy-
sis of variance by ranks. This test is nonparametric, it implements a
blocking design, and consists in the use of a family-wise test followed by
some appropriate post-tests, if significance is detected by the former. Since
F-Race is the most original of the four racing algorithm introduced in this
thesis for tackling the problem of tuning metaheuristics, the full Section 4.4
is devoted to its description.

All the four aforementioned algorithms are described by the pseudo-code of the
function generic_race given in Figure 4.4 and they differ only in the definition
of the function drop_candidates whose pseudo-code is given in Figure 4.6. On
the basis of generic_race, the definition of the four racing algorithms tNo-Race,
tBo-Race, tHo-Race, and F-Race given in Figure 4.7 is immediate.

An implementation of these algorithms in R language?® was made available
in the public domain by the author (Birattari, 2003): The package race for R is
available for free download from the official site of The Comprehensive R Archive
Network.?!

4.4 The peculiarities of F-Race

Though all four racing algorithms introduced in Section 4.3 are original in the
context of the problem of tuning metaheuristics, tNo-Race, tBo-Race, and
tHo-Race are fairly similar to the BRACE algorithm for model selection. In
particular, similarly to BRACE, the three aforementioned algorithms all adopt
some version of the t-test. The only difference lies in the fact that tBo-Race and
tHo-Race adopt some sort of adjustment for multiplicity, namely those proposed
by Bonferroni and Holm, respectively. On the other hand, F-Race (Birattari

20R is the free software implementation of the S language originally developed at AT&T Bell
Labs, and it is similar to the commercial suite S-plus® of Mathsoft™.
2lhttp://cran.r-project.org/src/contrib/Descriptions/race.html

4.4. 'The peculiarities of F-Race 109

function drop_candidates(S,C,use_test)

switch(use_test)
case friedman test:
if (is_significant(friedman _family wise(S,(C')))
f = select_best_survivor (s, C)
foreach # in S do
if (is_significant(friedman_post_test(d, 6, C)))
8 =8\ {0}
end
done
end
case t_test:
f = select_best_survivor(S, C)
foreach 0 in S do
Paired t-test without any correction for multiplicity
if (is_significant(t_test(d,6,C)))
8 =8\ {0}
end
done
case t_test_bonferroni:
f = select_best_survivor(S, C)
foreach 0 in S do
Paired t-test with Bonferroni’s correction for multiplicity
if (is_significant(t_test_bonferroni(f,6,C)))
8 =8\ {0}
end
done
case t_test_holm:
f = select_best_survivor(s, C)
foreach ¢ in S do
Paired t-test with Holm’s correction for multiplicity
if (is_significant(t_test_holm(d,H, C)))
8 =8\ {0}
end
done
end
return

Figure 4.6: Pseudo-code of the function drop_candidates.

110 Chapter 4. F-Race for tuning metaheuristics

function F-Race(M)

return generic race(M, friedman test)

function tNo-Race(M)

return generic race(M,t test)

function tBo-Race(M)

return generic_race(M, t_test_bonferroni)

function tHo-Race(M)

return generic_race(M, t_test_holm)

Figure 4.7: The functions F-Race, tNo-Race, tBo-Race, and tHo-Race are simply a
call to generic_race(M, use_test), where use_test is the appropriate statistical
test to be used for deciding whether some candidate configurations should be
dropped from the race.

et al., 2002) is based on a statistical test that has never been adopted before in
any racing algorithm: the Friedman two-way analysis of variance by ranks.

For giving a description of the test, let us assume that F-Race has reached
step k, and m = |O;_;| configurations are still in the race: 6,,,0,,,...,0,, .
The Friedman test assumes that the costs observed so far for the configurations
still in the race are the realization of £ mutually independent m-variate random

variables:
2 2 (7
bl = (Cll7 Cl27 R Clvm>
e'ul 0112 91}
b2 - <02 5 C2 y ey C2 m
e'ul 0112 91}
bk - <Ck5 5 Ck‘ y ey Ck‘ m

called blocks?? where each block b, corresponds to the computational results ob-
tained on instance 4; by each configuration still in the race at step k. Within each
block, the quantities ¢! are ranked from the smallest to the largest. Average ranks
are used in case of ties. For each configuration 0,, € ©,_1, let Rj; be the rank

22Note 60 at page 64, introduces with an example the main idea behind the blocking design.
We refer the reader to Dean & Voss (1999) and Montgomery (2000) for more details on the
issue.

4.4. The peculiarities of F-Race 111

of 0,, within block b;, and R; = Zle Rj; the sum of the ranks concerning 0,
over all instances 7;, with 1 <[< k. The Friedman test considers the following
statistic (Conover, 1999):

=1

(m—l)i <Rj—w>2

Under the null hypothesis that all candidates are equivalent among them and
therefore all possible rankings of the candidates themselves within each block
are equally likely, T is approximatively distributed as x? with m — 1 degrees
of freedom (Papoulis, 1991). If the observed T exceeds the 1 — a quantile of
this distribution, the null hypothesis is rejected, at the approximate confidence
level a, in favor of the idea that at least one candidate tends to yield a better
performance than at least one of the others.??

If the null hypothesis is rejected in the above described family-wise test, we
are justified in performing pairwise comparisons between individual candidates.
In such post-tests, candidates 0; and 0, are considered different if

|Rj — Ry

\/2k(lk(m—T1)) (Zf:lZ;nle?j*M)
D) (m—1)

> tl—oc/27

where t;_,/2 is the 1 — a/2 quantile of the Student’s t distribution (Conover,
1999).

In F-Race, if at step k the null hypothesis of the family-wise comparison
is not rejected, all candidates in ©,_; pass to ©Or. On the other hand, if the
null hypothesis is rejected, pairwise comparisons are executed between the best
candidate and each other one. All candidates that result significantly worse than
the best are discarded and will not appear in Oy.

When only two candidates remain in the race, that is, if |©|= 2, for some
given k, the Friedman test reduces to the binomial sign test for two dependent
samples (Sheskin, 2000). In the F-Race algorithm, as implemented in the package
race for R which is considered for the experimental analysis proposed in Chapter 5,
when only 2 candidates 0,, and 0,, remain in the race, the Wilcozon matched-
pairs signed-ranks test (Conover, 1999) is adopted instead. The main difference
between the binomial sign test—or, alternatively, the Friedman test with only 2
candidates—and the Wilcoxon test rests in the fact that within each block b; the
former considers only the sign of the difference c?”l —c?”, while the latter exploits

23 All experimental results presented in this thesis where obtained with o = 0.05: The adop-
tion of a confidence level of 95% is rather typical in hypothesis testing.

112 Chapter 4. F-Race for tuning metaheuristics

also the knowledge of the magnitude of this difference. As a consequence, the
Wilcoxon test is more powerful and data-efficient (Siegel & Castellan, 1988).2*

The role of ranking in F-Race

In F-Race, ranking plays an important two-fold role. The first one is connected
with the nonparametric nature of a test based on ranking. The main merit of
nonparametric analysis is that it does not require to formulate hypotheses on the
distribution of the observations. Discussions on the relative pros and cons of the
parametric and nonparametric approaches can be found in most textbooks on
statistics (Larson, 1982). For an organic presentation of the topic, we refer the
reader, for example, to Conover (1999). Here we limit ourselves to mention some
widely accepted facts about parametric and nonparametric hypothesis testing:
When the hypotheses they formulate are met, parametric tests have a higher
power than nonparametric ones and usually require much less computation. Fur-
ther, when a large amount of data is available the hypotheses for the application
of parametric tests tend to be met in virtue of the central limit theorem. Finally,
it is well known that the t-test, the classical parametric test that is of interest
here, is robust against departure from some of its hypotheses, namely the nor-
mality of data: When the hypothesis of normality is not strictly met, the t-test
gracefully looses power.

For what concerns the problem of tuning metaheuristics, we are in a situation
in which these arguments do not hold: First, since we wish to reduce as soon
as possible the number of candidates, we deal with very small samples and it
is exactly on these small samples, for which the central limit theorem cannot be
advocated, that we wish to have the maximum power. Second, the computational
cost of running the statistical test are not really relevant since in any case they
are negligible compared to the computational cost of executing configurations of
the metaheuristic in order to enlarge the available samples. Chapter 5 shows that
the doubts expressed here find some evidential support in our experiments.

24Nevertheless it should be observed that, notwithstanding the theoretical superiority of the
Wilcoxon test over the binomial sign test, the adoption of the former within F-Race does not
have a major impact on the performance of the algorithm which is much more heavily influenced
by the behavior of the Friedman test during the early phases of the race. Indeed, when the
number of surviving candidates is reduced to two, the outcome of the race is already defined
in its main traits and little can be determined by the adoption of one test rather than another:
When only two candidates remain, data-efficiency is not really crucial since the cost of obtaining
one further sample simply amounts to two runs of the metaheuristic at hand, one for each of
the survivors. On the other hand, data-efficiency is a central issue in the early stages of the race
when a large number of candidates are still under evaluation and the costs of a further sample
is very large, that is, a run of the metaheuristic under consideration for each of the survivors.

For this reason, we present the adoption of the Wilcoxon test in F-Race simply as an imple-
mentation detail and we do not consecrate further attention to the analysis of its impact on
the performance of the overall algorithm.

4.5. Discussion 113

A second role played by ranking in F-Race is to implement in a natural way
a blocking design (Dean & Voss, 1999; Montgomery, 2000). The variation in
the observed costs c is due to different sources: Metaheuristics are intrinsically
stochastic algorithms, the instances might be very different one from the other,
and finally some configurations perform better than others. This last source of
variation is the one that is of interest in the configuration problem while the
others might be considered as disturbing elements. Blocking is an effective way
for normalizing the costs observed on different instances. By focusing only on the
ranking of the different configurations within each instance, blocking eliminates
the risks that the variation due to the difference among instances washes out the
variation due to the difference among configurations.

F-Race is openly and largely inspired by the racing algorithms proposed in
the machine learning community for solving the model selection problem (Maron
& Moore, 1994; Moore & Lee, 1994) but it is precisely in the adoption of a
statistical test based on ranking that it diverges from previously published works.
Hoeffding race (Maron & Moore, 1994) adopts a nonparametric approach but does
not consider blocking. On the other hand, BRACE (Moore & Lee, 1994) adopts
blocking but discards the nonparametric setting in favor of a Bayesian approach.
Other relevant work was proposed by Gratch et al. (1993) and by Chien et al.
(1995) who consider blocking in a parametric setting.

F-Race, to the best of our knowledge, is the first racing algorithm in which
blocking is considered in a nonparametric setting. Further, in all the above
mentioned racing algorithms, blocking was always implemented through multiple
pairwise paired comparisons (Hsu, 1996), and only in the more recent one (Chien
et al., 1995) correction for multiple tests is considered. F-Race is the first racing
algorithm to implement blocking through ranking and to adopt a family-wise test
over all candidates, to be performed prior to any pairwise test.

4.5 Discussion

This chapter has presented a number of algorithms for solving the tuning prob-
lem defined in Chapter 3. All these algorithms rely on a Monte Carlo estimation
of the expected performance of the candidate configurations since the latter can-
not be calculate analytically given that the probability measures involved in the
definition of the expectation are unknown.

Some important theoretical results were proposed in Section 4.1. In partic-
ular, it was shown that in the context defined in Chapter 3, among all possible
estimators of the expected performance of a given configuration based on a fixed
number N of experimental evaluations of the configuration itself, the best one,
that is, the one of minimum variance, is obtained by averaging the results ob-
tained in N runs of the configuration on N different instances, each independently
sampled according to the measure P;.

114 Chapter 4. F-Race for tuning metaheuristics

This result is exploited by all algorithms proposed in the chapter. In par-
ticular, we propose two classes of algorithms following two different approaches:
the brute-force approach and the racing approach. The former is the most im-
mediate way of tackling the problem of tuning metaheuristics. It is introduced
here with the main goal of providing a baseline for the empirical analysis of the
other algorithms proposed in the thesis. On the other hand, the racing approach
is an innovative and particularly promising approach for the automatic tuning
of metaheuristics. This class of algorithms is inspired by the original Hoeffding
race algorithm (Maron & Moore, 1994) proposed within the machine learning
community for solving the model selection problem. The main idea behind the
racing approach is that the evaluation of the candidate configurations can be
performed incrementally. Along the process inferior candidates can be dropped
and not further evaluated, as soon as statistically sufficient evidence is gathered
that they produce a worse performance that at least another candidate. By elim-
inating inferior candidates, the evaluation is speeded up and can focus on the
most promising candidates of which a more accurate evaluation is performed.
Among the racing algorithms for tuning metaheuristics that were presented in
this chapter, the most innovative is F-Race. Indeed, F-Raceis based on the Fried-
man two-way analysis of variance by ranks, a method for statistical testing
of hypothesis that had never been adopted before in the context of racing al-
gorithms. This test appears particularly appropriate for tuning metaheuristics
given its nonparametric nature and the natural way in which it implements a
blocking design.

It is worth noticing here that the development of all the algorithms presented
in the chapter and of the theoretical results presented in Section 4.1 as well,
were made possible by the formal definition of the tuning problem given in Chap-
ter 3. In particular, they rest on the assumption that instances are independently
extracted according to a fired measure P;, and that for a given instance and
configuration of the metaheuristic, the observed cost is extracted independently
according to a fized conditional measure Py. These measures are unknown and
they are never explicitly modeled by the algorithms described in the chapter. Yet,
they play the fundamental role of giving a meaning to the experiments performed
with the given candidate configurations on the available instances, and to the av-
erages of the observed results: Thanks to the hypothesis that instance and costs
are sampled according to P and P, respectively, the average of the observed
costs becomes an estimate of the expected cost, and thanks to the hypothesis
that P; and Pg are fixed, these estimate becomes a prediction of the cost we will
observe on future instances. Since, as it was already observed in Section 3.1,
the ultimate goal of tuning a metaheuristics is precisely to find the configuration
that will provide the best performance on future instances, the central roles of
the hypotheses concerning the measures P; and Pr emerges distinctly.

Misura cio che é misurabile, e rendi misura-
bile cio che non lo ¢.f

Galileo Galiles

Chapter 5

Experiments and applications

In this chapter we provide some composite and extensive evidence of the effec-
tiveness of the racing approach, and in particular of the F-Race algorithm, for
tuning metaheuristics and more in general for tuning stochastic algorithms.

In particular, Section 5.1 proposes a formal empirical analysis of F-Race on
the problem of tuning metaheuristics. In this analysis, the algorithm is com-
pared against other racing algorithms and against the brute-force approach. The
latter, being the most straightforward approach for tackling the tuning problem
defined in Chapter 3, can be considered as the natural choice of a baseline algo-
rithm for assessing the performance of tuning methods. In order to assess F-Race,
two tuning problems are considered. In the first, proposed in Section 5.1.1, the
metaheuristic to be tuned is iterated local search and the optimization problem
considered is the QUADRATIC ASSIGNMENT problem. In the second, proposed
in Section 5.1.2, the algorithm is ant colony optimization and the problem is the
TRAVELING SALESMAN problem. On these problems, a formal empirical analysis
is carried out: a number of algorithms, including indeed F-Race, are compared
under controlled conditions, the differences in their performance are assessed
through appropriate statistical tests of significance, and a number of graphs are
proposed that help visualize and understand the characteristics of the algorithms
under study. The experimental methodology followed in the analysis is heavily
influenced by the one commonly adopted within the machine learning community.
A discussion on the implications and on the opportunity of adopting this method-
ology is given in Chapter 6. A particularly valuable tool that has been employed
is a so-called re-sampling method. This method, originally presented in the lit-
erature on nonparametric statistics, is rather well known by machine learning
practitioners but, to the best of our knowledge, it has never been adopted before
for what concerns the empirical analysis of metaheuristics: Its first application
in the field is described in Birattari et al. (2002).

On the other hand, Section 5.2 gives examples of practical applications of

t Measure what is measurable, and make measurable what is not so.

115

116 Chapter 5. Experiments and applications

F-Race and, more in general of related racing approachs. These examples do not
provide any formal comparison with other methods and are of a qualitative rather
than quantitative nature. Their goal is to show that the algorithms discussed in
this thesis have the flexibility and usability that are necessary to make them
appealing for practical applications. In particular, among the examples proposed
in Section 5.2, it is worth mentioning here the adoption, discussed in Section 5.2.2,
of a modified version of the F-Race algorithm for tuning the metaheuristic that
was submitted by the author and co-workers to the International Timetabling
Competition held in 2003. This metaheuristic outperformed all other submissions.
Moreover, we wish to mention here a feasibility study that has been carried out
in a joint research project by the German-based software company SAP and the
INTELLEKTIK group of the Technische Universitiat Darmstadt, Germany. This
study concerned the possible adoption of a racing algorithm for automatically
tuning a critical component of a commercial products developed by SAP for
vehicle routing and scheduling. The research is sketched in Section 5.2.4.

Sections 5.1 and 5.2 are therefore complementary: the former gives an aca-
demic analysis under controlled conditions, while the latter shows through some
examples the actual applicability of the method in real-world applications. Sec-
tion 5.3 concludes the chapter with a brief discussion.

5.1 Empirical analysis of F-Race

The experimental methodology adopted in this analysis contains many innovative
elements that are to be considered as original contributions in themselves. The
two most notable ones are the adoption of a re-sampling technique (Good, 2001)
and a clear stand for what concerns the separation of the set of instances used
for tuning the algorithm and those used for testing it. Both these elements are
well known within the machine learning community. In particular, the separation
between the training set and the test set is such an essential element of what is
commonly considered a correct experimental practice, to be regarded almost as
a commonplace. On the other hand, the separation between the set of instances
used for tuning the parameters and the set of instances used for testing the
selected configuration of the algorithm is sadly too often disregarded in scientific
works in the optimization field. An introduction to these concepts for what
concerns the supervised learning problem is given in Section 2.2.6. On the other
hand, Chapter 6 discusses and proves with an example the relevance of these
concepts also in the field of metaheuristics and optimization in general.

The rest of the section is devoted to the presentation of the abstract princi-
ples of the experimental methodology adopted and of the re-sampling strategy
we implemented in practice. We provide also a brief description of the comput-
ing environment in which the experiments where performed and some guidelines
on how to read and interpret the tables and graphs proposed in Sections 5.1.1
and 5.1.2.

5.1. Empirical analysis of F-Race 117

The experimental methodology

The experimental methodology we adopted considers a stream of instances as
described in Chapter 3: at each step a new instance is generated according to
some unknown but fived probability measure and the instances generated at dif-
ferent steps are independent. In the experiments we present here, the instances
were artificially generated according to some distributions using some instance
generators. No information on these distributions or on any other detail concern-
ing the instance generators were used by the tuning algorithms under analysis:
this reproduces the typical context in which metaheuristics are used in practice.
Indeed, such information are clearly not available in real-world applications. A
description of the instance generators adopted is given in Sections 5.1.1 and 5.1.2.
The instances generated in the stream are employed for tuning the metaheuristic
at hand using the different tuning algorithms considered in the study. In the
following, we refer to these instances as tuning instances, and we call tuning set
the set of these instances. The result of the tuning procedure is the selection
of a candidate configuration for each of the tuning algorithms considered. The
selected configurations are then tested on new instances that are also in this case
extracted from the stream. We refer to these instances as test instance and to
their set as test set. Here by new we mean that the test instances where not con-
sidered during the tuning phase and are therefore distinct from those appearing
in the tuning set. The average performance of the selected configurations on the
new instances is an unbiased estimate of their performance on the whole class
of instances and can be therefore considered as an appropriate criterion for their
comparison. Furthermore, since the set of candidate configurations out of which
the selection has been operated is the same for all tuning algorithms considered,
this criterion is appropriate also for comparing the performance of the tuning
algorithms themselves.

With the aim of reducing the effects of chance on the observed results and of
eliminating all nuisances that could wash out the differences in the performance
of the tuning algorithms under analysis, we feed the same tuning instances to
each of them and we assess the performance of the selected configuration on the
same test instances. Moreover, in order to obtain some statistical relevance and
to get rid of the possibles idiosyncrasies of a specific tuning set and test set pair,
we repeat this procedure of tuning € testing a sufficiently large number of times,
using different sets of tuning and test instances each time.

It is worth defining here some terminology that is consistently adopted in the
following: We call a run a single execution of a given configuration on a given
instance. Specifically, in the experiments proposed in Sections 5.1.1 and 5.1.2,
each run lasts 10s on the computers adopted for the analysis—See page 119
for a description of these machines. On the other hand, by trial we mean a
complete execution of a tuning & testing procedure for the tuning algorithms
under analysis.

118 Chapter 5. Experiments and applications

The re-sampling approach

It is apparent that the above described procedure is particularly expensive from
a computational point of view. In the case of the experiments proposed in Sec-
tions 5.1.1 and 5.1.2 each tuning algorithm is allowed to perform a total maximum
number of runs of the given configurations equal to 6000 and 13680, respectively.!
In both experiments, each run of the metaheuristics takes 10s and for each of
the 8 tuning algorithms studied, 1000 trials are considered for statistical signifi-
cance. In each trial, the configuration selected by each tuning method is tested
on 10 test instance, therefore each trial for each tuning methods involves 6010
and 13690 runs for each of the two experiments, respectively. This amounts to a
total computation time of (6010 + 13690) x 1000 x 8 x 10s ~ 1.6x10%s, that is,
slightly less than 50 years of computation.?

The computational cost of such experimental analysis is apparently prohibi-
tive. In order to deal with this problem, we adopted an experimental methodology
based on re-sampling (Good, 2001).

For each of the two experimental studies, a number of instances are inde-
pendently generated. Namely, 800 in the experiment proposed in Section 5.1.1
and 500 for the one proposed in Section 5.1.2. FEach of the given candidate
configurations is executed once on each of these instances and the cost of the
best solution found in each of the considered 10s runs is stored in a I x |O)]
two-dimensional array, where K is the number of instances generated—=800 in
the first experiment and 500 in the second—and |©] is, as usual, the number of
configurations among which the selection of the best is to be performed. Once
this array is filled with results for each instance/configuration pair, we are in the
position of simulating a run of any of the given configurations on any of the given
instances: we call a pseudo-run of configuration j on instance ¢ the simulation
of a run of configuration j on instance i, where such simulation simply consists in
reading the value stored in position (4, 7) of the above described array of results.

From the IC available instances, we extract 1000 pseudo-samples, each of
which has cardinality K and is obtained by randomly re-ordering the original
sequence of instances. Each of these pseudo-samples is used for performing a
pseudo-trial, that is, the simulation of a trial of the tuning algorithms under
analysis. In particular, we adopt the convention that the last 10 instances in each
pseudo-sample constitute the set of test instances for their respective pseudo-trial.
Such instances are reserved for the evaluation of the configurations selected in

'In the experiments proposed here, each tuning algorithm may perform a number M of
runs equal to 15 times the number of candidate configurations. In the experiment proposed in
Section 5.1.1, the number of candidate configurations is 400. Hence, M = 6000 = 15 x 400 is the
number of total runs allowed. Similarly, in the experiment proposed in Section 5.1.2 the total
number of runs allowed is M = 13680 = 15 x 912 since the number of candidate configurations
is 912.

2More details on the experiments are given in Sections 5.1.1 and 5.1.2. The data provided
here serve solely the purpose of giving the reader a picture of the computational costs involved.

5.1. Empirical analysis of F-Race 119

the tuning phase and are never used in the tuning itself. On the other hand,
all other instances, that is, the first IO — 10 instances of each pseudo-sample,
constitute the tuning set and are fed, in the specific sequence defined by the
pseudo-sample, to the tuning algorithms under study. In other words, a pseudo-
stream of instances is simulated by sampling without replacement from the set
of K available instances. One after the other such instances are considered and
are used by each of the tuning algorithms for selecting the best configuration
among the available ones. Clearly, each tuning algorithm implements a different
strategy for performing the selection of the best configuration and, in particular,
each algorithm might consider a different number of instance among the given
ones. In any case, all algorithms—with the notable exception of those belonging
to the cheat family—will respect the constraint that no more than M pseudo-runs
can be performed where M = 6000 in the experiment presented in Section 5.1.1
and M = 13680 in the one presented in Section 5.1.2. As already mentioned in
Section 4.2, the members of the cheat family, which are brute-force approachs, will
indeed cheat, that is, they will perform a larger number of runs before selecting
from the set © the configuration that is deemed to be the best. This will let
us draw some conclusions on the relative performance of racing algorithm with
respect to the brute-force approach.

The computing environment

The experiments presented in Sections 5.1.1 and 5.1.2 where performed on 6
nodes of the cluster of personal computers available at IRIDIA, Université Libre
de Bruxelles. This cluster, called Polyphemus (Labella & Birattari, 2004) was
built, starting in 2002, with the aim of supporting in a first time and eventually
replacing the older cluster Beowulf that has been serving the lab starting from
2000, and that is currently on its way to retire. Polyphemus is currently composed
of a server and 25 disk-less clients living on a dedicated 1 gigabit Ethernet LAN.
The server and 8 clients feature an AMD Athlon™ XP 2400+ processor, 7 clients
an AMD Athlon™ XP 1400 processor, and the remaining 10 clients an AMD
Athlon™ XP 2800+ processor. All machines have 512Mb of main memory, and
the server features a RAID controller and 3 hard disks of 120 Gb each, managed in
RAID Level 5, for a total available disk space of 225 Gb. The server and all clients
run the GNU/Linux operating system as distributed by Debian. Polyphemus is
currently serving the computation needs of two research project funded by the
Commission of the European Communities and led by IRIDIA: The Swarm-Bots
Project and the Metaheuristics Network.?

The 6 machines used for the experimental analysis presented in this thesis
are the AMD Athlon™ XP 1400. As already mentioned in Section 4.3, all racing

3More information on these two research projects is available on their respective web sites:
http://wuw.swarm-bots.org/ and http://www.metaheuristics.net/. A brief presentation
of the Metaheuristics Network is given at page 8.

120 Chapter 5. Experiments and applications

algorithms considered in the analysis were implemented in R language by the au-
thor (Birattari, 2003) and are available for free download directly from the official
site of The Comprehensive R Archive Network,* or from one of its mirrors.> The
metaheuristics to be tuned were both designed and implemented in C language
by Thomas Stiitzle. The original source code were compiled and optimized for
execution on Polyphemus using gee, the GNU Compiler Collection of the Free
Software Foundation, versions 3.2 and 3.3.

How to read tables and graphs

For each of the two experiments presented in Sections 5.1.1 and 5.1.2, the results
are reported in the same format using tables and graphs.

Tables: Three tables are provided for each experiment at pages 129 and 142,
respectively:

1. A table reproducing the results obtained on the test instances by each of
the tuning algorithms under analysis. For each algorithm we present the
minimum value obtained on the test instances, the 1st quartile, the median
(2nd quartile), the mean, the 3rd quartile, and the maximum. These 6
quantities give a first picture of the distribution of the results over the test
instances and are obtained based on a samples of size 10000, that is, 1000
pseudo-trials and 10 test instances for each of them.

2. A table reproducing the p-values of the pairwise comparisons between each
pair of tuning algorithms under analysis. The statistical test adopted here
is the Wilcozon matched-pairs signed-ranks test (Conover, 1999). The p-
values are corrected for multiplicity using Holm’s method. The table fea-
tures the names of the tuning algorithms under analysis both on its columns
and on its rows. A number less than 0.05 at the crossing between the col-
umn associated with algorithm A and the row associated with algorithm B
means that the null hypothesis that the observed performance of A and B
are extracted from the same distribution is to be rejected at a confidence
level of at least 95%.

3. A table reproducing the results obtained on the tuning instances by each
of the tuning algorithms under analysis. The quantities reported for each
algorithms are the same as in the table described at point 1: minimum,
1st quartile, median, mean, 3rd quartile, the maximum. These figures are
reported only for the sake of completeness and should not be used for
comparing the algorithms since the performance on the tuning instances

‘http://cran.r-project.org/src/contrib/Descriptions/race.html
Shttp://cran.r-project.org/mirrors.html
SMore details on the implementations of the algorithms are given in Sections 5.1.1 and 5.1.2.

5.1. Empirical analysis of F-Race 121

is a biased measure of the performance on the whole class of instances.”

For any comparative purpose, the figures in the tables described at point 1
should be used exclusively.

Box-plots: Moreover, two box-plots are provided for each experiment, at pages
130 and 143, respectively:

1. A box-plot of the costs obtained by each of the tuning algorithms under
analysis on the test instances. Such box-plot provides a graphical repre-
sentation of the information contained in the associated table described at
point 1 in the previous list. The reader will observe that these plots fail at
visualizing the differences in the performance of the tuning algorithms un-
der analysis. This is due to the fact that the high variability in the instances
washes out the existing differences. A possible solution is provided by the
instance-per-instance normalization adopted in the box-plots described at
point 2.

2. A box-plot of the costs obtained by each of the tuning algorithms under
analysis on the test instances as at point 1 but with the difference that here
the costs are normalized on an instance-per-instance basis.

Race profiles: For each of the two experiments—pages 131-132 and 144-145,
respectively—a graph illustrating the typical race profile is provided for each of
the four racing algorithms under analysis. These plots are akin to the one already
presented in Figure 2.10, page 61. They feature the number of candidates still in
the race along the horizontal axis, and the number of instances considered, along
the vertical one. The latter, which points downwards, counts the steps the racing
algorithm went through. The plot reads for each number of instances considered,
that is, for each step of the tuning algorithm, the average number of candidates
still in the race. Here the average is taken over the different pseudo-trials. On the
plots, indicated by horizontal dotted lines the amounts of instances considered
by Brutus, Cheat2, Cheath, and Cheatl0 are reported. It should be noted that
the surface comprised by each race profile represents the total number of runs
of the underlying metaheuristic to be tuned that have been performed by the
corresponding racing algorithm. This total amount is constrained to be less than
or equal to 6000 runs in the first experiment and 13680 in the second—see Note 1,
118. Similarly, the surfaces of the nested rectangles delimited by the dotted lines
represent the total number of runs on which the selection of the best is based for
what concerns the algorithms implementing the brute-force approach: The inner
rectangle refers to Brutus and has a surface equal to the one associated with the
racing algorithm; the others refers to Cheat2, Cheat5, and Cheatl0, in this order

"See Chapter 6 for a discussion of this issue.

122 Chapter 5. Experiments and applications

from the inner rectangle to the outer one, and their surface is twice, five times
and ten times, respectively, the one associated with the racing algorithm.

Frequencies: Finally, for each of the two experiments a number of histograms
are provided—at pages 133-136 and 146-149, respectively—which illustrate the
frequency with which each of the studied algorithm was able to select the best
configurations. Each graph is composed of a main plot and a sub-plot. They
are both histograms that illustrates the same issue, but they differentiate for
what concerns the level of detail. In the main histogram, each bin refers to
approximately one hundredth of the candidates—4 in the first experiments and
9 in the second. The first bar represents therefore the number of times the
algorithm was able to select a candidates that rests among the best 1%, and
so on. The histogram in the sub-plot is similar, with the only difference that it
offers a more fine-grained representation since here each bin has size one. In other
words, the first bar represents the number of times the tuning algorithm was able
to select the very best candidate, the second bar, the second best, and so on. In
both histogram, when we say best candidate, or equivalently that the candidate
is among the best 1%, we refer to the expected performance of the candidates
on the whole class of instances, as estimated on the basis of all the K instances
originally sampled.

5.1.1 Iterated local search for QUADRATIC ASSIGNMENT

In this first experiment, the metaheuristic to be tuned is iterated local search and
the combinatorial optimization problem addressed is the QUADRATIC ASSIGN-
MENT problem.

The metaheuristic to be tuned

Iterated local search is a simple and generally applicable metaheuristic that it-
eratively applies local search to perturbations of the current search point, lead-
ing to a randomized walk in the space of local optima (Lourenco et al., 2002).
To apply an iterated local search algorithm, four procedures have to be spec-
ified: generate_initial_solution generates the starting point of this walk,
perturbation generates new starting points of the local search by perturbing
some solution, the acceptance_criterion is used to decide from which solu-
tion the walk is continued, and the local_search procedure implements the
local search and also defines (by the solutions it generates as its output) the
space in which the walk actually takes place. Figure 5.1 gives an algorith-
mic scheme for iterated local search. The history component in perturbation
and acceptance_criterion indicates that also the search history may influ-
ence the behavior of these procedures. Yet, often Markovian implementations

5.1. Empirical analysis of F-Race 123

function iterated_local_search

Sp = generate_initial_solution

s = local_search(sg)

while (termination condition not met) do
s’ = perturbation(s, history)
s” = local_search(s’)
s = acceptance_criterion(s,s”, history)

end

Figure 5.1: Algorithmic outline of iterated local search.

of iterated local search are applied, that is, the output of perturbation and
acceptance_criterion is independent of the search history.

Iterated local search is conceptually a rather simple metaheuristic. This is
due to the simple underlying principle and to the fact that typically only few
lines of code have to be added to an already existing local search procedure to
implement an iterated local search algorithm. Despite its simplicity, it has shown
very good computational results for some combinatorial optimization problems
such as the TRAVELING SALESMAN problem (Martin et al., 1991; Martin & Otto,
1996; Johnson & McGeoch, 1997), scheduling problems (Lourengo, 1995), etc.

To apply iterated local search to the QUADRATIC ASSIGNMENT problem, the
four component procedures have to be defined; the following choices were con-
sidered here. For the initial solution we use a randomly generated assignment
of items to locations, mainly because high performing construction heuristics for
QUADRATIC ASSIGNMENT are not known.

For local_search, several different possibilities were considered, all based on
the usual 2-opt neighborhood. The neighborhood N/ (s) of a solution s is defined
by the set of permutations that can be obtained by exchanging two items at
positions v and w, that is, N'(s) = {s'| s, = sw, S\, = Sy, and s. = s, Vz # v, w}.
In the experiment, we considered first- and best-improvement iterative descent
algorithms and short runs (of length p - n, where p is a parameter and n is
the number of items in an instance) of a tabu search algorithm based on the
robust tabu search of Taillard (1991). For the first-improvement iterative descent
algorithm, additionally the technique of don’t look bits (Bentley, 1992; Martin
et al., 1991) was adapted to QUADRATIC ASSIGNMENT.

The procedure perturbation exchanges k£ randomly chosen items, corre-
sponding to a random move in the k-opt neighborhood. We use two funda-
mentally different ways of setting the parameter k. In the first approach, one
value for £ is held fixed throughout the algorithm’s run; in the second approach,
the value of k is adapted at computation time following the rules of basic variable
neighborhood search (Hansen & Mladenovi¢, 1999) using different settings of the

124 Chapter 5. Experiments and applications

minimum and maximum possible value k£ can take. That is, in the second ap-
proach, we vary k between two values k,,;, and k,,,, for different settings of k,,;,
and kg

As acceptance criterion in our iterated local search algorithm we use four dif-
ferent possibilities:

1. Accept only better solutions;

2. Accept better solutions always, but accept worse solution with a probability
of exp((f(s) — f(s"))/T) using a fixed value for parameter T. It should be
noticed that this is the well-known Metropolis acceptance criterion from
simulated annealing;

3. The same as at point 2, but here T is modified using an annealing schedule
as known from simulated annealing;

4. Accept only better solutions, but restart from a new, randomly generated
solution if for ¢ iterations, where ¢ is a parameter to be tuned, no improve-
ment over the best solution is obtained.

The set of candidate configurations

The set of candidate configurations is given by all possible combinations of the
following values of the parameters of the iterated local search algorithm:

local search perturbation strength acceptance criterion
best fix 1 better
first vns 2 constTemp low-med
first DLB 3 constTemp med-high
tabu2n 4 constTemp randomwalk
tabu6n 5t LSMC _metanet

restart med
restart _quick
restart slow

The total number of candidate configurations considered in this experimental
analysis is therefore 8 x 5 x 2 x 5 = 400.

The class of instances

The QUADRATIC ASSIGNMENT problem has been the subject of an enormous
amount of research efforts and, together with the TRAVELING SALESMAN prob-
lem, it is one of the most studied combinatorial optimization problems (Cela,
1998). QUADRATIC ASSIGNMENT can best be described as the problem of as-
signing facilities to a set of locations with given distances between the locations

5.1. Empirical analysis of F-Race 125

and given flows between the facilities; the flows, for example, correspond to the
amount of materials or products to be exchanged between machines in a produc-
tion environment. The goal is to assign the facilities to locations in such a way
that the sum of the product between flows and distances is minimal.

Formally, a QUADRATIC ASSIGNMENT instance is specified by n facilities and
n locations, where both facilities and locations are represented by integers from
the set {1,...,n}, and two n X n matrices A and B, where a,,, is the distance
between locations v and w and by, is the flow between facilities v" and w’; A and
B are called distance and flow matriz, respectively. The goal is to find an optimal

assignment of facilities to locations, that is, a permutation s = {s1, so,..., 8, } of
index set {1,2,...,n} that minimizes the function:
n n
f(s) = Z Z Dow s, s,, -
v=1 w=1

Here s, denotes the location of facility v under assignment s and the term b,,as, s,
intuitively represents the cost contribution of simultaneously assigning facility v
to location s, and facility w to location s,,.

For QUADRATIC ASSIGNMENT it is well known that the relative performance of
different metaheuristics or, for one metaheuristic, the relative performance of dif-
ferent configurations, depends strongly on the particular class of instances (Stiit-
zle, 2003; Taillard, 1995; Hoos & Stiitzle, 2004). There are two main syntactical
features to distinguish different classes of instances. They are (i) the dominance
of the flow and of the distance, which are defined to be the coefficient of variation
of the entries of the flow and of distance matrix, respectively; and (ii) the sparsity
of the flow and of the distance matrix, defined as sp = ng/n?, where ng is the
number of zero-entries in the given flow or distance matrix. For the empirical
analysis of the F-Race, we consider two classes C'1 and C2 of instances, each class
comprising 400 instances. For both classes, the distance matrix is generated as
follows. First, n points are generated, which are uniformly distributed in a square
of side length 300. Then, each entry a,,, is defined to be the Euclidean distance
between the v-th and the w-th point, rounded to the nearest integer.

The generation of the random flow matrix uses the following parameters:

e sp, with 0 < sp < 1, indicates the sparsity of the flow matrix;
e A and B determine the flow values.

By varying the parameter sp, instances of arbitrary sparsity can be generate.
The parameters A and B allow to modify the distribution of the matrix entries
according to y = (A - x)5.

To generate the flow matrix of an instance from class C'1, sp is assigned a
random value uniformly distributed in [0.0; 0.08] and the values of A and B are
set to 100 and 1, respectively. For a class C2 instance, sp is chosen uniformly at

126 Chapter 5. Experiments and applications

function flow matrix_entry(A, B, sp)
x =rand() # a random number in [0,1]
if (x < sp)
return 0
else
x = rand|()
return MAX(1, (A - x)P)
end

Figure 5.2: The function flow matrix_entry is used for filling the flow matrix.

random from the interval [0.63;0.71], and we have A = 10 and B = 2.5. Then,
each flow matrix entry is generated by the routine given in Figure 5.2.

The result of this way of generating instances is that those of class C'2 have
a much larger sparsity than instances of C'l and, additionally, the distribution of

the non-zero entries is different. The size of the instances is chosen uniformly at
random from the set {65, 66, ..., 74}.

The results of the experiments

The first element that needs be observed is that the range of the numerical
results obtained by all tuning methods under analysis is very large compared to
the differences between the averages: In Table 5.1(a), the former is in the order
of the millions while the latter of the thousands. If we had to base our empirical
analysis of the tuning methods under study solely on the bare figures reproduced
in Table 5.1(a), we would have to conclude that the algorithms are all equivalent
and that the tiny differences in their mean behavior are just a matter of chance.
Such conclusion would be clearly confirmed by the box-plot of the un-normalized
costs given in Figure 5.3(top).

Nevertheless, a deeper analysis reveals that the large variations in the results
obtained by each tuning algorithm is due mainly to a large difference among the
instances adopted in the study. Apparently, such intrinsic diversity of the class of
instances considered washes out the differences in the performance of the tuning
algorithms under analysis. This hypothesis is confirmed by the box-plot of the
normalized results given in Figure 5.3(bottom). In this second graph, the costs ¢
obtained by the tuning algorithms on instance ¢ are normalized between 0 and 1
according to the following score function:®
c— szm

max min ’
G TG

é(eyi) =

8See Section 6.1.1 for a discussion of several score functions that can be used for normalizing
the observed costs on an instance-per-instance basis.

5.1. Empirical analysis of F-Race 127

max min

where c"* and c¢["" are, respectively, the maximum and the minimum cost ob-
tained on instance ¢ by the tuning algorithms under analysis.

Once the costs are normalized on an instance-per-instance basis, differences
emerge clearly. Figure 5.3(bottom) shows that F-Race is clearly the best of the
racing algorithms studied, and that F-Race and tNo-Race perform far better than
Brutus. On the other hand, tBo-Race and tHo-Race are not able to improve over
their brute-force opponent. Further, it should be observed that, as expected,
the performance of the brute-force approachs considered in the study is ordered
according to the amount of computation used: Cheatl0 is the best, while Cheat5,
Cheat2, and Brutus follow in this order. F-Race results superior to Brutus, Cheat2,
and Cheath, and equivalent to Cheatl0. This justifies the conclusion that, at
least for what concerns this first experiment, the racing approach is about 10
times more efficient that the brute-force approach: Indeed, brute-force needs a
computation time 10 times larger than F-Race in order to obtain an equivalent
performance.

The conclusions drawn above are based on the reading of the box-plots of
the normalized costs given in Figure 5.3(bottom). The same conclusions can be
drawn in a more formal manner on the basis of the results of some statistical tests.
Table 5.1(b) reproduces the p-values of the Wilcozon matched-pairs signed-ranks
test (Conover, 1999) performed between each pair of tuning algorithms, corrected
for multiplicity using Holm’s method: It appears that F-Race is significantly’ bet-
ter that all other racing algorithms and of Brutus, Cheat2, and Cheat5. On the
other hand, no such conclusion can be drawn concerning Cheatl10: The experi-
mental results bring no evidence that one is better than the other. Moreover, the
figures reproduced in Table 5.1(b) confirm that the differences that were already
observed in Figure 5.3(bottom) between the four brute-force approachs of our
study, are all statistically significant but that, on the basis of the results of the
experiment, we are not authorized to reject the null hypothesis that the obser-
vations produced by tHo-Race, tBo-Race, and Brutus are all extracted from the
same distribution.

A further insight on the results, and more specifically on the equivalence
among tHo-Race, tBo-Race, and Brutus, can be obtained from the race profiles
proposed in Figures 5.4 and 5.5. It can be observed that tBo-Race and tHo-Race
are particularly conservative and discard very few candidates. As a result, they
are not able to focus on the best candidates and they end up performing a final
selection of the best that is substantially equivalent to the one performed by Bru-
tus. This is confirmed also by a comparison of the histograms of the frequencies
with which good candidates were selected. The histograms concerning tHo-Race
and tBo-Race, see Figure 5.7, and the one concerning Brutus, see Figure 5.7(top),
appear identical. On the other hand, the race profiles given in Figure 5.4 show
that F-Race and tNo-Race are much bolder in discarding inferior candidates and

9At a confidence level of at least 95%.

128 Chapter 5. Experiments and applications

in focusing on the most promising ones. This results in a higher probability of se-
lecting a very good candidate, see Figure 5.6. Based on the frequency histograms,
we could even conclude that F-Race performs better that Cheat10.'°

A final remark concerns the comparison between F-Race and tNo-Race. The
superiority of both algorithms with respect to tHo-Race and tBo-Race rests, as
already observed, on their ability to discard inferior candidate and to focus on
the best ones. Nevertheless, observing Figure 5.4, and taking into account that
F-Race is significantly better than tNo-Race, see Table 5.1(b), we are led to the
conclusion that tNo-Race is probably too aggressive at discarding candidates and
that it gets therefore over-exposed to the risk of discarding the good omnes in
the early stages of the race. Clearly, a trade-off exists between the two extreme
attitudes towards candidate elimination. The test of hypotheses adopted by
tNo-Race does not consider any correction of the p-values in order to account for
the multiplicity of the pairwise tests performed. This results in a relatively high
probability of discarding candidates even if no statistically sufficient evidence
exists against them.!!

For the sake of completeness, a description of the best 20 configurations is
given in Table 5.2. In this table, the configurations represented are those that
on average obtained the smallest cost on the set of 800 instances on which the
whole study was carried out.

0Compare the sub-plot of Figure 5.6(top) with the one of in Figure 5.9(bottom).

1Tt should be sufficient to notice here that if the confidence level is 95% and, say, 100
uncorrected t-tests are performed between samples all extracted from the same population,
expectedly in 5 of such tests significance will be incorrectly detected.

5.1. Empirical analysis of F-Race 129
Table 5.1: Tuning iterated local search for QUADRATIC ASSIGNMENT.
Min. 1st Qu. Median Mean 3rd Qu. Max.
F-Race 11894279 17138434 26214814 25174094 33141333 40792940
tNo-Race 11902235 17143118 26219483 25174869 33129746 40783681
tBo-Race 11894279 17157467 26219483 25180791 33125245 40826733
tHo-Race 11894279 17157467 26219483 25180821 33125245 40826733
Brutus 11894279 17157467 26219483 25180779 33125256 40826733
Cheat2 11890443 17153696 26219483 25178977 33125245 40792940
Cheatb 11894279 17145910 26219483 25176082 33125883 40783681
Cheat10 11902235 17138434 26214814 25174252 33129746 40755716
(a) Costs on the test instances.

F-Race tNo-Race tBo-Race tHo-Race Brutus Cheat2 Cheat5b
tNo-Race 3.94E—06 — — — — —
tBo-Race < 2E-16 < 2E-16 — — — —
tHo-Race < 2E-16 < 2E-16 3.65E—01 — — — —
Brutus < 2E-16 < 2E-16 1.00E+00 8.30E-01 — — —
Cheat2 < 2E-16 < 2E-16 8.89E—07 5.038-07 9.07TE—07 — —
Cheats < 2E-16 2.31E-05 < 2E-16 < 2E-16 < 2E-16 < 2BE-16 —
Cheatl10 1.00E+00 2.34E—04 < 2E-16 < 2E-16 < 2E-16 < 2E-16 < 2E-16

(b) Pairwise comparisons using Wilcoxon test. P-value adjustment method: Holm’s.

Min. 1st Qu. Median Mean 3rd Qu. Max.
F-Race 22709781 24835332 25106551 25099522 25365590 28288901
tNo-Race 21708438 24861445 25111952 25105230 25352345 29201166
tBo-Race 17266519 23521488 24956328 25021719 26627119 32238700
tHo-Race 17266519 23521488 24950148 25023912 26610051 32238700
Brutus 17036725 23458131 24927161 24987857 26610051 32292821
Cheat2 20839558 23996618 25137767 25092220 26173338 29480131
Cheath 21937598 24487020 25163340 25144915 25794130 27796878
Cheatl0 22959610 24701240 25129259 25115490 25562065 27182278

(c) Costs on the tuning instances.

130 Chapter 5. Experiments and applications

Costs on the test instances

5 _ — —_ —_ — — — —
2 7 | | | | | | | |
> I I '
< | | ! ! | | | |
I | I I | | I |
. : : : : : : ‘ ‘
S I I I I I I I I
3 | | | | | | | |
8 I ' I I ' ' I '
i L
~
o
*
&
<
L]
§2]
173
o ~
o 2
&
0
o
~
o
*
&
<
o
~ j j j j j j j j
5 I l I I I I I l
>
o | ' ' ' i i i i '
0 I I I I I I I I
- I I I I I I I I
' l ' ' ' ' ' l
T T T T T T T T
F-Race tNo-Race tBo-Race tHo-Race Brutus Cheat2 Cheat5 Cheat10
Tuning method
Normalized costs on the test instances
e
«©
@
a ©
B o 7
Q
o
3 TS
8
E
o <
=z o
o
3 S
° |
o
T T T T T T T T
F-Race tNo-Race tBo-Race tHo-Race Brutus Cheat2 Cheat5 Cheat10

Tuning method

Figure 5.3: Box-plots. Tuning iterated local search for QUADRATIC ASSIGNMENT.

5.1. Empirical analysis of F-Race 131

F-Race
©]
Brutus
Cheat2
3 4
Cheat5
‘8_ 4
0
o 9 |
g 2 Cheati0
b}
2
o
S 4
3V
o
3 4
Y
o
S 4
(]
T T T T T
0 100 200 300 400
Surviving candidates
tNo-Race
©]
Brutus
Cheat2
3 4
Cheat5
‘8_ 4
0
o 9 |
g 2 Cheati0
b}
2
o
S 4
3V
o
3 4
Y
o
S 4
(]
T T T T T
0 100 200 300 400

Surviving candidates

Figure 5.4: Race profiles. Profile of the races performed by F-Race and tNo-Race.
The algorithm to be tuned is iterated local search and the problem is QUADRATIC
ASSIGNMENT.

132 Chapter 5. Experiments and applications

tBo-Race
o - y
Brutus
Cheat2
o _|
wn
Cheat5
(=]
S 4
2 o
g 27 Cheatio
17}
£
(=]
8 4
YY)
(=]
3 4
3
(=]
8 4
2]
T T T T T
0 100 200 300 400
Surviving candidates
tHo-Race
o -
Brutus
Cheat2
o _|
wn
Cheat5
(=]
S 4
2 o
g 27 Cheatio
17}
£
(=]
8 4
3V
(=]
3 -
a
(=]
8 4
2]
T T T T T
0 100 200 300 400

Surviving candidates

Figure 5.5: Race profiles. Profile of the races performed by tBo-Race and
tHo-Race. The algorithm to be tuned is iterated local search and the problem
1S QUADRATIC ASSIGNMENT.

5.1. Empirical analysis of F-Race 133

F-Race
8 _ R
S -
o 7
S 4
©
>
3
& g 4
] g
o
o
- 1
o
S 4 .
<
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Candidates
o
S 4
N
o J
T T T T 1
0 100 200 300 400
Candidates
tNo-Race
o g
o =
3
g1
o
8 -
§,
g
§,
o
S 4
3
>
2
g 1
o
o
* —l_’n
S 4
< °-
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Candidates
o
8 4
34
o J .
T T T T !
0 100 200 300 400

Candidates

Figure 5.6: Frequencies. Results obtained by F-Race and tNo-Race. The algo-
rithm to be tuned is iterated local search and the problem is QUADRATIC ASSIGN-
MENT.

134 Chapter 5. Experiments and applications

tBo-Race
8 _ ER
3
o 7
S
©
>
9
& g 4
] &
o
o
- I H_’m
o
Q o d
<
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Candidates
o
s
N
o - —H_h_ﬂ_'ﬁm
I T T T 1
0 100 200 300 400
Candidates
tHo-Race
o £
o _ -
8
§,
o
27 H
g
§,
)
S
©
>
2
g 1
=z
o
w -
S 4
< °-
T2 3 4 5 5 7 8 9 1 11 12 18 14 15 1 17 18 19 2
Candidates
o
S
34
o - —H_h_‘_ﬂ_?m
T T T T 1
0 100 200 300 400
Candidates

Figure 5.7: Frequencies. Results obtained by tBo-Race and tHo-Race. The algo-
rithm to be tuned is iterated local search and the problem is QUADRATIC ASSIGN-
MENT.

5.1. Empirical analysis of F-Race 135

Brutus
o £
o _ -
8
g
§,
)
S
3
>
2
g &1
=z
o
w
s | n
< °-
T2 3 4 5 5 7 8 9 1 11 12 18 14 15 1 17 18 19 2
Candidates
o
S
34
T T T T 1
0 100 200 300 400
Candidates
Cheat2
8 _ B
3
- g
S
©
>
9
2 s
5 87
o
o
w
o
Q o d
<
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Candidates
o
s
N
o J —h}fmf

[T T T 1
0 100 200 300 400

Candidates

Figure 5.8: Frequencies Results obtained by Brutus and Cheat2. The algorithm
to be tuned is iterated local search and the problem is QUADRATIC ASSIGNMENT.

136 Chapter 5. Experiments and applications

Cheat5
=) .
o =
S
- g
§,
g
§,
=3
S
©
>
2
g &1
=
o
w
S
< °-
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Candidates
o
S
34
od Uh_
T T T T \
0 100 200 300 400
Candidates
Cheat10
8 _ ER
3 -
o 7
S
©
)
5] s |
] g
o
o
w
g [=
o - d
<
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Candidates
=3
S
N
o =1
T T T T 1
0 100 200 300 400
Candidates

Figure 5.9: Frequencies. Results obtained by Cheat5 and Cheat10. The algorithm
to be tuned is iterated local search and the problem is QUADRATIC ASSIGNMENT.

137

5.1. Empirical analysis of F-Race

€€L9C807 B8ETEE0CE TL6LCTIGC 8E6CLEVC ETETLTLT 68CLG6TT € suA d1das1yg freawopuer dwa)suod
66€678L07 TI6800€E ¥9LL2TS¢C OTO0CIEVC CBIGETLT L66LT6TT T Xg d1das1yg q31y-powt dwaT,)su0d
06T2I80F 2Q0S€S0€E ¥69LC1S%C 0TS6VEVE 9VC6VILT GELO68TIT € suA a1asty y31y-pout duigy,)suod
66L69L07 999600€€ L9GLC1SC 98169€¥C O00STI9TLT 9¥FOI6TIT ¥ Xg 1s9q y31y-pout duigy,)suod
¥L996L07 TI89€0€€ €GTLCISC TOBLVEVC GLEIGTLT 69LLL6TT C SUA d1asty fremwoptrer duIgy,)suod
8G698L07 ¢90cv0€e OSTLCTSC ST8CLEVC C606ETLT 0960L6TT ¢ suA d1das1g freawopuer dwa)suod
C8CTC807 TTLEO0CE ®8I0LCTSTC CCCIVEVE G6GPESTLT TEBCO6TT ¢ suA d1das1g U31y-powt dwaT,)su0d
T00LGL0Y P98TI00EE 0€89CIST CI6TLEVEC 6CISVILT T¥PIL6TT ¥ Xg 1s9q pot-mo[- duid)suod
Ver9eL0y 8GG600€E LTEITISC 96096EVC 8ITEVILT T¥E0C6IT C suA a1as1y y31y-pout dugy,)suod
T607¢L0¥F PICS00€E LVP6GCIGC 8CIVLEVC CO6VLVILT 0€9L06TT ¢ SUA d1asty jeurejow HNS'T
CVL6LLOV 2099€0€E GT8GCISC ¥C669E¥e T600STLT 8F6E€96TT € Xg d1das1yg Fomb jregsar
€90€GL0Y QOGPE0CE TLPGCTST TO6SLEVC 8E6TITLAT 69LLT6TT T Xg d1das1yg freawopuer dway)suod
L8L.8GL0OV CCVCT0CE C66VCISe 96CGSEye G609GTLT 6T6CE6TT € Xg d1das1yg freawopuer dwa)suod
0¥626L07 7€9900€€ ¥8EVCISE 08€CVEVE 066SCTAT 6TLE68TIT € Xg d1asty pat-mo[duwid)suod
886€GL0V T8T920€E €T6ECISC 88IEOVPE O066€LTAT CEVETOIT ¥ Xg 1s9q jeurejow HNS'T
9PCee9L07 269T20€E 8O6TCTSE 98C8LEVC 99LCEGTLT TPI99V6TT € Xg d1das1yg q3ry-powr dwaT,)su0d
CELEBLOY TPOIPEOCE TCLTCTGT L689GEVC 9PICCTLT €FFO68TIT ¢ Xg d1das1yg freawopuer dwa)suod
8€L0GLOY 99TOTOCE 9TOTCTST CELVPIEVE LEGTITLT 8990C6TT ¢ Xg d1das1yg q31y-powt dwaT,)su0d
T89€8L0¥ 68¥PE0EE ¥ECG0CISCC 9E€80VEVE 09EEVILT 6LCV68TIT € Xg d1asty jeurejow HNS'T
9TLGCLOV 99CTC0EE CTLBITTSC T86LVEVE LG99CTLT GECCO6IT € Xg d1daisty jourejow HNS'T

“XeIN nY) pig ueaIN URIPaI ng) 98T U ‘8198 rqpad yorees Teoo] eouejdesoe

-9oueULIOjIod 1197} pUR SUOIIRINSIUOD ()7 1S9q 9} JO SIdjoUIRIR] :7'C O[(R],

138 Chapter 5. Experiments and applications

5.1.2 Ant colony optimization for TRAVELING SALESMAN

In this second experiment, the metaheuristic to be tuned is MAX-MZN Ant Sys-
tem, currently considered as one of the best performing metaheuristics belonging
to the ant colony optimization family, and the optimization problem addressed is
the well known TRAVELING SALESMAN problem in its symmetric version.

The metaheuristic to be tuned

Ant colony optimization (Dorigo et al., 1996, 1999; Dorigo & Di Caro, 1999; Dorigo
& Stiitzle, 2002, 2004) is a population-based approach inspired by the foraging
behavior of ants for the solution of hard combinatorial optimization problems.
In ant colony optimization, artificial ants implement stochastic construction pro-
cedures that are biased by pheromone trails and heuristic information on the
problem being solved. The solutions obtained by the ants may then be im-
proved by applying some local search routine. Ant colony optimization algorithms
typically follow the high-level procedure given in Figure 5.10. MAX-MIN Ant
System (Stiitzle & Hoos, 1996, 1997, 2000) is currently one of the best performing
ant colony optimization algorithms for the TRAVELING SALESMAN problem.

MAX-MIN Ant System constructs tours as follows: Initially, each of the m
ants is placed in some randomly chosen city. At each construction step, ant z
applies a stochastic action choice rule. In particular, when being in city v, ant z
chooses to go to a yet unvisited city w at the k-th iteration with a probability

2 [Tow (K)]* - [nvw]ﬂ . z,

Polt) = 5 s e Tt N oy
where 1,, = 1/D,, is an a priori available heuristic value, « and [are two
parameters which determine the relative influence of the pheromone trail and the
heuristic information, and N7 is the feasible neighborhood of ant z, that is, the
set of cities which ant z has not visited yet; if w ¢ N7, we have PZ (k) = 0.

After all ants have constructed a solution, the pheromone trails are updated
according to

Tow(k) = (1= p) - T (k) + ATy, (5.2)
where Arbet = 1/L% if arc (v,w) € T*" and zero otherwise. Here T is
either the iteration-best solution T%, or the global-best solution 79 and L'
is the corresponding tour length. Experimental results showed that the best
performance is obtained by gradually increasing the frequency of choosing 79
for the pheromone trail update (Stiitzle & Hoos, 2000).

In MAX-MIN Ant System, lower and upper limits 7,;,, and 7, on the
possible pheromone strengths on any arc are imposed to avoid search stagnation.
The pheromone trails in MAX-MZIN Ant System are initialized to their upper
pheromone trail limits 7,.,, leading to an increased exploration of tours at the
start of the algorithms. In our experiments each solution is improved by a local
search procedure, either 2-opt, 3-opt, or 2.5-opt (Bentley, 1992).

5.1. Empirical analysis of F-Race 139

function ant colony optimization

Initialize pheromone and calculate heuristic

while (termination condition not met) do
p = ConstructSolutions(pheromone, heuristic)
p = LocalSearch(p) # optional
UpdatePheromoneTrails(p)

end

Figure 5.10: Algorithmic skeleton of ant colony optimization for static combina-
torial optimization problems.

The set of candidate configurations

In our experimental study, we have chosen a number of configurations that differ
in particular parameter settings for MAX-MZN Ant System. We focused on
alternative settings for the main algorithm parameters as they were identified in
earlier studies, in particular we considered values of «, (3, p, m, and the kind of
local search adopted for improving the quality of the solutions found by the ants.

The set of candidate configurations is the union of two subsets each of which is
the set of all combinations of some given levels of the parameters of the algorithm.
For what concerns the first subset, the levels of the parameters are:

Q I} P m Is
0.75 0 0.00 1 2-opt
1.00 1 0.10 5 2.5-opt
1.50 3 0.25 10 3-opt

5 0.50 25
0.75
0.90

The number of configurations in the first subset is therefore 3 x4 x4 x6x 3 = 864.
In the second subset, the levels of the parameters are:

a 14 p m Is

0 0 1.00 1 2-opt
1 5) 2.5-opt
3 10 3-opt
5 25

The number of configurations in the second subset is therefore 1 x4 x4 x1x3 =
48. It should be noticed that the configurations in this second subset represent
some degenerate version of ant colony optimization in which, since a = 0, the

140 Chapter 5. Experiments and applications

pheromone does not play any role at all—see Equation 5.1. In such a setting,
as it is immediately confirmed by an inspection of Equations 5.1 and 5.2, the
evaporation parameter p becomes irrelevant. For definiteness, here it is set to 1,
but it does not play any role.

Taking the two subsets together, the total number of candidate configuration is
864 + 48 = 912.

The class of instances

Given a complete graph G = (V, E, D) with V being the set of n = |V| vertices or
nodes, F being the set of edges or arcs fully connecting the nodes, and D being the
weight function that assigns each edge (v,w) € E a length D,,,, the TRAVELING
SALESMAN problem is the problem of finding a shortest closed tour visiting each
node of GG once. We assume the TRAVELING SALESMAN is symmetric, that is, we
have D, = D,, for every pair of nodes v and w.

The TRAVELING SALESMAN problem is extensively studied in the literature
and serves as a standard benchmark problem (Johnson & McGeoch, 1997; Lawler
et al., 1985; Reinelt, 1994). For our study we randomly generate Euclidean TRAV-
ELING SALESMAN problem instances with a random distribution of city coordi-
nates and a random number of cities. Euclidean TRAVELING SALESMAN problems
were chosen because such instances are used in a large number of experimental
researches on the TRAVELING SALESMAN problem (Johnson & McGeoch, 1997;
Johnson et al.; 2001). In our case, city locations are randomly chosen accord-
ing to a uniform distribution in a square of dimension 10.000 x 10.000, and the
resulting distances are rounded to the nearest integer. The number of cities in
each instance is chosen as an integer randomly sampled according to a uniform
distribution in the interval [300,500]. We generated a total number of 500 such
instances for our experiments reported in Section 5.

The results of the experiments

Also in this second experiment, the range of the numerical results obtained by all
tuning methods under analysis is very large compared to the differences between
the averages: In Table 5.3(a), the former is in the order of the millions while the
latter of the hundreds. Also in this case, the figures reproduced in Table 5.3(a)
and the box-plot of the un-normalized costs given in Figure 5.11(top) are not
very informative and do not show any difference between the algorithms.

Nevertheless, the tuning algorithms under analysis differ also on this second
problem as confirmed by the box-plot of the normalized results given in Fig-
ure 5.11(bottom) and by Table 5.3(b) that reproduces the p-values of a Wilcozon
matched-pairs signed-ranks test (Conover, 1999) performed between each pair of
tuning algorithms and corrected for multiplicity using Holm’s method.

5.1. Empirical analysis of F-Race 141

Once the costs are normalized on an instance-per-instance basis, differences
emerge clearly. In this second experiment F-Race is still the best algorithm but
in this case the difference between F-Race and tNo-Race is not significant. On
the other hand both F-Race and tNo-Race are significantly better than CheatI0.
Contrary to the first experiment, both tBo-Race and tHo-Race improve over Bru-
tus.

The performance of the whole racing approach compared to the brute-force
approach is even more satisfactory in this second experiment than it was in the
first: All racing algorithms perform significantly better than Brutus, and F-Raceis
significantly better even than Cheat10. For what concerns this second experiment,
we can therefore conclude that the racing approach is at least 10 times more
efficient that the brute-force approach.

Further insight on these results can be obtained from the race profiles proposed
in Figures 5.12 and 5.13. It can be observed that tBo-Race and tHo-Race are less
conservative compared to the first experiment. They are able to discard a few
candidates and this helps in improving over Brutus. This is confirmed also by a
comparison of the histograms of the frequencies with which good candidates were
selected. The histograms concerning tHo-Race and tBo-Race, see Figure 5.15, are
in this case clearly better than the one concerning Brutus, see Figure 5.15(top).

The race profiles given in Figure 5.12 confirm that F-Race and tNo-Race are
still much bolder than tBo-Race and tHo-Race in discarding inferior candidates
and in focusing on the most promising ones. This explain their better per-
formance. For what concerns the comparison between F-Race and tNo-Race,
their race profiles are quite similar, with tNo-Race slightly more aggressive in
the early stages. The histograms proposed in Figure 5.14 confirm that the two
algorithms obtain substantially equivalent results, with F-Race having anyway a
clearly higher probability of selecting the very best configuration'?

Finally, a comparison of the histogram given in Figure 5.14(top) with the one
in Figure 5.17(bottom), provides a clear evidence of the superiority of F-Race
over Cheatl0.

For the sake of completeness, a description of the best 20 configurations is
given in Table 5.4. In this table, the configurations represented are those that
on average obtained the smallest cost on the set of 500 instances on which the
whole study was carried out.

12Compare the sub-plots in Figure 5.14.

142 Chapter 5. Experiments and applications

Table 5.3: Tuning ant colony optimization for TRAVELING SALESMAN.

Min. 1st Qu. Median Mean 3rd Qu. Max.
F-Race 1456813 1537311 1577406 1574952 1611164 1690817
tNo-Race 1456252 1537458 1577406 1574964 1610494 1690817
tBo-Race 1456527 1537334 1577432 1575051 1610606 1690817
tHo-Race 1456252 1537334 1577469 1575041 1610540 1690817
Brutus 1455541 1537540 1577866 1575239 1610494 1694868
Cheat2 1455541 1537472 1577631 1575126 1610449 1691569
Cheatb 1456252 1537311 1577432 1575041 1610534 1690817
Cheatl10 1455541 1537900 1577432 1575038 1610507 1690817

(a) Costs on the test instances.

F-Race tNo-Race tBo-Race tHo-Race Brutus Cheat2 Cheat5
tNo-Race 1.00E+00 — — — — —
tBo-Race 1.23E—04 2.74E—-04 — — — —
tHo-Race 2.70E—04 4.63E—-04 1.00E+00 — — —

Brutus < 2E-16 < 2E-16 1.69E-10 6.12E—-12 — —
Cheat2 1.05E—12 8.72E—13 1.61E—-03 3.83E—04 3.83E—-04 —
Cheats 1.16E—03 9.97TE—04 1.00E+4-00 1.00E+00 1.72E-12 3.48E—04

Cheatl0 8.38E—04 1.63E—03 1.00E+00 1.00E+00 5.06E—12 3.48E—-04 1.00E+00

(b) Pairwise comparisons using Wilcoxon test. P-value adjustment method: Holm’s.

Min. 1st Qu. Median Mean 3rd Qu. Max.
F-Race 1565751 1574523 1574754 1574736 1574987 1578830
tNo-Race 1564873 1574501 1574774 1574767 1575035 1589207
tBo-Race 1555983 1571733 1574678 1574668 1577823 1590297
tHo-Race 1555785 1571610 1574616 1574602 1577439 1592108
Brutus 1537934 1566247 1575159 1574636 1582732 1617135
Cheat2 1550518 1569380 1574908 1574664 1580228 1601095
Cheat5 1557821 1571260 1574660 1574723 1578013 1592829
Cheatl10 1560420 1572343 1574829 1574688 1576982 1585435

(c) Costs on the tuning instances.

5.1. Empirical analysis of F-Race 143

Costs on the test instances

o
(=]
(=]
S 4
S _—
~ _ _— _— _ 5 —_— —_— —_—
o 1 1 1 1 : ' 1 1
o ' ' ' ' i ! ' '
S I I I I , ' I I
Q - ' ' ' 1 1 ! 1 '
n '
e | | | | | ! . |
o ' ' ' ' ' ! ' '
(=]
(=]
8 4
(=]
©
1%
D
Q
o
o
(=]
(=]
S 4
wn
wn
° I I I I i i ' i
8 I , I I . . I ,
3 I I I I ' ' I '
3 - I ' l ') . I .
(=] ' ' ' ' ' ' ' '
w0 ' 1 ' ' i 1 ' '
o | , | | , | | |
(=] _ _ —
(=]
S 4
Q T T T T T T T T
F-Race tNo-Race tBo-Race tHo-Race Brutus Cheat2 Cheat5 Cheat10
Tuning method
Normalized costs on the test instances
e
©
® 4
2 < |
17 (=}
Q
3
o
[
N
£ ST
o <
Z S >
> < > < P) S
o
84
o
24
T T T T T T T T
F-Race tNo-Race tBo-Race tHo-Race Brutus Cheat2 Cheat5 Cheat10

Tuning method

Figure 5.11: Box-plots. Tuning ant colony optimization for TRAVELING SALES-
MAN.

144 Chapter 5. Experiments and applications

F-Race
o - 1
Brutus
Cheat2
=} Cheat5
8
Cheat10
o
S 4
3V
1%
Q
o
f=4
b}
o
£
o
8 4
[
o
8 4
<
(=]
8 4
e} T T T T T
0 200 400 600 800
Surviving candidates
tNo-Race
o - 1
Brutus
Cheat2
=} Cheat5
8
Cheat10
o
S 4
3V
1%
Q
o
f=4
b}
o
£
(=]
8 4
[
o
8 4
<
(=]
8
e} T T T T T
0 200 400 600 800

Surviving candidates

Figure 5.12: Race profiles. Profile of the races performed by F-Race and tNo-Race.
The algorithm to be tuned is ant colony optimization and the problem is TRAV-
ELING SALESMAN.

5.1. Empirical analysis of F-Race 145

tBo-Race
o - ——————
Brutus
Cheat2
=} Cheat5
8
Cheat10
o
S 4
3V
0
Q
o
f=4
b}
17}
£
o
8 4
[
o
8 4
<
(=]
8 4
e} T T T T T
0 200 400 600 800
Surviving candidates
tHo-Race
o ———
Brutus
Cheat2
=} Cheat5
8
Cheat10
o
S 4
3V
0
Q
o
f=4
b}
17}
£
(=]
8 4
[
o
8 4
<
(=]
8
e} T T T T T
0 200 400 600 800

Surviving candidates

Figure 5.13: Race profiles. Profile of the races performed by tBo-Race and
tHo-Race. The algorithm to be tuned is ant colony optimization and the prob-
lem is TRAVELING SALESMAN.

146

Chapter 5. Experiments and applications

Frequency

Frequency

1000

600

400

200

1000

600

400

200

Frequency

1000

800

600

F-Race

L

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Candidates

200 400 600 800 1000
Candidates
tNo-Race
§ -
§,
) 2
§,
B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Canddates
T T T T 1
200 400 600 800 1000
Candidates

Figure 5.14: Frequencies. Results obtained by F-Race and tNo-Race. The al-
gorithm to be tuned is ant colony optimization and the problem is TRAVELING
SALESMAN.

5.1. Empirical analysis of F-Race 147

tBo-Race

1000
|

1000
|
Frequency
600 800
I |

400
L

Frequency
200
L

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Candidates

0 200 400 600 800 1000

Candidates

tHo-Race

1000
|

600
1
Frequency

Frequency

400
1
0
L

12 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Candidates

200
1

0 200 400 600 800 1000

Candidates

Figure 5.15: Frequencies. Results obtained by tBo-Race and tHo-Race. The
algorithm to be tuned is ant colony optimization and the problem is TRAVELING
SALESMAN.

148 Chapter 5. Experiments and applications

Brutus
S _ &+
o
§,
.
o n 7
S
©
>
2
g e
o
<
g D e e S
o
o - o d
<
T2 8 4 s 6 7 8 9 10 1 12 18 18 15 1 17 1 19 2
Candidates
o
S
o
o J
I T T T T 1
0 200 400 600 800 1000
Candidates
Cheat2
o g -
o _ =
o
g,
_ N
g
§,
o
S
©
>
3
& g |
g 8
o
o
- IS annn =
S 4
53 -
T2 3 4 5 6 7 8 9 10 1 12 138 14 15 16 17 1B 19 20
Candidates
o
S
3V
o J hl
I T T T T 1
0 200 400 600 800 1000

Candidates

Figure 5.16: Frequencies. Results obtained by Brutus and Cheat2. The algorithm
to be tuned is ant colony optimization and the problem is TRAVELING SALESMAN.

5.1. Empirical analysis of F-Race 149

Cheat5
S _ &+
o
§,
) 2
o 7
S 4
©
>
2
g e
o
[
fra
o
o - o d
<
‘2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Canddates
(=3
8 4
o
o
T T T T T 1
0 200 400 600 800 1000
Candidates
Cheat10
o g -
[= I s
8 O
§,
o
S 4
©
)
< s
Q g
E
o
o
w
(=]
o - J
<
12 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Candidates
o
S 4
Y
o
T T T T T 1
0 200 400 600 800 1000
Candidates

Figure 5.17: Frequencies. Results obtained by Cheat5 and Cheatl0. The al-
gorithm to be tuned is ant colony optimization and the problem is TRAVELING
SALESMAN.

Chapter 5. Experiments and applications

150

Table 5.4: Parameters of the best 20 configurations and their performance.
a [m p Is Min. 1st Qu. Median Mean 3rd Qu. Max.
0.75 3 25 0.50 3-opt 1457329 1536314 1578178 1574743 1611220 1690817
0.75 5 25 0.50 3-opt 1456813 1535182 1577652 1574846 1611570 1686040
0.75 5 25 0.25 3-opt 1456252 1537300 1578500 1574866 1611378 1687182
0.75 3 10 0.50 3-opt 1457975 1536586 1579108 1574877 1611395 1686379
0.75 1 10 0.25 3-opt 1456527 1535564 1578354 1574917 1611204 1686813
0.75 5 10 0.25 3-opt 1456341 1537180 1578968 1574926 1610058 1690078
0.75 5 10 0.50 3-opt 1456853 1536781 1577846 1574930 1610500 1686529
0.75 1 25 0.25 3-opt 1455541 1535929 1578485 1574935 1610279 1687099
0.75 3 25 0.25 3-opt 1457522 1535789 1578726 1575127 1611128 1688760
1.00 1 25 0.50 3-opt 1456567 1536314 1579004 1575128 1612098 1687595
0.75 3 5 0.50 3-opt 1456252 1536237 1579042 1575140 1610824 1687348
1.00 5 25 0.50 3-opt 1456527 1536216 1578694 1575186 1611478 1688589
0.75 1 10 0.50 3-opt 1456209 1536555 1579286 1575246 1612002 1694868
0.75 1 25 0.10 3-opt 1457025 1536261 1578465 1575255 1611680 1690135
0.75 5 5 0.50 3-opt 1456341 1537318 1578734 1575295 1611060 1686022
1.00 0 25 0.25 3-opt 1456341 1537196 1578088 1575296 1611718 1686022
1.00 3 25 0.50 3-opt 1456341 1536242 1579668 1575299 1610291 1686206
0.75 5 25 0.10 3-opt 1456341 1536078 1578358 1575315 1611558 1686040
1.00 0 10 0.50 3-opt 1456341 1536466 1579836 1575329 1610781 1687096
0.75 1 5 0.25 3-opt 1455541 1536284 1579045 1575335 1610951 1689348

5.2. Some applications of the racing approach 151

5.2 Some applications of the racing approach

This section gives a brief account of a number of successful applications of the
racing algorithms introduced in the thesis and of some derived algorithms. As it
has been already made clear, the aim of this section is not to provide quantitative
results or to formally prove the superiority of one tuning algorithms over another.
With the applications discussed here we wish instead to show that F-Race, and
more generally the racing idea, are particularly flexible and manageable and
that they can be profitably adopted in real-world (or at least real-world-like)
situations.

The rest of the section is organized at follows: Section 5.2.1 illustrates the very
first application of F-Race, the tuning of a number of metaheuristics developed by
the Metaheuristics Network for the UNIVERSITY-COURSE TIMETABLING problem.
Section 5.2.2 illustrates an approach to the design of hybrid metaheuristics that
is derived from F-Race. This approach was adopted for designing and fine-tuning
the algorithm submitted to the International Timetabling Competition by the
author and co-workers. Section 5.2.3 illustrates a model selection application of
F-Race for a supervised learning problem. Finally, Section 5.2.4 briefly mentions
further works on F-Race that were carried out by other researchers.

5.2.1 Tuning metaheuristics for timetabling

The F-Race algorithm was developed by the author of the thesis while he was with
the German node of the Metaheuristics Network, in Darmstadt. At that time,
second half of the year 2001, the research focus of the Metaheuristics Network was
on the UNIVERSITY-COURSE TIMETABLING problem, and the INTELLEKTIK
group of the Technische Universitdt Darmstadt was in charge of the development
of two metaheuristics for this problem: simulated annealing and iterated local
search. For the research on the UNIVERSITY-COURSE TIMETABLING problem, the
Metaheuristics Network has considered three classes of instances of increasing
size and complexity denoted as small, medium, and large. A summary of the
characteristics of these classes is given in Table 5.5. Instances from these three
classes could be obtained in a straightforward way thanks to a parametric random
instance generator developed by Ben Paechter.'®> For each class, a different time
limit was defined: It was agreed that metaheuristics were to be evaluated on the
basis of the quality of the best solution they could find within a run of 90s for
small instances, 900 s for medium instance, and 9000s for large instances.

Moreover, it was agreed that for each metaheuristic to be studied, three dif-
ferent implementations could have been developed, one tailored for each of the
classes of instances under analysis.

At INTELLEKTIK it was decided to develop one single generic version of

Bhttp://www.dcs.napier.ac.uk/~benp/

152 Chapter 5. Experiments and applications

small medium large

number of events 100 400 400
number of rooms) 10 10
number of features 5 5 10
features per room 3 3)
percentage of features used 70 80 90
number of students 80 200 400
maximum number of events per student 20 20 20
maximum number of students per event 20 50 100

Table 5.5: Summary of the characteristics of the three classes of instances of
the UNIVERSITY-COURSE TIMETABLING problem studied by the Metaheuristics
Network.

the two metaheuristics we were supposed to implement, namely simulated anneal-
ing and iterated local search, and to automatically configure and fine-tune them
for the different classes of instances. Marco Chiarandini'* was in charge of the
implementation of simulated annealing, and Luis Paquete®® of iterated local search.

The F-Race algorithm was adopted for selecting the proper configuration of
the two metaheuristics out of a set of 148 possible candidates for iterated local
search, and 70 for simulated annealing. The F-Race algorithm that was adopted
is exactly the one described in Chapter 4 in an implementation that was a pre-
release version of the software package currently available for download from the
R official repository.'6

The selected configurations were submitted for an independent evaluation and
comparison with the metaheuristics implemented by the other members of the
Metaheuristics Network. The evaluation was performed by Michael Sampels'” at
IRIDIA, on a number of previously undisclosed instances.

The full set of the experimental results and their thorough statistical analysis
is available in Sampels (2002). Here, we limit ourself to some considerations
on the results obtained on the instances of class medium because on the class
small most of the metaheuristics under analysis obtained similar results, and
on the class large too few experiments were run for reaching some meaningful
conclusions.

Figure 5.18 summarizes the results obtained on the 5 previously undisclosed
medium instances adopted for the analysis. Each metaheuristic was run 50 times
on each of these instances. In the plots, iterated local search is denoted by ILS
and simulated annealing by SA. The other metaheuristics that were studied are ant

Yhttp://www.intellektik.informatik.tu-darmstadt.de/~machud
YPhttp://wuw.intellektik. informatik.tu-darmstadt.de/~lpaquete
http://cran.r-project.org/src/contrib/Descriptions/race.html
"http://iridia.ulb.ac.be/~msampels

2.2,

Some applications of the racing approach

153

Instance 4 Instance 3 Instance 2 Instance 1

Instance 5

Figure 5
medium:

Ranks # Soft Constraint Violations
S !
sA- |- D] -4 ° o 250 | j j -
©
SRR B ‘ ==
— ° —
= - -
150 i
5 I
AcO o }————-—{ ==
100 |
T T T T T T T T T T T
0 50 100 150 200 250 ACO GA ILs SA s
Ranks # Soft Constraint Violations
B
4 B 9
b - - wo|
== g
sA - |- F- ° " —_
250 & ' ‘
s -l I =
200 ' L. o ‘
= W ==
v '
ACO - Fo-- - 1 | —"
100 |
T T T T T T T T T T T
0 50 100 150 200 250 ACO GA ILs SA s
Ranks # Soft Constraint Violations
450 5
P - ——
. - w] =
o] + o] .
' —_ T
g “ - g o ¢ E==
250 . .
of e — = .
200 . —
ACO | o f--- - - m—
150 |
T T T T T T T T T T T
0 50 100 150 200 250 ACO GA ILs SA s
Ranks # Soft Constraint Violations
- :
x| EEEE >
oo { HIIH : - - :
ILs }——-f”{ ° ' £ .
150 4]
o =
5 ——
| —
5
T T T T T T T T T T T
0 50 100 150 200 250 ACO GA ILs SA s
Ranks # Soft Constraint Violations
°
.= :
400 o
— H
sqt-[- ° T RS
e - - =
j j ° i
o |] = -
— —
100 | o
T T T T T T T T T T T
0 50 100 150 200 250 ACO GA ILs SA TS

.18: Results on UNIVERSITY-COURSE TIMETABLING instances of type
The plots on the left hand side give a ranking of the metaheuristics,

those on the right hand side the optimal values found. The plots are obtained on

the basis of 50 runs of 900s for each metaheuristic on each of the 5 instances.

154 Chapter 5. Experiments and applications

colony optimization, denoted by ACO, genetic algorithm, denoted by GA, and fi-
nally tabu search, denoted by TS. The plots in the right-hand column describe the
number of soft constraint violations (the lower, the better) in the solution found
by each metaheuristic. Those in the left-hand column, the ranking (the more on
the left, the better) of the metaheuristics under analysis on the 50 runs. There-
fore, the plots in the left-hand column bring a non-parametric version, scaled on
an instance-by-instance basis, of the information contained in the corresponding
plot in the right-hand column. It can be easily observed that simulated annealing
is the best performing algorithm on all 5 instances, and that iterated local search
is the second best.

It would be clearly improper to conclude from these results that the success
of the implementations of simulated annealing and iterated local search developed
by INTELLEKTIK is to be ascribed entirely to the fact that the F-Race algo-
rithm was used for tuning their parameters. The ultimate reason of the success
of these algorithms in the experiments proposed here cannot be extracted from
the data themselves. Indeed, the whole experimental setting was designed with
other goals in mind and did not aim at isolating the different contributions of
the elements that might have concurred to obtain a given performance and, in
particular, at isolating the contribution of the configuration algorithm.!® Never-
theless, the results proposed in Figure 5.18 show the success of a complex cocktail
of contributions including: the algorithmic ideas underlying simulated annealing
and iterated local search, the skill of the implementers, the tuning algorithm, and
possibly other elements that could not be identified and isolated.

In any case, the conclusion we can draw from this application of F-Race is
that the algorithm has properly served the purpose and has been considered
serviceable, reliable, and convenient by the researchers of INTELLEKTIK that
have used it for finishing up the implementation of their metaheuristics.

In a later phase, also the ant colony optimization algorithm implemented at
IRIDIA has been reconfigured using F-Race. The results of this research are
given in Manfrin (2003).

5.2.2 The International Timetabling Competition

A method derived from F-Race was used by Chiarandini, Birattari, Socha &
Rossi-Doria (2003; 2004) for designing and fine-tuning a high performing hy-
brid metaheuristic for the UNIVERSITY-COURSE TIMETABLING problem. The
resulting algorithm was submitted to the International Timetabling Competi-
tion organized in 2003 by the Metaheuristics Network and sponsored by PATAT,
the international series of conferences on the Practice and Theory of Automated
Timetabling.

The algorithm was developed strictly following the competition guidelines and

8For an analysis of this kind, we refer the reader to Section 5.1.

5.2. Some applications of the racing approach 155

was evaluated exactly as all other submitted algorithms but, according to the rules
of the International Timetabling Competition, it was not allowed to win the prize
since the authors were members of the Metaheuristics Network. The competition
was eventually won by an algorithm developed by Philipp Kostuch (2003a; 2003b).
Nevertheless, the algorithm submitted by Chiarandini, Birattari, Socha & Rossi-
Doria and discussed here, outperformed, according to the evaluation criterion of
the competition, the official winner which, in turn, outperformed by quite a large
margin all the other entries.

This research has been carried out by the author of this thesis and co-workers
during the third phase of the research activity of the Metaheuristics Network on
the TIMETABLING problem.'® During the second phase, a number of metaheuris-
tics had been implemented in their most straight-forward version using common
software libraries and data structures. This was done with the aim of comparing
on a same basis the ideas underlying each metaheuristic and eventually under-
standing which search strategies were the most promising for the problem at
hand. The metaheuristics considered during the second phase were ant colony
optimization, evolutionary computation, iterated local search, simulated annealing,
and tabu search.

In the third phase, other metaheuristics were included in the list of the algo-
rithms to be considered:

e Ant colony optimization in its MAX-MIN Ant System variant (Stiitzle &
Hoos, 1997, 2000). See Socha et al. (2003) and Socha (2003a) for a descrip-
tion of the implementation of MAX-MZN Ant System for the UNIVERSITY-
COURSE TIMETABLING problem.

e The heuristic memetic algorithm, which is a metaheuristic belonging to the
evolutionary computation family, that adopts construction heuristics for the
initialization of the population and for the recombination of individuals,
and local search for improving the quality of the generated solutions (Burke
et al., 1996; Moscato & Norman, 1992; Rossi-Doria & Paechter, 2003).

e An jterated local search that uses wvariable neighborhood descent as local
search, random moves as perturbations, and annealing as acceptance crite-
rion (Lourengo et al., 2002).

e An iterated greedy search that is inspired by the research on the GRAPH
COLORING problem (Culberson, 1992). This algorithm tries to escape from
local optima by destructing part of the whole assignment and by then re-
constructing it on the basis of construction heuristics.

YA brief description of the research methodology adopted by the Metaheuristics Network
and, in particular, the definition of the three phases in which the study of each problem has
been organized, are given in Chapter 1, at page 8.

156 Chapter 5. Experiments and applications

Moreover, a number of hybrid metaheuristics were considered which are based on
the following components:

Construction heuristics: More than 60 different construction heuristics were
developed, which were inspired by the work on GRAPH COLORING and on
other specific timetabling applications like those of Burke et al. (1995) and
Newall (1999).

Local Search: A number of different local search algorithms were implemented,
based on 7 different neighborhood structures and on various ways of ex-
ploring the neighborhood. The best alternatives are described in detail in
Chiarandini et al. (2004), while other attempts are mentioned in Rossi-
Doria et al. (2002).

Metaheuristics: A number of metaheuristics were considered. Among them,
those that appeared being more effective in guiding the local search out of
local optima and towards other promising regions were:

Variable neighborhood descent, which consists in a sequence of local search
procedures in different neighborhood structures. The sequence is it-
eratively repeated until no further improvement is possible in none of
the neighborhoods.

Tabu search, which is based on the idea of accepting also worsening so-
lutions during local search provided that, in order to avoid cycles,
already visited assignments are not re-visited. As suggested by the re-
sults of the first phase, tabu search is worth being used only for solving
hard constraints.

Simulated annealing, which is based on the idea of accepting worsening so-
lutions in the local search according to a probabilistic criterion inspired
by the physical annealing process.

Taken together, and considering their possible combinations, the above mentioned
algorithms define a quite large space of hybrid metaheuristics. In order to obtain
a high-performing metaheuristic, this space was explored using an algorithms that
is closely related to F-Race. Indeed, similarly to F-Race, the algorithm adopted
sequentially evaluates a number of candidates and discards less promising ones,
as soon as sufficient evidence is gathered against them. In time, the algorithm fo-
cuses on the best candidates and devotes to their evaluation more computational
resources in order to obtain a more reliable assessment. On the other hand,
contrary to F-Race, which is a fully automatic procedure, the algorithm adopted
here relies on a human decision maker that at each stage is supposed to select
the candidates that should be discarded. This decision is to be made on the basis
of the information provided by the algorithm in the form of statistical tests and
graphs. The reason for the adoption of such a semi-automatic procedure is that
the race was not intended solely as a method for selecting the very best candidate

5.2. Some applications of the racing approach 157

but also as a method for gathering data on the performance of some classes of
metaheuristics for further analysis. Therefore, some configurations, although ap-
parently inferior, were not immediately discarded but were artificially kept alive
with the aim of gaining a deeper understanding on their behavior. Moreover, the
semi-automatic procedure gives the opportunity, at the end of each stage of the
race, to analyze the performance of the candidates and possibly to include in the
race other configurations on the basis of the partial results observed. This feature
was indeed exploited in the race that led to the selection of the metaheuristic to
be submitted to the competition: After the first stage of the race, it was un-
derstood that a subclass of candidates was particularly promising, namely those
including a refinement of the assignment based on simulated annealing. On the
basis of this observation, more configurations out of this subclass were included
in the race. The candidate that won the race and that was eventually submitted
to the competition is precisely one of those that were included in the race after
the first stage of the race itself.

Figure 5.19 proposes a graphical representation of the race that led to the
selection of the algorithm that was eventually submitted to the International
Timetabling Competition by Chiarandini, Birattari, Socha & Rossi-Doria. It
should be noted that, according to the rules of the competition, each algorithm
to be submitted was required to solve 20 instances of the UNIVERSITY-COURSE
TIMETABLING problem, published on the web by the organizers. These 20 in-
stances were made available in two sets: Set 1, comprising 10 instances, was
published on the competition site on October 1, 2002. Set 2, also comprising 10
instance, was published on March 17, 2003, that is, only two weeks before the
deadline for the submission of algorithms to the competition, which was March 31,
2003.

The race considered an initial set of 879 candidates to which 306 further
candidates were added after the first stage, for a total of 1185. The first stage
was based only on the instances of the above mentioned Set 1. After the first
stage, 200 candidates were retained and the other discarded. All evaluations of
subsequent stages of the race were based on instances of both Set 1 and Set 2. The
whole race took about one month of alternating phases of computation, analysis,
and human decision. It involved up to a maximum of 30 personal computers
physically located in Brussels, Edinburgh, and Darmstadt, all running the Linux
operating system, with CPU clock ranging between 300 and 1800 MHz.

Giving a detailed description of the selected hybrid metaheuristic goes be-
yond the aims of this section. It will be sufficient to mention here that the
algorithm it is based on simulated annealing and that it adopts a number of dif-
ferent construction heuristics for building a first assignment which is typically
an unfeasible solution; this assignment is then modified by a procedure with the
aim of obtaining a feasible solution; which, in turn, is finally optimized through
local search. For a thorough description of the resulting algorithm we refer the
interested reader to Chiarandini, Birattari, Socha & Rossi-Doria (2004).

158 Chapter 5. Experiments and applications

Number of configurations

> » S O > » O > & S S »
N P Bo) » © © A Eo) &) O Y NJ
0 1 1 1 1 1 1 1 II
10
20 ~
30 4
g ol Stage ' Configurations Sots of
2 number 10 the race at the jpgtances
N beginning of stage
) 1 1185 1 only
Z o0 2 200 1&2
3 86 1&2
1 4-5 45 1&2
%0 | 6-9 20 1&2
10-20 5 1&2
90 1 21-98 1 1&2

100 4

Figure 5.19: A graphical description of the race. The race started with 879
configurations. The first stage consisted in testing the available configurations
on the 10 instances composing the first set made available by the organizing
committee. On the basis of the results observed during the first stage, another
group of 306 configurations where added to the race for a total of 1185. Out
of this set, 200 were kept and entered the second stage, while the others were
discarded. Starting from the second stage on, each stage consisted in testing
all surviving configurations on the 10 instances of the first set and on the 10
instances of the second set made available by the organizing committee.

5.2. Some applications of the racing approach 159

Set 1 1 2 3 4 5 6 7 8 9 10
Competition winner 45 25 65 115 102 13 44 29 17 61
Chiarandini et al. o7 31 61 112 86 3 5 4 16 54
Set 2 11 12 13 14 15 16 17 18 19 20
Competition winner 44 107 78 52 24 22 86 31 44 7
Chiarandini et al. 38 100 71 25 14 11 69 24 40 0

Table 5.6: Results—the lower, the better—obtained on the two sets of instances
of the International Timetabling Competition by the winner and by the algorithm
discussed here which was submitted by Chiarandini, Birattari, Socha & Rossi-
Doria. The algorithm submitted by Chiarandini et al. obtains a better result on
18 of the 20 instances, while the winner of the competition obtains a better result
on the remaining 2 instances.

Table 5.6 reports the results obtained on the 20 instances of the Interna-
tional Timetabling Competition by the winning algorithm, submitted by Kostuch
(2003a,b), and by the algorithm discussed here and submitted by Chiarandini
et al. (2003; 2004).2° The figures make clear that the algorithm of Chiarandini
et al. outperforms the winner of the competition: on 18 instances out of 20, the
former obtains a better result. However, for the sake of fairness, some elements
have to be taken into account: First of all, it must be acknowledged that the al-
gorithm of Chiarandini et al. could rely on much larger computational resources.
Moreover, after the competition both algorithms have been further optimized and
both obtained even better results (Chiarandini et al., 2004; Kostuch, 2004).

Also in this case, as in the case of the application presented in Section 5.2.1,
it is impossible to quantify the entity of the contribution given by the racing
approach to the overall performance.?’ Nevertheless, the feeling shared by the
people involved in this research is that the selection methodology adopted had
a major impact on the results that were eventually obtained. The 1185 possible
candidates out of which the best had to be selected, are hybrid metaheuristics
proposed partly by Marco Chiarandini,?? partly by Krzysztof Socha,??, and partly
by Olivia Rossi-Doria.?* The author of this thesis has been in charge of designing
the evaluation procedure and the selection strategy. Therefore, the application
described in this section reproduces somehow a real-world situation in which the

20The results obtained by all algorithms submitted to the International Timetabling Compe-
tition can be found at http://www.idsia.ch/Files/ttcomp2002/results.htm

21Gee Section 5.1 for a formal empirical assessment of F-Race.

22http://www.intellektik.informatik.tu-darmstadt.de/~machud

23http://iridia.ulb.ac.be/~ksocha

2nttp://www.soc.napier.ac.uk/people/op/onepeople/peopleid/10988

160 Chapter 5. Experiments and applications

racing approach is used on behalf of a third party. In a sense, this application
has been a particularly illuminating experience in which Chiarandini, Socha,
and Rossi-Doria have played the role of a customer requesting the service of
a racing approach. From this experience we have learned, in particular, that
a customer might not entirely trust, at least since the very beginning, a fully
automatic procedure and wishes to “know what is happening.” This attitude is
often justified—and, indeed, it was fully justified in the application described
here—because often the customer has some good understanding of the problem
at hand and of the characteristics of the candidates among which a selection
is to be performed. In such a case, his/her advice might be very useful at the
moment of deciding which candidates should be retained and which discarded.
Moreover, as it happened in this application, the customer can, on the basis of
the analysis of the partial results of the race, understand if a particular subclass
of candidates is particularly promising. In such case, he might suggest adding
further candidates of that class, while the race is already in progress.

The application discussed in this section is a proper illustration of the flexi-
bility of the racing approach presented in the thesis and of its adaptability to a
real-world-like situation. In particular, it shows that with minor modifications,
and without altering its characterizing features, the F-Race algorithm can be
adopted as a powerful interactive tool for the incremental evaluation and selec-
tion of the best of a given number of alternatives.

5.2.3 F-Race for feature selection

The F-Race algorithm has been recently adopted by Bontempi, Birattari & Meyer
(2004) for tackling the feature selection problem in a supervised learning setting.
As it is made clear in Chapter 4, the source of inspiration for the development of
F-Race have been the Hoeffding race and the BRACE algorithms that were origi-
nally proposed by Maron & Moore (1994) and Moore & Lee (1994), respectively,
for tackling the model selection problem in supervised learning. Indeed, the first
application of BRACE described in the literature was precisely a problem of fea-
ture selection (Moore & Lee, 1994)—See Section 2.2.7 for a brief description of
Hoeffding race and BRACE.

Beside the adoption of a racing approach, another element of similarity be-
tween our work on feature selection and the work previously presented by Moore
& Lee (1994), is that in both cases we deal with the same underlying learning
approach, that is, lazy learning (Atkeson et al., 1997; Birattari et al., 1999)—See
Section 2.2.6 for an introduction to a number of supervised learning methods, in-
cluding lazy learning, and Annex B for a more detailed description of the original
lazy learning algorithm developed by the author of this thesis.

In a sense, the application we present in this section brings back F-Race to the
machine learning community: The racing idea was borrowed from the supervised
learning literature and taken to the metaheuristics field where it was modified and

5.2. Some applications of the racing approach 161

improved, namely my adopting the Friedman test; with the application presented
in this section, it is brought back to its original field.

However, in addition to the adoption of a different statistical test of hypothe-
sis, another innovative element characterizes the feature selection algorithm that
we propose here: The adoption of a sub-sampling strategy (John & Langley, 1996).

In the application that is proposed in this section, feature selection is performed
using a wrapper method (Kohavi & John, 1997). The aim of feature selection
is to find the subset of a given number of features that has the highest possible
predictive power. In the wrapper approach, in order to evaluate the predictive
power of a given subset, the feature selection algorithm uses an underlying learn-
ing method. The latter is “wrapped” in the sense that its details need not to be
known by the feature selection algorithm: In other words, the underlying learn-
ing method is simply viewed as a black-box that is supposed to return, on the
basis of a given subset of features, a prediction of the output together with an
assessment of the quality of the prediction itself. Typically, such an assessment
is obtained through cross-validation.?

Lazy learning, and local learning algorithms in general, are often deemed to be
impractical when dealing with a high number of features and with large samples.
A similar criticism is often moved to wrapper methods. Nonetheless, when lazy
learning is adopted in the context of a wrapper method, these limitations can
be overcome. Indeed, the peculiarity of lazy learning is that, contrary to other
learning methods as for example neural networks, it does not require a time
consuming training phase. This peculiarity is a great advantage in the context of
wrapper-based feature selection. To be more explicit, let us consider the adoption
of a neural network in the context of wrapper feature selection. In order to
evaluate each single possible subset of features, the underlying neural network
needs to be trained on these features and only after a typically lengthy training,
an assessment of the predictive power of the subset of features under study can
be eventually obtained. It is worth pointing out that the computational cost of
the training is a fized cost that is independent of the number of the evaluations
of the neural network we need to perform. On the other hand, lazy learning does
not require any training phase and the evaluation of the predictive power of a
given subset of features can be immediately obtained: In other words, contrary
to neural networks, lazy learning does not involve any fized cost for the training
but only a marginal cost for each evaluation. Admittedly, each single evaluation
of the lazy learning algorithm is more expensive than a single evaluation of a
neural network. Nevertheless, few evaluations are typically needed for assessing
a subset of features and the difference between the two approaches regarding
the evaluation phase can be neglected compared to the difference regarding the
training phase.

In the feature selection algorithm developed by Bontempi, Birattari & Meyer

2For a definition of these concepts, we refer the reader to Section 2.2.

162 Chapter 5. Experiments and applications

(2004), the rationale for the adoption of a sub-sampling strategy is precisely
related to the fact that when lazy learning is adopted, only a marginal cost for
each evaluation is incurred, and there is no fized cost for training. In such a case,
it make sense to reduce the number of evaluations performed. This reduction
clearly increases the variance of the assessment of the predictive power of the
set of features under study: We face therefore a trade-off accuracy/cost of an
assessment. In the feature selection algorithm proposed by Bontempi et al. (2004)
the trade-off is handled by scheduling the number of evaluations to be performed
on each set of features: In a first phase, when a large number of candidate sets of
features have to be screened, few evaluations are performed on each of them and
a coarse selection is performed; later on, when fewer candidate sets of features
are left, a more accurate assessment of each of them is considered on the basis
of a larger number of evaluations. Clearly, the rationale behind the adoption of
sub-sampling bears a strong similarity to the one behind the racing approach:
In both cases, an incremental selection is performed on the basis of a criterion
that is rather coarse at the beginning, when we have to deal with a large number
of candidates, and that becomes finer and finer as the number of candidates
is reduced. Quite naturally, in the racing&sub-sampling algorithm proposed by
Bontempi, Birattari & Meyer (2004) the two ideas are combined.

Giving a fully detailed description of the racing&sub-sampling algorithm goes
beyond the aims of this section. We refer therefore the interested reader to the
original work of Bontempi et al. (2004). Here, it will be sufficient to summarize
the main traits of the algorithm through the high-level pseudo-code description
given in Figure 5.20.

In the following, we provide some evidence of the effectiveness of the algorithm.
In particular, we summarize the results of two computational experiments.

Selection of relevant variables. In the first experiment, a functional rela-
tionship f : X — Y is considered, where X C R and Y C R. We are given a
set of examples,

N
Z = {(x]l, o ,x;o,x}l, o ,x}n,yj)}j:l,

where y; = f(z},...,2;°) + ¢;, being £; some random noise extracted from an
unknown distribution, independently for each j. The variables 23", ... 27" are
simply random noise uncorrelated from y;. The goal is to select, out of the full
set of variables x!, ..., 2™, only those that are indeed useful for predicting ¥, that

is, 2!, ..., 2'°. In the specific experiment considered here, we have:

y = 10sin(ra'a?) + 20(2® — 1/2)% + 102* + 52°+
+ 10 sin(r2%2") +20(2® — 1/2)% 4+ 102" + 52'° + ¢,

It should be noted that this feature selection problem is a somehow harder version
of the problem proposed by Friedman (1991): (i) In the original problem, the

5.2. Some applications of the racing approach 163

function racing&sub-sampling(M)

Number of assessments performed so far
assessments_soFar = ()

Number of steps so far

k=0

Allocate array for storing results of assessments
A = allocate_array(max_steps, |O)|)

Surviving candidate subsets of features

§=06

while(assessments_soFar + [8| < M and
k+ 1 < max_steps) do
Sub-sample a training set and a test set
from the available dataset
Tr = sample_training_set_of_size(N%,)
Ts = sample_test_set_of_size(N%,)
k+4+=1 # Increment number of steps so far

foreach 0 in S do
Assess candidate 6 on Tr and Ts
Alk,0] = assess_candidate(0, Tr, Ts)
assessments_soFar +=1
done
Drop inferior candidates
8§ = drop_candidates(S, A, friedman test)
done
Select best surviving configuration
0 = select_best_survivor(S, A)
return 0

Figure 5.20: Pseudo-code of the racing&sub-sampling algorithm for feature selec-
tion. The initial set of candidates © is composed of a number of possible subsets
of features. The size of the training and test sets, N% and N% _ respectively, are
properly scheduled so that they increase in time for giving a more and more accu-
rate assessment as the race converges to the most promising subsets of features.
Formally: N%*' > Nk and NEF' > N% . The function assess_candidate()
consists in a call to the underlying wrapped learning method; in this case, the
lazy learning algorithm.

164 Chapter 5. Experiments and applications

M /Init R&S FS Model assessed Training set — Test set

110/GS 92% 8% 7342 £ 572 259 £ 31 601 £+ 307
110/RN 88% 8% 7054 £ 726 220 £21 213 £214
210/GS 8% 4% 7403 £ 595 265 £ 52 660 £ 522
210/RN 84% 4% 7017 £ 901 223 £ 37 240 + 366

(a) Racing&sub-sampling (R&S) vs. forward selection (FS). In the first
column, M is the total number of variables, while Init is the initial-
ization procedure: GS is for Gram-Schmidt and RN for random.

AILERON POLE ELEVATORS TRIAZINES WISCONSIN CENSUS

LL-RS1 9.7E—-05 3.1E+00 1.6E-03 2.1E—-01 2.TE+01 1.7E-01
LL-RS2 9.0e—05 3.1E+00 1.5E-03 1.2E-01 2.7E+01 1.6E—01
SVM 1.3E—04 2.6E+01 1.95-03 1.1E-01 2.9E+01 2.1E—-01
RTREE 1.88-04 8.8E+00 3.1E-03 1.1k-01 3.3E+01 1.7E—01

(b) Mean absolute error on the test set for 6 benchmarks.

Table 5.7: Summary of the results of the two experiments with the racing&sub-
sampling algorithm.

number of relevant variables was 5, while in the version presented here it is 10;
(ii) in the original version, the number of irrelevant variables was 5, while in the
version presented here it is 100 in one of the settings and 200 in the other.

The racing&sub-sampling algorithm is compared with one of the simplest ap-
proaches to feature selection, namely forward selection, which consists in itera-
tively selecting variables starting from the most predictive one, adding then the
one that, considered together with the already selected one, yields the most pre-
dictive pair, and so on; the process is repeated till when, by adding a further
variable, the quality of the prediction does not improve anymore. In the ex-
periment proposed here, both racing&sub-sampling and forward selection use lazy
learning as the underlying wrapped learning algorithm.

We consider two different settings. In both of them, only 10 variables are rele-
vant but, in the first, the total number of input variables is 110 and in the second
it is 210. Moreover, in each of the settings we consider two ways of initializing the
set of candidates ©. The first is based on the Gram-Schmidt orthogonalization
procedure?® while the second relies on a simple random selection.

Table 5.7(a) summarizes the results of this first experiment. It can be observed
that racing&sub-sampling is able to correctly select the right set of features from
84% to 92% of the times. On the other hand, forward selection obtains a much

26For more details, see Bontempi et al. (2004).

5.2. Some applications of the racing approach 165

worse result: only a rate of 4% to 8% of correct selections. Beside the rate of
success of the two algorithms, the following information is given in Table 5.7(a):
(i) average and standard deviation of the number of candidate subsets of feature
that have been assessed by racing&sub-sampling before delivering the selected one;
(ii) average and standard deviation of the number of training examples needed by
racing&sub-sampling for the assessment; (iii) average and standard deviation of
the number of test examples needed by racing&sub-sampling for the assessment.

The experimental results show that the racing&sub-sampling algorithm is rea-
sonably robust to the initialization procedure adopted and to the number of
irrelevant variables.

Prediction accuracy. This second experiment proposes a comparison between
the pair lazy learning/racing&sub-sampling and two state-of-the-art learning algo-
rithms that perform an implicit and embedded feature selection: support vector
machines and regression trees.?’

The comparison is performed through a five-fold cross-validation on six real-world
datasets of relatively high dimensionality that were gathered from various sources
and made available for free download by Luis Torgo:?®
AILERONS: This dataset addresses a control problem, namely flying an aircraft.
The input variables describe the status of the airplane, while the output is
the control action on the ailerons of the aircraft. The dataset consists of
N = 14308 examples and the number of input variables is m = 40.
POLE: This is a commercial application described in Weiss & Indurkhya (1995).
The data describe a telecommunication problem. The dataset consists of
N = 1500 examples and the number of input variables is m = 48.
ELEVATORS: This dataset is obtained from the same control problem from which
AILERON is obtained, but a different output variable and a different set of
input variables are considered. In this case, the output variable is related
to an action taken on the elevators of the aircraft. The dataset consists of
N = 16599 examples and the number of input variables is m = 18.
TRIAZINES: This dataset generates in a biological application: the study of the
inhibition of dihydrofolate reductase by triazines. The dataset consists of
N = 186 examples and the number of input variables is m = 60.
WISCONSIN: This is a medical application concerning follow-up data for breast
cancer cases. The dataset consists of N = 194 examples and the number of
input variables is m = 32.
CENSUS: Collected as part of the 1990 US census. The dataset consists of
N = 22784 examples and the number of input variables is m = 137.

2"The experimental results proposed here are obtained using the implementations of this
algorithms provided by the R packages €1071 and tree, respectively.
28http://www.liacc.up.pt/~1torgo/Regression/DataSets.html

166 Chapter 5. Experiments and applications

Two version of the racing&sub-sampling algorithm are tested. In the first one, de-
noted in Table 5.7(b) by LL-RS1, the prediction returned by the algorithm is the
one obtained by using the set of features selected by the racing&sub-sampling algo-
rithm. In the second version, denoted in Table 5.7(b) by LL-RS2, the racing&sub-
sampling algorithm does not return only the very best subset of features but
rather the 5 best ones. The prediction returned by the algorithm is obtained by
averaging the predictions obtained by using the 5 subsets of features proposed by
racing&sub-sampling.

Table 5.7(b) summarizes the results. On the basis of an appropriate statistical
test—see Bontempi et al. (2004) for the details—it can be stated that LL-RS2
performs significantly better than LL-RSI on 3 datasets out of 6, and it is never
significantly worse. Therefore, the idea of combining predictors yields a significant
improvement. As far as the comparison with the state-of-the-art algorithms is
concerned, LL-RS2 is significantly better than the support vector machine on 5
datasets out of 6 and it is never significantly worse; finally, LL-RS2 is significantly
better than the regression tree on all 6 datasets.

With the application proposed in this section, we have brought F-Race back to
the original domain of application of the racing approach, that is, model selec-
tion, and more specifically feature selection. Also this application highlights the
flexibility of the F-Race algorithm and the possibility of combining it with other
techniques as, in this specific case, a sub-sampling strategy for the evaluations of
the candidates. Preliminary experimental results with the racing&sub-sampling
algorithm are particularly encouraging.

5.2.4 Further applications

Beside the applications presented in the previous sections, which have involved
the author of this thesis, the F-Race algorithm has been adopted by other re-
searchers in a number of studies.

Academic studies

The F-Race algorithm was adopted for tuning the parameters of the implementa-
tion of simulated annealing for the UNIVERSITY-COURSE TIMETABLING problem
that is analyzed in Chiarandini & Stiitzle (2002).

As already mentioned in Section 5.2.1, Manfrin (2003) has adopted the F-Race
algorithm for tuning the parameters of his implementation of ant colony optimiza-
tion for the UNIVERSITY-COURSE TIMETABLING problem.

The F-Race algorithm was adopted by Schiavinotto & Stiitzle for tuning an iter-
ated local search algorithm and an evolutionary computation algorithm, more pre-

5.2. Some applications of the racing approach 167

cisely a memetic algorithm,? for the LINEAR ORDERING problem (Schiavinotto
& Stiitzle, 2004).

The F-Race algorithm was adopted by den Besten for tuning an iterated lo-
cal search algorithm for deterministic scheduling problems with tardiness penal-
ties (den Besten, 2004).

The F-Race algorithm is currently being adopted by Chiarandini for tuning the pa-
rameters of the algorithms for over-constrained combinatorial optimization prob-
lems that will be described in his Ph.D. thesis (Chiarandini, 2005).

Yuan & Gallagher (2004) discuss the use of F-Race for the empirical evaluation of
evolutionary algorithms. Further, they introduce A-Race, a parametric instance of
a racing approach based on the analysis of variance method. In the experiments
they propose, both racing approachs perform particularly well, even if in one of
the specific settings they consider F-Race obtains better results than A-Race.*

Thomas Stiitzle, Tommaso Schiavinotto, and Marco Chiarandini (2004) of IN-
TELLEKTIK, Darmstadt, Germany, have used F-Race for fine-tuning the algo-
rithm they submitted to the ROADEF’2005 challenge.3!

Finally, in collaboration with IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium, three undergraduate students are currently working on the problem of
tuning metaheuristics. Their research involves the use of the F-Race algorithm
and the development of possible extensions (Lunghi, 2004; Boldrini, 2005; Denis,
2005).

An industrial application

F-Race has been considered in a feasibility study that aimed at optimizing an
industrial computer program for vehicle routing and scheduling problems, devel-
oped by the German-based software company SAP. The study was conducted by
Sven Becker (2004) under the guidance of Thomas Stiitzle and Jens Gottlieb.

Six different experimental setting were considered. Three of them concern the
optimization of a specific parameter of the program under study, which deter-
mines the frequency of application of a critical operator. The other three concern
the selection and fine-tuning of the metaheuristic on which the program under
study should rely. In all experiments, F-Race was compared to a discard-worst
strategy, which discards a fixed percentage of the worst candidate configurations
after each iteration.

29Gee Section 2.1.7 and more specifically page 31, for a brief introduction to evolutionary
computation and memetic algorithms, and for further references.

30Unfortunately, Yuan & Gallagher (2004) fail to understand the reason why we consider
only one single run of each candidate on each instance—see Section 4.1 for a formal analysis of
the issue.

31Gee http://www.roadef.org. The problem of the ROADEF’2005 challenge is a MULTIOB-
JECTIVE CAR SEQUENCING problem proposed by the French car manufacturer Renault.

168 Chapter 5. Experiments and applications

This study has two peculiarities: The first is that, at each step of the races,
all surviving candidate settings are tested once on all available instances of the
problem. The reason for this is that only a limited number of instances are
available and they are quite different one from the other. The second is that the
instances considered are typically rather complex and therefore a run time of 10
minutes is allotted for a single run of each candidate setting on each instance. As
a consequence, the overall time needed for completing a race is quite long.

The results of the experiments are mixed, mainly depending on the influence
that the parameter to be optimized has on the overall performance of the program
under analysis. As it might be expected, if the parameter has low influence,
F-Race takes a rather long time, and a rather large set of candidates remains at
the end of the race. On the other hand, if the parameter has high influence on the
performance, inferior candidates are discarded very quickly and F-Race converges
much faster and more reliably than the discard-worst strategy considered in this
study.

On account of these results, the research group of SAP that followed this study
currently considers F-Race as a promising tool for optimizing the parameters of
future releases of their commercial product for vehicle routing and scheduling.

5.3 Discussion

This chapter has proposed a number of evidential elements to support the the-
sis that F-Race, and more in general the racing approach, are an effective and
convenient way for tackling the problem of tuning metaheuristics.

The formal empirical analysis proposed in Section 5.1 compares, under con-
trolled experimental conditions, the performance of various racing algorithms.
This section has the main merit of somehow providing a measure of the perfor-
mance of a tuning algorithm. This is done by adopting as a unit of measurement
the performance of the most trivial, albeit perfectly legitimate and correct, of all
selection method, namely, the brute-force approach. The section proposes two
experiments. In the first one, in which iterated local search has been tuned for
QUADRATIC ASSIGNMENT, the performance of F-Race is basically equivalent to
the one of Cheatl0, but it is significantly better than the one of Cheat5. Here,
Cheat10 and Cheath are versions of the brute-force approach that are allowed
a large amount of computation time: 10 and 5 times more than F-Race, re-
spectively. Therefore, the results show that in this experiment the brute-force
approach needs 10 times more time than F-Race—that is, 10 times the number
of runs of the metaheuristic to be tuned that are needed by F-Race—for achiev-
ing the same results as obtained by F-Race. In the second experiment, in which
ant colony optimization has been tuned for TRAVELING SALESMAN, the relative
performance of F-Race with respect to the brute-force approach is even better:
here, F-Race is even significantly better than Cheatl10. From the results of these

5.3. Discussion 169

two experiments, we can conclude that F-Race is at least one order of magnitude
more efficient than the brute-force approach in terms of the required number of
runs of the metaheuristic to be tuned.

Concerning the comparisons within the racing family, the results clearly show
that F-Race is always significantly better than tBo-Race and tHo-Race, where
the latter two algorithms adopt a collection of pairwise t-tests with Bonferroni’s
and Holm’s correction for multiplicity, respectively. This confirms the rationale
for introducing the F-Race algorithm itself: In the context of racing algorithms,
the Friedman two-way analysis of variance by ranks is a much more appropriate
and powerful test of hypothesis than a collection of pairwise t-tests. On the
other hand, a note of caution is needed in regard to the comparison between
F-Race and tNo-Race, where the latter adopts a collection of pairwise t-tests
without any correction for multiplicity. According to the results, the difference
between the two is smaller and only in one of the two experiments it is significant.
Nevertheless, we definitely favor F-Race over tNo-Race because, according to our
experience in the application of racing algorithms, F-Race appears much more
reliable and predictable in its behavior. In particular, we have observed that
F-Race scales more reliably with the number of initial candidates in the race.
We conjecture that the reason of the observed success of tNo-Race is due to
a sort of unstable equilibrium: Indeed, the lack of a correction for multiplicity
makes the algorithm more bold and aggressive in discarding candidates. This,
because of some lucky circumstances, somehow compensates for the lack of power
of the test. In other words, we believe that the tNo-Race algorithm can be
uncontrollably too aggressive or too conservative in discarding candidates, and
that the parameter on which the actual performance of the algorithm depends is
the number of candidates in the race: For a relatively small number of candidates,
the algorithm is too conservative, while for a relatively large number of candidates
it becomes too aggressive. On the basis of the elements we have gathered so far,
we have the feeling that a peak in the performance of tNo-Race is obtained when
dealing with about a thousand candidates and that, at its peak performance,
tNo-Race is roughly equivalent to F-Race. For the moment, these considerations
are based only on casual observations: An experimental campaign is currently
being designed, which will target this issue in a systematic way.

Before concluding the remarks concerning the experiments proposed in Sec-
tion 5.1, we wish to point out once more the role played by the re-sampling
strategy adopted. Without its service, it would have been simply impossible to
obtain the results proposed. The adoption of a re-sampling method is particu-
larly innovative in the metaheuristics community: To the best of our knowledge,
Birattari et al. (2002) is the first work in which it has been adopted.

The second part of the chapter, that is, Section 5.2, has described a number of
applications of F-Race and of derived algorithms. This second part is less formal
and aims rather at showing with some example that the racing approach is par-

170 Chapter 5. Experiments and applications

ticularly convenient to be used in practical applications and that it is sufficiently
flexible for being modified and adapted to different settings. In particular, we
have shown in Section 5.2.2 that F-Race can be turned into a powerful semi-
automatic tool for designing hybrid metaheuristics. Such tool has been adopted
by Chiarandini, Birattari, Socha & Rossi-Doria (2004) for designing and fine-
tuning an algorithm that was submitted to the International Timetabling Com-
petition and that obtained particularly brilliant results. Moreover, Section 5.2.3
has described the racing&sub-sampling algorithm for feature selection that is di-
rectly derived from F-Race. Finally, the interest shown by SAP for the F-Race
algorithm is by itself an independent and quite authoritative assessment of its
potential.

If you torture data sufficiently, it will confess
to almost anything.

Statisticians’ saying

Chapter 6

Some considerations on the
experimental methodology

Throughout the thesis, a number of issues are raised that cast some shadow on
the experimental methodology that is currently adopted in the vast majority of
the works proposing an empirical evaluation of metaheuristics. Indeed, in the
combinatorial optimization field it is common to encounter works in which some
dubious procedure is adopted for assessing the algorithms under analysis and in
which no clear statement is made on how the values of the parameters are ob-
tained. Apparently, the need for a thorough revision of the research methodology
in the optimization field is shared by many members of the research commu-
nity as it is testified by the interest raised during the last years by a number
of methodological articles appeared in the main journals of the community—the
works by Barr et al. (1995), Hooker (1995), and Rardin & Uzsoy (2001) published
in the Journal of Heuristics are just a representative sample. In this chapter, we
intend to complement the existing literature with the analysis of some funda-
mental issues that remained so far under-explored. In particular, we focus on
the problems connected with the tuning of metaheuristics. Indeed, tuning is a
particularly critical element when metaheuristics are assessed and compared, be-
ing related with many different catches that might invalidate the results. Among
them, we study the risks deriving from adopting the same set of instances for
tuning a metaheuristic and for then assessing its performance. In the context of
this study, we introduce the concept of over-tuning which is akin to over-fitting
in supervised learning.

More generally, and consistently with the general framework of the thesis,
the whole analysis we propose in this chapter of the experimental methodology
in combinatorial optimization is inspired by the machine learning field. The
chapter is structured as follows: Section 6.1 discusses some issues concerning the
definition of an experimental methodology. Section 6.2 proposes a new approach
to the empirical analysis of metaheuristics. Finally, Section 6.3 concludes the
chapter with a summary of the issues discussed and with some final remarks.

171

172 Chapter 6. Some considerations on the experimental methodology

6.1 Some fundamental methodological issues

In this section, a number of issues concerning the definition of a proper experi-
mental methodology are analyzed. In particular, we highlight some elements in
the current practice that deserve being revised.

The structure of this section is the following: Section 6.1.1 focuses on the
definition of a measure of performance. Section 6.1.2 elaborates on the concept
of class of instances. Section 6.1.3 discusses the intrinsic limitations of an exper-
imental analysis and makes clear what kind of conclusions the latter can reach.
Finally, Section 6.1.4 introduces the concept of over-tuning and illustrates it with
an empirical analysis.

6.1.1 On some measures of performance

In the following, we restrict our attention to the framework defined in Section 3.2
and adopted in the rest of the thesis. We consider as a measure of performance of
a metaheuristic the expected value of the cost of the best solution found within a
given amount of time. As already stressed in Sections 3.3.4, variations are possi-
ble, which consider other statistics such as, for example, the median of the third
interquartile. Advantages and disadvantages are associated with these alternative
measures: On the one hand, they are more robust to outliers; on the other hand,
they require more observations since their estimators are less data-efficient.
While remaining in the context of the analysis of the expectation, some alter-
natives exists to considering the bare expected cost.! In particular, some score
functions can be considered. In the literature, the absolute error is often adopted:

éei) = c— ¢,

where ¢; is the cost of a (provably) optimal solution for instance i.? The absolute
error has many obvious shortcomings—for example, it is not invariant under
simple scaling of the cost function. Similarly, as noted in the seminal paper by
Zemel (1981), also the more commonly used relative approzimation error,

c— ¢

éley1) = —_—
(3

is not invariant with respect to some trivial transformation of the problem: For
example, in the TRAVELING SALESMAN problem, an affine transformation of the
distance between each pair of cities, while leaving the problem essentially the

!Similar considerations can be made if other statistics are adopted.

2In order to simplify the presentation, in the following we assume that the optimal value &
for each instance ¢ is known—see Rardin & Uzsoy (2001) for an excellent overview of different
approaches for dealing with the situations where this does not hold.

6.1. Some fundamental methodological issues 173

same, changes the relative approximation error of solutions. As an alternative to
the relative approximation error, Zemel (1981) proposes the adoption of

s C—=6G

é(e,i) = P (6.1)
where ¢; is the cost of a (provably) worst solution of instance i. The score
given in Equation 6.1 is invariant under several trivial transformations of the
problem. However, the problem with this score function, referred to in the
literature as differential approximation measure (Demenage et al., 1998) or z-
approzimation (Hassin & Khuller, 2001), is that it requires finding the worst
possible cost ¢;, which is often as difficult as finding ¢;. To overcome this prob-
lem, an alternative error measure was adopted in Zlochin & Dorigo (2002) and
in Zlochin, Birattari & Dorigo (2004):

o C—G
c(c,1) = ———, 6.2
where ¢ is the expected cost of a random solution for instance i, selected

according to the uniform distribution defined on the space S of the solutions
of . While remaining invariant under trivial problem transformations, the score
function given in Equation 6.2 has two important advantages over the one given
in 6.1. First, ¢/ can be computed efficiently for many problems. Second, under
the score function given in 6.2, the expected error of a random solution is equal
to 1, hence the proposed measure indicates how well the considered algorithm
performs relatively to the most trivial one, that is, a random generator of solu-
tion. An additional useful consequence—holding also for the score function given
in Equation 6.1—is that the error is automatically normalized across different
problems.

To summarize, if a generic score function ¢ is adopted and if the expected
value of the cost of the best solution found within a given amount of time is
the selected measure of performance, the proper criterion to be considered when
comparing two or more metaheuristics is:

cOVM) = / é(e, i) dPo(c|M, i) dP, (i), (6.3)

where M is, in turn, each of the metaheuristics under analysis, and the integration
is taken in the Lebesgue sense.?

Before concluding this brief digression on possible score functions, it is worth
pointing out that in the empirical analysis proposed in Chapter 5, the bare-bone
cost is considered rather than one of the more sophisticated score functions dis-
cussed above. The reason of this choice is that the conclusions we draw are mostly

3We refer the reader to Section 3.2 for a definition of the terms involved in the integration.

174 Chapter 6. Some considerations on the experimental methodology

based on the use of a Wilcoxon matched-pairs signed-ranks test which, by virtue
of its non-parametric nature and of its implicit use of a blocking design, produces
results that are invariant with respect to adoption of the above mentioned scores.
The use of a score function would have been just a useless complication. Never-
theless, for what concerns Figures 5.3(bottom) and 5.11(bottom), a per-instance
normalization is considered* which, while enjoying most of the properties of in-
variance to simple transformations as the score functions given in Equation 6.1
and 6.2, is much easier to compute. A final remark concerns the possible adop-
tion of a score function within a racing algorithm, that is, the use of a score
function rather than directly the cost for selecting the most promising configu-
ration of a metaheuristic. Similarly to the Wilcozon test, the Friedman two-way
analysis of variance by ranks is invariant to the adoption of the aforementioned
score functions: F-Race therefore would not be affected. On the other hand,
tNo-Race, tHo-Race, and tNo-Race, which are based on the t-test, could possibly
yield unpredictably different results. The robustness, in this precise sense, of
F-Race could be considered as a further reason for preferring it to its parametric
counterparts.

6.1.2 On the concept of class of instances

The definition of a class of instances through a probability measure on the space
of the instances is the single most valuable contribution of the thesis. From
it, both the formal definition of the tuning problem and the proposed tuning
algorithms proceed. In a rather different context and with different aims, a
probabilistic description of the space of instances had been adopted previously by
Wolpert & Macready in their seminal works on the no free lunch theorem (1996;
1997) but, apparently, it went unnoticed within the combinatorial optimization
community since this device is not even mentioned in the following works on the
subject—see for example Radcliffe & Surry (1995), Schumacher et al. (2001), Igel
& Toussaint (2003), and Corne & Knowles (2003).

The implications of the adoption of a probabilistic model for defining a class
of instances have been thoroughly analyzed in Chapter 3 and, more in particular,
in Section 3.4. It should be sufficient to notice here that the probability measure
defined on the space of the instances has a fundamental role in the evaluation
of the performance of a metaheuristic and it is the very concept on which the
definition of expectation rests: Without it, the notion of expected performance of
the metaheuristics, or more loosely average or mean performance, could not be
formally defined.

Another issue which is worth discussing here is related to the practical implication
of the concept of class of instances as defined in the thesis. In practical appli-
cations, the class of instances and the associated underlying probability measure

4See also item 2 in the Box-plots section at page 121.

6.1. Some fundamental methodological issues 175

are given by the problem itself: Consider, as an example, MARIO’S problem as
introduced in Section 3.1. In such cases, one can directly sample the space of
the instances by simply collecting the instances as they appear. Such instances
can be meaningfully used for assessing the performance of algorithms. On the
other hand, in academic studies algorithms are tested on some benchmark prob-
lems. Two are the main approaches to defining a benchmark for testing and
comparing algorithms. The first, by far the most common within the operations
research community, consists in selecting a (typically small) number of instances.
The second, consists in implementing an instance generator, that is, a computer
program that can produce instances according to some underlying probability
measure. Both kind of benchmarks can be cast in the framework of our defini-
tion of class of instances. This is clear for what concerns the second approach:
An instance generator precisely realizes the concept of probability measure on
the space of the instances. As far as the first approach is concerned, it should be
observed that any given set of instances can be considered as a sample taken from
some unknown and possibly extravagant distribution. Nevertheless, the first ap-
proach, due to the paucity of the instances that typically compose a benchmark,
encourages some dangerous practice consisting in “playing and playing” with the
same few instances until some good results are eventually obtained: Unfortu-
nately, this approach produces algorithms that risk being over-specialized on the
given instances and whose performance is possibly much lower on other (although
only slightly different) instances. A thorough analysis of this problem is given in
Section 6.1.4. For this reason, we definitely favor the use of an instance generator
whenever a stream of real-world instances is not available.

6.1.3 On the empirical comparison of algorithms

As is has been already made clear by Hooker (1995), an empirical analysis should
not be reduced to a sterile comparison between algorithms but should aim at
highlighting the characteristics of the algorithms at hand, explaining the reason
of their success or failure, and determining which factors have an impact on their
performance. Nevertheless, the ability of properly and meaningfully comparing
two algorithms remains central in any empirical analysis. This holds true also
when all remarks expressed by Hooker (1995) are taken into account. Indeed,
for example, in order to study the effects of a factor on the performance of an
algorithm, one needs to compare two version of the algorithm itself: One that
does include the factor of interest, and the other that does not. The following
analysis on how to properly compare algorithms, remains therefore relevant also
in the light of Hooker’s considerations (1995).

When an empirical comparison is performed between two algorithms, say Alg 4
and Algg, one might wish to reach a conclusion like:

Statement 1. Algorithm Alg, performs better than algorithm Algg.

176 Chapter 6. Some considerations on the experimental methodology

Or vice versa. Nevertheless, no matter how extensive the experimental campaign
is, such a highly general and absolute conclusion cannot be drawn from empir-
ical data. The generality of the statement that one might make is impaired on
different grounds by a number of issues. Among them, with reference to the con-
siderations presented in Sections 6.1.1 and 6.1.2, the superiority of one algorithm
over the other can be stated only for what concerns:

1. the measure of performance and possibly the specific score function that
were considered;

2. the specific class of instances at hand, that is, the underlying measure of
probability defined over the space of the instances.

In the light of these issues, Statement 1 should be better reformulated as:

Statement 2. Under the given experimental conditions and on the
given class of instances, Algorithm Alg, performs better than algo-
rithm Algg.

Here, for convenience, with the generic expression experimental conditions we
refer to the measure of performance and to the score function considered in the
study.

A further issue that limits the generality of Statement 2, is directly related
to the main topic of this thesis, that is, the tuning problem: As already pointed
out in several methodologically-minded papers—see for example McGeoch (1996)
and Johnson (2002)—any experimental study can only assess the performance of
a particular implementation rather than a general abstract algorithm. However,
we wish to stress here that a particular implementation is defined not only by
structural decisions such as problem representation, data-structures, and so on,
but also, especially for what concerns metaheuristics, by the particular configu-
ration considered, that is, a certain selection of metaheuristic components and a
certain set of values for their parameters. It should be emphasized at this point
that we are only concerned here with static parameters, whose value is set off-line
at design time. On the other hand, in case some parameters are set on the fly by
the program itself, they are not considered to be part of the configuration—we are
thinking here of the dichotomy off- /on-line tuning introduced in Section 2.1.8.

From this discussion, it follows that whenever the specific configuration of the
algorithms to be compared are selected through some further unspecified proce-
dure, performance evaluation and comparison are only meaningful with respect
to the particular configurations considered. Therefore, unless specific reference is
made to the procedure used for selecting the configurations to be tested, the only
claim that can be formulated on the basis of an empirical comparison sounds like:

Statement 3. Under the given experimental conditions and on the
gien class of instances, the tested configuration of Alg, performs
better than the tested configuration of Algpg.

6.1. Some fundamental methodological issues 177

In order to compare Alg, and Algp without restricting to particular configura-
tions, the appropriate statement to be tested should be:

Statement 4’. Under the given experimental conditions and on the
given class of instances, the pair Alg,/Conf 4 performs better than
the pair Algg/Conf .

Where Conf 4, and Conf g are the two different tuning methods which are adopted
for configuring Alg, and Alg g, respectively.

If one wishes to isolate the effects of the algorithmic ideas on the overall
performance, one should use the same configuration procedure, say Conf, for
both algorithms and compare therefore the pair Alg 4/ Conf against Alggz/Conf.
In this case, the conclusion of the experimental analysis could sound as:

Statement 4”. Under the given experimental conditions, on the given
class of instances and when both algorithms are tuned using Conf,
Alg 4 performs better than Algg.

In this case, the superiority of one algorithm over the other can be assessed, with
respect to the selected configuration procedure.

Unfortunately, this is not a common practice in the current literature and, in
many papers involving comparisons of a newly proposed method against some
“classical approaches,” a better performance of the newer algorithm is often
merely a result of a more careful tuning, that is, of a more sophisticated con-
figuration procedure, rather than an indication of the superiority of the proposed
algorithmic ideas. In light of this observation, the configuration problem becomes
one of the central issues in the evaluation and comparison of metaheuristics. In
fact, one can go as far as claiming that, unless the experimenter is only inter-
ested in a particular configuration of the algorithm, the configuration procedure
becomes an inseparable part of the algorithm.

6.1.4 On the over-tuning phenomenon

In the supervised learning literature, the clear separation between the training set
and the test set is an extremely deeply rooted practice which is almost considered
as a commonplace. Indeed, machine learning researchers are well aware of the
over-fitting problem, that is, the risk of overspecializing in the specific training
set at hand following its accidental peculiarities—typically termed noise—rather
than extracting the essential traits of the underlying input-output relation. As
a result of over-fitting, the performance obtained on the training set is typically
a biased estimate of the actual performance of a learning algorithm. Since this
quantity can be extremely over-optimistic, it is never used in the empirical assess-
ment and comparison of learning algorithms. It is customary, therefore, to have
recourse to a second data set, the test set, that should have been independently

178 Chapter 6. Some considerations on the experimental methodology

drawn from the training set. The performance on this second set is an unbiased
estimate of the performance of the learning algorithms at hand and is therefore
well suited for being used in assessments and comparisons.

Unfortunately, a clear stand is missing in the metaheuristics literature for
a separation between the tuning set and the test set, that is, between the set
of instances used for tuning the metaheuristic on the one hand, and the set of
instances used for the final assessment, on the other.

Nevertheless, when assessing the performance of metaheuristics, and more
generally of stochastic algorithms whose parameters need to be tuned, a problem
similar to over-fitting exists. In this thesis, we introduce the term over-tuning
for indicating this problem.

Contrary to machine learning, where the over-fitting phenomenon is easy to
spot and quantify, in the metaheuristics field over-tuning is admittedly slightly
more difficult to illustrate. The difference derives, at least partially, from a dif-
ferent cultural background. Indeed, the empirical analysis of algorithms is a
relatively recent acquisition in the operations research literature and therefore,
as a cultural heritage, researchers and practitioners in the metaheuristics field do
not typically have the same strong statistical background as their machine learn-
ing colleagues. Moreover, the analysis and the solution of the problem of tuning
metaheuristics is still in its embryonic phase and, as it is shown in Section 2.1.8,
very little literature exists on the issue.

In the following, we show that as the tuning effort increases, the performance
of the metaheuristic at hand improves steadily on the instances that are used
for tuning its parameters; whereas the performance on the whole class improves
first, reaches an optimal value, and then deteriorates. Graphically, the kind of
picture we want to show should look like the plot of the mean squared error on
the training set and on the test set that is typically encountered in supervised
learning—see for example Figure 2.9 at page 59.

In the sentence above, the expression tuning effort is italicized because the
latter is indeed the critical element in this analysis, both for what concerns its
conceptual definition and its practical measure. In the study we propose here,
the tuning effort is measured by the size of the space of the parameters where
the latter is the number of candidate configurations among which a selection
is performed. This is somehow reminiscent of the supervised learning concepts
of model complexity and VC-dimension discussed in Sections 2.2.5 and 2.2.6.
To be more explicit, we consider a tuning set and a test set composed of one
single instance each. Further, we consider the case in which tuning is reduced
to an ezhaustive search in a given space of configurations: Each configuration is
tested once on the given tuning instance. The cost of the best solution found
in such a single run by each configuration is, a priori, an unbiased estimate of
the expected cost of the best solution that the given configuration can find: In
this sense, the result found by the given configurations in one single run is an
appropriate quantity to serve as a criterion for selecting the best among them.

6.1. Some fundamental methodological issues 179

Our reader should be aware from now that the catch hides exactly in the pre-
vious sentence, and more precisely in the apparently innocent expression “a pri-
ori”. This is indeed the key for understanding the nature of the over-tuning phe-
nomenon. Recalling here the following elementary fact, will give us the proper
tools for framing the results presented in the rest of the section:

Let us consider n independent random variables xq, @, ..., x,. If
T1, T2, ..., T, are a realization of these variables, each z; is a pri-
ori an unbiased estimate of the expected value of the respective x;.
More precisely, each x; is to be considered as a realization of an un-
biased estimator of the respective x;. Nevertheless, if we are told
that z;,, < x;,Vj, the previous statement does not typically hold
anymore for z; . Indeed, we should a posteriori consider x;, as a
realization of another random variable, namely = min; x; which
is an optimistically biased estimator of the expected value of x; .
Formally: E[min; ;] < min; Flz;] < Elz;], VI, and therefore also
Elz] < Ex;,].

With this in mind, let us proceed with our analysis. The kind of procedure
one should implement in order to obtain an illustration of the over-tuning phe-
nomenon is the following: Select a tuning instance and a test instance. For
increasing values of the tuning effort, that is, for an increasing size of the space
of configurations to be considered, select the configuration that obtains the best
result on the tuning instance. Run it on the test instance. Record the results that
the selected configuration obtained on the two instances. Repeat the procedure
a large number of times for obtaining some significance and then average, for
each value of the tuning effort, the results obtained on the tuning instances and
those obtained on the test instances. For clarity, Figure 6.1 gives a pseudo-code
description of the procedure.

Unfortunately, the above described procedure is extremely expensive from a
computational point of view and it is not therefore a viable solution for showing
the effects of over-tuning. Nevertheless, an alternative procedure can be designed
that exploits a re-sampling method. Such procedure is akin to the one adopted
in Chapter 5 for assessing the performance of F-Race and of the other tuning
algorithms introduced in the thesis—see page 118 for an illustration of the re-
sampling approach adopted in the thesis and for a definition of the re-sampling
terminology.

The approach we adopt here consists of two phases. In the first one, a num-
ber of runs are performed with different configurations of the metaheuristic under
analysis on some instances sampled from the distribution characterizing the class
of instances of interest. The results of these runs are stored in a database. In
the second phase, a procedure similar to the one given in Figure 6.1 is executed

A formal treatment of the issue can be found in Appendix 6.A at page 192.

180 Chapter 6. Some considerations on the experimental methodology

function overtuning analysis(no_trials,max_conf)

Allocate arrays for storing results

observed on tuning and test instances
TU = allocate_array(no_trials,max_conf)
TE = allocate_array(no_trials,max conf)

for (j =1; j <no_trials; j++) do
Select a tuning and a test instance
iy, = sample_instance()
ite = sample_instance()

for (k = 1; k < max_conf; k++) do
Select a subset of k configurations
O = generate_configuration_subset(k)
Select, out of O, the configuration
that obtains the best performance on iy
0 = tune_on_instance(Oy, i)
Evaluate 6 on the tuning and on the test instance
TUlj, k] = run_and_evaluate(6, is,)
TE[j, k] = run_and_evaluate(f, i)
done
done
Average column-wise the results obtained
graph p;; = column mean(7'U)
graph pp = column mean(TFE)
Plot the curves

plot(graphy & graphp)

Figure 6.1: Algorithmic outline of the over-tuning analysis. Here, no_trials is
the number of trials to be performed and max_conf is the maximum number of
configurations to be considered, that is, the maximum tuning effort.

6.1. Some fundamental methodological issues 181

with the difference that: (i) tuning and test instances, rather than being sam-
pled directly according to the underlying distribution, are re-sampled from the
instances sampled in the first phase; (ii) all runs of the metaheuristic are replaced
by pseudo-runs: rather than actually running a configuration of the metaheuris-
tic on a re-sampled instance, the result obtained and stored in phase one is used.
The curves given in Figure 6.2 are the result of the re-sampling methodology
applied to the illustration of the over-tuning problem. In particular, the figure
refers to the application of iterated local search to the QUADRATIC ASSIGNMENT
problem. Both metaheuristic and class of instances are those that are used also
in Section 5.1.1: In particular, 400 configurations are considered together with a
sample of 800 instances—for a detailed description of the experimental setting,
we refer the reader to Section 5.1.1. It should be noted that such an extreme
smoothness for the two curves could be obtained only thanks to a very large
number of pseudo-trials, 1x10%, that allowed for a very precise approximation of
the underlying regression function. Such precision would have been simply im-
possible without the adoption of re-sampling: As already noted in Chapter 1, the
computation needed for producing the two curves, if actually performed, would
have taken more than 8x10'%s, that is, more than 2.5 million years.

As far as the interpretation of Figure 6.2 is concerned, it clearly appears that
the results obtained on the tuning instance are an over-optimistic estimate of the
expected behavior of the metaheuristic: Irrespectively of the tuning effort, the
curve concerning the tuning instance is always well below the one concerning the
test instance where the latter, as already pointed out, is an unbiased estimate
of the performance on the whole class of instances. But the real issue with the
two curves represented in Figure 6.2 is that, as we wished to show, on the one
hand, the curve concerning the tuning instance decreases monotonically with
the tuning effort, that is, with the number of configurations among which the
best one is selected by the tuning process; whereas, on the other hand, the curve
concerning the test instance decreases until a minimum is reached, and then starts
increasing again. This is precisely the same qualitative picture that illustrates the
over-fitting problem in supervised learning: Compare Figure 6.2 with Figure 2.9,
given at page 59. Our original idea is thus empirically confirmed that a problem
similar to over-fitting, namely the over-tuning problem, affects the practice of
tuning metaheuristics.

Before proceeding, a comment is needed on the fact that in the analysis that
produced Figure 6.2, both tuning and test sets are composed of one single in-
stance. As far as the test set is concerned, a larger number of instances would
not have had any noticeable impact on the curves. Indeed it would have simply
reduced the variance of the estimation of the curve describing the error on the test
set but, as it can be observed, this curve is already particularly smooth thanks to
the re-sampling technique adopted and considering a larger test set would have
simply increased the computation time. On the other hand, the issue is much
more complex for what concerns the tuning set. Indeed, a larger tuning set would

182 Chapter 6. Some considerations on the experimental methodology

Overtuning
o
o
o
o _|
5] \
o \
o (f
\
\ Test instance
\x - -
o
o
o
o _|
<
b
o
@
o
o
o
(=3
o
o
o
b
o
o
o
o
o _|
o
b
o
Tuning instance
T T T T 1
0 100 200 300 400
Tuning effort

Figure 6.2: The over-tuning problem: As the tuning effort increases—the latter
being measured here in terms of the number of configurations considered—the
performance on the tuning instance improves steadily, whereas the performance
on the test instance improve first, reaches an optimal value, and then deteriorates.

6.1. Some fundamental methodological issues 183

Cost

k Tuning effort

Figure 6.3: Implications of the over-tuning phenomenon: The performance on
the tuning set should not be used for comparing algorithms. It might well be, as
it is here illustrated, that even if Alg, and Algz have received the same amount
of tuning effort k, and even if the selected configuration of Alg, performs better
than the selected configuration of Algy over the tuning set, it is indeed the
selected configuration of Alg, that shows a better performance over the test set
and therefore, on average, over the whole class of instances at hand.

have had a noticeable impact on the two curves, although the picture would have
remained qualitatively unchanged. Informally, we could explain this by saying
that a larger tuning set would have been more representative of the whole class
of instances and, thus, the tuning procedure would have selected a less specialized
and more general configuration. This would have effectively reduced the over-
tuning problem, but it would have not solved it! In practice, a larger tuning
set would have shifted to the right the minimum of the curve associated with the
test set, but the latter would have preserved in any case its U-like shape. This
shift to the right would have made our analysis even more expensive in terms of
computation time, without adding much from a conceptual point of view.

Some major implications of over-tuning are worth being discussed here. In
particular, the over-tuning problem should be seriously taken into account when
assessing the performance of metaheuristics. Figure 6.2 makes clear that report-
ing the performance obtained by an algorithm on the instances used for tuning
its parameters—or, more in general, used in pilot studies performed for guiding
some design choices—is irrelevant and possibly misleading. Indeed, if the criti-
cal value of the tuning effort—that is, the value at which the test curve starts
increasing—is passed, we are in the paradoxical situation in which:

The better the metaheuristic performs over the tuning instances, the
worse it does over a generic other instance of the same class, and
therefore, on average, over the whole class!

184 Chapter 6. Some considerations on the experimental methodology

In particular, if two metaheuristics are being compared, the comparison should
be made on a set of fresh instances that have not been previously adopted in
the design and tuning phase. Figure 6.3 shows a situation that might possibly
arise in practice: Two metaheuristics Alg, and Algy are tuned on the basis of a
given tuning set extracted according to the probability measure that characterizes
the class of instances under analysis. The same amount k of tuning effort is
dedicated to both metaheuristics. Although the selected configuration of Alg 4
performs better on the tuning set than the selected configuration of Algy, it is
the latter that obtains a better performance on an independent test set, always
extracted according to the same probability measure. Clearly, Algs is to be
preferred to Alg, since, on average, it is deemed to produces better results on
the whole class of instances under analysis. If we had based our comparison on
the results obtained on the tuning set, we would have mistakenly reached the
opposite conclusion.

6.2 Towards a theory of practice

What is wrong with the current research in the metaheuristics field and, more
generally, in combinatorial optimization? The problem is best illustrated by an
old physicists’ joke:

One chap, who was very fond of horses and horse races, decided to be

scientific about it and asked his physicist friend to make a scientific

prediction of the outcome of the next race. An hour before the race

he called his friend, but the latter replied that he was still working on

the problem. The same happened half an hour before the race ... and

then five minutes before ... Only a week later the physicist, looking

very proud of himself, showed up with a pile of papers, featuring a lot

of diagrams and equations.

Qur race-fond chap glanced at the diagrams and the equations:
“What does all that mean?”—he asked.

“Well, so far I have managed to solve the problem for spherical horses
racing in a vacuum.”

We fear that a similar joke could spread having as a main character a researcher
of our own community: Indeed, at least in some sense, a non negligible part of
operations research in the last two decades concerned spherical horses in vacuum!
This claim will, perhaps, sound clearer once we consider the largely overlooked
issue of modeling in operations research.

The main source of interest in operations research stems—or, at least, stem-
med in the early days of the field—from the practical applications of its methods.
Moreover, it is apparent, but possibly under emphasized, that the problems tra-
ditionally considered in operations research are abstractions of problems actually

6.2. Towards a theory of practice 185

encountered in practice which, in turns, have often a huge economical relevance.
In other words, the problems studied in operations research are mathematical
models of real-world problems. Indeed, traditional operations research models
are better understood as a hierarchy of abstractions:

1. At the lowest level of the hierarchy, we find straightforward mathematical
models of some well defined practical problem. This first level is the one
usually adopted by industrial researchers and practitioners: Their goal is
to solve a specific problem instance rather than generalize their results and
understand the properties of a whole class of instances.

2. At a second level of the hierarchy, we encounter classical problems such as
the TRAVELING SALESMAN problem, the QUADRATIC ASSIGNMENT prob-
lem, and so on. Each of these problems is defined as a class of specific
problem instances—as introduced at level 1-—that share similar character-
istics as, for example, the kind of constraints imposed on feasible solutions.

3. Ascending further on the hierarchy, we finally reach highly abstract prob-
lems such as, for example, NK landscapes (Kauffman, 1993) or deceptive
problems (Goldberg, 1989).

These three levels should not be seen as an exhaustive description of the hier-
archy of abstraction but just as the three main steps of the ladder. Indeed, a
finer-grained analysis would reveal that other levels of the hierarchy should be
considered which lie in between. As an example, let us consider the case of
real-world stochastic and time-varying vehicle routing problems which are often
cast into simpler and better understood TRAVELING SALESMAN problems. Model
problem obtained in such a way lie indeed between the first and the second level of
the hierarchy. Nonetheless, for the purposes of our discussion, it will be sufficient
to restrict our attention to the three levels described above.

At this point, it seems beneficial to recall the reasons that led to the introduc-
tion of the various levels of the above described hierarchy of abstractions: The
first practical reason is apparently the obvious aspiration to reduce the imple-
mentation effort in scientific research and applications. As an example, the very
fact of having introduced the concept of TRAVELING SALESMAN problem let us
refer to a large (infinite) number of specific problem instances all sharing the
same structure and constraints: A single piece of software which is able to deal
with such structure and constraints can be used for tackling all specific prob-
lem instances belonging to the class. A second reason, which is more speculative
in nature, is the desire to spot and single out the characteristics of optimization
problems that have the most significant impact on the performance of algorithms.
This second issue is, in fact, the main motivation for the introduction of the highly
abstract problems mentioned above at level 3 of the hierarchy.

Unfortunately, the understanding that all problems studied in operations re-
search are but models, seemed to recede with time. This in turn resulted in a

186 Chapter 6. Some considerations on the experimental methodology

shift of the research focus which often became concentrated on the study of the
model per se. At least in some sense, the development of the complexity the-
ory, NP-completeness theory in particular (Garey & Johnson, 1979), is a result of
such shift.% Although complexity theory represented a major breakthrough in the
field of operations research, it should be emphasized that this theory is concerned
only with the worst-case difficulty of a whole class of model problems, rather
than with the particular problem instances actually encountered in practice
or, more precisely, the simplified mathematical models of the latter. For exam-
ple, the fact that TRAVELING SALESMAN is NP-hard, only means that, unless
NP = P, there is no polynomial algorithm, which finds the optimal solution
for all possible instances of the TRAVELING SALESMAN problem. This, however,
does not imply anything about the difficulty of a particular class of real-life rout-
ing problems, or even of the corresponding subclass of TRAVELING SALESMAN
problems which is used to model such routing problems.

There is, however, a particularly positive side to this development. The NP-
completeness theory on one hand, and the non-dominance result of the no free
lunch theorem (Wolpert & Macready, 1996, 1997) on the other,” made it clear
that, without restricting the class of problems considered in the scientific research,
it is impossible to predict the performance of algorithms on real-life problems.
This led to an explosion of the amount of experimental work, especially concern-
ing the highly flexible metaheuristics, for which the theoretical analysis seems
particularly difficult. However, partly because the research on the models per se
became a dominant approach by now, the experimental standards have little
bearing to the actual design of algorithms in practice. This is not to say that the
experimental research using abstract model problems has nothing to offer as far
as practice is concerned. Insofar as the model manages to capture the essential
characteristics of the practical problem, the experimental results with this ab-
stract model can be very illuminating, provided that the whole experimental
setting is properly designed to model the conditions under which algorithms are
meant to be used in practice.

6.2.1 The real-life setting

As we have just pointed out, the main justification to the very existence of the
combinatorial optimization field comes from the fact that traditional combinato-
rial optimization problems are abstract models of real-life problems encountered
in practice. Consistently, it is commonly believed that the performance of an
algorithm on such model problems is indicative as far as real-life performance is
concerned. However, what is typically ignored is that, in order for studies con-
ducted on models to be of any practical importance, it is absolutely necessary

6For an introduction to the NP-completeness theory, we refer the reader to Section 2.1.4.
"For an introduction to the no free lunch theorem, we refer the reader to Section 2.1.5.

6.2. Towards a theory of practice 187

< Real-life problems > < Real-life setting >

Model problems Experimental setting

Figure 6.4: Model problems are abstractions of real-life problems. Similarly, the
experimental setting should reproduce the real-life situations in which optimiza-
tion algorithms are developed and practically employed.

to reproduce not only the problems characteristics, but also the whole life-cycle
that optimization algorithms follow in practice. We borrow here the concept of
product life-cycle commonly considered in manufacturing. Given the immaterial
nature of optimization algorithms, such a concept assumes here the same conno-
tations it assumes in the field of software engineering. For an organic presentation
of this concept, we refer the reader to any manual of software engineering, for
example, Sommerville (2001).

In the real-world, the life-cycle of optimization algorithms might be quite
diverse. Different life-cycle models can be appropriate: linear, spiral, cascade,
and so on. In the following, we implicitly consider a linear life-cycle model in
which the algorithm undergoes a development phase for being finally employed
in a production phase. Beside being the simplest, the linear life-cycle is also the
building block composing more complex models. In this sense, the conclusions
we draw referring to it immediately extend to the general case.

Obviously, there is no need to exactly mimic all the details of a life-cycle.
Similarly to the problem modeling, an abstraction is needed, as suggested in
Figure 6.4. Still, several aspects are absolutely essential. In the following, we
examine the setting in which the optimization algorithms are employed in real-
life applications and we extract several high-level characteristics that we consider
essential.

We start by observing that, as a general rule, real-life optimization does not
involve a single problem, but rather a class thereof, typically perceived by the
practitioner as a stream of instances. As an example, consider the stream of
instances characterizing MARIO’S PIZZA DELIVERY problem, as introduced in
Section 3.1. The single-problem setting can be simply considered as a degenerate
case, where the problem class has only one member—see Section 3.3.3 for a
discussion on the single-instance case in the context of the definition of the tuning
problem. Even in this case, the results on a particular problem instance are

188 Chapter 6. Some considerations on the experimental methodology

interesting only as far as they indicate some more general trend.

In general, the characteristics of the instances in the stream may change over
time necessitating an adaptation of the optimization algorithm. In such cases,
the life-cycle of an algorithm can be typically divided in stages, each properly
described through a simple linear life-cycle model composed of (i) a development
phase, consisting either in the development from scratch of an algorithm or in
the modification of an already existing one; followed by (ii) the actual production,
during which the problems to be solved are roughly homogeneous. It should be
observed here that problem instances that are to be solved during the production
phase are not available during the development phase! This implies the following
rule that should be observed in any serious empirical study:

First experimental principle. Problem instances used for assess-
ing the performance of an algorithm cannot be used during its devel-
opment.

The need of introducing this principle is clearly illustrated by the remarks on
over-tuning proposed in Section 6.1.4. Nevertheless, we wish to add here a fur-
ther reductio ad absurdum argumentation: Let us consider one single instance
that we use both for tuning the parameters of an algorithm and then for assess-
ing the performance of the selected configuration. Let us suppose further that
the algorithm we consider accepts a parameter ranging in a space that coincides
with the space of the possible solutions of the instance at hand. Moreover, let
us imagine that our algorithm simply returns immediately the parameter it re-
ceives. In this case, provided we spend enough time in tuning the parameter, the
algorithm with the selected parameter will be able to solve instantaneously and
to the optimum the instance under analysis.

The aforementioned first experimental principle is rather obvious and might
be even considered trivial by our reader; still, this basic principle is routinely
violated in the current literature.

It should be emphasized that this principle does not imply that domain-
specific knowledge cannot be used in the development of algorithms. Such knowl-
edge can influence the development process in two ways. First, in case explicit
knowledge is available, either based on domain theory or on the previous experi-
ence of the algorithm designer, it can clearly affect the design of the algorithm.
Second, in many cases problems similar to the ones used in production are avail-
able, and pilot runs on these problems can be used to fine-tune the algorithm.
These observations led us to a second principle, which is complementary to the
first:

Second experimental principle. The designer can take into ac-
count any available domain-specific knowledge, as well as make use of
pilot studies on similar problems.

6.2. Towards a theory of practice 189

Finally, in real-life applications, the time available for the development of an
algorithm is limited. Similarly, the maximum time available for obtaining a
solution is typically a constraint given in the specifications of the algorithm to
be designed: once operational in the production phase, the algorithm will be run
for such given run-time. The existence of these time constraints is captured by a
fairness principle, already advocated in Rardin & Uzsoy (2001):

Third experimental principle. When several algorithms are com-
pared, all of them should make use of the available domain-specific
knowledge and equal computational effort should be invested in all the
pilot studies. Similarly, in the testing phase, all the algorithms should
be compared on an equal time basis.

Also this third experimental principle, although trivial, is unfortunately too often
violated in the literature. It is common that researchers devote a large amount of
time to the development of their favorite algorithm and then compare it against
their quick-and-dirty implementations of state-of-the-art algorithms. Even worse,
often researchers compare the results obtained by their algorithms against those
published in the literature and possibly obtained years before on much slower
computers.

The experimental methodology we describe in the next section is based on the
three general principles given above.

6.2.2 The proposed methodology and some alternatives

Let us now summarize the general outline of the experimental design that, ac-
cording to our analysis, should be used in the assessment and comparison of
metaheuristics:

1. For every algorithm, the configuration space—that is, the space of all the
allowed parameters combinations—should be specified. If some domain-
specific knowledge can be used to narrow down the configuration space, it
should be equally applied to all algorithms under analysis.

2. The same procedure should be used to choose the configuration of each
algorithm under analysis. The selection should be based on the same tuning
instances for all algorithms, and such instances should be extracted from
the same problem class as the instances on which the algorithms are to be
eventually tested. All algorithms should be given the same computational
resources.

3. The selected configurations should be finally compared on the same in-
stances. All algorithms should be given the same computational resources,

190 Chapter 6. Some considerations on the experimental methodology

among them, computation time and memory. Whenever a comparison in-
volves an algorithm with a well-defined stopping condition such as, for ex-
ample, constructive algorithms or local search, an iterated version of such
algorithms should be studied. These iterated versions should be allotted
the same overall computation time as the other algorithms under analy-
sis (Rardin & Uzsoy, 2001).

4. The results obtained should be used to calculate an empirical approximation
of a criterion such as the expected performance on the class of instances
considered as defined in Equation 6.3 in combination, possibly, with the
score function defined in Equation 6.2.

In step 2, the configuration procedure can be based on F-Race or on some equiva-
lent tuning algorithm. It could be argued that in some cases the tuning instances
required by such procedures are not available. In such cases, the alternatives
implicitly considered in the literature are either to use the test instances them-
selves for choosing the configurations to be tested or to choose the configuration
based solely on the prior experience with the algorithm. Let us examine these
two alternatives in more details.

The first approach, namely the use of the test instances, is commonly used
in the current literature. In its explicit form, some sort of optimization of the
average performance, typically based on some pilot studies, is used to tune the
parameters. More often, the configuration problem is not addressed explicitly,
but rather the results of the best performing configuration are reported for every
instance. However, both the explicit and the implicit forms of this approach
violates the first experimental principle from Section 6.2.1, which is based on the
observation that the problems to be solved during the production phase are not
available during the development phase. The results obtained with this approach
are typically biased and not reliable.

Another alternative consists in not applying any configuration procedure at
all, but rather using some configuration that was previously presented in the
literature or that is known to be “good” from previous personal experience of
the experimenter. This approach can be criticized on two grounds. First, the
configurations reported in the literature are typically chosen following some pilot
experimentation, in other words, also this approach amounts implicitly to us-
ing some empirical optimization procedure of the average performance. If the
pilot studies were conducted using the same set of benchmark instances, then
the experimenter is actually using (perhaps, without even being aware of it) the
approach that we have just shown to be invalid, that is, the one in which tuning
is based on test instances. If, on the other hand, a different set of benchmark
instances was used for these pilot studies (or the experimental setting was dif-
ferent), then the employed configuration may be suboptimal for the problem at
hand. In particular, this approach may easily introduce a bias towards some of

6.3. Discussion 191

the tested algorithms, due to uneven tuning effort: Clearly, more recent algo-
rithms are often more carefully tuned than older ones, whose developers did not
have access to today’s computing power.

To summarize, most of the configuration procedures used in the literature are
based, either explicitly or implicitly, on the empirical optimization of the average
performance. However, unlike the systematic methodology advocated in this
thesis, the existing approaches either involve some sort of cheating, in the form of
using the test instances during the development phase, or, alternatively, do not
guarantee that all the algorithms are configured equally well.

6.3 Discussion

This chapter has discussed a number of issues concerning the definition of a proper
experimental methodology to be followed in the empirical assessment and com-
parison of metaheuristics. In particular, we have highlighted some common faults
that can be encountered unfortunately way too often in the literature. Among
them, it is worth mentioning here the fact that in many works the experimenter
adopts the same instances both for configuring the metaheuristic under study
and eventually for testing the resulting algorithm. In order to clearly frame this
problem, we have introduced here the concept of over-tuning of which we give
both a theoretical background and a practical illustration. The over-tuning prob-
lem is akin to over-fitting in supervised learning and we are sure that those of our
reader who possess a formal training in machine learning have promptly framed
the issue and have possibly found obvious and even superfluous our remarks on
the need for a clear separation between a tuning set and a test set. On the other
hand, we hope that our readers with a more classical operations research back-
ground can benefit from our discussion. For this class of readers we think that a
practical illustration of over-tuning, as the one we give in our empirical study, is
more convincing than a theoretical analysis based on machine learning concepts.

As far as the experimental methodology we propose in Section 6.2 is con-
cerned, we think that its most characterizing element is the shift of attention
from a specific configuration of a metaheuristic to its whole life-cycle, that is,
to the process that starts from an abstract algorithmic idea and goes through a
design and tuning phase for finally obtaining a fully configured algorithm that
can be shipped out and effectively employed in production. In other words, what
we promote with this methodological chapter is a sort of cradle-to-grave perspec-
tive in the research on metaheuristics. Indeed, flexibility is the main keyword
when discussing metaheuristics. It should be always kept in mind that the very
reason for the introduction of metaheuristics is the need of a high-performing and
problem-independent approach to combinatorial optimization problems. Appar-
ently, high-performance and generality are contrasting objectives and in order to
achieve both, metaheuristics are devised to be general and to be easily adapted to

192 Chapter 6. Some considerations on the experimental methodology

the specific problem at hand for the best possible performance. For this reason,
having parameters to be tuned is indeed so connatural to metaheuristics that
they should not be, and indeed cannot be properly conceived other than jointly
with the method adopted for tuning their parameters. In our view, a proper
experimental methodology needs to reflect such indivisibility and handle the pair
tuning method /metaheuristic as a whole.

As a final remark, we wish to point out that also with regard to the definition
of an experimental methodology for assessing and comparing metaheuristics, the
machine learning perspective adopted in the thesis has proved being particularly
fruitful, further confirming therefore the general framework of the thesis itself.

Appendix

6.A Best is biased

We show here that if a realization of n random variables is given, the least of
them is an optimistically biased estimate of its expected value. Formally, let us
consider n independent random variables x;, with j = 1,...,n; each described
by a cumulative distribution of probability F;(z) = Prob{x; < z}. Further, let
Z = min; x; be the minimum of these variables, which is distributed according

to
F(z)=1-]] (1 - E(x)).
J
Indeed, this can be shown by observing that

F(z) = Prob{z < x} = Prob {\/J x; < SL’} =1— Prob {/\J xj > x}

zl—HP'r’ob{xj>x}:1—H(1—Pr0b{xj§x})

J J

= 1-T10-).

J
It results that F'(z) > Fy(z), VaVk.® Indeed,

if and only if

1] (1 = Fi(x)) > Fi(a),

J

8In the decision theory literature, such a relation between two cumulative distributions is
referred to as first-order stochastic dominance (Whitmore & Findlay, 1978).

6.3. Discussion 193

which is equivalent to
1= F(x) > [[(1 - (),
J

and ultimately to

1= Fi(z) > (1-Fu(2) [] (1 - Fi(x)), Vavk. (6.4)
ik
Since Fj(z) > 0, VaVy, it follows that 1 — Fj(z) < 1, VaVy, and therefore that

[[Q-F@) <1, Vavk
i#k
This proves Inequality 6.4 and consequently the original statement:

F(z) > Fy(z), VaVvk.

It should be noticed that the equal sign could possibly hold only for the least,
say &, of the given random variables @1, ..., x,. Indeed, F(z) = F,,(x), if and
only if F,(z) is such that

H (1-Fj(z)) =1, Va:1l-Fy(z)+#0.

j#m
In other words, for F(z) = F,,(x) to hold for a given F,,, there must exist an z’
such that

Prob{z,, <2’} =1 and Prob{z; <2'} =0, Vj#m;

that is, there must be no overlap between the range of the least variable and
the range of any other one. See Figure 6.5 for a graphical illustration. This is a
rather trivial case in which the stochasticity of the variables does not play any
role in the selection of the least of them: A selection based on any realization
x1, ..., %, of the variables under analysis gives deterministically the variable that
in any possible realizations is deterministically the least.

In all other cases, F'(z) # Fj.(z), Vk, including k = m, and’

vdF(z) < [2dFi(z), Vk. (6.5)
feara <

Indeed, if F(x) > Fi(x), Vz, there exists, for each k, a nonnegative function
5k(x)
0 < 6k(z) = F(z) — Fp(z) < 1.

9In this section, all integrals are to be taken in the Riemann-Stieltjes sense. See, for example,
Widder (1989) or Khuri (2003).

194 Chapter 6. Some considerations on the experimental methodology

Fm

Figure 6.5: A pathological example of a set of n random variables: The range of one of
them, namely x,,, does not overlap with the range of any other one and is such that,
for any possible realization 1, ..., x, of these variables, x,, is always smaller than any
x; with j # m. Clearly, in such a setting the problem of selecting the least of the given
random variables looses all stochasticity and becomes trivial.

Since F' and Fj, Vk, are cumulative probability distributions, they are such that

lim F(z) =0, lim Fi(z) =0, Vk;
xErJPOO F(x) =1, z1_1)1:{100 Fi(z) =1, Vk.

It follows that
lim x(z) =0, Vk.

T—Fo00
Actually, under the reasonable assumption that for all random variables under
analysis the expectation exists, the functions 0y (x) converge at a faster rate and

in can be shown that
lim zég(x) =0, Vk. (6.6)

r—+o00

Indeed, if the expectation exists for & and for x;, Vk, that is, if the integrals
[xdF(z) and [dFy(z) converge Vk, then it results that lim, ., . 2F(z) = 0,
limz_,+oox(1 — F(x)) =0, lim, , o zFi(z) =0, and limx_,+oox(1 — Fk(x)) =0,
VE.19 The limit given in Equation 6.6 follows immediately.

Now, Inequality 6.5 can be written as

/a:dF(x) —/xdFk(:c) <0

Integrating by parts both terms, we obtain

<xF(x)’+: —/F(m) dx) — <ka(x)‘+: —/Fk(x) dx) <0,

10Gee Birattari (2004b) or any manual of advanced calculus as, for example, Widder (1989)
or Khuri (2003).

6.3. Discussion 195

and therefore,

2(F(z) - Fl()) r: _ /(F(@ ~ Fy(x)) dz <0,
which in terms of ¢;, is
x5k(x)[: — /6k(x) dz < 0.

The first term on the left-hand side is null according to Equation 6.6, while
the integral of the second term on the left-hand side is positive since 0y (z) is
nonnegative. This proves the original statement.

Inequality 6.5 can be read as
E[mkm xy) < mkin Elzxy], (6.7)

whenever we are not in the trivial case described in Figure 6.5, otherwise the
equality holds. The term on the left-hand side in Inequality 6.7 is simply the
term on the left-hand side in Inequality 6.5:

Elmina,] = / 2 dF(z):

while the one on the right-hand side is the minimum of the terms that appear on
the right-hand side of Inequality 6.5 for the different values of k:

mklnE[:ck] = mlgn/xdFk(x)

Since Inequality 6.5 holds for all £, it must hold also for the one that minimizes
the expectation and Inequality 6.7 follows.

In particular, Inequality 6.5 holds for F} ,, where j,, is the index of the variable
x;,, that in a given realization x;, with j = 1,...,n, of the stochastic variables
x;, results being the least; that is, T = z;, = min; z; and j, = argmin;x;.
Unless we are in the trivial case described in Figure 6.5, it follows that z; is a
optimistically biased estimate of the expected value of ;. Indeed, a priori, that
is, before knowing that x;, = min; x;, we should assume that z; is extracted
from the distribution Fj, () and is therefore an unbiased estimate of E[x;,,]. On
the other hand, a posteriori, that is, once we are told that z;, = min;z;, we
should consider x;, as extracted from the distribution F'(x) and, therefore, as an
unbiased estimate of E[Z|. Now, Inequality 6.5, or equivalently of Inequality 6.7,
states that F[Z| < FElxy|, Vk, unless we are in the trivial case described in
Figure 6.5. We should expect therefore that the specific realization z;, of the
stochastic variable x;, , for which z;, = min; z;, is less than Elz;, |.

196 Chapter 6. Some considerations on the experimental methodology

Et j’espére que nos neveuxr me sauront greé,
non seulement des choses que j’ai ici expli-
quées, mais ausst de celles que j’ai omises
volontairement, afin de leur laisser le plaisir
de les inventer.t

René Descartes

Chapter 7

Conclusions

Metaheuristics are a relatively novel but particularly promising approach for tack-
ling combinatorial optimization problems. In the last decade, metaheuristics have
been the focus of a significant amount of academic research and have been success-
fully employed in an increasing number of practical applications.! In particular,
more and more companies rely on metaheuristics for solving complex optimiza-
tion problems in various domains.? Indeed, the increasing availability of low-cost
computing power starts convincing companies of any size that many aspects of
their activities—including design, planning, manufacturing, inventory, distribu-
tion, management, etc.—would greatly profit from proper optimization. In this
context, metaheuristics are a particularly appealing solution since their develop-
ment costs are typically much lower than those of alternative approaches, such
as, for example, ad hoc heuristics.

Indeed, the most notable strength of metaheuristics lies precisely in the fact

I hope that posterity will judge me kindly, not only as to the things which I have explained,
but also to those which I have intentionally omitted so as to leave to others the pleasure of
discovery.

!See Corne et al. (1999), Glover & Kochenberger (2002), and Dréo et al. (2003) for exten-
sive reviews. The MIC series of International conferences is entirely dedicated to metaheuris-
tics (Hartl, 2005). Post-conference proceedings of past editions, which gather some of the most
significant contributions to the metaheuristics field, were published in Osman & Kelly (1996),
Voss et al. (1999), Ribeiro & Hansen (2001), Resende & Pinho de Sousa (2003), and Ibaraki
et al. (2005).

2For example, metaheuristics are adopted in a number of commercial products devel-
oped by ILOG (http://www.ilog.com), SAP (http://www.sap.com), and NuTech Solutions
(http://www.nutechsolutions.com). Moreover, some smaller consulting companies have
made of the use of metaheuristics one of their characterizing traits. Among them, see the
two companies that have participated in the research activities of the Metaheuristics Network
: EuroBios (http://www.eurobios.com) and AntOptima (http://www.antoptima.com).

197

198 Chapter 7. Conclusions

that they are relatively easy to implement and that, therefore, a quick-and-dirty
version of a metaheuristic for a given class of problems to be solved can be
produced by a practitioner in few days. Such quick-and-dirty implementations are
typically capable of fair performance; nevertheless, when state-of-the-art results
are at stake, careful design choices and an accurate tuning are needed. Although
the centrality of tuning is acknowledged in the literature—see for example Barr
et al. (1995)—the problem of tuning metaheuristics has received so far little
attention and no well established methodology has been defined for tackling it
effectively and efficiently. Indeed, tuning is still performed largely by hand and
this entails a number of drawbacks such as, for example, little reproducibility of
the process, low reliability, and high costs ... without mentioning that it involves
a large amount of extremely boring clerical work.

It is our belief that the reason why the tuning problem has received little
attention is to be ascribed to the fact that the intimate nature of the tuning
problem has been so far misunderstood. In our opinion, the few scientific works
that have been devoted to the development of tuning procedures fail to grasp the
most characterizing features of the tuning problem.

In the thesis, we give a precise definition of the framework in which the tuning
problem emerges:

A stream of instances belonging to some (sub)class of instances of a
combinatorial optimization problem is considered. The stream is to be
conceived as an infinite sequence of instances appearing in time, one
after the other, which are to be solved. Moreover, a metaheuristic—
or more precisely a finite set of configurations thereof—is given which
can be used for tackling such instances.

We assume that a metaheuristic undergoes a life-cycle composed of a
development phase and a production phase: In the development phase,
some limited amount of time is available for selecting one of the con-
figurations of the metaheuristic at hand. Then, once the development
phase is accomplished, the metaheuristic, in its selected configuration,
leaves the workshop and eventually enters into production where it
has to solve the instances that will appear in the stream. During
the development, we might have recourse to a number of instances
sampled from the stream but, clearly, not those that will appear in
the stream in a future time and, in particular, not those that the
metaheuristic will have to face once in production.

A careful analysis of this framework led us to put forward the idea that the
tuning problem could be profitably looked at from a machine learning point of
view. Indeed, by taking inspiration from a number of machine learning concepts
and methods, in the thesis (i) we give a formal definition of the tuning problem,
(ii) we propose the F-Race algorithm for effectively tackling it, (iii) we adopt an

199

experimental methodology for assessing in an unbiased way the performance of
a tuning algorithm, (iv) we take advantage of a re-sampling method for dramat-
ically reducing the computation time needed for obtaining such an assessment,
and finally (v) we introduce the concept of over-tuning for framing some catches
that are connatural with the practice of tuning metaheuristics.

Nevertheless, in our personal opinion, the single most important contribution
of the whole thesis, the one on which all the aforementioned others rest, is the
understanding that the proper way of formalizing the concept of class of instances
(or subclass thereof), and therefore of characterizing a stream of instances that
defines a specific tuning problem, is through the definition of a probability mea-
sure P; defined over the space of all instances of the problem at hand.

Although we have developed the idea of such a probability measure in a to-
tally independent way, we have later on realized that the same concept had been
previously adopted by Wolpert & Macready (1996, 1997), although in a quite dif-
ferent context and with different goals. Apparently, this idea did not have much
following in the years and, nowadays, it is not easily accepted by researchers
in the field. According to our experience, gathered in informal discussions with
researchers active in the metaheuristic domain, the idea of considering a proba-
bility measure defined over the space of the instances is regarded as unnatural,
impractical, an somehow weird.

The typical objection raised against this idea is that such probability measure
is not, in most practically relevant situations, available. This criticism is dan-
gling in many respects. We discuss here two issues. The first one is simply an
epistemological clarification: The probability measure we discuss is just a proba-
bilistic model of the mechanism underlying the stream of instances at hand. As
all models, it is to be intended as a possible description of a phenomenon and
not as some entity that necessarily exists in Nature. In this sense, a model is
always available ... indeed infinite models might be produced at will: The point
is, when a model is needed, how to select one that serves a specific purpose.?

On the other hand, the second issue we wish to discuss here is more technical
and is directly related to the practical use that is made, in the context of this
thesis, of the notion of probability measure defined over the space of the instances.
The knowledge of this probability measure P; needs not be made explicit neither
at any stage of our theoretical development, nor at any moment in the execution
of the tuning algorithms we propose in the thesis: As we have shown in Chapter 4,
we simply need to have access to a number of instances from the aforementioned
stream, which we need to be ready to assume as indeed independently sampled
according to P;. These instances are sufficient for estimating directly the expected
performance of the different candidate configurations of the metaheuristic to be
tuned, and eventually for selecting the best one. It is worth further stressing

3We consider particularly illuminating the statement on the issue that is attributed to
G. E. P. Box: All models are wrong; some are useful. His point is made clear in Box (1976).

200 Chapter 7. Conclusions

that the estimation of the expected performance of the candidates can be done
directly on the basis of the given instances, and does not require the intermediate
step of obtaining an explicit estimation of P;.

Nevertheless, although neither P; nor any explicit model of it is used in F-Race
or in any of the other tuning algorithms we discuss in the thesis, this probability
measure plays a fundamental role. It is indeed on the basis of P; that we are able
to give a meaning to the very notion of expected (or average) performance of the
metaheuristic at hand or, more precisely, of one of its configurations: Without
reference to a probability measure, the concept of expectation cannot be defined.
Since tuning amounts to selecting the best configuration according to a criterion of
performance, and since the ezpected performance on the instances of the problem
at hand is a meaningful, convenient, and particularly natural criterion, the key
importance of the role played by P; in the thesis emerges clearly.

Moreover, it is in the terms of the measure P; that we are able to formulate
another hypothesis that is of paramount importance, namely, the reqularity of
Nature. In particular, in the context of tuning metaheuristics, we need to for-
mulate the hypothesis that the aforementioned stream of instances preserves in
time some of its characteristics: Typically, we cannot expect that the stream will
keep producing the same instances over and over. In this case, the whole setting
would be trivial and such repeating instances could be solved once for all: The
best solution of each instance could be stored, and re-used at each occurrence
of the instance itself. Nevertheless, although such an extreme form of regular-
ity should not be expected, we need to postulate that something in the stream
remains unchanged in time. This element of reqularity is what would justify
the whole tuning process: Indeed, it is what would entitle us to assume that a
configuration that obtained a good performance on some tuning instances will
eventually obtain a good performance also on the instances it will encounter once
in production. In the framework we have developed in the thesis, this element of
reqularity is precisely postulated in term of the measure P;: We postulate indeed
a probabilistic time-invariance of the stream of instances by requiring that P; re-
main constant in time.? In other words, we postulate that the instances used for
tuning and those that will be encountered once in production, although different,
share the property of being extracted according to the same probability measure
P;. To summarize, tuning entails a generalization and this generalization rests
on the assumption that the measure P; remains unchanged in time. Whether an
explicit representation of P; is available or not does not play any role.

Once the notion is established of a probability measure P; defined over the space
of the instances, tuning is reduced to the problem of estimating the expected
performance for a number of candidate configurations—where the expectation is
taken with respect to P—and then selecting the one presenting the best expected

4The possibility and the opportunity of considering more complex models is discussed in
Section 3.3.

201

performance. The estimation of these expectations can be performed in a Monte
Carlo fashion, on the basis of a number of instances that are supposed being
independently extracted according to F;.

Beside the trivial brute-force approach to the so-defined tuning problem, the
thesis proposes a class of racing algorithms, which consist in estimating the ex-
pected performance of the candidate configurations in an incremental way, and in
discarding the worst ones as soon as sufficient evidence is gathered against them.
This allows a better allocation of computing power: Rather than wasting time in
the evaluation of low-performance configurations, the algorithm focuses on the
assessment of the best ones. As a result, more data is gathered concerning the
configurations that are deemed yielding the best results, and eventually a more
informed and sharper selection is performed among them.

Racing algorithms had been previously proposed within the machine learning
community for solving model selection tasks. Beside using for the first time this
class of algorithms for tuning metaheuristics, we propose in the thesis another
important novel element, namely, the adoption of the Friedman two-way analy-
sis of variance by ranks as a statistical test for deciding whether configurations
should be discarded or kept in the race on the basis of their performance observed
incrementally: The Friedman test, which appears as particularly appropriate in
the design of racing algorithms, had never been employed before in this context.

Summary of main contributions

The following is a summary of the main contributions proposed in the thesis:

The framework: The thesis defines the framework in which the tuning problem
emerges: A stream of instances is considered and the tuning task consists in se-
lecting a configuration of the metaheuristic to be tuned that is deemed to produce
the best possible performance on the instances of the stream. This framework
refers to a life-cycle model in which a metaheuristic undergoes a development
phase, during which it is implemented and tuned, and then enters in a production
phase.

Tuning as a learning problem: The thesis unveils the true nature of tuning.
Tuning is indeed a generalization problem which rests on a hypothesis of reqularity
of the aforementioned stream of instances. The performance of the metaheuristic,
or of a configuration thereof, on a number of instances sampled from the stream
informs on its performance on future instances that will appear in the stream
itself.

Formal position of the tuning problem: The thesis gives a formal definition
of the tuning problem in which the key role is played by the notion of a probability
measure Py defined over the space of the instances. In terms of Py, it is possible to

202 Chapter 7. Conclusions

formally define a criterion for selecting the best configuration of the metaheuristic
to be tuned, namely the ezpected performance.

Formal analysis of the evaluation problem: The thesis proposes a formal
analysis of the Monte Carlo estimation of the performance of a metaheuristic on
the basis of a number of observations. Different estimators are considered in the
analysis, and the one that uniformly yields the least variance is singled out. This
analysis has a major impact on the definition of the tuning algorithms proposed
in the thesis and on the definition of the experimental methodology adopted for
their empirical assessment.

Definition of tuning algorithms: The thesis introduces a number of tuning
algorithms. Beside the trivial brute-force approach, the class of racing algorithms
for tuning is introduced. Among them, the thesis proposes F-Race, a racing
approach that adopts the Friedman two-way analysis of variance by ranks; this
test appears particularly appropriate in the context of the definition of racing
algorithms.

The race package for R has been implemented and is distributed in the public
domain under the GNU General Public License. The race package is available for
free download from the official site of The Comprehensive R Archive Network.

Empirical analysis: The experimental methodology adopted in the thesis has
been accurately designed and contains a number of novel elements. In particular,
it explicitly separates the set of instances that are used for tuning a metaheuristic,
from those that are used for assessing the selected configuration. This guarantees
an unbiased evaluation of the latter. A number of brute-force approachs are in-
cluded in the analysis and are used as a yardstick for measuring the performance
of the racing algorithms proposed in the thesis. Moreover, a re-sampling method-
ology is adopted that allows obtaining results that would have been simply out
of reach if all computation were to be actually performed.

Practical applications: The thesis illustrates a number of successful applica-
tions of F-Race and of related algorithms. Among them, it discusses the use of
a racing algorithm for designing a hybrid metaheuristic that outperformed all
competitors in the International Timetabling Competition organized in 2003 by
the Metaheuristics Network and sponsored by PATAT, the international series of
conferences on the Practice and Theory of Automated Timetabling. Moreover, the
thesis sketches a feasibility study that has been carried out by INTELLEKTIK,
Technischen Universitdt Darmstadt, Darmstadt, Germany, in collaboration with
the German-based software company SAP. This study concerned the possible use
of F-Race for automatically tuning a critical component of a commercial computer
program produced by SAP for vehicle routing and scheduling problems.

Experimental methodology: The thesis discusses a number of issues concern-
ing the definition of an appropriate experimental methodology to be adopted in

203

the empirical analysis of metaheuristics. In particular, some catches are ana-
lyzed that are related to the practice of tuning. The notion of over-tuning is
introduced that parallels the already well understood machine learning concept
of over-fitting.

Moreover, the following contributions are contained in the Annexes:

Analysis of ant colony optimization: An original analysis of ant colony op-
timization is given from the machine learning point of view. In particular, a
description of ant colony optimization is proposed in the terms of reinforcement
learning, optimal control, and dynamic programming. Moreover, the model-based
search framework is introduced which accommodates a number of combinatorial
optimization methods including ant colony optimization.

Lazy learning for local regression: An original lazy learning algorithm is de-
scribed and some evidence is provided that it can be an effective alternative to
state-of-the-art supervised learning methods for tackling the regression problem.
The lazy package for R has been implemented and is distributed in the public
domain under the GNU General Public License. The lazy package is available for
free download from the official site of The Comprehensive R Archive Network.

Future developments

The research described in the thesis is currently being further developed along a
number of directions:

The race package: Since its first alpha version, back in 2002, the race package
for R has already had a number of applications. At the moment of writing,
October 2004, the race package is fairly stable and it is about 6 month that it has
been available for general download from the official site of The Comprehensive
R Archive Network and from its mirrors. Since the package starts being used in
independent researches, we expect new users to adapt it to their specific needs
and to contribute their modifications and improvements. As an example, the
current version 0.1-49 of race adopts the parallel virtual machine (PVM) protocol
for parallel computation; Schiavinotto (2004) has modified race and has added
support for the message passing interface (MPI). These modifications will be
included in future releases of the package.

Beside this physiological evolution of the package, we plan to extend the func-
tionality of race with the final aim of implementing a general tool for tuning
metaheuristics. Such tool will have the form of a collection of R packages—a
bundle in R’s terminology—implementing different algorithms for stochastic op-
timization that might prove useful for tuning parameters of metaheuristics in the
sense defined in this thesis. In particular, we are considering methods for han-
dling continuous parameters directly, that is, without prior discretization, namely

204 Chapter 7. Conclusions

the response surface methodology, and some form of hybrid approach based on
the latter in conjunction with F-Race. Preliminary research in this direction is
currently ongoing (Lunghi, 2004; Boldrini, 2005; Denis, 2005).

Theoretical work on F-Race: Further theoretical work on F-Race will be de-
voted to the problem of defining bounds on the probability of discarding the best
candidate configuration at some stage of the race. It is in the nature of the al-
gorithm to provide such a bound for each stage of the race: The adoption of a
statistical test of hypothesis, namely the Friedman test, imposes indeed a bound
of @ = 0.05 to the probability of discarding the very best candidate at each stage
of the race. Expressing a global bound is far from being a trivial issue since tests
performed in subsequent stages of the race are not independent, being (at least
partially) based on the same pieces of evidence. Further research is needed in
this direction.

Variance reduction: The Monte Carlo estimation adopted by F-Race and by
the other tuning algorithms presented in the thesis might be made more efficient
by adopting some variance reduction method. A preliminary discussion of the
issue is already given in Sections 3.3.1 and 4.1.1. Research on the use of strati-
fied sampling (Rubinstein, 1981) in the context of racing algorithms is currently
ongoing.

Connections with other fields: Future research will explore connections with
other research fields. In particular, we recently became aware of possible con-
nections with a corpus of related work in the simulation field—see for example
Goldsman & Nelson (2001), Nelson et al. (2001), and Pichitlamken & Nelson
(2001).

Empirical analysis of F-Race: Also thanks to the Metaheuristics Network,
that provided the general framework in which this research was carried out, a
number of researchers working on metaheuristics became aware of the research
presented in this thesis and of the possibility offered by F-Race. The latter en-
joyed, as a consequence, much attention and was adopted in a fairly large number
of applications. This allowed gathering an insight on its properties that we could
not have possibly reached if we were not working within a large and active re-
search group such as the Metaheuristics Network:.

Now that the activities of the Metaheuristics Network are formally accom-
plished, we keep “promoting” the F-Race algorithm and the race package by col-
laborating with a number of researchers: In particular, we provide assistance in
the application of F-Race to different tuning tasks with the final goal of gathering
first-hand experience on all practical issues that are possibly encountered when
tackling a tuning problem.

205

Moreover, the issues that are discussed in the Annexes are currently the focus of
further research:

Analysis of ant colony optimization: Further research is currently being car-
ried out on the concepts framed by ant programming and on their possible practical
relevance in the design of algorithms (Darquennes, 2005). Moreover, we are cur-
rently evaluating the possibility of adopting an approach akin to the model-based
search for tuning metaheuristics in the sense defined in the thesis.

Lazy learning for local regression: The research on lazy learning is particu-
larly active at the moment, and it is heading in different directions including
system identification and control, process monitoring, and data mining for the
analysis of massive datasets, possibly in distributed computing environment.

Concluding statement

The work presented in this thesis is relevant for the development of the whole
metaheuristics field, both for what concerns academic studies and for practical
applications. Given the very nature of metaheuristics, tuning is to be considered
as an integral part of their development: Indeed, a metaheuristic is best conceived
as a template for conveniently crafting optimization algorithms for tackling some
given class of problems. Typically, even a quick-and-dirty version of such algo-
rithms can obtain a fair performance but when state-of-the-art results are sought,
a careful tuning process is essential.

In this thesis, an inherently interdisciplinary approach proved to be extremely
fruitful: The problem of tuning metaheuristics has been profitably formalized and
analyzed on the basis of machine learning concepts, and it has been effectively
tackled using algorithms derived from machine learning methods.

206 Chapter 7. Conclusions

Annexes

None preaches better than the ant, and she
says nothing.

Benjamin Franklin

Annex A

A machine learning point of view
on ant colony optimization

In the last decade, a number of algorithms inspired by the foraging behavior of
ant colonies have been introduced for the approximate solution of combinatorial
optimization problems—see Dorigo & Di Caro (1999), Dorigo et al. (1999), and
Dorigo & Stiitzle (2004) for extensive reviews. The framework of ant colony
optimization (Dorigo & Di Caro, 1999; Dorigo et al., 1999) recently gave a first
unifying description of (most of) these algorithms.

Ant colony optimization has been successfully applied to a number of differ-
ent problems.! Nevertheless, a complete theoretical analysis of the algorithms of
this class is not available yet. Ounly recently some works have been devoted to
the theory of ant colony optimization. They have moved along two main lines:
On the one hand, the issue of the convergence of the algorithm has been ex-
plored (Gutjahr, 2000, 2002; Stiitzle & Dorigo, 2002). On the other hand, the
relations existing between ant colony optimization and other approaches have been
highlighted (Birattari et al., 2002; Meuleau & Dorigo, 2002; Zlochin et al., 2004).
For an organic presentation of the ant colony optimization theory, we refer the
reader to Dorigo & Stiitzle (2004). Here, we focus on the studies that addressed
the relationship between ant colony optimization and other approaches: Birattari
et al. (2000, 2002) and Birattari (2001) gave a description of ant colony opti-
mization in the language of dynamic programming (Bellman, 1957) and optimal

1See Dorigo & Di Caro (1999), Dorigo et al. (1999), Dorigo et al. (2000), and Dorigo & Stiit-
zle (2004) for lists and descriptions of implementations of ant colony optimization for a variety
of combinatorial optimization problems like, among others, traveling salesman, quadratic as-
signment, and graph coloring. See also the proceedings of the International series of conferences
ANTS, held bi-annually in Brussels (Dorigo, 1998; Dorigo et al., 2000, 2002, 2004), which are
entirely dedicated to the advancements in ant colony optimization and related algorithms. Ad-
ditionally, overviews of algorithms inspired by the behavior of real ants but not strictly falling
in the ant colony optimization class, are reported in Bonabeau et al. (1999), Bonabeau et al.
(2000), and Dorigo et al. (2000).

209

210 Annex A. A machine learning point of view on ant colony optimization

control (Bertsekas, 1995a). This point of view has been further explored in Di
Caro (2004). Meuleau & Dorigo (2002) proposed a description of ant colony op-
timization in terms of stochastic gradient descent and model-free reinforcement
learning (Sutton & Barto, 1998). Finally, Zlochin, Birattari, Meuleau & Dorigo
(2004) proposed the general framework of model-based search for combinatorial
optimization that accommodates a number of algorithms including ant colony
optimization.

The remaining of the chapter is structured as follows: Section A.1 presents the
work of Birattari et al. (2002) on the relation between ant colony optimization and
optimal control, while Section A.2 presents the model-based search framework
proposed by Zlochin et al. (2004). The latter, includes also a section on the
stochastic gradient method and therefore brings some elements of the work of
Meuleau & Dorigo (2002).

A.1 Formal foundation of ant programming'

Loosely speaking, ant colony optimization presents the following features. A graph
is defined in a way that each solution of the combinatorial problem corresponds
to at least one path on the graph itself. The weights associated to the edges
are such that the cost of a path equals the cost of the associated solution. In
this sense, the goal of ant colony optimization is to find a path of minimum cost.
To this end, a number of paths are incrementally generated in a Monte Carlo
fashion, and the observed costs are used to bias the generation of further paths.
This process is iterated with the aim of gathering information on the graph and
of eventually producing a path of minimum cost. In ant colony optimization,
the above described algorithm is visualized in terms of a metaphor in which the
generation of a path is represented as the walk of an ant that, at each node,
stochastically selects the following one on the basis of local information called
pheromone trail (Beckers et al., 1992). In turn, the pheromone trail is modified
by the ants in order to bias the generation of future paths toward better solutions.

The very possibility of obtaining better solutions by exploiting memory about
solutions generated so far is the basic assumption of ant colony optimization. A
further implicit assumption concerns what this memory should consist in. In
spite of the key role played in all implementations of ant colony optimization,
this assumption was never critically discussed before: The formal definition of
ant colony optimization (Dorigo & Di Caro, 1999) envisages, for each optimiza-
tion problem, a unique way of defining the memory. To clarify this issue, let us
consider an optimization problem whose solutions are expressed by ant colony
optimization as a sequence of components. Ant colony optimization generates so-

"This section is based on Birattari et al. (2002) which is, in turn, an abridged version of
Birattari et al. (2000). The issues discussed here have been further elaborated in Birattari
(2001) and in Di Caro (2004).

A.1. Formal foundation of ant programming 211

lutions in the form of paths in the space of such components. Memory is kept
of all the observed transitions between components. A degree of desirability is
associated to each transition depending on the quality of the solutions in which
it occurred so far. While a new solution is being incrementally generated, a com-
ponent y is included with a probability that is proportional to the desirability
of the transition between the last component included and y itself. Even if it
seems natural that memory should be associated with pairs of solution compo-
nents, as assumed by ant colony optimization, in our treatment of the subject, we
maintain that such an assumption is just a matter of choice. Indeed, this is only
one of the possible representations of the solution generation process that can
be adopted for framing information about solutions previously observed. As it
will be clear in the following, this representation is neither optimal nor the most
natural, provided that a correct analysis of the problem at hand is given. Our
analysis will be based on a clear understanding of the concept of state of the
process of incremental solution construction.

Here, we propose a novel formal description of the combinatorial optimization
problems to which ant colony optimization applies, and we analyze the implication
of adopting a generic solution strategy based on the incremental Monte Carlo
construction of solutions biased by a memory. In this section we present ant
programming as an abstract class of algorithms which presents the characterizing
features of ant colony optimization but which is more amenable to theoretical anal-
ysis for what concerns the concepts of representation and state. In particular, ant
programming bridges the terminological gap between ant colony optimization and
the fields of optimal control (Bertsekas, 1995a) and reinforcement learning (Sut-
ton & Barto, 1998). Accordingly, the name ant programming was chosen for its
assonance with dynamic programming, with which ant programming has in com-
mon the stress on the concept of state and the related idea of reformulating an
optimization problem as a multi-stage decision problem and then searching for
a good (hopefully optimal) decision policy for the latter. Both in dynamic pro-
gramming and in ant programming, such a reformulation is not trivial and requires
an ad hoc analysis of the optimization problem under consideration. These con-
cepts, being among the main issues in this research, will be discussed in detail
in the rest of the section: Section A.1.1 shows how to reformulate a discrete op-
timization problem into a discrete-time optimal control problem and then into
a shortest path problem. Section A.1.2 introduces the concepts of graph of the
representation, phantasma and sequential decision process under incomplete in-
formation. Section A.1.3 introduces and discusses the ant programming abstract
class of algorithms. Section A.1.4 discusses the main issues and describes the
future developments of this research.

212 Annex A. A machine learning point of view on ant colony optimization

A.1.1 Optimization, optimal control, and shortest paths

Let us consider a discrete optimization problem defined by a finite set S of feasible
solutions and by a cost function f. The set S is:

S ={s1,52,...,595]}, [S|eN, |S]<oo, (A.1)
where each solution s; is a n;-tuple
si= (s s, .8, meN, n <n<oo, (A.2)

with n = maxn;, and 3{ € Y, where Y is a finite set of components. The cost
function f : S — R assigns a cost to each feasible solution s;. The optimization
problem is therefore the problem of finding the element s € S which minimizes
the function f:
§ = argmin f(s). (A.3)
ses
Being the set S finite, the minimum of f on S indeed exists. If such minimum is
attained for more than one element of S, it is a matter of indifference which one
is considered.
A feasible solution in S can be built incrementally starting from the O-tuple
zo = (), and adding one-at-a-time a component. The generic iteration can be
described as:

zj = (uo, - uj1) = i1 = (uo, - uj—1,u5), withu; €Y, (A-4)

where z; is a partial solution of length j. A partial solution x; is called feasible
if it can be completed into a feasible solution s; € S, that is, if at least one
feasible solution s; € S exists, of which z; is the initial sub-tuple of length j. It
is understood that a process generating a sequence of feasible partial solutions
necessarily ends up into a feasible solution. For each feasible partial solution x;,
we define the set U(z;) € Y of all the possible new components u; that can be
appended to z; giving in turn a feasible (partial) solution ;4.

Now, the set X of all feasible tuples x; is finite since both the set S and
the length of each feasible solution s; are finite. Moreover, it can be shown that
S C X, since all the solutions s; are composed of a finite number of components,
all belonging to Y.

Since a feasible solution can be obtained incrementally, the original optimiza-
tion problem can be reformulated as a multi-stage decision process in which the
optimal solution § is obtained by a sequence of decisions concerning the set Y of
the components. Such a way of proceeding results particularly natural when the
cost f(s;) of a solution s, is expressed as a sum of contributions ¢; 1, each related
to the fact that a particular component u; is included in the solution s; itself
after a sequence of components described by the tuple z;. Formally, a function

A.1. Formal foundation of ant programming 213

C: X\ {zo} — R must be conveniently defined, which associates a cost ¢;+1 to
each tuple x;,.2

The finite-horizon multi-stage decision process described above can be thor-
oughly seen as a deterministic discrete-time optimal control problem (Boltyanskii,
1978). The tuple z; can be seen as the state at time ¢t = j of a discrete-time
dynamic system whose state-transition application is such that the state at time
t + 1 is obtained by appending the current control action u; € U(x;) to the state
Ty

{xt“ =[x, w4, (A.5)

Y1 = Uy,

The set of the feasible actions, given the current state, is a subset of the range of
the output: U(x;) C Y.

Now, let U be the set of all the admissible control sequences that bring the
system from the initial state 2y to a terminal state belonging to S: The generic
element of U, u = (ug,us,...,u,_1), is such that the corresponding state tra-
jectory, which is unique, is (g, x1,...,2,), with z, € S, and u; € U(x,), for
0 <t < 7. In this sense, the dynamic system defines a mapping S : Y — S which
assigns to each admissible control sequence u € U a final state s = S(u) € S.

The problem of optimal control consists in finding the sequence u € U for
which the sum f of the costs ¢;, incurred along the state trajectory, is minimized:

U = arg min f(S(u)), (A.6)
where with “arg min” we denote the element of U for which the minimum of the
composed function f oS is attained. If such a minimum is attained for more than
one element of U, it is a matter of indifference which one is considered.

It is apparent that the solution of the problem of optimal control stated in
Equation A.6 is equivalent to the solution of the original optimization problem
given in Equation A.3, and that the optimal sequence of control actions @ for
the optimal control problem determines uniquely the optimal solution s of the
original optimization problem. Since the set X is discrete and finite, together with
all the sets U(x,), for all x; € X, and since trajectories have a fixed maximum
length n, all the possible state trajectories of the system given in Equation A.5
can be conveniently represented through a weighted and oriented graph with a
finite number of nodes. Let G(X, U) be such a graph, where X is the set of nodes
and U is the set of edges, and let C' : U — R be a function that associates a
weight to each edge. In terms of the system described in Equation A.5, each node
of the graph G(X,U) represents a state x; of the system. The set U C X x X

2Given the rule defined in Equation A.4, the tuple z;;1 determines uniquely the tuple x;
and the component u;, and is in turn determined uniquely by them. Therefore, the function C
could be equivalently defined as a function mapping on the real line an ordered pair (z;,u;), a
transition (z;,x,+1), or even the triplet (z;,u;, z;11).

214 Annex A. A machine learning point of view on ant colony optimization

is the set of the edges (x;,x41). Each of the edges departing from a given
node x; represents one of the actions u; € U(x;), feasible when the system is in
state x;. Finally, the function C' is defined in terms of the function C. Namely,
ciy1 = C({zy, 2441)) = C(x441) is the cost of the edge (zy,x,11). Furthermore,
on the graph G(X,U) we can single out the initial state xy, as the only state
with no incoming edges, and the set S of the terminal nodes from which no edges
depart. In terms of the graph G(X, U) and of the function C| the optimal control
problem defined in Equation A.6 can be stated as the problem of finding the path
of minimal cost from the initial node xy to any of the terminal nodes in S.

As already mentioned, the solution strategy of ant colony optimization is based
on the iterated generation of multiple paths on a graph that encodes the opti-
mization problem under consideration. As it will be defined in the following, this
graph is obtained as a transformation of the graph G consisting in an aggregation
of nodes. In previous works on ant colony optimization, the graph resulting from
such a transformation was the only graph taken into consideration explicitly. In
the treatment of the issue that we propose here, we move the focus on the original
graph G and on the properties of the transformation.

A.1.2 DMarkov and non-Markov representations

Consistently with the optimal control literature, we have called state each node of
the graph G(X, U) and, by extension, we call state graph the graph G itself. In the
following, the properties of the state graph will be discussed in the perspective of
the solution of the problem given in Equation A.3, and in relation to the solution
strategy of ant colony optimization. The ant metaphor will be used to visualize
abstract concepts. In particular, we will picture the state evolution of the system
given in Equation A.5, and therefore the incremental construction of a solution,
as the walk of an ant on the state graph G. In the following, the state x; at time ¢
will be called interchangeably the “partial solution,” the “state of the system,” or,
by extension, the “state of the ant.”

The state of a stochastic or deterministic dynamic system can be informally
thought of as the piece of information that gives the most predictive description
possible of the system at a given time instant.® Since what is known in the lit-
erature as Markov property is related precisely to the concept of state, it is clear
that the state, when correctly conceived, is always a state in the Markov sense:
When described in terms of its state, any discrete-time system is intrinsically
Markov.* It is therefore of dubious utility to state the Markov property with

3A detailed analysis of the concept of state in the context of ant colony optimization can be
found in Birattari et al. (2000). A general analysis of the concept of state is given in the classical
literature on linear system theory (Zadeh & Desoer, 1963), dynamic programming (Bellman,
1957), and optimal control (Bertsekas, 1995a).

“For a discrete Markov decision process, the following holds by definition: P(z¢41|z?,u?) =
P(x41|xe, up), where 2t = (24,241, 74—2,...) and u® = (ug, us—1,us—2,...) indicate the past

A.1. Formal foundation of ant programming 215

respect to a dynamic system tout court. Of much greater significance, it is to
assert the Markov property of a representation. Informally, we call a represen-
tation the structure in which an agent® frames experience: an agent refers to a
representation for describing the state of the system, for possibly keeping memory
of observed trajectories, and for performing predictions or control actions. In the
limit, a representation might bear the same information as the state. In this case
the Markov property holds for such representation. In the more general case, a
representation is of non-Markov type, that is, it gives less information than the
state. Being non-Markov is therefore a characteristic of the interaction system-
agent and is related to the fact that the agent describes the system in terms of a
representation that brings less information than a state description. In general,
such a shortcoming of the representation can be ascribed to the inability of the
agent to obtain information on the system, or to the deliberate choice of reducing
the amount of information to be handled. In this second case, we are facing a
quality-complexity dilemmoa.

In the context of ant colony optimization, as already pointed out, the basic
assumption is that better solutions can be obtained by exploiting memory about
previously generated ones. In this context, the discussion proposed above entails
two major issues. First, for most combinatorial optimization problems of interest
for which the state space grows exponentially with the size of the problem itself,
it is clear that it is infeasible to gather and use memory about solutions in terms
of a state description: it is very unlikely that a trajectory has exploitable super-
positions with previously generated ones. Therefore, in ant colony optimization
it is necessary to refer to a representation that reduces the information retained

history of x and u, respectively. Now, let us consider a time-varying system whose state dynamic
is given by x¢11 = Fy(, ut, &) where 2y and u; are respectively state and input at time ¢, and
the state disturbance & ~ P(&) is a white noise independent of the state and the input in the
following sense: P(&|zt,u') = P(&). Clearly, x141 is a random variable whose distribution
is P(xiy1|ze, ue) = P(Eq,,,) where Zq, = {&: Fy(w,us,&) = 2441} is the set of the values &
that, for the given x; and u¢, map to 41, and P(Z,,,) indicates the probability of observing a
& belonging to such a set. The Markov property holds when the above introduced time-varying
system is seen as a decision process. In particular:

P(zipalat,uf) =Y P(Eat, uf) =) P(€) = P(Bs,,,) = Plarile, w).

Tt41

(11
(11

Tt41

The treatment given above assumes that ¢ is a discrete variable. Thought the property holds
also for continuous &, the proof for the general case involves a more complex notation and goes
beyond the scope of this footnote.

Conversely, any discrete Markov decision process is a state description of a system in the
Kalman sense. It is straightforward to verify that any a:y1 ~ P(zy1|®t, us) can be written
in the form x:11 = Fi(a¢,ut, &) where the dependence on time ¢ accounts for the fact that in
the definition of the Markov property the distributions at different temporal instants need not
be the same. Since xy41 = Fy(x¢, ue, &) is the classical form in which the state dynamic of a
generic time-varying system can be given, the assertion is proved.

’By agent we mean any entity acting on or observing purposely the system at hand.

216 Annex A. A machine learning point of view on ant colony optimization

about the current state. This determines some sort of aliasing of distinct states
which induces a criterion for generalizing previous experience. Second, as it will
be made clear in the following, since a generic representation is non-Markov, it
is not possible to generate feasible solutions on the basis of the sole representa-
tion. Therefore, it is necessary to refer to a state description in order to insure
that a feasible solution be generated. These two issues, taken together, force to
devise a strategy for the incremental generation of solution that on the one hand
refers to a state description for guaranteeing feasibility, and on the other hand
refers to a representation for optimizing the quality of the generated solution.
The characteristics of the representation to be adopted reflect the design choice
regarding the trade-off associated with the quality-complexity dilemmma. Ant pro-
gramming makes explicit the necessity to refer both to a representation and to
a state description. Every step in the incremental construction of a solution
consists of two sub-steps: first, a set of feasible candidate actions is defined on
the basis of information pertaining to the state description; second, one of such
candidates is selected on the basis of its desirability expressed in terms of the rep-
resentation. In this sense, ant programming introduces the categories needed for
understanding some mechanisms already adopted in ant colony optimization such
as, for instance, keeping and updating at each step the list of the components
whose inclusion into the solution under construction would make the latter un-
feasible. Such a list implicitly brings information about the state of the solution
construction process.

For the class of problems discussed here, a formal definition of a represen-
tation can be given with reference to the state graph G(X,U). We define the
representation graph as the graph G.(Z,,U,), where Z, is the set of the nodes
and U, is the set of the edges. Furthermore, we call generating function of the
representation the function r : X — Z, that maps the set X of the states onto
the set Z,.. The function r associates therefore to every elements of X an element
in Z,: every element z; € Z, has at least one preimage in X, but generally the
preimage is not unique. The notation r~1({2;}) = {z,|r(x,) = 2} indicates the
set, of states x, whose image under r is z;. The function r induces an equivalence
relation on X: Two states x; and x; are equivalent according to the representa-
tion defined by r, if and only if r(x;) = r(x;). In this sense, a representation can
be seen as a partition of the set X.

In the following, we will call each z; € Z, a phantasma, adopting the term
used by Aristotle with the meaning of mental image.® With such a term we
want to stress that, from the point of view of an agent that observes the system
through the representation r, z; plays the role of the phenomenal perception, that
is, what is retained about the system at time ¢ for optimization purposes.”

6 Aristotle (384-322 BC) De Anima: “The soul never thinks without a mental image.” The
term phantasma [Gr. ¢dvtaoua, vision or mental image| was re-introduced in Medieval episte-
mology by Thomas Aquinas (1225-1274) in Summa Theologiae.

TAs an example, let us consider the case in which the set Z, coincides with the set of

A.1. Formal foundation of ant programming 217

Thanks to the notion of phantasma, we can give a precise interpretation to
the concept of representation in the context of the control problem given in
Equation A.6. As we pointed out before, the state evolution of the system given in
Equation A.5, can be described as the walk of an ant on G(X,U). Let us assume
now that the ant visits in sequence the nodes x, x4, ..., x,. The same sequence,
under the representation induced by r, appears as a sequence zg, 21, . . ., 2, Where
for each [, with 0 <1 <mn, z is the phantasma of the state z;, that is, z, = r(z;).
In the ant metaphor, we say that the ant, though moving on the state graph
G(X,U), represents its movement on the representation graph G,.(Z.,U,). In
control theory, the process that carries the state into what we call a phantasma,
is related to the concept of state-space reduction.®

In the same spirit of the definition of the set Z,, also the set of the edges
U, can be defined in terms of the generating function r. The set U, C Z, x Z,
is the set of the edges (z, z;) for which an edge (x;,x;) € U exists on the state
graph such that x; and x; are the preimages under 7 of 2 and z;, respectively.
Formally:

U, = {(zl,zj> | W, xj) €Uz =r(xy), zj = r(xj)}.

When the system is described through a generic representation r, the subset
U.(t) C U, of the admissible control actions at time ¢ cannot usually be described
in terms of the phantasma z; alone, but needs for its definition the knowledge of
the underlying state z;. In other words, for the generic generating function r, the
phantasma z; does not bring the same information as the state x; and therefore
the corresponding representation is non-Markov. The adoption of a non-Markov
representation is by no means free from complications. While on the graph G
every (partial) path is a (partial) feasible solution and wvice versa, on G, this
property does not hold anymore. As far as the construction of feasible solutions
is concerned, G is not therefore superseded by G,: As anticipated before, the
graph G, and the information stored on it are used for optimizing the construction
of a solution while the graph G is used for guaranteeing feasibility. In any case,
because of the loss of topological information induced by the transformation from
G to G, and since the optimization process is based on G,, in the general case
only sub-optimal solutions will be obtained.

solution components Y and r : [xy,us] — wug. This is the typical transformation adopted in
the applications of ant colony optimization to the traveling salesman problem and to other
combinatorial optimization problems. For this reason, such a transformation will be denoted
in the following as raco.

8Yet, the result of a state-space reduction does not have a standard name in control theory
and the various terms used always bring a direct reference to the concept of state: for example,
reduced state. It is just in order to underline the important qualitative difference between the
properties of the state and those of the result of a state-space reduction, that we introduce here
the term phantasma to denote the latter.

218 Annex A. A machine learning point of view on ant colony optimization

The parallel of the weight function C' of G for the graph G, cannot be defined
in a straightforward manner for a generic r. Moreover, it results more useful to
define the weights of the edges of the graph G.(Z,,U,) so that they describe the
quantity that in ant colony optimization is called pheromone trail. The function
T : U, — R will be used in the process of selecting an action by an ant when
perceiving a given phantasma, and will be iteratively modified in order to improve
the quality of the solutions generated. The definition of the function 7" will be
given in Section A.1.3.

A.1.3 Ant programming

In this section we introduce ant programming as a new class of algorithms that deal
with the optimization problems defined in Equation A.3 under the form described
by Equation A.6. Ant programming is inspired by ant colony optimization, and from
the latter it inherits the essential features, the terminology and the underlying
philosophy. The aim of this section is mostly speculative: we do not describe a
specific algorithm, but rather a class of algorithms, in the sense that we define a
general resolution strategy and an algorithmic structure where some components
are functionally specified but left uninstantiated.

The three phases of ant programming

Two are the essential features of ant programming. The first is the incremental
Monte Carlo generation of complete paths over the state graph G, on the basis of
desirability information provided by the function 7" associated with the represen-
tation graph G,. The second is the update of the desirability information in G,
on the basis of the cost of the generated solutions and the use of such informa-
tion to bias subsequent generations. These two features are described in terms
of the three phases that, when properly iterated, constitute ant programming: At
each iteration, a new set of ants, hereafter called a cohort, is considered. Each
ant in the cohort undergoes a forward phase that determines the generation of
a path, and a backward phase that states how the costs experienced along such
a path should influence the generation of future paths. Finally, each iteration is
concluded by a merge phase that combines the contribution of all the ants of the
cohort. The three phases forward, backward, and merge are in turn characterized
by the three operators m, v, and o respectively.

The forward phase. Using the terminology of ant colony optimization and in
the light of the formalization given in Section A.1.2, ant programming metaphori-
cally describes each Monte Carlo run as the walk of an ant over the graph G(X, U),
where at each node a random experiment determines the following node. In the
ant metaphor, the random experiment is depicted as a decision taken by the
ant on the basis of a probabilistic policy parameterized in terms of the function

A.1. Formal foundation of ant programming 219

T, usually called the pheromone trail, defined on the set of edges of the graph

gr(Zra Ur)

The forward phase can be described as follows: Let us suppose that after ¢
decision steps the partial solution built so far is (ug, ..., u;—1). The state of the
solution generation process is therefore z; = (ug,...,u;—1). In the ant metaphor,

this fact is visualized as an ant being in the node z; of G(X, U). The ant perceives
the state z; in terms of the phantasma z; = r(x;). In the general case, it is not
possible to express the set U,.(t) of admissible actions available to the ant when
in z; only in terms of z; itself, and of the information given by G,. The set U,(t)
of the admissible actions at time ¢ is indeed:

Ur(t):Ur(zt|xt):{(zt, 1) € Uy | 2 = (), 3u € Ulwy) : 20 = ([, u])}.

The decision of the ant consists in the selection of one element from the set
U,.(z¢|z¢) of the available transitions, as described at the level of the graph G,.
Once an element, say (z;, z41), is selected, the partial solution is transformed
according to Equation A.4 and Equation A.5: x;1 = [z, w] = (ug, ..., w1,),
where 2,11 € 171 ({2,41}) is one of the preimages of the phantasma z,. In terms
of the metaphor, this state transition is described as a movement of the ant to
the node x;y; of G which in turn is perceived by the ant as a movement to the
phantasma zq = r(x;) on G,.

The decision among the elements of U, (z|x;) is taken according to the first
operator of ant programming: the stochastic policy m. Given the current phan-
tasma and the set of admissible actions U,(z|x;), the policy selects an ele-
ment of U,(z|z;) as the outcome of a random experiment whose parameters
are defined by the weights T'((zt, z:+1)) associated with the edges U, (z|z;) of the
graph G,(Z,,U,). Accordingly we will adopt the following notation to denote the
stochastic policy:

(2 Up(2]22); T, (s1)0)) - (A7)

With the notation 7’|y, (z,|z,) We want to suggest that, when in 2, the full knowl-
edge of the function 7' is not strictly needed to select an element of the set
U, (zt|xt). Indeed it is sufficient to know the restriction of 7" to the subset U, (z¢|z¢)
of the domain U,.° The function 7" plays the role of parameter of the policy =:
changing T" will change the policy itself.

In relation to the definition of the policy , it is worth noticing here how the
decision process uses the information contained in the two graphs G and G,: The
decision is taken on the basis of information pertaining to the graph G,, restricted
by the knowledge of the actual state x; which in turn is a piece of information
pertaining to the graph G.

9This fact is the expression of one of the feature of ant programming, namely the locality of
the information needed by the ant in order to take each elementary decision. Such a feature
plays and important role in the implementation, allowing a distribution of the information on
the graph of the representation G,.

220 Annex A. A machine learning point of view on ant colony optimization

Given the abstract definition proposed in Equation A.7, of the policy 7, the
forward phase can be defined as the sequence of steps that take one ant from the
initial state xg, to a solution, say s = x,, of the original combinatorial problem
defined in Equation A.3. Each of such steps is composed of three operations:
first define, on the basis of the current state z;, the set U,.(z|x;) of the available
transitions; second select a transition on G,; and third move on G from the
current node x; to the neighboring node x;.1. Formally, the single forward step
is described as:

(zt, Z£+1> = 71-(Zta Ur (2] 24); TlUr(Zt\zt));
Ti41 =]:(%a (2, Zzlf+1>); (A.8)
Zip1 = 1(T41),

where the operator 7 is the stochastic policy that indicates the transition to be
executed as seen on the graph G,, and where with the operator F we denote the
operation of selecting one preimage ;41 of z;,; and moving to it on the graph G
from the current state x;. Such a movement on G will be indeed “perceived” by
the ant as a movement to the phantasma 21 = r(2441) = 24, as requested by
the policy .

The backward phase. The ultimate goal of ant programming is to find a pol-
icy 7, not necessarily stochastic, such that a sequence of decisions taken according
to m leads an ant to define the solution § which minimizes the cost function f of
the original optimization problem given in Equation A.3.

Since the generic policy given in A.7 is described parametrically in terms of
the function 7', that is, in terms of the weights associated to the edges of the
graph G,, a search in the space of the policies amounts to a search in the space
of the possible weights of the graph G, itself. From a conceptual point of view,
the function 7" is to be related to Hamilton’s principal function of the calculus
of variations, and to the cost-to-go and value function of dynamic programming
and reinforcement learning. More precisely, the function 7" can be closely re-
lated to the function that in the reinforcement learning literature is known as
“state-action value function,” and that is customarily denoted by the letter Q).
In fact, T'((z;, z;11)) determines, as to Equation A.7, the probability of selecting
the action “go to phantasma z;11” when the current phantasma is z;. It therefore
associates to the phantasma-action pair, a number which represents the desir-
ability of performing such an action in the given phantasma. In this respect, it
is clear the similarity with the role of the function () in reinforcement learning.*’
The value of T'((z;, z;11)) is generally given as a statistic of the observed cost
of paths containing the transition (z;, z;11). It therefore brings information on
the quality of the solution that can be obtained by “going to 2z;41” when in z;.

19 An important difference is precisely that the function @ supposes a direct knowledge of the
state, while T refers to the phantasma. In reinforcement learning, the situation in which more
states are not perceived as distinct is termed perceptual aliasing (Whitehead & Ballard, 1991).

A.1. Formal foundation of ant programming 221

Also in this respect, it can be stated a parallel with the function () which indeed
informs on the long-term cost of a given action, provided that future actions are
selected optimally. In ant programming, as generally in reinforcement learning,
the search in the space of the policies is performed through some form of gen-
eralized policy iteration (Sutton & Barto, 1998). Starting from some arbitrary
initial policy, ant programming iteratively generates a number of paths in order
to evaluate the current policy and then improves it on the basis of the result of
the evaluation. At each iteration, therefore, a cohort of ants is considered, each
generating a solution through a forward phase. Once the solution is completed,
each ant traces back its path proposing at each visited phantasma an update of
the local values of the function 7" on the basis of the costs experienced in the
forward movement. This phase is denoted in the terminology of ant programming
as the backward phase of the given ant. The actual new value of T" is obtained by
some combination of the values proposed by the ants of the cohort. This phase
is denoted as the merge phase.

Let us now see in detail the backward phase for a given single ant. Let us consider
a complete path x = (z¢,x1,...,2,) over the graph G. If z = (zg,21,...,2,) is
the complete forward path as seen under r, and ¢ = (cy, ..., ¢;) is the experienced
sequence of costs, then the single step of the backward phase is:

2y = B(Zt—f—laz)a

T'({z0,200)) = (e, T),)
where the operator B indicates a single step backward on G,., along the for-
ward trajectory z. The operator v is the key element of the backward phase.
It has the role of proposing a new value for the weight associated to each vis-
ited edge (z,2111), on the basis of the sequence of costs experimented during
the forward phase, and of the current values of the function 7. Hence, in our
pictorial description of ant programming, this phase is pictured through an ant
that “traces back” its forward path and leaves on such a path some information.
From a logical point of view, the different strategies for propagating the informa-
tion gathered along a path are to be related to the different update strategies in
reinforcement learning. In particular, to propose values of 7" only for the visited
transitions and on the basis of the cost of the associated solution, is equivalent
to what in reinforcement learning is called Monte Carlo update (Sutton & Barto,
1998). On the other hand, it is equivalent to a Q-learning update (Watkins, 1989)
to propose a value of T" for a visited transition on the basis of the experienced
cost for the transition itself and of the minimum of the current values that T
assumes on the edges departing from the node to which the considered transition
leads. The details of the definition of the backward phase, and in particular of
the operator v are not given as part of the description of ant programming and
are left uninstantiated.

222 Annex A. A machine learning point of view on ant colony optimization

The merge phase. In the same spirit, we leave here undefined in its details
also the merge phase which combines the different functions 7" proposed by the
individual ants of the same cohort. At this level of our description it will be
sufficient to note that, for every transition (z, z;11) € U,, the actual new value
of T'({z, ze41)) will be some linear or nonlinear function of the current value of
T'({zt, zt41)), and of the different T7({z, z;41)), where j is the index ranging over
the ants of the cohort. The merge phase will be therefore characterized by the
operator o:

T({zer 2e41)) = 0 (T2t 2001)) TV ({2t 201)) T ({26, 2001)),). (A1)

Different possible instances of the operators v and ¢ will be discussed in a future
work.

The algorithm and the metaphor

The abstract definition of ant programming was given in previous sections in terms
of the operators 7, v, and o. In order to define an instance of the ant programming
class, such operators need to be instantiated. Together with the operators m, v,
and o, the other key element in the definition of an instance of the class, is the
generating function r that defines the relation between the state graph G and the
representation G,.. We will therefore denote an instance of ant programming with
the 4-tuple Z = (r, 7, v,0). Indeed, other elements are to be instantiated as, for
example, the number of ants composing a cohort and the way of initializing the
function 7. Anyway, such elements are either less relevant, or are to be defined
as a more or less direct consequence of the definition of Z.

In particular, the 4-tuple Z gives an operative definition of the function 7. As
seen in the previous sections, the generating function r, together with the graph
g, gives the topology of the graph G, and determines therefore the domain of the
function T'. The operator 7 defines how the values of T" are used in the decision
process, while the operators v and o define how the function 7" is to be modified
on the basis of the quality of the solutions obtained. According to the pictorial
description of ant programming, the function 7T is called pheromone trail and
defines the policy 7 followed by the ant during the forward walk. Once a solution s
is completed, the ant traces back its forward path and deposits its pheromone to
update the function 7. The role of the pheromone trails T is therefore to make
available the information gathered on a particular path by one ant belonging to
one given cohort, to other ants of a future cohort; it is therefore a form of inter-
cohort communication mediated by the graph G,. From the terminology adopted
in the studies on social insects (Grassé, 1959), it is customary to refer to such
indirect communication with the term stigmergy (Dorigo et al., 2000).

At this point, having defined the 4-tuple Z, we have completed the definition
of the elements that are necessary to handle the complexity of the combinatorial

A.1. Formal foundation of ant programming 223

problem given in Equation A.3 in the spirit of the solution strategy originally
suggested by ant colony optimization.

A.1.4 Discussion

Further research is needed on ant programming, In particular, it is of paramount
importance to gain a full understanding of the impact of the choice of r, the gen-
erating function of the representation, on the resulting algorithms. Such a func-
tion associates a phantasma to the current state and therefore can be informally
thought of as the “lens” under which the process of incremental construction of a
solution is seen. In this sense, “the ant never thinks without a phantasma” and, as
far as the decision process is concerned, this is to be understood as “the ant takes
decisions on the basis of the phantasma.” The generating function determines
therefore the information on the basis of which decisions will be taken. At the
extreme, the generating function might be a one-to-one mapping. In this case,
only one state is associated to a phantasma, and vice versa. As a consequence,
the state graph G and the representation graph G, have the same topological
structure and, therefore, the representation enjoys the Markov property. Accord-
ingly, we refer to this extreme instance of the ant programming class with the
name of Markov ants. Markov ants face directly the exponential explosion of the
number of edges of the graph G. Nevertheless, since r is a one-to-one mapping,
no two states are aliased in the representation. As a consequence, the policy that
according to Equation A.7, selects the action on the basis of the current phan-
tasma, indeed implicitly bases the choice on the actual underlying state. From
this fact, different appealing properties follow. It can be shown, for instance, that
an optimal policy exists, and that it is deterministic. The performance of Markov
ants can be improved if the pheromone trails 7" and the operator v are designed
in such a way that the Markov property of the representation is fully exploited.
This can be done by defining 7" as a costs-to-go function, and by allowing the
operator v to bootstrap (Sutton & Barto, 1998). In this way Markov ants would
reduce to an algorithm of the temporal difference class (Sutton & Barto, 1998).
Anyway, Markov ants are not meant to be implemented. The focus of ant pro-
gramming is indeed on problems whose Markov representation is computationally
intractable and, in such situations, Markov ants are ruled out by their very own
nature. Still, Markov ants remain of great theoretical interest.

Another class of instances of ant programming is of much greater practical interest.
These instances are characterized by the function 7,.,, as in Note 7, that asso-
ciates a phantasma with one and only one of the possible solution components.
The function r,., generates the representation used in almost all the implemen-
tations of ant colony optimization since the first “template” instance developed by
Marco Dorigo and colleagues (Dorigo et al., 1991; Dorigo, 1992) back in 1991.
Accordingly, we call Marco’s ants the instances of this class. Thanks to the

224 Annex A. A machine learning point of view on ant colony optimization

concepts introduced with the definition of ant programming, it becomes appar-
ent that the representation graph generated by r,., is much more compact than
the state graph. In order to compensate this drastic loss of information, most
of the instances of ant colony optimization adopt some additional device both to
guarantee the feasibility and to improve the quality of the solutions being built.
As far as feasibility is concerned, all instances of ant colony optimization use an
implicit description of the state graph usually in the form of a list of components
already included into the solution under construction. As far as quality is con-
cerned, two major approaches have been followed. In the first approach, some
additional a priori knowledge about the problem at hand, has been combined to
the estimate of the function T for the definition of the decision policy. In the
second approach, local optimization procedures, ad hoc tailored on the problem
at hand, have been used in order to improve the quality of the solutions gen-
erated by the ants. Some of the resulting implementations have been shown to
be comparable to or better than state-of-the-art techniques on several NP-hard
problems. Moreover, under “reasonable” assumptions on the characteristics of
the other components of the algorithm, ant colony optimization has been proved
to asymptotically converge in probability to the optimal solution (Gutjahr, 2000;
Stiitzle & Dorigo, 2002).

Ongoing research (Darquennes, 2005) is focusing on the possibility of designing
other instances of ant programming that, on the one hand, keep an eye on the
practical implementation, as Marco’s ants do, and that, on the other, try to
preserve as much as possible the properties of a state-space representation, going
therefore in the direction of Markov ants.

A.2 Model-based search?

The necessity to solve NP-hard optimization problems, for which the existence
of efficient exact algorithms is highly unlikely, has led to a wide range of heuris-
tic algorithms that implement some sort of search in the solution space. These
heuristic algorithms can be classified, similarly to what is done in the machine
learning field (Quinlan, 1993a), as being either instance-based or model-based.
Most of the classical search methods may be considered instance-based, since
they generate new candidate solutions using solely the current solution or the
current “population” of solutions. Typical representatives of this class are genetic
algorithms (Holland, 1975) or local search and its variants, such as, for example,
simulated annealing and iterated local search (Aarts & Lenstra, 1997). On the
other hand, in the last decade several new methods, which may be classified as
model-based search algorithms, have been proposed. In model-based search al-
gorithms, candidate solutions are generated using a parameterized probabilistic

This section is based on Zlochin, Birattari, Meuleau & Dorigo (2004).

A.2. Model-based search 225

Model Sample

Learning

Figure A.1: Schematic description of the model-based search approach.

model that is updated using the previously seen solutions in such a way that the
search will concentrate in the regions containing high quality solutions. In order
to avoid any terminological confusion, we would like to emphasize that the term
“model” is used here to denote an adaptive stochastic mechanism for generating
candidate solutions, and not an approximate description of the environment, as
done, for example, in reinforcement learning (Sutton & Barto, 1998).!' The gen-
eral approach is described schematically in Figure A.1. Some of the early works
exploiting the model-based approach, such as ant colony optimization (Dorigo,
1992; Dorigo et al., 1996; Dorigo & Di Caro, 1999; Dorigo & Stiitzle, 2004) and
population-based incremental learning (Baluja & Caruana, 1995), do not provide
an explicit description of the model-based idea. The first explicit description of
a solution process consisting in a series of suitably updated probability distribu-
tions on the solution space was given by De Bonet et al. (1997). More recently,
on the basis of concepts borrowed from the stochastic simulation field and, in
particular, from rare events estimation, Rubinstein (1999a) re-proposed the ideas
of De Bonet et al. and provided an extensive analysis of many details (de Boer
et al., 2004).

While the behavior of classical instance-based search methods has been thor-
oughly investigated and is relatively well understood, the model-based search
field is still little more than a collection of independently developed heuristic
techniques, without solid theoretical foundations. The goal of this research is to
provide a unifying framework that accommodates all these seemingly unrelated
methods and to analyze their similarities as well as their distinctive features.
The analysis of these methods within a common framework allows to discrimi-
nate between the essential elements of the algorithm and those that appear only
for historical reasons.

A well-established approach that belongs to the model-based search frame-
work is the ant colony optimization metaheuristic (Dorigo, 1992; Dorigo et al.,

" There is, however, a rather close connection between these two usages of the term “model”,
as the model adaptation in combinatorial optimization may be considered as an attempt to
model (in the reinforcement learning sense) the structure of the “promising” solutions.

226 Annex A. A machine learning point of view on ant colony optimization

Model Sample

Learning /ATXiliary

memory

Figure A.2: The model-based search with auxiliary memory.

1996; Dorigo & Di Caro, 1999; Dorigo & Stiitzle, 2004). The distinctive feature
of ant colony optimization is a particular type of probabilistic model, in which
a structure called construction graph is coupled with a set of stochastic proce-
dures called artificial ants. Ants have a two-fold function—they both generate
solutions and update the model’s parameters. Various model update rules have
been proposed within the ant colony optimization framework, but they are all of
a somewhat heuristic nature and are lacking a theoretical justification.

On the other hand, the stochastic gradient ascent (Robbins & Monro, 1951;
Bertsekas, 1995b) and the cross-entropy (Rubinstein, 1999a) methods provide a
systematic way for the derivation of model update rules in the model-based search
framework, without being restricted to a particular type of probabilistic model.
As we show in the following, both the stochastic gradient ascent and the cross-
entropy methods can be cast into the ant colony optimization framework, and, in
fact, in some cases the cross-entropy method leads to the same update rule as
does stochastic gradient ascent. Moreover, quite unexpectedly, some existing ant
colony optimization updates are re-derived as a particular implementation of the
cross-entropy method.

It should be noted that Figure A.1 describes the model-based search approach
in its “pure” form, where the model update is based solely on the current solutions’
sample. However, many model-based search algorithms update the model using
not only the current sample, but also some additional information gathered during
the search and stored in the auxiliary memory, as described in Figure A.2. In
particular, a recently developed class of evolutionary algorithms called estimation
of distribution algorithms (Pelikan et al., 1999; Larranaga & Lozano, 2001) may
be considered a particular realization of model-based search with an auxiliary
memory that stores high-quality solutions encountered during the search. Not
only all these algorithms belong to the model-based search approach, but many of
them are actually closely related to the ant colony optimization and cross-entropy
frameworks, as we show in the following.

The remaining of the section is structured as follows. In Section A.2.1 we describe

A.2. Model-based search 227

model-based search in general terms and present stochastic gradient ascent and
cross-entropy as particular realizations of the model-based search approach. The
relationship between the two methods is also discussed in that section.

Section A.2.2 presents the ant colony optimization metaheuristic and discusses
the implementation of the cross-entropy and the stochastic gradient ascent meth-
ods using the ant colony optimization-type construction mechanism as a model.

In Section A.2.3 the estimation of distribution algorithms are presented as a
particular realization of model-based search with auxiliary memory. An overview
of existing estimation of distribution algorithms is given and their relations to the
ant colony optimization framework and the cross-entropy method are discussed.

Section A.2.4 draws some conclusions and outlines several interesting future
research directions.

A.2.1 The model-based search framework

Let us consider a minimization problem!? (S, f), where S is the set of feasible
solutions, f is the objective function, which assigns to each solution s € S a cost
value f(s). The goal of the minimization problem is to find an optimal solution
s, that is, a feasible solution of minimum cost. The set of all optimal solutions is
denoted by S.

At a very general level, the model-based search approach attempts to solve
this minimization problem by repeating the following two steps:

e Candidate solutions are constructed using some parameterized probabilistic
model, that is, a parameterized probability distributions defined over the
solution space.

113

e The candidate solutions are used to modify the model™ in a way that is

deemed to bias future sampling toward low cost solutions.

As it has been already mentioned, one may also use an auxiliary memory, in which
some important information collected during the search is stored. The memory,
which may store, for example, information on the distribution of the cost values
or a collection of high-quality solutions, can be later used for the model update.
Moreover, in some cases we may wish to build a new model at every iteration,
rather than to iteratively update the same one.

For any algorithm belonging to this general scheme, two components, corre-
sponding to the two steps above, need to be instantiated:

e A probabilistic model allowing an efficient generation of candidate solutions.

e An update rule for the model’s parameters and/or structure.

12The obvious changes must be done if a maximization problem is considered.
13The structure of the model may be fixed in advance, with solely its parameters being
updated, or alternatively, the structure of the model may be allowed to change as well.

228 Annex A. A machine learning point of view on ant colony optimization

In the remainder of this section we discuss two systematic approaches within the
model-based search framework, namely the stochastic gradient ascent method
and the cross-entropy method, which might be used in order to define the second
component, that is, the update rule for the model. We show that, although
having a completely different motivation, the two approaches are closely related.
In fact, we show that a particular version of the cross-entropy method produces
the same updates as the stochastic gradient ascent method does.

Throughout the remainder of this section we assume that a space M of possi-
ble probabilistic models is given and that it is expressive enough. Specifically, we
need to assume that for every possible solution s, the distribution &, (defined as
Is(s') =1,if ' = s, and d5(s") = 0 otherwise) belongs to M. This condition may
actually be relaxed by assuming instead that d, is in the closure of M, that is,
that there exists a sequence P, € M for which lim P, = §,. This “expressiveness”

l—o0

assumption is needed in order to insure that the sampling can concentrate in the
proximity of any solution, the optimal solution in particular.

The stochastic gradient ascent method

Let us assume that the model structure is fixed, and the model space, M, is
smoothly parameterized by 7 € & C R™, where ® is an m-dimensional parameter
space. In other words, M = {Pr|7 € ®} and for any s € S the function Pr(s)
is smooth!* with respect to 7.

The original optimization problem may be replaced with the following equiv-
alent continuous mazimization problem:

T = arngaXS(T), (A.11)

where £(7) = ErQy(s), E7 denotes expectation with respect to Pr, and Q¢(s)
is a fixed quality function, which is strictly decreasing with respect to f, that is,
Qs(s1) < Qsls2) & Fls1) > f(s).

It may be easily verified that, under the “expressiveness” assumption we made
about the model space, the support of Pz (that is, the set {s|Pz(s) > 0}) is
necessarily contained in S. This implies that solving problem (A.11) is equivalent
to solving the original combinatorial optimization problem.

One may then search for an optimum (possibly a local one) of the problem
given in Equation A.11 using a gradient ascent method—in other words, gradient
ascent may be used as a heuristic to change 7 with the goal of solving A.11:

— Start from some initial guess 7°.

— At stage t, calculate the gradient VE(7") and update 7! to be
T+ a,VE(T"), where o is a step-size parameter.

4Technically, the smoothness assumption means that the function is continuously differen-
tiable.

A.2. Model-based search 229

The gradient can be calculated, bearing in mind that VIn f = L as follows:

VE = VErQs(s) VZQf)Pr(s ZQf (s)VPr(s)

SpILICOIE VP];T(() = 3 PrQs VI Pris

= ErQ;(s)VIn Pr(s). (A.12)

However, the gradient ascent algorithm cannot be implemented in practice, as for
its evaluation a summation over the whole search space is needed. A more prac-
tical alternative would be to use stochastic gradient ascent (Robbins & Monro,
1951; Bertsekas, 1995b), which replaces the expectation in Equation A.12 by an
empirical mean of a sample generated from Pr.

The update rule for the stochastic gradient is:

T =T'+ 0, Qs(s)VIn Pre(s), (A.13)

SESt

where S; is the sample at iteration ¢.

In order to derive a practical algorithm from the stochastic gradient ascent
approach, we need a model for which the derivatives of In Pr can be calculated
efficiently. In Section A.2.2 we show how this can be done in the context of the
iterative construction scheme used in the ant colony optimization metaheuristic.

The cross-entropy method

The basic ideas behind the cross-entropy method for combinatorial optimization
can be already found in De Bonet et al. (1997). However, the full development
of the method was given in the works of Rubinstein and co-workers, who have
initially proposed this method as a tool for rare events estimation in stochastic
simulation (Rubinstein, 1999b; Lieber, 1999) and have later adapted it to the
field of combinatorial optimization (Rubinstein, 1999a, 2001). In this overview
we focus on the central idea of cross-entropy and we propose a presentation of
the main concepts without reference to rare events estimation. This presentation
should appear more straightforward to the operations research community.?

Starting from some initial distribution Py € M, the cross-entropy method
inductively builds a series of distributions P, € M, in an attempt to increase the
probability of generating low-cost solutions after each iteration. A tentative way
to achieve this goal is to set P, ; equal to

P x PQy, (A.14)

5For the treatment of further details, we refer the interested reader to the original works of
Rubinstein (1999a).

230 Annex A. A machine learning point of view on ant colony optimization

where)y is, again, some quality function, depending on the cost value.

If this were possible, then, for time independent quality functions,'® after n
iteration we would obtain P, o< Py(Qs)". Consequently, as n — oo, P, would
converge to a probability distribution restricted to S. Unfortunately, even if
the distribution P; belongs to the family M, the distribution P as defined by
Equation A.14 does not necessarily remain in M,'” hence some sort of projection
is needed.

Accordingly, a natural candidate for P, is the distribution P € M that
minimizes the Kullback-Leibler divergence (Kullback, 1959), which is a commonly
used measure of misfit between two distributions:

P P) E P
(PIP) s)
or equivalently the cross-entropy:

—ZP)In P(s

Since P o P,Qy¢, the cross-entropy minimization is equivalent to the following
maximization problem:

Py = argllgle%(ZPt(s)Qf(s) In P(s). (A.15)

~g>
0:)

It should be noted that in the cross-entropy method, differently from what done
by stochastic gradient ascent, the quality function is only required to be non-
increasing with respect to the cost and may also be time-dependent, either de-
terministically or stochastically. For example, it might depend on the points
sampled so far. One common choice is Q%(s) = I(f(s) < fi), where I is an in-
dicator function, and f; is, for example, some quantile (for example, lower 10%)
of the cost distribution during the last iteration.'® Another quality function con-
sidered in Rubinstein (1999a) is a Boltzmann function Qs(s) = exp(—f(s)/v),
where 7 is changed adaptively based on the sample.

Similarly to the gradient ascent algorithm, the maximization problem given
in Equation A.15 cannot be solved in practice, as the evaluation of the function
> Pi(s)Qf(s)In P(s) requires summation over the whole solution space, and
once again a finite sample approximation is used instead:

Py = argmaXZQf)In P(s), (A.16)

SESt

16Gimilar result can be shown for many time-dependent quality functions.

17As a simple example, consider the case where M contains all distributions over the binary
variables x,y such that 2 and y are independent, and the quality function is Q(x,y) = 2, if
x=y=0, and 1 otherwise. If, for example, P is the uniform distribution (hence in M), then
P(z,y) =2, ifz=y=0, and 1 & otherwise, and it can be easily verified that Py is not in M.

18 This klnd of quality functlon was also used in De Bonet et al. (1997).

A.2. Model-based search 231

where S; is a sample from P,.

Note that if the quality function is of the form I(f(s) < ¢), then Equa-
tion A.16 defines a mazimum-likelihood model, with the sample used for estima-
tion being restricted to the top-quality solutions. With other quality functions,
Equation A.16 may be interpreted as defining a weighted maximum-likelihood
estimate.

In some relatively simple cases, some of which are discussed in Sections A.2.2
and A.2.3, the problem given in Equation A.16 can be solved exactly. In general,
however, the analytical solution is unavailable. Still, even if the exact solution is
not known, some iterative methods for solving this optimization problem may be
used.

A natural candidate for the iterative solution of the maximization problem
given in Equation A.16, is gradient ascent:

— Start with 7/ = 7", Other starting points are possible, but this is the
most natural one, since we may expect 7'*! to be close to 7.

— Repeat:
T T +a) s, Q(s)VInPri(s),

where « is a step-size parameter

Until some stopping criterion is satisfied.
— Set Tt =T

It should be noted that, since the new vector 7**! is a random variable, depend-
ing on a sample, there is no use in running the gradient ascent process till full
convergence. Instead, in order to obtain some robustness against sampling noise,
we may use a fixed number of gradient ascent updates. One particular choice,
which is of special interest, is the use of a single gradient ascent update, leading
to the updating rule:

T =T'+ 0, Qs(s)VInPre(s), (A.17)

SESt

which is identical to the stochastic gradient ascent update given in Equation A.13.
However, as it was already mentioned earlier, the cross-entropy method imposes
less restrictions on the quality function (for example, allowing it to change over
time), hence the resulting algorithm may be seen as a generalization of stochastic
gradient ascent.

As with stochastic gradient ascent, in order to have an efficient algorithm, a
model is needed for which the calculation of the derivatives can be carried out in
reasonable time. In the next section, we show that this is indeed possible for the
models typically used in ant colony optimization.

232 Annex A. A machine learning point of view on ant colony optimization

A.2.2 Ant colony optimization

So far, we have limited our discussion to the generic approaches for updating the
model. However, this is only one out of the two components needed in any model-
based search algorithm. In order to complete the description of a model-based
search algorithm, a probabilistic model needs to be specified.

In this section we describe the ant colony optimization metaheuristic (Dorigo,
1992; Dorigo et al., 1996; Dorigo & Di Caro, 1999; Dorigo & Stiitzle, 2004) that
employs a particular type of probabilistic model in which a structure called con-
struction graph is coupled with a set of stochastic procedures called artificial ants.
The artificial ants build solutions in an iterative manner using local information
stored in the construction graph.'® After describing the probabilistic model, we
present several updates that were suggested in the past within the ant colony
optimization framework as well as the ones derived from the stochastic gradient
ascent algorithm and the cross-entropy method.

Ant colony optimization—The probabilistic model

We assume that the combinatorial optimization problem (S, f) is mapped on a

problem that can be characterized by the following list of items:?°

A finite set C = {c1, ¢a, ..., cn. } of components.

A finite set X of states of the problem, defined in terms of all the possible
sequences T = (¢, Cj, ..., Cy,...) over the elements of C. The length of a
sequence x, that is, the number of components in the sequence, is expressed
by |z|. The maximum length of a sequence is bounded by a positive constant
n < +00.

e The set of (candidate) solutions S is a subset of X', that is, S C X.

A set of feasible states X , with X C X, defined via a set of constraints 2.
e A non-empty set S of optimal solutions, with S € X and S C S.
Given the above formulation, ants build candidate solutions by performing ran-

domized walks on the completely connected, weighted graph G = (C, £, T), where
the vertices are the components C, the set L fully connects the components C,

19Tt should be noted that the same type of model was later (although independently) used in
the cross-entropy framework under the name associated stochastic network (Rubinstein, 1999a,
2001).

20How this mapping can be done in practice has been described in a number of earlier works
on the ant colony optimization metaheuristic. See, for example, Dorigo & Di Caro (1999), Dorigo
et al. (1999), or Dorigo & Stiitzle (2004).

A.2. Model-based search 233

and 7 is a vector gathering so-called pheromone trails 7.2* The graph G is called
construction graph.

Each ant is put on a randomly chosen vertex of the graph and then it performs
a randomized walk by moving at each step from vertex to vertex in the graph in
such a way that the next vertex is chosen stochastically according to the strength
of the pheromone currently on the arcs. While moving from one node to another
of the graph G, constraints {2 may be used to prevent ants from building infeasible
solutions. Formally, the solution construction behavior of a generic ant can be
described as follows:

ant_solution_construction

— for each ant:

— select a start node ¢; according to some problem dependent criterion,
—set k=1and 2 = (c1).

— While 2 = (¢1,¢5,...,¢) € X and z, ¢ S and J,, # 0 do:
at each step k, after building the sequence z;, select the next node
(component) ¢4, randomly following

F(Ckvc) (T(Cka C))

Pr(cpy1 = clzg) = | > Flery) (T(Ck,y)>

(ckvy)EJxk

(

if (cx,c) € Jy,,

L 0 otherwise;

(A.18)
where a connection (¢, y) belongs to .J,, if and only if the sequence
Ty = {1, ..., ¢k, y) satisfies the constraints (that is, if ;1 €)E')
and F{; ;)(z) is some monotonic function—most commonly, 2*7(l, j),
where o, 3 > 0 and 7 are heuristic “visibility” values (Dorigo et al.,
1996). If at some stage z ¢ S and J,, = 0, that is, the construction
process has reached a dead-end, the current state z;, is discarded.??

For certain problems, one may find useful to use a more general scheme, where
F depends on the pheromone values of several “related” connections, rather than
just a single one. Moreover, instead of the random-proportional rule above, dif-

ferent selection schemes, such as the pseudo-random-proportional rule (Dorigo &
Gambardella, 1997), may be considered.

21Pheromone trails can be associated to components, connections, or both. In the following,
unless stated otherwise, we assume that the pheromone trails are associated to connections, so
that 7(I,7) is the pheromone associated to the connection between components ! and j. It is
straightforward to extend the algorithms to the other cases.

22This situation may be prevented by allowing ants to build infeasible solutions as well. In
such a case an infeasibility penalty term is usually added to the cost function. However, it
should be noted that in most settings ant colony optimization was applied to, the dead-end
situation does not occur.

234 Annex A. A machine learning point of view on ant colony optimization

The probabilistic rule given in Equation A.18, together with the underlying
construction graph, implicitly defines a first component of the model-based search
algorithm—the probabilistic model. Having chosen the probabilistic model, the
next step is to choose the parameter update mechanism. In the following, we
describe several updates that were suggested in the past within the ant colony
optimization framework as well as the ones derived from the stochastic gradient
ascent algorithm and the cross-entropy method.

Ant colony optimization—The pheromone updates

Many different schemes for pheromone update have been proposed within the ant
colony optimization framework. For an extensive overview, see Dorigo & Di Caro
(1999), Dorigo & Stiitzle (2002), and Dorigo & Stiitzle (2004). Most pheromone
updates can be described using the following generic scheme:

Generic_AntColonyOptimization_Update
- Vs e St7v(l7]) €s: T(lv.]> N T(lvj) + Qf<5|51, tt St)

-V, j): 7(l,j) < (1 —p)-7(l,7), where S, is the sample in the [-th
iteration, p, 0 < p < 1, is the evaporation rate, and Q¢(s|S1, ..., S:) is
some “quality function”, which is typically required to be non-increasing
with respect to f and is defined over the “reference set” S,.

Different ant colony optimization algorithms may use different quality functions
and reference sets. For example, in the very first ant colony optimization algorithm,
Ant System (Dorigo et al., 1991, 1996), the quality function was simply 1/ f(s) and
the reference set S; = S;. In a more recently proposed scheme, called iteration best
update (Dorigo & Gambardella, 1997), the reference set was a singleton containing
the best solution within S;—if there were several iteration-best solutions, one of
them was chosen randomly. For the global-best update (Stiitzle & Hoos, 1997;
Dorigo & Gambardella, 1997), the reference set contained the best among all the
iteration-best solutions—and if there were more than one global-best solution,
the earliest one was chosen.

In Dorigo et al. (1996) an elitist strategy was introduced, in which the update
was a combination of the previous two.

In case a good lower bound on the optimal solution cost is available, one may
use the following quality function (Maniezzo, 1999):

_ fs)=LB\ __ [f—[(5)
Qf(SlSl,. . .,St) = 1T0 (1 — f—ﬁ) = T0 m,

where f is the average of the costs of the last k solutions and LB is the lower
bound on the optimal solution cost. With this quality function, the solutions
are evaluated by comparing their cost to the average cost of the other recent
solutions, rather than by using the absolute cost values. In addition, the quality

A.2. Model-based search 235

function is automatically scaled based on the proximity of the average cost to the
lower bound.

A pheromone update, which slightly differs from the generic update described
above, was used in ant colony system (Dorigo & Gambardella, 1997). There the
pheromones are evaporated by the ants online during the solution construction,
hence only the pheromones involved in the construction evaporate.

Two additional modifications of the generic update were described in the lit-
erature. In the first, MAX-MTIN Ant System (Stiitzle & Hoos, 1997), maximum
and minimum pheromone trail limits were introduced. With this modification,
the probability to generate any particular solution is kept above some positive
threshold, which helps preventing search stagnation and premature convergence
to suboptimal solutions.

The second modification, proposed under the name hyper-cube ant colony
optimization (Blum et al., 2001; Blum, 2004) in the context of combinatorial
problems with binary coded solutions, is to normalize the quality function, hence
obtaining an automatic scaling of the pheromone values:

Zsest Qf(s)sl
Y s, Qr(s)

While all the updates described above are of a somewhat heuristic nature, the
stochastic gradient ascent and the cross-entropy methods allow to derive param-
eters update rules in a more systematic manner, as we show in the next two
subsections.

n—(1—p)n+

The stochastic gradient ascent update

In Section A.2.1 an update rule for the stochastic gradient was derived:

TH =T+ o Z Qf(s)VIn Pre(s),

SESt

where S; is the sample at stage ¢.

As shown in Meuleau & Dorigo (2002), in case the distribution is implicitly
defined by an ant colony optimization-type construction process, parameterized by
the vector of the pheromone values, 7, the gradient V In Pr(s) can be efficiently
calculated. The following calculation is a generalization of the one in Meuleau &
Dorigo (2002).

From the definition of ant_solution_construction, it follows that, for s =
<Cl, Co, .. .>,

Is|—1

P']'(S) = H P']' (Ck—I—l

k=1

prefy(s)).

236 Annex A. A machine learning point of view on ant colony optimization

where pref,(s) is the k-prefix of s, and consequently

|s| -1

Vn Pr(s Z Vin Pr <ck+1

prefy(s)).

Finally, given a pair of components (I, j) € C?, using Equation A.18 and assuming
differentiability of F', it is easy to verify that:

o [f |l =c¢; and j = ¢y 1 then

% {ln Pr (ckﬂ)prefk(s))} =

it | (F(09) [3 #()) =

(Ly)EJa,
oL () - w3 #(rty)} -
F,(T(l,j))/F(T(l7j>) —F’(T(LJ'))/ > F(rty) =

(1Y) €Ty,

F'(7(.4)
A)/(“J)Xe;]xkF<le) F(rtg)
{1—P7<

pret () 6 (r(0.9),

where G = F'/F, and the subscript of F' was omitted for the clarity of
presentation.

o If] = ¢t and j # ¢4 then (by a similar argument)

d1n <P7 (ck+1)prefk(8)>)

ar(l,J)

_p7<

prefy (s))G(T(l,j)),
o if [# ¢, then Pr(cgy1|prefy,(s)) is independent of 7(l, 7) and

Oln (P’]’(Ck+1 Prefk(3)>>
or(l,7)

= 0.

By combining these results, the following pheromone update rule is derived:

A.2. Model-based search 237

StochasticGradientAscent_Update

- Vse S, V(l,j)es:7(l,5) — 71, j) + Qs (s)G(T(L, 7)),
- Vs={c1,...,Cp,...) € S;,Vl =c¢p, with 1 <k < |s],Vj:
7(l,J) < 71,) — auQp(s) Pr(jlprefi(s))G(7(L, 7).
)

Hence any connection (I,) used in the construction of a solution is reinforced
by an amount o,Q¢(s)G(7(l,7)), and any connection considered during the con-
struction has its pheromone values evaporated by an amount

Qs (s)Pr(j] prefi(s))G(7(1,5)).

Note that, if the solutions are allowed to contain loops, a connection may be
updated more than once for the same solution.

In order to guarantee stability of the resulting algorithm, it is desirable to
have a bounded gradient V In Pr(s). This means that a function F', for which
G = F'/F is bounded, should be used. Meuleau & Dorigo (2002) suggest using
F(-) = exp(+), which leads to G = 1. It should be further noted that if, in
addition, @y = 1/f and a; = 1, the reinforcement part becomes 1/f as in the
original Ant System proposed by Dorigo et al. (1996).

The cross-entropy update

As we have shown in Section A.2.1, the cross-entropy approach requires solving
the following intermediate problem:

Py= argmaXZQf)In P(s).

seS

Let us now consider this problem in more details when a probabilistic model of
the ant colony optimization-type is adopted.
Since at the maximum the gradient must be zero, we have:

> Q4(s)VIn Pr(s) = 0. (A.19)

seS

In some relatively simple cases, for example when the solution s is represented
by an unconstrained string of bits of length n, (sq,...,s,), and there is a single
parameter 7; for the I-th position in the string, such that Pr(s) =[], pr(s1), the
system of Equations A.19 reduces to a set of independent equations:

dinp, dln(1 - p,
npzZQf n pl ZQf l=1,...,n (A.QO)

SES SESt
s;=1 s51=0

238 Annex A. A machine learning point of view on ant colony optimization

which may often be solved analytically. For example, for p,, = 7; it can be verified
that the solution of Equation A.20 is simply

D =T = Zsest Qf(8>3l
" 2ses, Qr(s)

and, in fact, a similar solution also applies to a more general class of Markov
chain models (Rubinstein, 2001).

Now, since the pheromone trails 7; in Equation A.21 are random variables,
whose values depend on the particular sample, we may wish to make our al-
gorithm more robust by introducing some conservatism into the update. For
example, rather than discarding the old pheromone values, the new values may
be taken to be a convex combination of the old values and the solution of Equa-

tion A.21:

Lises Qr(3)st
" Y)
The resulting update is identical to the one used in the hyper-cube ant colony
optimization (Blum et al., 2001; Blum, 2004).

However, for many cases of interest, Equations A.19 are coupled and an an-
alytical solution is unavailable. Nevertheless, in the actual implementations of
the cross-entropy method (Rubinstein, 2001), the update was of the form given
in Equation A.21—with some brief remarks about using Equation A.22—which
may be considered as an approximation to the exact solution of the cross-entropy
minimization problem given in Equation A.16.

Since, in general, the exact solution is not available, an iterative scheme such
as gradient descent could be employed, as described in Section A.2.1. As we
have shown in the previous section, the gradient of the log-probability may be
calculated as follows:

(A.21)

e (1—=p)n+ (A.22)

o [f | =c, and j = cgyq, then

dln (PT (c/m prefk(S)))

o7(1.) - (1=rl0

o If [= ¢, and j # ciy1, then

dIn (PT (cren pre&(s)))

or(l, j)

pret ()) G (r(1.3)

= _p,[<j

prefi(s)) G((0,)):

o If [# ¢, then
Oln <PT(Ck+1 prefk(3>>>
or(l,7)

=0.

A.2. Model-based search 239

and these values may be plugged into any general iterative solution scheme of the
cross-entropy minimization problem, for example, the one described by Equa-
tion A.17.

To conclude, we have shown that if we use A.21 as a (possibly approximate)
solution of Equation A.16, the hyper-cube ant colony optimization algorithm is
derived. If otherwise we use a single-step gradient ascent for solving A.16, we
obtain a generalization of the stochastic gradient ascent update, in which the
quality function is allowed to change over time.

A.2.3 Model-based genetic algorithms

In the “pure” model-based search, as it was described in the introduction, the pa-
rameterized model is iteratively updated, using the information extracted from
the sample. However, if the whole search history is compressed into a single
vector of model’s parameters, a lot of useful information may be lost. In order
to make a better use of the previous samples, many existing model-based search
algorithms use an auxiliary memory, in which they store some additional infor-
mation collected during the search. This information is then used together with
the latest sample for updating the model. For example, as we have seen in Sec-
tion A.2.2, some existing ant colony optimization algorithms store the cost of the
best-so-far solution or the average of the costs of the recent solutions. Another
alternative would be to store several high-quality solutions encountered during
the search. This is exactly what is being done in the majority of estimation of
distribution algorithms , recently developed within the evolutionary computation
community.

In the following we give a brief overview of some existing estimation of distri-
bution algorithms and discuss their relations to the model-based search algorithms
described in the previous sections.

Estimation of distribution algorithms

As already mentioned, the classical genetic algorithm can be considered to be an
example of the instance-based approach, in which the search is carried out by
evolving the population of candidate solutions (typically represented by a string
of bits) using selection, crossover and mutation operators (Holland, 1975).

The classical genetic algorithm approach relies heavily on the assumption that
there are some building blocks, from which a good solution can be constructed.
Moreover, it is assumed that with a proper choice of the crossover operator, these
blocks will be (implicitly) detected and maintained in the population, while the
selection operator will bias the search towards low-cost solutions. However, in
practice, finding an appropriate crossover operator turns out to be a difficult
task, while using some “general purpose” crossover operators often leads to poor
performance. Another problem is the existence of genetic drift (Goldberg &

240 Annex A. A machine learning point of view on ant colony optimization

Model Sample

Learning /Popl_l-lation

Figure A.3: Graphic description of the estimation of distribution algorithms.

Segrest, 1987), that is, a loss of population diversity due to the finite population
size, and, as a result, a premature convergence to sub-optimal solutions.

In order to cope with the finite-population effects and also as an attempt to
find an efficient alternative to the crossover/mutation operators, the estimation
of distribution algorithms (Miihlenbein et al., 1996) were proposed. These algo-
rithms generate new solutions using probabilistic models, instead of crossover and
mutation, and may be described using the following generic scheme:

EstimationOfDistribution_Iteration

— Generate new solutions using the current probabilistic model.
— Replace (some of) the old solutions by the new ones.

— Modify the model using the new population.

This scheme, which may be seen as a particular type of model-based search with
auxiliary memory, is represented graphically in Figure A.3.

Different estimation of distribution algorithms use different methods for con-
struction/modification of the probabilistic model. However, most of them use the
same method for estimating model parameters—a (possibly weighted) maximum-
likelihood estimation. In this respect they are all closely related to the cross-
entropy method described earlier and, as we show in the following, some of them
employ particular forms of cross-entropy-type update.

In the remainder of this section we give an overview of existing estimation of dis-
tribution algorithms and discuss their relations with the algorithms presented in
the previous sections. We consider two major classes of estimation of distribution
algorithms. The first class contains the algorithms that use a fixed simple model,
which assumes that there are no interactions between the different string posi-
tions, that is, that the assignments to the different positions are independent. We
observe that this is a particular kind of ant colony optimization-type model and
show that all these algorithms lead to particular forms of ant colony optimization-
type updates. The algorithms in the second class allow for dependencies between

A.2. Model-based search 241

the positions, and, consequently, try to infer both the model structure and the
model’s parameters. Unlike the first group, both the models and the update
mechanisms used by the algorithms in the second group are different from the
ones used in the ant colony optimization framework.

It should be noted that all of the following algorithms were originally formu-
lated for maximization problems, hence the obvious changes were done in order
to translate them into the minimization setting that we consider in the following.

Assuming independence between string positions. All the algorithms
presented in this section create the new solutions, coded as binary vectors, by
independently generating assignments for every position, with the [-th position
having probability p; to take value 1. This may be considered a particularly sim-
ple ant colony optimization-type model, in which the components correspond to
bit assignments, pheromone trails are associated with components, and there are
no constraints.

The idea was initially proposed in Syswerda (1993), where the necessary
probabilities were calculated as weighted frequencies over the population and
randomly perturbed in order to simulate mutation. Apart from the mutation
component, which seems to be an historical artifact borrowed from the classical
genetic algorithm and absent in later algorithms, this method is clearly an in-
stance of model-based search with auxiliary memory in the form of the solution
population, which uses the hyper-cube ant colony optimization-type (or, equiva-
lently, cross-entropy-type) update with learning rate p = 1 for constructing the
probabilistic model.

A similar approach was used in the wunivariate marginal distribution algorithm
(Miihlenbein et al., 1996), the only difference being that in the univariate marginal
distribution algorithm explicit classical selection procedures were used instead of
giving weights to the solutions.

This idea is pushed even further in the population-based incremental learning
algorithm (Baluja, 1994; Baluja & Caruana, 1995), where the population is com-
pletely replaced by a probability vector,?® p, with all p,’s initially set to 0.5. At
every iteration a sample S is generated using the probability vector and then the
probability vector is updated as follows:

PopulationBasedIncrementallLearning_Update
— Spest < a fixed number of lowest cost solutions from S,
— for every s € Spest, i < (1 — p)pr + psi,

where p is the learning rate.

23In this sense, the population-based incremental learning algorithm belongs to the model-
based search approach in its “pure” form and is, in fact, the first published algorithm belonging
to the model-based search approach.

242 Annex A. A machine learning point of view on ant colony optimization

As it can be easily seen, this update is virtually identical to the hyper-cube
ant colony optimization update with the quality function being the indicator for
the lowest cost solutions. In particular, if only the best solution is used for the
update, hyper-cube ant colony optimization with iteration-best update is obtained.

Finally, the compact genetic algorithm (Harik et al., 1999) was proposed as a
modification of population-based incremental learning, intended to represent more
faithfully the dynamics of the real genetic algorithm. Specifically, the compact
genetic algorithm simulates a genetic algorithm, with population size n and steady-
state binary tournament selection, in the following way. At every iteration two
solutions, a and b, are generated using the probability vector, and then the prob-
ability vector is updated as follows (assuming, without loss of generality, that a
has lower cost):

CompactGeneticAlgorithm_Update
— when a; # by, if @y =1 then p; < p; + 1/n, otherwise p; < p, — 1/n.

This basic scheme can be extended to larger samples. Two variants were proposed
in Harik et al. (1999). In the first variant, intended to simulate tournaments of
size m, a sample S of size m is generated and the basic update above is used for
every pair in the set {(s*** b)|b € S,b # s***'}. In the second variant, a “round-
robin tournament” is simulated, that is, the basic update is used for every pair
of solutions from the sample.

Note that the basic compact genetic algorithm update can also be written in
ant colony optimization-like form as:

1
p—p+ ;(az —by).

Consequently, it can be shown that the update for “tournament of size m” compact
genetic algorithm can be written as:

P pt ,OZQ(S)S; - %Z s1, (A.23)

seS seS

where p = m/n and

__ cbest
e ={y " e

, otherwise.

For the “round-robin tournament” compact genetic algorithm, it can be shown that
the update can also be described by Equation A.23, with p = m(m + 1)/n and

_ 2-rank(s)

Q(s) m,

where the highest rank, m, is assigned to st

A.2. Model-based search 243

It can be easily verified that these two updates are virtually identical to the
hyper-cube ant colony optimization iteration-best and rank-based updates respec-
tively. The only difference between the compact genetic algorithm and hyper-cube
ant colony optimization is in the form of the evaporation factor. In the com-
pact genetic algorithm it is equal to 2 " _cs;, whereas in hyper-cube ant colony
optimization it is equal to pp;, which is simply the expected value of the former.

Modeling dependencies between string positions. All the algorithms de-
scribed in the previous section, assumed a fixed model for the solutions’ dis-
tribution, namely independence between assignments at different positions, and
proposed different rules for calculating the parameters of the model. However, it
may well happen that certain components produce good solutions only in conjunc-
tion with others, hence there may be strong dependencies within the population
distribution.

Once the algorithm tries to model these a priori unknown dependencies be-
tween the solution constituents, the simple fixed structure has to be abandoned
and the correct structure needs to be inferred together with the model’s param-
eters.?!

In the first estimation of distribution algorithms that abandoned the indepen-
dence assumption, only pairwise interactions were covered. The MIMIC algo-
rithm, mutual-information-mazimizing input clustering, (De Bonet et al., 1997),
which was already mentioned earlier in the context of the cross-entropy method,
maintains a population of the best solutions seen so far and constructs a chain
distribution as a model of population by minimizing the Kullback-Liebler di-
vergence between the model and the population distribution. Since finding the
optimal chain distribution is an NP-hard problem, MIMIC uses a greedy search
procedure for constructing the chain. For a given structure, the conditional prob-
abilities (which are the parameters of the model) are estimated using the sample
frequencies.

Baluja & Davies (1997) extend MIMIC in two important respects. First, they
use a broader class of dependency trees instead of chain distributions, and, con-
sequently, they are able to present an exact polynomial algorithm, rather than
a greedy approximation. Second, instead of explicitly storing the population,
the algorithm’s history is summarized in a matrix of pairwise joint frequencies
(with more weight given to recent instances), which are later used for optimal
tree construction.

A somewhat more heuristic approach is taken in the bivariate marginal distri-
bution algorithm (Pelikan & Miihlenbein, 1999), where the population is modeled

24Note, however, that in ant colony optimization models, pairwise dependencies may be learned
implicitly, when the pheromone trails are associated with the connections between the compo-
nents. Hence ant colony optimization provides an alternative way of learning pairwise depen-
dencies, while still maintaining a fixed-structure model.

244 Annex A. A machine learning point of view on ant colony optimization

using a forest, that is, a set of mutually independent dependency trees.?> The
model structure is determined using a Pearson’s x-square test (Marascuilo &
McSweeney, 1977) for detecting dependencies.

The attempt to obtain yet more general models led to two different ap-
proaches. The first, the extended compact genetic algorithm (Harik, 1999), is
a brute-force generalization of the univariate marginal distribution algorithm, with
the population modeled using a marginal product model. In the marginal prod-
uct model the variables are divided into a number of independent clusters, while
within a cluster any distribution is permitted. The cluster structure is deter-
mined by greedily optimizing the minimum description length metric (Mitchell,
1997) and the inter-cluster distributions are estimated using the population fre-
quencies. The second approach, which is a generalization of ideas behind the
tree-based algorithms described earlier, is to use a Bayesian network for mod-
eling the population (Pelikan et al., 1999; Etxeberria & Larranaga, 1999), with
the network structure determined using some standard techniques for Bayesian
network learning (Heckerman, 1995).

To summarize, all the algorithms described in this section use probabilistic
models that are different from the one employed in ant colony optimization. Vari-
ous criteria are used for choosing the model structure, but in all these algorithms a
(weighted) maximum-likelihood (or, equivalently, minimal cross-entropy) method
is used for estimating the model’s parameters.

A.2.4 Discussion

During the last decade a new approach for solving combinatorial optimization
problems has been emerging. This approach, which we refer to as model-based
search, tackles the combinatorial problem by sampling the solution space using
a probabilistic model, which is adaptively modified as the search proceeds.

We observe that any successful algorithm belonging to the model-based search
framework is characterized by two components: a probabilistic model, which
should allow an efficient generation of the candidate solutions, and a model up-
date rule, which allows to concentrate the sampling in the high-quality regions.
Accordingly, we describe two general approaches, the stochastic gradient ascent
and the cross-entropy methods, for updating model’s parameters and we observe
some previously unknown relationships between the two methods. Further, we
demonstrate how the stochastic gradient ascent and the cross-entropy methods
can be applied in the context of ant colony optimization, which is a typical rep-
resentative of the model-based search approach. Moreover, we also show that in
some cases the resulting updates coincide with existing ant colony optimization
updates. Finally, we show that estimation of distribution algorithms, proposed in

25While seemingly more general, this class is in fact equivalent to the class of dependency
trees, as any forest can be represented using a tree with degenerate links.

A.2. Model-based search 245

the field of genetic algorithms, also fall into the model-based search framework,
and that they are closely related to the other algorithms considered here.

While sharing a lot of similar traits, each of the methods considered here has
some distinctive characteristics. Consequently, many interesting questions arise
as to whether these peculiarities are contributing to the algorithm’s performance.

For example, some of the estimation of distribution algorithms, which are the
subject of Section A.2.3, contain at least one of the two following important com-
ponents, absent in other approaches considered in our discussion. The first is
a population of solutions, which evolves throughout the search process and is
used for constructing the probabilistic model. The other is the use of a flexible
model structure, which is determined using an appropriate learning algorithm.
However, it is still unclear whether either of these components gives any advan-
tage in solving real-life problems. In addition, to the best of our knowledge, all
the dependency-learning estimation of distribution algorithms described in Section
modeling dependencies between string positions, page 243, have been ap-
plied only to unconstrained optimization problems, which is a rather atypical
situation in combinatorial optimization.?® It remains to be seen whether similar
algorithms can be designed for a more general setting. It should be further noted
that, if a flexible model structure is shown to be beneficial in model-based search,
some new model-selection rules should probably be used. The use of general pur-
pose model-selection rules, borrowed from the machine learning field, seems to
be inappropriate in the optimization context, since complex models are usually
computationally more expensive, hence a stronger (than in generic learning) bias
toward simpler models should probably be imposed.

Another interesting research direction, suggested by the approach presented
in Baluja & Davies (1997), is to use a collection of sufficient statistics rather
than a population, for the construction of the probabilistic model. This can be
seen as a kind of two-stage learning procedure, where the statistics are learned
incrementally, in a manner similar to ant colony optimization, but the actual
(second-stage) model is re-constructed in every iteration using the first-stage
statistics instead of raw samples.

Finally, the choice of the quality function, which provides a link between the
original cost function and the model update rule, clearly has a crucial effect on
the algorithms’ dynamics. Some of the algorithms described here, use iteration-
independent quality functions, while others adapt the quality function based on
the search history. However, the issue of appropriate quality function choice is
still poorly understood and is clearly an interesting future research direction.

Evaluating the utility of the different characteristics of the model-based search
algorithms clearly requires a serious experimental work. A first step in this di-

26 Although for some problems sophisticated schemes for coding the solutions as unconstrained
binary strings have been devised—see Baluja (1994) for an example—all the useful dependencies
between the solution components may be hidden by these coding schemes.

246 Annex A. A machine learning point of view on ant colony optimization

rection was made in Zlochin & Dorigo (2002), where several model-based search
algorithms were rigorously compared over a class of MAXIMUM SATISFIABILITY
problems.

To conclude, considering all these algorithms within a common general frame-
work provides a better understanding of what are the important parts of the
algorithm and what is just an historical artifact due to a particular background
of its proponents. Hopefully, the results presented above will facilitate cross-
fertilization between the considered model-based search methods and, perhaps,
provide useful guidelines for designing new efficient optimization algorithms.

The quick brown fox jumps over the lazy dog.

Sentence for testing typewriters

Annex B

Lazy learning for local regression

Lazy learning (Aha, 1997) is a memory-based techniques for supervised learning
that postpones all computation until an explicit request for a prediction is re-
ceived. The request is fulfilled by interpolating locally a number of examples that
are considered relevant according to a given distance metric.

In this chapter we present an original lazy learning algorithm developed by the
authors and co-workers. In particular, Section B.1 discusses a general algorithm
for local polynomial regression, while Section B.2 focuses on a more efficient
method that is specifically devised for local polynomials of order zero, that is, for
local constant models. Section B.3 concludes the chapter with a list of practical
applications of the proposed lazy learning algorithm.

B.1 Lazy learning and recursive least squares’

In the lazy learning approach, no preliminary computation is performed on the
available dataset and all computation is postponed until an explicit request for a
prediction is received. When this happens, a local model is built by interpolating
locally a number of examples that are considered relevant according to a given
distance metric. Each prediction requires therefore a local modeling procedure
that can be seen as composed of a structural and of a parametric identification.
The parametric identification consists in the optimization of the parameters of the
local approximator. On the other hand, structural identification involves, among
other things, the selection of a family of local approximators, the selection of a
metric to evaluate which examples are more relevant, and the selection of the
bandwidth which indicates the size of the region in which the data are correctly
modeled by members of the chosen family of approximators. For a comprehensive
tutorial on local learning and for further references see Atkeson et al. (1997).
As far as the problem of bandwidth selection is concerned, different approaches

"This section is based on Birattari et al. (1999). Some of the experimental results presented
were previously published in Bontempi et al. (2000).

247

248 Annex B. Lazy learning for local regression

exist. The choice of the bandwidth may be performed either based on some
a priort assumption or on the data themselves. A further sub-classification of
data-driven approaches is of interest here. On the one hand, a constant bandwidth
may be used; in this case it is set by a global optimization that minimizes an
error criterion over the available dataset. On the other hand, the bandwidth may
be selected locally and tailored for each query point.

In this chapter, we propose a method that belongs to the latter class of local
data-driven approaches. Assuming a given fixed metric and local linear approxi-
mators, the method we introduce selects the bandwidth on a query-by-query basis
by means of a local leave-one-out cross-validation. The problem of bandwidth
selection is reduced to the selection of the number &k of neighboring examples
which are given a non-zero weight in the local modeling procedure. Each time a
prediction is required for a specific query point, a set of local models is identi-
fied, each including a different number of neighbors. The generalization ability of
each model is then assessed through a local cross-validation procedure. Finally,
a prediction is obtained either combining or selecting the different models on the
basis of some statistic of their cross-validation errors.

The main reason to favor a query-by-query bandwidth selection is that it
allows better adaptation to the local characteristics of the problem at hand.
Moreover, this approach is able to handle directly the case in which the database is
updated on-line (Bontempi et al., 1999b). On the other hand, a globally optimized
bandwidth approach would, in principle, require the global optimization to be
repeated each time the distribution of the examples changes.

The major contribution of this research consists in the adoption of the recur-
stve least squares algorithm in the context of lazy learning. This is an appealing
and efficient solution to the intrinsically incremental problem of identifying and
validating a sequence of local linear models centered in the query point, each
including a growing number of neighbors. It is worth noticing here that a leave-
one-out cross-validation of each model considered does not involve any significant
computational overload, since it is obtained though the PRESS statistic (Myers,
1994) which simply uses partial results returned by the recursive least squares
algorithm. Schaal & Atkeson (1994) used already the recursive least squares algo-
rithm for the incremental update of a set of local models. The work proposed here
presents an original (Birattari et al., 1999) algorithm in which, for the first time,
the recursive least squares algorithm is adopted in a query-by-query perspective
as an effective way to explore the neighborhood of each query point.

As a second contribution, we propose a comparison, on a local scale, between a
competitive and a cooperative approach to model selection. On the problem of ex-
tracting a final prediction from a set of alternatives, we compared a winner-takes-
all strategy with a strategy based on the combination of estimators (Wolpert,
1992).

In Section B.1.4 an experimental analysis of the recursive algorithm for local
identification and validation is presented. The algorithm proposed, used in con-

B.1. Lazy learning and recursive least squares 249

junction with different strategies for model selection or combination, is compared
experimentally with a feed-forward neural network and with Cubist, the rule-based
tool developed by Ross Quinlan for generating piecewise-linear models.!

B.1.1 Local weighted regression

Given two variables z € R? and y € IR, let us consider the mapping f: R — R,
known only through a set of N examples {(z;, yj)}j.v:l obtained as follows:

y; = f(z;) + €5,

where V7, €, is a random variable such that Ele;] = 0 and Eleje;] = 0, VI # j, and
such that E[e]'] = pi, (), Vm > 2, where pi,,(-) is the unknown m-th moment of
the distribution of €; and is defined as a function of z;. In particular for m = 2,
the last of the above mentioned properties implies that no assumption of global
homoscedasticity is made.

The problem of local regression can be stated as the problem of estimating
the value that the regression function f(x) = E[y|x] assumes for a specific query
point x, using information pertaining only to a neighborhood of x.

Given a query point x4, and under the hypothesis of a local homoscedasticity
of €, the parameter 3 of a local linear approximation of f in a neighborhood of
x4 can be obtained solving the local polynomial regression:

é {(%‘ —2)" % <w> } , (B.1)

where, given a metric on the space RY, D(x;,,) is the distance from the query
point to the j-th example, X is a weight function, h is the bandwidth, and where
a constant value 1 has been appended to each vector x; in order to consider a
constant term in the regression.

In matrix notation, the solution of the above stated weighted least squares
problem is given by:

B=(X'WWX) ' X'WWy=(Z22)"Z'v=PZ,

where X is a matrix whose j-th row is x;, y is a vector whose j-th element is y;,

W is a diagonal matrix whose j-th diagonal element is w;; = \/K (D(z;, z,)/h),
Z = WX, v =Wy, and the matrix X'W'WX = Z'Z is assumed to be non-
singular so that its inverse P = (Z'Z)~! is defined.

Once obtained the local linear polynomial approximation, a prediction of y, =
f(z,), is finally given by:

Ug = 0.

!Details on Cubist are available at http://www.rulequest.com

250 Annex B. Lazy learning for local regression

Moreover, exploiting the linearity of the local approximator, a leave-one-out cross-
validation estimation of the error variance E|[(y, — ,)?] can be obtained without
any significant overload. In fact, using the PRESS statistic (Myers, 1994), it
is possible to calculate the error ;¥ = y; — :cgﬁA,l, without explicitly identifying
the parameters B_l from the examples available with the [-th removed. The
formulation of the PRESS statistic for the case at hand is the following:

o)4 Yy — v, PZ" yl—xEﬁA
— q — = = B.2
e =y —x 1= 2P Ty (B.2)

where 2] is the [-th row of Z and therefore z; = wyx;, and where hy; is the I-th
diagonal element of the Hat matric H = ZPZ' = Z(Z'Z)"*Z'.

B.1.2 Recursive local regression

In what follows, for the sake of simplicity, we will focus on linear approximator.
An extension to generic polynomial approximators of any degree is straightfor-
ward. We will assume also that a metric on the space R? is given. All the
attention will be thus centered on the problem of bandwidth selection.

If as a weight function X the indicator function

K(ggﬁﬁ):{lﬁD@MWSh, (B.3)

h 0 otherwise;

is adopted, the optimization of the parameter h can be conveniently reduced
to the optimization of the number £ of neighbors to which a unitary weight is
assigned in the local regression evaluation. In other words, we reduce the problem
of bandwidth selection to a search in the space of h(k) = D(x(k), z,), where z(k)
is the k-th nearest neighbor of the query point.

The main advantage deriving from the adoption of the weight function defined
in Equation B.3, is that, simply by updating the parameter /@(k) of the model
identified using the & nearest neighbors, it is straightforward and inexpensive to
obtain B(k:+ 1). In fact, performing a step of the standard recursive least squares
algorithm (Bierman, 1977), we have:

) - P(k)z(k +)2’ (k + 1) P(k)
Pl =P = T D PRtk + 1)
yk+1) =P+ 1Da(k+1)

(B.4)

A

e(k+1) y(k+1) — 2/ (k+1)5(k)
Bk +1) = B(k) +~(k+1)e(k+1)

where P(k) = (Z'Z)~" when h = h(k), and where x(k + 1) is the (k + 1)-th
nearest neighbor of the query point.

B.1. Lazy learning and recursive least squares 251

Moreover, once the matrix P(k + 1) is available, the leave-one-out cross-
validation errors can be directly calculated without the need of any further model
identification:

Y — ngﬁA(k +1)

k1) =
e (k4 1) 1 —aP(k+ 1)z’

Vi: D(xy,z,) < h(k+1). (B.5)

It will be useful in the following to define for each value of k the [k x 1] vector
e’ (k) that contains all the leave-one-out errors associated to the model B(k).

Once an initialization 3(0) = § and P(0) = P is given, Equation B.4 and
Equation B.5 recursively evaluate for different values of k a local approximation
of the regression function f, a prediction of the value of the regression function in
the query point, and the vector of leave-one-out errors from which it is possible
to extract an estimate of the variance of the prediction error. Notice that (is an
a priori estimate of the parameter and P is the covariance matrix that reflects
the reliability of § (Bierman, 1977). For non-reliable initialization, the following
is usually adopted: P = AI, with X large and where I is the identity matrix.

B.1.3 Local model selection and combination

The recursive algorithm described by Equation B.4 and Equation B.5 returns for
a given query point x,, a set of predictions g,(k) = :cj]ﬁA(k:), together with a set
of associated leave-one-out error vectors e (k).

From the information available, a final prediction g, of the value of the regres-
sion function can be obtained in different ways. Two main paradigms deserve to
be considered: the first is based on the selection of the best approximator accord-
ing to a given criterion, while the second returns a prediction as a combination
of more local models.

If the selection paradigm, frequently called winner-takes-all, is adopted, the
most natural way to extract a final prediction ¢,, consists in comparing the pre-
diction obtained for each value of k on the basis of the classical mean square error
criterion:

b wr (e5 (k)
Zf:l Wi ’

where w; are weights than can be conveniently used to discount each error ac-
cording to the distance from the query point to the point to which the error
corresponds (Atkeson et al., 1997).

As an alternative to the winner-takes-all paradigm, we explored also the ef-
fectiveness of local combinations of estimates (Wolpert, 1992). Adopting also in
this case the mean square error criterion, the final prediction of the value y, is
obtained as a weighted average of the best b models, where b is a parameter of
the algorithm. Suppose the predictions y,(k) and the error vectors e (k) have

Jq = 2, 3(k), with k = arg min MSE(k) = arg min

252 Annex B. Lazy learning for local regression

HOUSING CPU PRICES MPG SERVO OZONE
Number of examples 206 209 159 392 167 330
Number of regressors 13 6 16 7 8 8

Table B.1: A summary of the characteristics of the datasets considered.

been ordered creating a sequence of integers {k;} so that MSE(k;) < MSE(k)),
Vj < I. The prediction of g, is given by

b0 = Zj:l Cj@q(%‘) (B.6)

q b)
Zj:l Cj

where the weights are the inverse of the mean square errors: (; = 1/MSE(k;).
This is an example of the generalized ensemble method (Perrone & Cooper, 1993).

B.1.4 Experiments and results

The experimental evaluation of the incremental local identification and vali-
dation algorithm was performed on six datasets. The first five, described by
Quinlan (1993a), were obtained from the UCI Repository of machine learning
databases (Blake & Merz, 1998), while the last one, OZONE, was provided by
Leo Breiman. A summary of the characteristics of each dataset is presented in
Table B.1.

The methods compared adopt the recursive identification and validation al-
gorithm, combined with different strategies for model selection or combination.
We considered also two approaches in which £ is selected globally:

Ib1: Local bandwidth selection for linear local models. The number of neighbors
is selected on a query-by-query basis and the prediction returned is the one
of the best model according to the mean square error criterion.

IbO: Local bandwidth selection for constant local models. The algorithm for
constant models is derived directly from the recursive method described in
Equation B.4 and Equation B.5. The best model is selected according to
the mean square error criterion.

IbC: Local combination of estimators. This is an example of the method de-
scribed in Equation B.6. On the datasets proposed, for each query the best
2 linear local models and the best 2 constant models are combined.

gb1: Global bandwidth selection for linear local models. The value of k is ob-
tained minimizing the prediction error in 20-fold cross-validation on the
dataset available. This value is then used for all the query points.

B.1. Lazy learning and recursive least squares 253

HOUSING CPU PRICES MPG SERVO OZONE

Ib1 221 28.38 1509 1.94 048 3.52
b0 2.60 31.54 1627 197 0.32 3.33
IbC 2.12 26.79 1488 1.83 0.29 3.31
gbl 2.30 28.69 1492 1.92 0.52 3.46

gbo 2.59 3219 1639 199 0.34 3.19
Cubist 2.17 28.37 1331 1.90 0.36 3.15
nnet 2.33 31.18 2092 2.05 0.38 3.32

Table B.2: Mean absolute error on unseen cases.

HOUSING CPU PRICES MPG SERVO OZONE
Ib1 12.63 9.20 15.87 12.65 28.66 35.25
b0 18.06 2037 2219 1264 22.04 31.11
IbC 12.35 9.29 17.62 11.82 19.72 30.28
gbl 13.47 9.93 1595 12.83 30.46 32.58
gb0 17.99 2143 2229 1348 2430 28.21
Cubist 16.02 12,71 11.67 12,57 18.53 26.59
nnet 14.06 14.40 3217 12.65 2247 30.06

Table B.3: Relative error (%) on unseen cases.

gb0: Global bandwidth selection for constant local models. As in gbl, the value
of k is optimized globally and kept constant for all the queries.

As far as the metric is concerned, we adopted a global Euclidean metric based
on the relative influence (relevance) of the regressors (Friedman, 1994). We are
confident that the adoption of a local metric could improve the performance of
our lazy learning method.

The results of the methods introduced are compared with those we obtained,
in the same experimental settings, with a feed-forward neural network and with
Cubist, the rule-based tool developed by Quinlan for generating piecewise-linear
models. While Cubist is an integrated tool which performs an automatic model
selection and returns the best expected prediction, a fair comparison with a feed-
forward neural network should require a state-of-the-art selection procedure for
determining the most appropriate number of neuron the hidden layer should
comprise. In order to avoid possible criticisms on the issue, we consider here
several different two-layer networks with sigmoidal activation function in the
first layer, and linear in the second, and where the number of neuron in the
hidden layer ranges between 2 and 12. Each of these network is trained using the
Levenberg-Marquardt algorithm on each of the dataset. The result we report is
the best a posteriori on the test set. Therefore, we are here clearly cheating in

254 Annex B. Lazy learning for local regression

favor of the feed-forward neural network.

Each approach was tested on each dataset using the same 10-fold cross-
validation strategy. Each dataset was divided randomly into 10 groups of nearly
equal size. In turn, each of these groups was used as a testing set while the
remaining ones together were providing the examples. Thus all the methods per-
formed a prediction on the same unseen cases, using for each of them the same set
of examples. In Table B.2 we present the results obtained by all the methods, and
averaged on the 10 cross-validation groups. Since the methods were compared
on the same examples in exactly the same conditions, the sensitive one-tailed
paired test of significance can be used. In what follows, by “significantly better”
we mean better at least at a 5% significance level.

The first consideration about the results concerns the local combination of
estimators. According to Table B.2, the method /bC performs in average always
better than the winner-takes-all linear and constant. On two dataset /bC is
significantly better than both /b1 and /b0; and on three dataset it is significantly
better than one of the two, and better in average than the other.

The second consideration is about the comparison between our query-by-
query bandwidth selection and a global optimization of the number of neighbors:
in average /bl and /b0 performs better than their counterparts gbl and gh0. On
two datasets IbI is significantly better than gbl, while is about the same on the
other four. On one dataset /b0 is significantly better than gb0.

As far as the comparison with Cubist is concerned, the recursive lazy learning
identification and validation proposed obtains results comparable with those ob-
tained by the state-of-the-art method implemented in Cubist. On the six datasets,
IbC performs one time significantly better than Cubist, and one time significantly
worse.

As far as the comparison with the feed-forward neural network is concerned,
the proposed lazy learning method /bC obtains results that are significantly better
on five datasets notwithstanding the particularly favorable setting in which the
neural network has been operated.

The second index of performance we investigated is the relative error, defined
as the mean square error on unseen cases, normalized by the variance of the test
set. The relative errors are presented in Table B.3 and show a similar picture
to Table B.2, although the mean square errors considered here penalize larger
absolute errors.

A further experimental evaluation of the lazy learning algorithm presented here
is given in Bontempi (1999) where a larger number of datasets are considered and
other state-of-the-art approaches are included in the analysis.

The experimental results confirm that the recursive least squares algorithm can
be effectively used in a local context. Despite the trivial metric adopted, the local
combination of estimators, identified and validated recursively, showed to be able
to compete with a state-of-the-art approach.

B.2. Constant models in a local setting 255

B.2 Constant models in a local setting’

The lazy learning algorithm presented in Section B.1 can be used to recursively
identify and validate local models of any degree and then, in principle, also for
constant models, that is, for polynomials of degree zero.

Anyway a far more efficient implementation is possible which fully exploits
properties peculiar to constant models. In this section we focus on the deriva-
tion of such an algorithm for recursive identification and recursive leave-one-out
validation of local polynomial approximators of degree zero. We take for granted
that an appropriate metric has been defined in the input space R?, that a rectan-
gular weighting kernel has been adopted, and that an algorithm has been chosen
to (efficiently) retrieve from the original dataset the K-nearest-neighbors of a
given query point z,. We assume also that it is valuable to obtain a sequence of
prediction yielded by constant models, each identified on the basis of a growing
number of nearest-neighbors of the query point, together with their respective
mean square error in cross-validation. In other words, we suppose that a method
has been defined in order to extract a final prediction starting from a sequence
of approximators of degree zero, and from their leave-one-out assessment, and
in case from equivalent sequences of higher degree approximators identified and
validated through an appropriate algorithm.

B.2.1 Local constant models and local assessment

We suppose that a subset of K nearest-neighbors of the query point z, at hand
has been selected. The sequence {(z;,y;)]['(:1 will be, from here on, the sequence
of the K-nearest-neighbors ordered so that D(xz;,z,) < D(z;,z,), Vj < [, where
D is an appropriate distance function in the space R

A generic local constant model identified on the first k nearest neighbors is the
classical sample average (Papoulis, 1991) of the output associated to the nearest
k examples:

0 = s =). (5.7

I =

A leave-one-out mean square error of this model is obtain as follows:

mse®” (k) = %Z(g;v(k)){ (B.8)

where €f”(k) is the error in the prediction of the [-th neighbor, yielded by the

*This section is based on Birattari & Bontempi (1999a).

256 Annex B. Lazy learning for local regression

model identified on the £ nearest-neighbors with the [-th removed:

k
Zj:l Yj

cv ~ '#l
€l (k’) =Yy — y—l(k‘) =Uu — Jk‘fl
Z?:l Yj
o Z?:l Y B k k — U
=Y L1 Ui [

’) (B.9)
_yy Fik) = yoky — Kji(k)
: k—1 k—1

Equation B.9 shows that the leave-one-out error for the [-th neighbor is a linear
function of the re-substitution error and does not depend on x;. From Equa-
tions B.8 and B.9, it follows that:
iy _ S (Erak)” e N (e — k)
mse (k) = =
b , k (B.10)
o k Zl:l (yl - ﬂ(k)) _ k 5_2(]{)
k-1 k—1 k-1 ’
where 62(k) is the sample variance (Papoulis, 1991) of the output associated to
the nearest k examples.

2

B.2.2 The recursive algorithm

In Section B.2.1 we have defined the local prediction and the leave-one-out mean
square error obtained from the first k£ nearest-neighbors for a generic value of k.

In this section we derive a recursive formulation of Equations B.7 and B.10,
that is, we will make explicit the equations that allow the computation of §(k)
and mse® (k) starting from y(k — 1), mse®(k —1), and the k-th nearest-neighbor
Yk

The recursive formulation of the prediction g(k) can be easily obtained ob-
serving that:

(k) = Y; =
i=1 K
Sy
k—1)=E= X (B.11)
A v W N g VI (g VR
2 k
k-1
= ak—1)+ =
Ak = 1) + 2y

B.2. Constant models in a local setting 257

From Equations B.7 and B.11, it follows directly that:

9 = g0 = 1)+ 2 (5.12)

k
As far as the recursive formulation of the leave-one-out mean square error is
concerned, a slightly longer demonstration is needed. The basis of the recursive
computation of the sample variance can be obtained from the following:

&2(1{:) _ Zf:l (yl__ ﬂ(k))

258 Annex B. Lazy learning for local regression

N ﬁ(% — (k= 1)) (Zyl +yr — ki(k — 1))
- B 0+ it - 1)

_ ﬁ(wf — (k= 1)) ((k = Dk — 1) + yp, — kjs(k — 1))
S+ %(yk (k1)) - ﬁ(% itk - 1)
- Z:ifﬂ(k‘ — 1)+ %(yk — ik —1))%

Remembering now the result of Equation B.10, we obtain the recursive formula-
tion of the leave-one-out mean square error:

mse’ (k) = %mse”(lﬂ 1)+ ﬁ(yk — [k — 1))2. (B.13)

B.2.3 Discussion

The algorithm described in Section B.2.2 computes, for a given query, the se-
quence of the predictions and the sequence of the mean square errors when a
growing number of nearest-neighbors is used as local training subset.

The recursion in Equation B.12 is initialized for £ = 1 with ¢(1) = y;, that
is, with the output associated with the nearest-neighbor. On the contrary, the
recursion on the mean square error is started for £ = 2 since a leave-one-out error
cannot be defined for less than two examples. Furthermore, it is worth noticing
here as a detail, that mse (1) does not need to be explicitly initialized since for
k = 2 the first term in Equation B.13 equals zero because of the numerator of its
coefficient.

In figure B.1 we propose a comparison between the recursive algorithm described
by Equations B.12 and B.13 and its non-recursive counterpart obtained from
the direct implementation of Equations B.7 and B.8. For a given query, and
once the neighbors have been retrieved, the plot shows the time needed by the
two methods in order to fit and assess all the constant models which consider a
number of neighbors in the range between 2 and K, for values of K between 3 and
50.2 Figure B.1 visually confirms that the time needed by the recursive algorithm
grows linearly with K, as it could be expected from the nature of Equations B.12
and B.13.

A comparison is of interest here between the algorithm developed in Sec-
tion B.2.2 and the lazy learning algorithm described in Section B.1, which adopts

2The experiments were performed on a Pentium 400MHz CPU.

B.3. The lazy package and its applications 259

08 Non-Recursive Algorithm

Recursive Algorithm

0 + 1 1 1 1
o 5 10 15 20 25 30 35 40 45 50
K: Max no. of Neighbors

Figure B.1: Time of computation needed to fit and asses all the models which
consider a number of neighbors in the range between 2 and K.

the recursive least squares algorithms for the identification of generic linear mod-
els.

The recursive least square, as described in Section B.1, does not return for
every value of k the “exact” model that would be obtained by solving off-line the
corresponding least square problem on the first k£ neighbors. The returned model
is rather the model that would be obtained by solving off-line a ridge regres-
sion (Draper & Smith, 1981). This implicit effect of regularization is obtained
through the conventional initialization of the variance/covariance matrix (Bier-
man, 1977), and prevents problems due to a nearly singular local data matrix.

Local constant models do not suffer from this kind of problems: the single
parameter that needs to be identified is, for a given query and for a given value
of k, a function only of the output y; and not of the input z; of the k-nearest-
neighbors. Therefore, the position of the nearest-neighbors in the input space is
not relevant, and it is not necessary to adopt any regularization method. From
this, it follows that the predictions return by Equation B.12 and the mean square
errors returned by Equation B.13 are “exact,” that is, they are identical to the
values that would be obtained by their off-line counterparts.

B.3 The lazy package and its applications

The lazy learning algorithm described in Sections B.1 and B.2 has been imple-
mented by the author in the lazy package for R (Birattari & Bontempi, 2003). This

260 Annex B. Lazy learning for local regression

package is currently available for free download from the R official repository.?
Previously, an implementation for Matlab™ of the lazy learning algorithm (Bi-
rattari & Bontempi, 1999b) had been made available by the author.* The lazy
package is part of a larger IRIDIA project, whose goal is the implementation of
a set of local modeling approaches for data analysis and regression. In the same
context, also a tool for neuro-fuzzy identification and data analysis, described in
Bontempi & Birattari (1999), has been released.”

The lazy has been adopted in a number of research works and industrial
applications. The following is a non-exhaustive list:

Financial prediction of stock markets. Lazy learning has been adopted in a
joint project involving IRIDIA and the research center of Masterfood, for
the prediction of some market indices (Birattari, 1997). Another application
of local learning techniques to the prediction of stock markets is described
in Bontempi, Bertolissi & Birattari (2000).

Prediction of chaotic time series. The algorithm for time series prediction
based on lazy learning and described in Bontempi, Birattari & Bersini (1998,
1999c¢), ranked second among 17 participants in the International Competi-
tion on Time Series organized by the International Workshop on Advanced
Black-box techniques for nonlinear modeling in Leuven, Belgium (Suykens

& Vandewalle, 1998).

Nonlinear control and identification. The lazy learning method was used to
implement adaptive control strategies based on the extension of linear con-
trol techniques to the nonlinear setting. This research is described in Bon-
tempi, Birattari & Bersini (1999¢). The method has been studied (Bon-
tempi et al., 2001) within the Esprit project FAMIMO—Fuzzy algorithms
for multi-input multi-output processes—funded by the Commission of the
European Communities. A comparison of the lazy and fuzzy approaches
for non linear control is given in Bertolissi, Birattari, Bontempi, Duchateau
& Bersini (2000a,b, 2002). A survey on local linear techniques for nonlinear
control is given in Bontempi & Birattari (2005)

Modeling of industrial processes. The lazy learning technique has been em-
ployed to model the rolling steel mill process of the FaFer Usinor steel
company in Charleroi, Belgium (Birattari, 1999). It is also the subject of
an active collaboration of IRIDIA with the Honeywell Technology Center
in Minneapolis, MI, USA.

Electric load forecasting. A joint project of IRIDIA and Tractebel Belgium
is adopting lazy learning techniques for the forecasting of electrical loads.

Shttp://cran.r-project.org/src/contrib/Descriptions/lazy.html
*http://iridia.ulb.ac.be/ lazy
*http://iridia.ulb.ac.be/ gbonte/software/Local/FIS.html

B.3. The lazy package and its applications 261

Prediction of economic variables. A joint project of IRIDIA and Dieteren,
the first Belgian car dealer, is studying the adoption of lazy learning tech-
niques to predict the annual amount of sales on the basis of historical data.

Design and optimization of embedded systems. The lazy learning algori-
thm has been adopted in Bontempi & Kruijtzer (2004) for modeling the
performance of multimedia applications running on an embedded micro-
processor.

Quality of service in multimedia. Bontempi & Lafruit (2002) have used the
lazy package in a study on quality of service methods in multimedia appli-
cations.

Power system monitoring. The Lazy learning algorithm has been used by Vil-
lacci, Bontempi, Vaccaro & Birattari (2004) for predicting the hot-spot
temperature of a mineral-oil-immersed transformer under heavy loads. The
method is applied in (Bontempi et al., 2004) to a specific case study con-
cerning a system of power cables.

1 am tired, I am weary
1 could sleep for a thousand years

Lou Reed

262 Annex B. Lazy learning for local regression

References

Aarts, E. H. L. & Lenstra, J. K. (1997). Local Search in Combinatorial Opti-
mization. John Wiley & Sons. Chichester, United Kingdom.

Adenso-Diaz, B. & Laguna, M. (2002). Fine-tuning of algorithms using fractional
experimental designs and local search. Unpublished. Available from:
http://www-bus.colorado.edu/Faculty/Laguna/articles/finetune.html.

Aha, D. W. (1997). Editorial. Artificial Intelligence Review, 11(1-5):1-6. Special
Issue on Lazy Learning.

Alexéev, V., Tikhomirov, V., & Fomine, S. (1982). Commande Optimale. Editions
MIR. Moscow, Soviet Union. In French.

Allen, J. A. & Minton, S. (1996). Selecting the right heuristic algorithm: Runtime
performance predictors. In McCalla, G. (Ed.), Advances in Artificial Intelli-
gence: The FEleventh Biennial Conference of the Canadian Society for Com-
putational Studies of Intelligence, volume 1081 of LNCS, pp. 41-53, Springer-
Verlag. Berlin, Germany.

Aquinas, T. (ca. 1270). Summa Theologiae.
Aristotle (ca. 350 BC). De Anima.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning.
Artificial Intelligence Review, 11(1-5):11-73.

Baluja, S. (1994). Population-based incremental learning: A method for inte-
grating genetic search based function optimization and competitive learning.
Technical Report CMU-CS-94-163, School of Computer Science, Carnegie Mel-
lon, Pittsburgh, PA, USA.

Baluja, S. & Caruana, R. (1995). Removing the genetics from the standard
genetic algorithm. In Prieditis, A. & Russel, S. (Eds.), Proceedings of the
Twelfth International Conference on Machine Learning, pp. 38-46, Morgan
Kaufmann. San Francisco, CA, USA.

263

264 References

Baluja, S. & Davies, S. (1997). Using optimal dependency-trees for combinatorial
optimization: Learning the structure of the search space. In Jr., D. H. F. (Ed.),
Proceedings of the Fourteenth International Conference on Machine Learning,
pp. 30-38, Morgan Kaufmann. San Francisco, CA, USA.

Barnett, V. (1999). Comparative Statistical Inference. Third edition. John Wiley
& Sons. New York, NY, USA.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., & Stewart, W. R.
(1995). Designing and reporting computational experiments with heuristic
methods. Journal of Heuristics, 1(1):9-32.

Battiti, R. (1996). Reactive search: Toward self-tuning heuristics. In Rayward-
Smith, V. J., Osman, I. H., Reeves, C. R., & Smith, G. D. (Eds.), Modern
Heuristic Search Methods, pp. 61-83. John Wiley & Sons. Chichester, United
Kingdom.

Battiti, R. & Tecchiolli, G. (1994). The reactive tabu search. ORSA Journal on
Computing, 6(2):126-140.

Becker, S. (2004). Racing-Verfahren fiir Tourenplanungsprobleme. Diplomarbeit,
Technische Universitdt Darmstadt, Darmstadt, Germany.

Beckers, R., Deneubourg, J. L., & Goss, S. (1992). Trails and U-turns in the
selection of the shortest path by the ant Lasius Niger. Journal of Theoretical
Biology, 159:397-415.

Bellman, R. (1957). Dynamic Programming. Princeton University Press. Prince-
ton, NJ, USA.

Bellman, R. E. (1961). Adaptive Control Processes. Princeton University Press.
Princeton, NJ, USA.

Bentley, J. L. (1992). Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4 (4):387-411.

Bernoulli, J. (1696). Problema novum ad cuius solutionem mathematici invitan-
tur. Acta Eruditorum, 15:264—269.

Bertolissi, E., Birattari, M., Bontempi, G., Duchateau, A., & Bersini, H. (2000a).
Data-driven techniques for divide and conquer adaptive control. In Zakharov,
V. (Ed.), Control Applications of Optimization. Proceedings of the 11th IFAC
International Workshop, CAO 2000, Pergamon Press/Elsevier. Oxford, United
Kingdom.

References 265

Bertolissi, E., Birattari, M., Bontempi, G., Duchateau, A., & Bersini, H.
(2000b). Multiple models for adaptive control: The lazy and the fuzzy ap-
proach. In Smith, R. (Ed.), System Identification. A Proceedings volume from
the 12th IFAC Symposium on System Identification. SYSID 2000, Pergamon
Press/Elsevier. Oxford, United Kingdom.

Bertolissi, E., Birattari, M., Bontempi, G., Duchateau, A., & Bersini, H. (2002).
Data-driven techniques for direct adaptive control: The lazy and the fuzzy
approaches. Fuzzy Sets and Systems, 128 (1):3-14.

Bertsekas, D. P. (1995a). Dynamic Programming and Optimal Control. Athena
Scientific. Belmont, MA, USA. Vols. I and II.

Bertsekas, D. P. (1995b). Nonlinear Programming. Athena Scientific. Belmont,
MA, USA.

Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete,
L., Rossi-Doria, O., & Schiavinotto, T. (2004). Metaheuristics for the vehicle
routing problem with stochastic demands. In Yao, X., Burke, E., Lozano,
J. A., Smith, J., Merelo-Guervos, J. J., Bullinaria, J. A., Rowe, J., Tino, P.,
Kabéan, A., & Schwefel, H.-P. (Eds.), Parallel Problem Solving from Nature,
8th International Conference, PPSN VIII, volume 3242 of LNCS, pp. 450—460,
Springer-Verlag. Berlin, Germany.

Bierman, G. J. (1977). Factorization Methods for Discrete Sequential Estimation.
Academic Press. New York, NY, USA.

Billings, S. A. & Voon, W. S. G. (1987). Piecewise linear identification of non-
linear systems. International Journal of Control, 46:215-235.

Billingsley, P. (1986). Probability and Measure. Second edition. John Wiley &
Sons. New York, NY, USA.

Birattari, M. (1997). Modelli locali per I"apprendimento: dall’approccio neuro-
fuzzy al lazy learning. Tesi di Laurea, Politecnico di Milano, Milano, Italy.

Birattari, M. (1999). First project: IRIDIA and FaFer. Technical Report
TR/IRIDIA /1999-13, IRIDIA, Université Libre de Bruxelles, Brussels, Bel-
gium.

Birattari, M. (2001). On the formal foundation of ant programming. Mémoire
de DEA, Université Libre de Bruxelles, Brussels, Belgium.

Birattari, M. (2003). The race package for R. Racing methods for the selection
of the best. Technical Report TR/IRIDIA /2003-37, IRIDIA, Université Libre
de Bruxelles, Brussels, Belgium. Package available at:
http://cran.r-project.org/src/contrib/Descriptions/race.html.

266 References

Birattari, M. (2004a). On the estimation of the expected performance of a meta-
heuristic on a class of instances. How many instances, how many runs? Techni-
cal Report TR/IRIDIA /2004-01, IRIDIA, Université Libre de Bruxelles, Brus-
sels, Belgium.

Birattari, M. (2004b). Notes on the existence of the expected value. Technical
Report TR/IRIDIA /2004-20, IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium.

Birattari, M. & Bontempi, G. (1999a). Lazy learning vs. Speedy Gonzales: A fast
algorithm for recursive identification and recursive validation of local constant

models. Technical Report TR/IRIDIA/1999-6, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium.

Birattari, M. & Bontempi, G. (1999b). The lazy learning toolbox. For use with
Matlab. Technical Report TR/IRIDIA/1999-7, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium.

Birattari, M. & Bontempi, G. (2003). The lazy package for R. Lazy learning for
local regression. Technical Report TR/IRIDIA/2003-38, IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium. Package available at:
http://cran.r-project.org/src/contrib/Descriptions/lazy.html.

Birattari, M., Bontempi, G., & Bersini, H. (1999). Lazy learning meets the
recursive least-squares algorithm. In Kearns, M. S., Solla, S. A., & Cohn, D. A.

(Eds.), Advances in Neural Information Processing Systems 11, pp. 375-381,
MIT Press. Cambridge, MA, USA.

Birattari, M., Di Caro, G., & Dorigo, M. (2000). For a formal foundation of the
Ant Programming approach to combinatorial optimization. Part 1: The prob-
lem, the representation, and the genearl solution strategy. Technical Report
TR-H-301, ATR-Human Information Processing Labs, Kyoto, Japan.

Birattari, M., Di Caro, G., & Dorigo, M. (2002). Toward the formal foundation
of ant programming. In Dorigo, M., Di Caro, G., & Sampels, M. (Eds.), Ant
Algorithms, 3rd International Workshop, ANTS 2002, volume 2463 of LNCS,
pp. 188-201, Springer-Verlag. Berlin, Germany.

Birattari, M., Stiitzle, T., Paquete, L., & Varrentrapp, K. (2002). A racing
algorithm for configuring metaheuristics. In Langdon, W. B., Cantu-Paz, E.,
Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F.,
Burke, E., & Jonoska, N. (Eds.), Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 11-18, Morgan Kaufmann. San Francisco, CA,
USA.

References 267

Birkendorf, A. & Simon, H.-U. (1998). Using computational learning strategies
as a tool for combinatorial optimization. Annals of Mathematics and Artificial
Intelligence, 22(3/4):237-257.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press.
Oxford, United Kingdom.

Blake, C. L. & Merz, C. J. (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Blum, C. (2004). Theoretical and Practical Aspects of Ant Colony Optimization.
PhD thesis, Université Libre de Bruxelles, Brussels, Belgium.

Blum, C. & Roli, A. (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys, 35(3):268—
308.

Blum, C., Roli, A., & Dorigo, M. (2001). HC-ACO: The hyper-cube framework
for Ant Colony Optimization. In Pinho de Sousa, J. (Ed.), Proceedings of the
4th Metaheuristics International Conference, volume 2, pp. 399-403. Porto,
Portugal.

Boldrini, F. (2005). Costruzione di modelli locali nel metodo della superficie di
risposta per la configurazione di una metaeuristica. Tesi di Laurea, Universita
degli Studi di Ferrara, Ferrara, [taly. Tentative title. In preparation.

Boltyanskii, V. (1978). Optimal Control of Discrete Systems. John Wiley & Sons.
New York, NY, USA.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press. New York, NY, USA.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization
from social insect behavior. Nature, 406:39-42.

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In Studi
in Onore del Professore Salvatore Ortu Carboni, pp. 13-60. Roma, Italy.

Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilita.
Pubblicazioni del Regio Istituto Superiore di Scienze Economiche e Commerciali
di Firenze, 83-62.

Bontempi, G. (1999). Local Learning Techniques for Modeling, Prediction and
Control. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium.

Bontempi, G., Bersini, H., & Birattari, M. (2001). The local paradigm for mod-
eling and control: From neuro-fuzzy to lazy learning. Fuzzy Sets and Systems,
121(1):59-72.

268 References

Bontempi, G., Bertolissi, E., & Birattari, M. (2000). Predicting stock markets
in boundary conditions with local models. In Birge, J., Marshall, J., & Yager,
R. R. (Eds.), Proceedings of the IEEE/IAFE/INFORMS Conference on Com-
putational Intelligence for Financial Engineering, CIFEr 2000, pp. 158-161,
IEEE Publications. Piscataway, NJ, USA.

Bontempi, G. & Birattari, M. (1999). Toolbox for neuro-fuzzy identification and
data analysis. For use with Matlab. Technical Report TR/IRIDIA /1999-9,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Bontempi, G. & Birattari, M. (2005). From linearization to lazy learning: A
survey of divide-and-conquer techniques for nonlinear control. International
Journal of Computational Cognition, 3(1):56-73.

Bontempi, G., Birattari, M., & Bersini, H. (1998). Lazy learning for iterated time-
series prediction. In Suykens, J. A. K. & Vandewalle, J. (Eds.), International
Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, pp. 62—
68, Katholieke Universiteit Leuven. Leuven, Belgium.

Bontempi, G., Birattari, M., & Bersini, H. (1999a). Lazy learners at work: The
lazy learning toolbox. In EUFIT’99: The 7th European Congress on Intelli-
gent Techniques and Soft Computing, Abstract Booklet with CD Rom, ELITE
Foundation. Aachen, Germany.

Bontempi, G., Birattari, M., & Bersini, H. (1999b). Lazy learning for local
modeling and control design. International Journal of Control, 72(7/8):643~
658.

Bontempi, G., Birattari, M., & Bersini, H. (1999¢). Local learning for iterated
time-series prediction. In Bradko, I. & Dzeroski, S. (Eds.), Proceedings of the

Sixteenth International Conference on Machine Learning, pp. 32-38, Morgan
Kaufmann. San Francisco, CA, USA.

Bontempi, G., Birattari, M., & Bersini, H. (2000). A model selection approach
for local learning. AI Communications, 15:41-47.

Bontempi, G., Birattari, M., & Meyer, P. E. (2004). Combining lazy learning,
racing and subsampling for effective feature selection. Technical Report 527,
Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium.
Submitted for publication.

Bontempi, G. & Kruijtzer, W. (2004). The use of intelligent data analysis tech-
niques for system-level design: a software estimation example. Soft Computing
Journal, 8(7):477-490.

References 269

Bontempi, G. & Lafruit, G. (2002). Enabling multimedia QoS control with black-
box modeling. In Bustard, D., Liu, W., & Sterritt, R. (Eds.), Soft-Ware 2002:
Computing in an Imperfect World, volume 2311 of LNCS, pp. 46-59, Springer-
Verlag. Berlin, Germany.

Bontempi, G., Vaccaro, A., & Villacci, D. (2004). A semi-physical modelling
architecture for dynamic assessment of power components loading capability.
IEE Proceedings of Generation Transmission and Distribution, 151 (4):533-542.

Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical
Association, 71(356):791-799.

Box, G. E. P. & Draper, N. R. (1987). Empirical Model-Building and Response
Surfaces. John Wiley & Sons. New York, NY, USA.

Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for Experimenters.
John Wiley & Sons. New York, NY, USA.

Boyan, J. & Moore, A. (1997). Using prediction to improve combinatorial opti-
mization search. In Proceedings of the Sizth International Workshop on Artifi-
cial Intelligence and Statistics.

Boyan, J. & Moore, A. (2000). Learning evaluation functions to improve opti-
mization by local search. Journal of Machine Learning Research, 1:77-112.

Brady, R. M. (1985). Optimization strategies gleaned from biological evolution.
Nature, 317:804-806.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification
and Regression Trees. Waldsforth. Belmont, MA, USA.

Brel, J. (1968). Vesoul. In J’arrive. Barclay.

Burke, E. K., Elliman, D. G., & Weare, R. F. (1994). A university timetabling
system based on graph colouring and constraint manipulation. Journal of
Research on Computing in Education, 27(1):1-18.

Burke, E. K., Elliman, D. G., & Weare, R. F. (1995). Specialised recombinative
operators for timetabling problems. In Fogarty, T. C. (Ed.), Evolutionary
Computing, AISB Workshop, volume 993 of LNCS, pp. 7585, Springer-Verlag.
Berlin, Germany.

Burke, E. K., Newall, J. P., & Weare, R. F. (1995). A memetic algorithm for
university exam timetabling. In Burke, E. K. & Ross, P. (Eds.), Practice and
Theory of Automated Timetabling, 1st International Conference, PATAT 1995,
volume 1153 of LNCS, pp. 241-251, Springer-Verlag. Berlin, Germany.

270 References

Burke, E. K., Newall, J. P., & Weare, R. F. (1996). A memetic algorithm for
university exam timetabling. In Burke, E. & Ross, P. (Eds.), Practice and The-
ory of Automated Timetabling, First International Conference, volume 1153 of
LNCS, pp. 241-250, Springer-Verlag. Berlin, Germany.

Byrne, D. & Taguchi, S. (1987). The Taguchi approach to parameter design.
Quality Progress, 20(12):19-26.

Cameron, J. (1984). The Terminator. Orion Pictures Corporation.

Campbell, Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of
Financial Markets. Princeton University Press. Princeton, NJ, USA.

Capek, K. (1920). Rossum’s Universal Robots.

Carbonell, J., editor. (1990). Machine Learning. Paradigms and Methods. MIT
Press. Cambridge, MA, USA.

Cela, E. (1998). The Quadratic Assignment Problem: Theory and Algorithms.
Kluwer Academic Publisher. Dordrecht, The Netherlands.

Cerny, V. (1985). A thermodynamical approach to the traveling salesman prob-
lem: an efficient simulation algorithm. Journal of Optimization Theory and
Applications, 45:41-51.

Chiarandini, M. (2004). Personal communication.

Chiarandini, M. (2005). Stochastic local search for overconstrained problems. PhD
thesis, Technische Universitat Darmstadt, Darmstadt, Germany. In prepara-
tion.

Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2004). An effective
hybrid approach for the university course timetabling problem. Journal of
Scheduling. Accepted for publication.

Chiarandini, M., Socha, K., Birattari, M., & Rossi-Doria, O. (2003). International
timetabling competition. a hybrid approach. Technical Report AIDA-03-04,
FG Intellektik, FB Informatik, Technische Universitit Darmstadt, Darmstadst,
Germany.

Chiarandini, M. & Stiitzle, T. (2002). Experimental evaluation of course
timetabling algorithms. Technical Report AIDA-02-05, FG Intellektik, FB
Informatik, Technische Universitdt Darmstadt, Darmstadt, Germany.

Chien, S., Gratch, J., & Burl, M. (1995). On the efficient allocation of resources
for hypothesis evaluation: A statistical approach. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 17(7):652—665.

References 271

Clarke, R. (1993). Asimov’s laws of robotics: Implications for information tech-
nology. Part 1. Computer, 37(1):53-61.

Clarke, R. (1994). Asimov’s laws of robotics: Implications for information tech-
nology. Part 2. Computer, 36 (12):57-66.

Collodi (1883). Pinocchio.

Conover, W. J. (1999). Practical Nonparametric Statistics. Third edition. John
Wiley & Sons. New York, NY, USA.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceed-
ings of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151-158.
New York, NY, USA.

Cooper, T. B. & Kingston, J. H. (1995). The complexity of timetable construc-
tion problems. In Burke, E. K. & Ross, P. (Eds.), Practice and Theory of
Automated Timetabling, 1st International Conference, PATAT 1995, volume
1153 of LNCS, pp. 283-295, Springer-Verlag. Berlin, Germany.

Corne, D., Dorigo, M., & Glover, F., editors. (1999). The Ant Colony Optimiza-
tion Meta-Heuristic. McGraw-Hill. New York, NY, USA.

Corne, D. W. & Knowles, J. D. (2003). No free lunch and free leftovers theorems
for multiobjective optimization problems. In Fonseca, C. M., Fleming, P. J.,
Zitzler, E., Deb, K., & Thiele, L. (Eds.), Evolutionary Multi-Criterion Opti-
mization, Second International Conference, EMO 2003, volume 2632 of LNCS,
pp. 327-341, Springer-Verlag. Berlin, Germany.

Coy, S. P., Golden, B. L., Runger, G. C., & Wasil, E. A. (2001). Using exper-
imental design to find effective parameter settings for heuristics. Journal of
Heuristics, 7(1):77-97.

Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge University
Press. Cambridge, United Kingdom.

Culberson, J. C. (1992). Iterated greedy graph coloring and the difficulty land-
scape. Technical Report 92-07, Department of Computing Science, The Uni-
versity of Alberta, Edmonton, AB, Canada.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303-314.

Cybenko, G. (1996). Just-in-time learning and estimation. In Bittanti, S. &
Picci, G. (Eds.), Identification, Adaptation, Learning. The Science of Learning
Models from data, NATO ASI Series, pp. 423-434. Springer-Verlag. Berlin,
Germany.

272 References

Darquennes, D. (2005). Programmation et applications des algorithmes de four-
miliéres. Mémoire de Licence, Facultés Universitaires Notre-Dames de la Paix,
Namur, Belgium. Tentative title. In preparation.

Darwin, C. R. (1859). On The Origin of Species by Means of Natural Selection.
Or the preservation of favoured races in the struggle for life. John Murray.
London, United Kingdom.

de Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2004). A tutorial
on the cross-entropy method. Annals of Operations Research. Accepted for
publication.

De Bonet, J. S., Isbell, C. L., & Viola, P. (1997). MIMIC: Finding optima by
estimating probability densities. In Mozer, M. C., Jordan, M. 1., & Petsche,

T. (Eds.), Advances in Neural Information Processing Systems 9, pp. 424-431,
MIT Press.

de Werra, D. (1995). An introduction to timetabling. European Journal of Op-
erational Research, 19:151-162.

de Werra, D. (1997). The combinatorics of timetabling. FEuropean Journal of
Operational Research, 96:504-513.

Dean, A. & Voss, D. (1999). Design and Analysis of Experiments. Springer-
Verlag. New York, NY, USA.

Demenage, M., Grisoni, P., & Paschos, V. T. (1998). Differential approximation
algorithms for some combinatorial optimization problems. Theoretical Com-
puter Science, 209:107-122.

den Besten, M. L. (2004). Simple Metaheuristics for Scheduling. An empiri-
cal investigation into the application of iterated local search to deterministic
scheduling problems with tardiness penalities. PhD thesis, Technische Univer-
sitat Darmstadt, Darmstadt, Germany.

Denis, M. (2005). Optimisation d’un algorithme génétique au moyen de race:
Application au probléme du voyageur de commerce. Mémoire de Licence, Uni-
versité Libre de Bruxelles, Brussels, Belgium. Tentative title. In preparation.

Devroye, L., Gyorfi, L., & Lugosi, G. (1996). A Probabilistic Theory of Pattern
Recognition. Springer-Verlag. New York, NY, USA.

Di Caro, G. (2004). Ant Colony Optimization and its Application to Adaptive
Routing in Telecommunication Networks. PhD thesis, Université Libre de Brux-
elles, Brussels, Belgium.

References 273

Di Gaspero, L. & Shaerf, A. (2001). Tabu search techniques for examination
timetabling. In Burke, E. K. & Erben, W. (Eds.), Practice and Theory of
Automated Timetabling, 3rd International Conference, PATAT 2000, number
2079 in LNCS, pp. 104-117, Springer-Verlag. Berlin, Germany.

Dorigo, M. (1992). Ottimizzazione, apprendimento automatico, ed algoritmi basati
su metafora naturale. PhD thesis, Politecnico di Milano, Milano, Italy. In
[talian.

Dorigo, M. (1998). Ants 1998—From Ant Colonies to Artificial Ants: 1st Inter-
national Workshop on Ant Colony Optimization.
http://iridia.ulb.ac.be/~ants/ants98.

Dorigo, M., Birattari, M., Blum, C., Gambardella, L. M., Mondada, F., & Stiitzle,
T., editors. (2004). Ant Colony Optimization and Swarm Intelligence, 4th
International Workshop, ANTS 200/, volume 3172 of LNCS. Springer-Verlag.
Berlin, Germany.

Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000). Ant algorithms and stigmergy.
Future Generation Computer Systems, 16(8):851-871.

Dorigo, M. & Di Caro, G. (1999). The ant colony optimization meta-heuristic.
In Corne, D., Dorigo, M., & Glover, F. (Eds.), New Ideas in Optimization, pp.
11-32. McGraw-Hill. New York, NY, USA.

Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for
distributed discrete optimization. Artificial Life, 5(2):137-172.

Dorigo, M., Di Caro, G., & Sampels, M., editors. (2002). Ant Algorithms, 3rd
International Workshop, ANTS 2002, volume 2463 of LNCS. Springer-Verlag.
Berlin, Germany.

Dorigo, M., Di Caro, G., & Stiitzle, T. (2000). Ant algorithms. Guest editorial.
Future Generation Computer Systems, 16(8):v—vii.

Dorigo, M. & Gambardella, L. M. (1997). Ant Colony System: A cooperative
learning approach to the traveling salesman problem. [EEE Transactions on
FEvolutionary Computation, 1(1):53-66.

Dorigo, M., Maniezzo, V., & A.Colorni (1996). Ant System: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics—Part B, 26(1):29-41.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). The Ant System: An autocat-
alytic optimizing process. Technical Report 91-016 Revised, Dipartimento di
Elettronica, Politecnico di Milano, Milano, Italy.

274 References

Dorigo, M., Middendorf, M., & Stiitzle, T., editors. (2000). Proceedings of
ANTS 2000—From Ant Colonies to Artificial Ants: 2nd International Work-
shop on Ant Algorithms. IRIDIA, Université Libre de Bruxelles. Brussels, Bel-
gium.

Dorigo, M. & Stiitzle, T. (2002). The ant colony optimization metaheuristic:
Algorithms, applications and advances. In Glover, F. & Kochenberger, G.
(Eds.), Handbook of Metaheuristics, pp. 251-285. Kluwer Academic Publisher.
Norwell, MA, USA.

Dorigo, M. & Stiitzle, T. (2004). Ant Colony Optimization. MIT Press. Cam-
bridge, MA, USA.

Dorigo, M., Zlochin, M., Meuleau, N., & M.Birattari (2002). Updating ACO
pheromones using stochastic gradient ascent and cross-entropy methods. In
Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., & Raidl, R. (Eds.), Appli-
cations of Evolutionary Computing, EvoWorkshop 2002: EvoCOP, EvolASP,
EvoSTIM/EvoPLAN, volume 2279 of LNCS, pp. 21-30, Springer-Verlag.
Berlin, Germany.

Draper, N. R. & Smith, H. (1981). Applied Regression Analysis. John Wiley &
Sons. New York, NY, USA.

Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2003). Métahauristiques pour
Uoptimisation difficile. Editions Eyrolles. Paris, France. In French.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. Second
edition. John Wiley & Sons. New York, NY, USA.

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449-467.

Efron, B. & Tibshirani, R. J. (1997). An Introduction to the Bootstrap. Chapman
& Hall/CRC. Boca Raton, FL, USA.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179-211.

Etxeberria, R. & Larranaga, P. (1999). Global optimization with bayesian net-
works. In Proceedings of the Second Symposium on Artificial Intelligence, pp.
332-339, La Habana, Cuba.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for
extracting useful knowledge from volumes of data. Communication of the ACM,
39(11):27-34.

References 275

Fogel, L. J. (1962). Toward inductive inference automata. In Proceedings of the
International Federation for Information Processing Congress, pp. 395-399.
Munich, Germany.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through
Simulated Evolution. John Wiley & Sons. New York, NY, USA.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3):268
278.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of
Statistics, 19:1-141.

Friedman, J. H. (1994). Flexible metric nearest neighbor classification. Technical
Report 113, Department of Statistics, Stanford University, Stanford, CA, USA.
http://www-stat.stanford.edu/~jhf/ftp/flexmet.ps.Z.

Galilei, G. (1638). Discorsi e Dimostrazioni Matematiche intorno a due nuove
scienze attinenti alla Meccanica & i Movimenti Locali. Elzevier. Leiden, The
Netherlands.

Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability. A guide
to the Theory of NP-Completeness. W.H. Freeman and Company. New York,
NY, USA.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computation, 4 (1):1-58.

Gendreau, M. A., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for
the VRP. Management Science, 40:1276-1290.

Gent, I. P., Grant, S. A., MacIntyre, E., Prosser, P., Shaw, P., Smith, B. M.,
& Walsh, T. (1997). How not to do it. Technical Report 97.27, School of
Computer Studies, University of Leeds, Leeds, United Kingdom.

Gent, I. P. & Walsh, T. (1994). How not to do it. Technical Report 714, De-
partment of Artificial Intelligence, University of Edinburgh, Edinburgh, United
Kingdom.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8:156—166.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers € Operations Research, 13(5):533-549.

Glover, F. & Kochenberger, G., editors. (2002). Handbook of Metaheuristics.
Kluwer Academic Publisher. Norwell, MA, USA.

276 References

Goldberg, D. & Segrest, P. (1987). Finite markov chain analysis of genetic al-
gorithms. In Proceedings of the Second International Conference on Genetic
Algorithms, pp. 1-8, Lawrence Erlbaum. Hillsdale, NJ, USA.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company. Reading, MA, USA.

Golden, B. L., Assad, A. A., Wasil, E. A., & Backer, E. (1986). Experimentation
in optimization. Furopean Journal of Operational Research, 27.1-16.

Golden, B. L. & Stewart, W. R. (1985). Empirical analysis of heuristics. In
Lawler, E., Lenstra, J. K., Rinnooy Kan, A., & Shmoys, D. (Eds.), The Trav-
eling Salesman Problem: A guided Tour of Combinatorial Optimization. John

Wiley & Sons. New York, NY, USA.

Goldsman, D. & Nelson, B. L. (2001). Statistical selection of the best system.
In Peters, B. A., Smith, J. S., Medeiros, D. J., & Rohrer, M. W. (Eds.),
Proceedings of the 2001 Winter Simulation Conference, pp. 139-146, ACM.
Arlington, VA, USA.

Good, P. 1. (2001). Resampling Methods. Second edition. Birkhauser. Boston,
MA, USA.

Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized
shortcuts in the Argentine ant. Naturwissenschaften, 76:579-581.

Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividu-
elles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de la stig-
mergie: Essai d’interprétation du comportement des termites constructeurs.
Insectes Sociaux, 6:41-81.

Gratch, J., Chien, S., & DeJong, G. (1993). Learning search control knowledge
for deep space network scheduling. In Proceedings of the Tenth International

Conference on Machine Learning, pp. 135142, Morgan Kaufmann. San Fran-
cisco, CA, USA.

Gutjahr, W. (2000). A graph-based ant system and its convergence. Future
Generation Computer Systems, 16(8):873-888.

Gutjahr, W. (2002). ACO algorithms with guarandeed convergence to the optimal
solution. Information Processing Letters, 82(3):145-153.

Hansen, P. & Mladenovi¢, N. (1999). An introduction to variable neighborhood
search. In Voss, S., Martello, S., Osman, I. H., & Roucairol, C. (Eds.), Meta-

Heuristics: Advances and Trends in Local Search Paradigms for Optimization,
pp. 433-458. Kluwer Academic Publisher. Boston, MA, USA.

References 277

Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ecga.
Technical Report IIIiIGAL-99010, Department of Computer Science, University
of Illinois, Urbana, 1L, USA.

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact genetic
algorithm. IFEE Transactions on Evolutionary Computation, 3(4):287-297.

Hartl, R. F. (2005). MIC 2005: The 6th Metaheuristics International Conference.
http://www.mic2005.0rg.

Hassin, R. & Khuller, S. (2001). Z-approximations. Journal of Algorithms,
41(2):429-442.

Hecht-Nielsen, R. (1989). Theory of backpropagation neural networks. In Pro-
ceedings of the International Joint Conference on Neural Networks, volume 1,
pp. 593-605, IEEE Publications. New York, NY, USA.

Heckerman, D. (1995). A tutorial on learning with bayesian networks. Technical
Report MSR-TR-95-06, Microsoft Research, Redmond, WA, USA.

Hoeffding, W. (1963). Probability inequalities for sum of bounded random vari-
ables. Journal of the American Statistical Association, 58:78-150.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press. Ann Harbor, MI, USA.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scan-
dinavian Journal of Statistics, 6:65-70.

Hooker, J. N. (1994). Needed: An empirical science of algorithms. Operations
Research, 42(2):201-212.

Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of
Heuristics, 1(1):33-42.

Hoos, H. H. & Stiitzle, T. (2004). Stochastic Local Search. Foundations and
Applications. Morgan Kaufmann. San Francisco, CA, USA.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. In Proceedings of the National Academy of
Science of the United States of America, volume 79, pp. 2554-2558.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359-366.

Hsu, J. (1996). Multiple Comparisons. Chapman & Hall. Boca Raton, FL, USA.

Hume, D. (1748). An Enquiry Concerning Human Understanding.

278 References

Ibaraki, T., Nonobe, K., & Yagiura, M., editors. (2005). Metaheuristics: Progress
as Real Problem Solvers. Kluwer Academic Publisher. Boston, MA, USA.
Post-conference proceedings of the 5th Metaheuristics International Confer-
ence, MIC 2003.

Idel, M. (1983). Golem: Jewish Magical and Mystical Traditions on the Artificial
Anthropoid. State University of New York Press. Albany, NY, USA.

Igel, C. & Toussaint, M. (2003). On classes of functions for which the No Free
Lunch results hold. Information Processing Letters, 86 (6):317-321.

Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system.
IEEE Transactions on Systems, Man, and Cybernetics, 23(3):665-685.

Johansen, T. A. & Foss, B. A. (1993). Constructing NARMAX models using
ARMAX models. International Journal of Control, 58:1125-1153.

John, G. H. & Langley, P. (1996). Static versus dynamic sampling for data
mining. In Simoudis, E., Han, J.-W., & Fayyad, U. (Eds.), Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining, pp.

367-370, AAAI Press. Menlo Park, CA, USA.

Johnson, D. S. (2002). A Theoretician’s guide to the experimental analysis of
algorithms. In Goldwasser, M. H., Johnson, D. S., & McGeoch, C. C. (Eds.),
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sizth
DIMACS Implementation Challenges, pp. 215-250, American Mathematical
Society. Providence, RI, USA.

Johnson, D. S. & McGeoch, L. A. (1997). The travelling salesman problem: A
case study in local optimization. In Aarts, E. H. L. & Lenstra, J. K. (Eds.),
Local Search in Combinatorial Optimization, pp. 215-310. John Wiley & Sons.
Chichester, United Kingdom.

Johnson, D. S., McGeoch, L. A., Rego, C., & Glover, F. (2001). 8th DIMACS
implementation challenge. http://www.research.att.com/~dsj/chtsp/.

Jordan, M. I. & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the
EM algorithm. Neural Computation, 6:181-214.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E.
& Thatcher, J. W. (Eds.), Complezity of Computer Computations, pp. 85-103.
Plenum Press. New York, NY, USA.

Kauffman, S. A. (1993). The Origins of Order. Self-Organization and Selection
in Evolution. Oxford University Press. New York, NY, USA.

References 279

Kavli, T. (1993). ASMOD—an algorithm for adaptive spline modeling of obser-
vation data. International Journal of Control, 58:947-967.

Kearns, M. J. & Vazirani, U. V. (1997). An Introduction to Computational Learn-
ing Theory. MIT Press. Cambridge, MA, USA.

Khuri, A. 1. (2003). Advanced Calculus with Applications in Statistics. Second
edition. John Wiley & Sons. Hoboken, NJ, USA.

Kirkpatrick, S., Gelatt Jr., C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220:671-680.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In Mellish, C. S. (Ed.), 14th International Joint
Conference on Artificial Intelligence, volume 2, pp. 11371145, Morgan Kauf-
mann. San Mateo, CA, USA.

Kohavi, R. & John, G. H. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273-324.

Kohonen, T. (1982). Self-organized formations of topologically correct feature
maps. Biological Cybernetics, 43:59—-69.

Kostuch, P. (2003a). Timetabling Competition. SA-based heuristic.
http://www.idsia.ch/ttcomp2002/docs/kostuch.pdf.

Kostuch, P. (2003b). University course timetabling. Transfer Thesis, University
of Oxford, Oxford, United Kingdom.

Kostuch, P. (2004). Personal communication.
Kubrick, S. (1968). 2001: A Space Odissey. Metro-Goldwyn-Mayer.
Kullback, S. (1959). Information Theory and Statistics. John Wiley & Sons.

Labella, T. H. & Birattari, M. (2004). Polyphemus: De abacorum racemo. Techni-
cal Report TR/IRIDIA /2004-15, IRIDIA, Université Libre de Bruxelles, Brus-
sels, Belgium.

Lamarck, J.-B. (1809). Philosophie zoologique, ou exposition des considérations
relatives a [’histoire naturelle des animauz.

Lanczos, C. (1985). The Variational Principles of Mechanics. Fourth edition.
Dover Publications. New York, NY, USA.

Lang, F. (1927). Metropolis. Universum Film.

280 References

Larranaga, P. & Lozano, J. A. (2001). Estimation of Distribution Algorithms. A
New Tool for Evolutionary Computation. Kluwer Academic Publisher. Boston,
MA, USA.

Larson, H. (1982). Introduction to Probability Theory and Statistical Inference.
John Wiley & Sons. New York, NY, USA.

Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., & Shmoys, D. B. (1985). The
Travelling Salesman Problem. John Wiley & Sons. Chichester, United King-
dom.

Leibniz, G. W. (1710). Théodicée.

Liang, K., Yao, X., & Newton, C. (2001). Adapting self-adaptive parameters in
evolutionary algorithms. Applied Intelligence, 15(3):171-180.

Lieber, D. (1999). The Cross-Entropy Method for Estimating Probabilities of Rare
FEvents. PhD thesis, Technion, Israel nstitute of Technology, Haifa, Israel.

Ljung, L. (1987). System Identification: Theory for the User. Second edition.
Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

Lourenco, H. R. (1995). Job-shop scheduling: Computational study of local
search and large-step optimization methods. European Journal of Operational
Research, 83:347-364.

Lourenco, H. R., Martin, O., & Stiitzle, T. (2002). Iterated local search. In
Glover, F. & Kochenberger, G. (Eds.), Handbook of Metaheuristics, pp. 321—
353. Kluwer Academic Publisher. Norwell, MA, USA.

Lunghi, M. (2004). Il ruolo della validazione dei modelli locali nell’uso del metodo
della superficie di risposta per la configurazione di una metaeuristica. Tesi di
Laurea, Universita degli Studi di Ferrara, Ferrara, Italy. Tentative title. In
preparation.

Mach, E. (1893). The Science of Mechanics: A Critical and Historical Exposition
of its Principles. Open Court. Chicago, IL, USA.

Mandrioli, D. & Ghezzi, C. (1987). Theoretical Foundations of Computer Science.
John Wiley & Sons. New York, NY, USA.

Manfrin, M. (2003). Metaeuristiche per la costruzione degli orari dei corsi uni-
versitari. Tesi di Laurea, Universita degli Studi di Firenze, Firenze, Italy. In
Italian.

Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search proce-
dures for the quadratic assignment problem. INFORMS Journal on Computing,
11(4):358-369.

References 281

Marascuilo, L. & McSweeney, M. (1977). Nonparametric and Distribution-Free
Methods for the Social Sciences. The Brooks/Cole Publishing Company. Mon-
terey, CA, USA.

Maron, O. (1994). Hoeffding races: Model selection for MRI classification. Mas-
ter’s thesis, The Massachusetts Institute of Technology, Cambridge, MA, USA.

Maron, O. & Moore, A. W. (1994). Hoeffding races: Accelerating model selection
search for classification and function approximation. In Cowan, J. D., Tesauro,
G., & Alspector, J. (Eds.), Advances in Neural Information Processing Systems,
volume 6, pp. 59-66, Morgan Kaufmann. San Francisco, CA, USA.

Maron, O. & Moore, A. W. (1997). The racing algorithm: Model selection for
lazy learners. Artificial Intelligence Review, 11(1-5):193-225.

Martin, O. & Otto, S. W. (1996). Combining simulated annealing with local
search heuristics. Annals of Operations Research, 63:57-75.

Martin, O., Otto, S. W., & Felten, E. W. (1991). Large-step Markov chains for
the traveling salesman problem. Complex Systems, 5(3):299-326.

Masters, T. (1995). Practical Neural Network Recipes in C'++. Academic Press.
New York, NY, USA.

Maupertuis, P. L. M. (1750). Essai de Cosmologie.

McAllester, D., Selman, B., & Kautz, H. (1997). Evidence for invariants in local
search. In Proceedings of the 14th National Conference on Artificial Intelligence
and 9th Innovative Applications of Artificial Intelligence Conference (AAAI-
97/TAAI-97), pp. 321-326, AAAI Press. Menlo Park, CA, USA.

McGeoch, C. C. (1986). Ezperimental Analysis of Algorithms. PhD thesis,
Carnegie Mellon, Pittsburgh, PA, USA.

McGeoch, C. C. (1992). Analyzing algorithms by simulation: Variance reduction
techniques and simulation speedups. ACM Computing Surveys, 24 (2):195-212.

McGeoch, C. C. (1996). Towards an experimental method for algorithm simula-
tion. INFORMS Journal on Computing, 2(1):1-15.

McGeoch, C. C. (2002). A bibliography of algorithm experimentation. In Gold-
wasser, M. H., Johnson, D. S., & McGeoch, C. C. (Eds.), Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementa-

tion Challenges, pp. 251-260, American Mathematical Society. Providence, RI,
USA.

282 References

McGeoch, C. C. & Moret, B. M. E. (1999). How to present a paper on experi-
mental work with algorithms. SIGACT News, 30(4):85-90.

Mendenhall, W., Scheaffer, R., & Wackerly, D. (1986). Mathematical statistics
with applications. Duxbury Press. Boston, MA, USA.

Metaheuristics Network (2000). Annex I to the contract: List of participants and
description of work. Official Documentation of the Metaheuristics Network,
a Training and Research Network funded by the Improving Human Potential
Programme of the Commission of the European Community, contract number
HPRN-CT-1999-00106.

Meuleau, N. & Dorigo, M. (2002). Ant colony optimization and stochastic gra-
dient descent. Artificial Life, 8(2):103-121.

Miagkikh, V. V. & Punch III, W. F. (1999). Global search in combinatorial
optimization using reinforcement learning algorithms. In Angeline, P. J.,
Michalewicz, Z., Schoenauer, M., Yao, X., & Zalzala, A. (Eds.), Proceedings of
the Congress on Fvolutionary Computation, pp. 189-196, IEEE Publications.
Piscataway, NJ, USA.

Minsky, M. L. & Papert, S. (1969). Perceptrons: An introduction to computational
geometry. MIT Press. Cambridge, MA, USA.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. New York, NY, USA.

Moll, R., Barto, A., Perkins, T., & Sutton, R. (1999). Learning instance-
independent value functions to enhance local search. In Kearns, M. S., Solla,
S. A., & Cohn, D. A. (Eds.), Advances in Neural Information Processing Sys-
tems 11, pp. 1017-1023, MIT Press. Cambridge, MA, USA.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., & Troyansky, L. (1999).
Determining computational complexity from characteristic 'phase transitions’.
Nature, 400:133-137.

Montgomery, D. C. (2000). Design and Analysis of Experiments. Fifth edition.
John Wiley & Sons. New York, NY, USA.

Montgomery, D. C. & Peck, E. A. (1992). Introduction to Linear Analysis. Second
edition. John Wiley & Sons. New York, NY, USA.

Moore, A. W. & Lee, M. S. (1994). Efficient algorithms for minimizing cross
validation error. In Proceedings of the Eleventh International Conference on
Machine Learning, pp. 190-198, Morgan Kaufmann. San Francisco, CA, USA.

References 283

Moore, A. W. & Schneider, J. (1996). Memory-based stochastic optimization. In
Touretzky, D. S., Mozer, M. C., & Hasselmo, M. E. (Eds.), Advances in Neural
Information Processing Systems 8, pp. 1066-1072, MIT Press. Cambridge, MA,
USA.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical Report C3P Report 826,
Caltech Concurrent Computation Program, Pasadena, CA, USA.

Moscato, P. & Norman, M. G. (1992). A memetic approach for the traveling
salesman problem implementation of a computational ecology for combinatorial
optimization on message-passing systems. In Valero, M., Onate, E., Jane,
M., Larriba, J. L., & Suarez, B. (Eds.), Parallel Computing and Transputer
Applications, pp. 177-186, I0S Press. Amsterdam, The Netherlands.

Miihlenbein, H., Bendisch, J., & Voigt, H.-M. (1996). From recombination of
genes to the estimation of distributions. I. Binary parameters. In Parallel
Problem Solving from Nature, 4th International Conference, PPSN 1V, volume
1141 of LNCS, pp. 178187, Springer-Verlag.

Myers, R. H. (1994). Classical and Modern Regression with Applications. Second
edition. PWS-KENT Publishing Company. Boston, MA, USA.

Myers, R. H. & Montgomery, D. C. (2002). Response Surface Methodology. Second
edition. John Wiley & Sons. New York, NY, USA.

Nelson, B. L., Swann, J., Goldsman, D., & Song, W. (2001). Simple procedure for
selecting the best simulated system when the number of alternatives is large.
Operations Research, 49(6):950-963.

Newall, J. P. (1999). Hybrid Methods for Automated Timetabling. PhD the-
sis, Department of Computer Science, University of Nottingham, Nottingham,
United Kingdom.

Nilsson, N. J. (1965). Learning Machines: Foundations of Trainable Pattern
Classifying Systems. McGraw-Hill. New York, NY, USA.

Nissen, V. (1994). Solving the quadratic assignment problem with clues from
nature. IEEE Transactions on Neural Networks, 5(1):66-72.

Osman, I. H. & Kelly, J. P., editors. (1996). Meta-Heuristics: The Theory and
Applications. Kluwer Academic Publisher. Boston, MA, USA. Post-conference
proceedings of the 1st Metaheuristics International Conference, MIC’95.

Papadimitriou, C. H. & Steiglitz, K. (1998). Combinatorial Optimization. Algo-
rithms and Complexity. Dover Publications. Mineola, NY, USA.

284 References

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes.
Third edition. McGraw-Hill. New York, NY, USA.

Parson, R. & Johnson, M. (1997). A case study in experimental design applied
to genetic algorithms with applications to DNA sequence assembly. American
Journal of Mathematical and Management Sciences, 17(3/4):369-396.

Pelikan, M., Goldberg, D. E., & Cantt-Paz, E. (1999). BOA: The Bayesian op-
timization algorithm. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., & Smith, R. E. (Eds.), Proceedings of the Genetic

and Evolutionary Computation Conference, pp. 525532, Morgan Kaufmann.
San Francisco, CA, USA.

Pelikan, M., Goldberg, D. E., & Lobo, F. (1999). A survey of optimization
by building and using probabilistic models. Technical Report [IliGAL-99018,
Department of Computer Science, University of Illinois, Urbana, IL, USA.

Pelikan, M. & Miihlenbein, H. (1999). The bivariate marginal distribution algo-
rithm. In Roy, R., Furuhashi, T., & Chawdhry, P. K. (Eds.), Advances in Soft
Computing — Engineering Design and Manufacturing, pp. 521-535, Springer-
Verlag. London, United Kingdom.

Perrone, M. P. & Cooper, L. N. (1993). When networks disagree: Ensemble
methods for hybrid neural networks. In Mammone, R. J. (Ed.), Artificial
Neural Networks for Speech and Vision, pp. 126-142. Chapman & Hall. Boca
Raton, FL, USA.

Pichitlamken, J. & Nelson, B. L. (2001). Selection-of-the-best procedures for
optimization via simulation. In Peters, B. A., Smith, J. S., Medeiros, D. J., &
Rohrer, M. W. (Eds.), Proceedings of the 2001 Winter Simulation Conference,
pp. 401-407, ACM. Arlington, VA, USA.

Pierre, D. A. (1986). Optimization Theory with Applications. Dover Publications.
New York, NY, USA.

Piscopo, C. & Birattari, M. (2002). Invention vs. discovery. A critical discus-
sion. In Lange, S., Satoh, K., & Smith, C. H. (Eds.), Discovery Science.
oth International Conference, DS2002, volume 2534 of LNCS, pp. 457-462,
Springer-Verlag. Berlin, Germany.

Powell, M. J. D. (1987). Radial basis function approximations to polynomials.
In 12th Biennal Numerical Analysis Conference, pp. 223—-241.

Prais, M. & Ribeiro, C. C. (2000). Reactive grasp: An application to a matrix
decomposition problem in tdma traffic assignment. INFORMS Journal on
Computing, 12:164-176.

References 285

Priestley, M. B. (1988). Non-linear and Non-stationary Time Series Analysis.
Academic Press. London, United Kingdom.

Quinlan, J. R. (1993a). Combining instance-based and model-based learning. In
Proceedings of the Tenth International Conference on Machine Learning, pp.
236-243, Morgan Kaufmann. San Francisco, CA, USA.

Quinlan, R. (1993b). C4.5. Programs for Machine Learning. Morgan Kaufmann.
San Mateo, CA, USA.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257-286.

Radcliffe, N. J. & Surry, P. D. (1995). Fundamental limitations on search al-
gorithms: Evolutionary computing in perspective. In van Leeuwen, J. (Ed.),

Computer Science Today: Recent Trends and Developments, volume 1000 of
LNCS, pp. 275-291, Springer-Verlag. Berlin, Germany.

Rardin, R. R. & Uzsoy, R. (2001). Experimental evaluation of heuristic optimiza-
tion algorithms: A tutorial. Journal of Heuristics, 7(2):261-304.

Rechenberg, 1. (1973). FEvolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog. Stuttgart,
Germany.

Reeves, C. R., editor. (1995). Modern Heuristic Techniques for Combinatorial
Problems. McGraw-Hill. London, United Kingdom.

Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP
Applications, volume 840 of LNCS. Springer-Verlag. Berlin, Germany.

Resende, M. G. C. & Pinho de Sousa, J., editors. (2003). Metaheuristics :
Computer Decision-Making. Kluwer Academic Publisher. Boston, MA, USA.

Post-conference proceedings of the 4th Metaheuristics International Confer-
ence, MIC 2001.

Ribeiro, C. C. & Hansen, P., editors. (2001). Essays and Surveys in Metaheuris-
tics. Kluwer Academic Publisher. Boston, MA, USA. Post-conference proceed-
ings of the 3rd Metaheuristics International Conference, MIC’99.

Robbins, H. & Monro, S. (1951). A stochastic approximation method. Annals of
Mathematical Statistics, 22:400-407.

Rose, H. J. (1928). A Handbook of Greek Mythology including its extension to
Rome. Methuen. London, United Kingdom.

286 References

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization. Psychological Rewiew, 65:386—-408.

Rossi-Doria, O. & Paechter, B. (2003). An hyperheuristic approach to course
timetabling problem using evolutionary algorithm. Technical report, Napier
University, Edinburgh, United Kingdom.

Rossi-Doria, O., Paechter, B., Blum, C., Socha, K., & Samples, M. (2002). A local
search for the timetabling problem. In Burke, E. & De Causmaecker, P. (Eds.),
PATAT 2002, Proceedings of the Jth international conference on the Practice
And Theory of Automated Timetabling, pp. 115-119, KaHo St.-Lieven. Gent,
Belgium.

Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardella, L. M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Pa-
quete, L., & Stiitzle., T. (2003). A comparison of the performance of different
metaheuristics on the timetabling problem. In Burke, E. & De Causmaecker, P.
(Eds.), Practice and Theory of Automated Timetabling, 4th International Con-
ference, PATAT 2002, volume 2740 of LNCS, pp. 329-351, Springer-Verlag.
Berlin, Germany.

Roy, R. K. (1990). A Primer on the Taguchi Method. Van Nostrand Reinhold.
New York, NY, USA.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. John Wiley
& Sons. New York, NY, USA.

Rubinstein, R. Y. (1999a). The cross-entropy method for combinatorial and

continuous optimization. Methodology and Computing in Applied Probability,
1(2):127-190.

Rubinstein, R. Y. (1999b). Rare event simulation via cross-entropy and impor-
tance sampling. In Second International Workshop on Rare Event Simulation,
RESIM’99, pp. 1-17.

Rubinstein, R. Y. (2001). Combinatorial optimization, cross-entropy, ants and
rare events. In Uryasev, S. & Pardalos, P. M. (Eds.), Stochastic Optimization:
Algorithms and Applications. Kluwer Academic Publisher. Amsterdam, The
Netherlands.

Rumelhart, D. E., Durbin, R., Golden, R., & Chauvin, Y. (1995). Backpropaga-
tion: The basic theory. In Chauvin, Y. & Rumelhart, D. E. (Eds.), Backpropa-

gation: Theory, Architectures and Applications, pp. 1-35. Lawrence Erlbaum.
Hillsdale, NJ, USA.

References 287

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by back-propagating errors. Nature, 323:533-536.

Sampels, M. (2002). Metaheuristics for the timetabling problem. Results of a
comparison within the Metaheuristics Network.
http://iridia.ulb.ac.be/~msampels/ttmn.data/.

Sampels, M., Blum, C., Mastrolilli, M., & Rossi-Doria, O. (2002). Metaheuris-
tics for Group Shop Scheduling. In Guervos, J. J. M., Adamidis, P., & Beyer,
H.-G. (Eds.), Parallel Problem Solving from Nature, 7th International Confer-
ence, PPSN VII, volume 2439 of LNCS, pp. 631-640, Springer-Verlag. Berlin,
Germany.

Samuel, A. (1959). Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3:211-229.

Schaal, S. & Atkeson, C. G. (1994). Robot juggling: Implementation of memory-
based learning. IEEE Control Systems, 14 (1):57-71.

Schaerf, A. (1995). A survey of automated timetabling. Technical Report CS-
R9567, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

Schiavinotto, T. (2004). Personal communication.

Schiavinotto, T. & Stiitzle, T. (2004). The linear ordering problem: Instances,
search space analysis and algorithms. Journal of Mathematical Modelling and
Algorithms. Accepted for publication.

Schumacher, C., Vose, M., & Whitley, D. (2001). The no free lunch and problem
description length. In Spector, L., Goodman, E., Wu, A., Langdon, W., Voigt,
H.-M., Gen, M., Sen, S., Dorigo, M., P.Pezeshk, Garzon, M., & Burke, E.
(Eds.), Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 565570, Morgan Kaufmann. San Francisco, CA, USA.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John Wiley
& Sons. Chichester, United Kingdom.

Scott, R. (1982). Blade Runner. Warner Bros.

Shamma, J. S. & Athanas, M. (1990). Analysis of gain sheduled control for
nonlinear plants. IEEE Transactions on Automatic Control, 35:898-907.

Shavlik, J. W. & Dietterich, T. G., editors. (1990). Readings in Machine Learning.
Morgan Kaufmann. San Mateo, CA, USA.

Shelley, M. W. (1818). Frankenstein, or The Modern Prometheus.

288 References

Sheskin, D. (2000). Handbook of Parametric and Nonparametric Statistical Pro-
cedures. Second edition. Chapman & Hall/CRC. Boca Raton, FL, USA.

Siegel, S. & Castellan, Jr., N. J. (1988). Non Parametric Statistics for the Be-
havioral Sciences. Second edition. McGraw-Hill. New York, NY, USA.

Skeppstedt, A., Ljung, L., & Millnert, M. (1992). Construction of composite
models from observed data. International Journal of Control, 55(1):141-152.

Socha, K. (2003a). The influence of run-time limits on choosing ant system
parameters. In Cantu-Paz, E., Foster, J., Deb, K., Lawrence, D., Roy, R.,
O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman,
M., Wegener, J., Dasgupta, D., Potter, M., Schultz, A., Jonoska, N., Dowsland,
K., & Miller, J. (Eds.), Genetic and Evolutionary Computation - GECCO 2003,
volume 2723 of LNCS, pp. 49-60, Springer-Verlag. Berlin, Germany.

Socha, K. (2003b). Metaheuristics for the timetabling problem. Mémoire de
DEA, Université Libre de Bruxelles, Brussels, Belgium.

Socha, K., Sampels, M., & Manfrin, M. (2003). Ant algorithms for the university
course timetabling problem with regard to the state-of-the-art. In Raidl, G.,
Cagnoni, S., Cardalda, J. J. R., Corne, D. W., Gottlieb, J., Guillot, A., Hart,
E., Johnson, C., Marchiori, E., Meyer, J.-A., & Middendorf, M. (Eds.), Ap-
plications of Evolutionary Computing, EvoWorkshop 2003: EvoBIO, EvoCOP,
FEvolASP, EvoMUSART, EvoROB, and EvoSTIM, volume 2611 of LNCS, pp.
334-345, Springer-Verlag. Berlin, Germany.

Sommerville, I. (2001). Software Engineering. Sixth edition. Addison-Wesley
Publishing Company. Harlow, United Kingdom.

Stenman, A., Gustafsson, F., & Ljung, L. (1996). Just in time models for dynami-
cal systems. In 35th IEEE Conference on Decision and Control, pp. 1115-1120,
IEEE Publications. New York, NY, USA.

Stone, M. (1974). Cross-validation choices and assessment of statistical predic-
tions. Journal of the Royal Statistical Society, Series B, B36:111-147.

Stiitzle, T. (2003). Iterated local search for the quadratic assignment problem (re-
vised version). Technical Report AIDA-99-03, FG Intellektik, FB Informatik,
Technische Universitdt Darmstadt, Darmstadt, Germany.

Stiitzle, T. & Dorigo, M. (2002). A short convergence proof for a class of ACO
algorithms. IEEE Transactions on Evolutionary Computation, 6(4):358-365.

Stiitzle, T. & Hoos, H. H. (1996). Improving the Ant System: A detailed report on
the MAX-MIN Ant System. Technical Report AIDA-96-12, FG Intellektik,
FB Informatik, Technische Universitdt Darmstadt, Darmstadt, Germany.

References 289

Stiitzle, T. & Hoos, H. H. (1997). The MAX-MZN Ant System and local search
for the traveling salesman problem. In Béck, T., Michalewicz, Z., & Yao, X.
(Eds.), Proceedings of the 1997 IEEE International Conference on Evolution-
ary Computation (ICEC’97), pp. 309-314, IEEE Publications. Piscataway, NJ,
USA.

Stiitzle, T. & Hoos, H. H. (1998). Improvements on the Ant System: Introducing
the MAX-MZN Ant System. In G. D. Smith, N. C. Steele, R. F. A. (Ed.), Ar-
tificial Neural Networks and Genetic Algorithms, pp. 245-249, Springer-Verlag.
Vienna, Austria.

Stiitzle, T. & Hoos, H. H. (1999). MAX-MZIN Ant System and local search
for combinatorial optimization problems. In Voss, S., Martello, S., Osman,
[. H., & Roucairol, C. (Eds.), Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization, pp. 137-154. Kluwer Academic Publisher.
Dordrecht, The Netherlands.

Stiitzle, T. & Hoos, H. H. (2000). MAX-MZIN Ant System. Future Generation
Computer Systems, 16(8):889-914.

Su, L., Buntine, W. L., Newton, R., & Peters, B. S. (2001). Learning as applied
to stochastic optimization for standard-cell placement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 20(4).

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning. An Introduction.
MIT Press. Cambridge, MA, USA.

Suykens, J. A. K. & Vandewalle, J., editors. (1998). International Workshop on
Advanced Black-Box Techniques for Nonlinear Modeling. Katholieke Univer-
siteit Leuven. Leuven, Belgium.

Syswerda, G. (1993). Simulated crossover in genetic algorithms. In Whitley, L. D.
(Ed.), Foundations of Genetic Algorithms 2, pp. 239-255, Morgan Kaufmann.
San Mateo, CA, USA.

Taguchi, G. (1987). System of Ezperimental Design: Engineering Methods to
Optimize Quality and Minimize Costs. UNIPUB/Kraus International Publica-
tions. White Plains, NY, USA.

Taillard, E. D. (1991). Robust taboo search for the quadratic assignment problem.
Parallel Computing, 17:443-455.

Taillard, E. D. (1995). Comparison of iterative searches for the quadratic assign-
ment problem. Location Science, 3:87-105.

290 References

Takagi, T. & Sugeno, M. (1985). Fuzzy identification of system and its appli-
cations to modeling and control. IEEE Transactions on Systems, Man, and
Cybernetics, 15(1):116-132.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine
Learning, 3(4):257-277.

Tong, H. (1990). Non-linear Time Series. Oxford University Press. New York,
NY, USA.

Toussaint, M. (2001). Self-adaptive exploration in evolutionary search. Tech-
nical Report IRINI-2001-05, Institut fiir Neuroinformatik, Ruhr-Universitéit
Bochum, Bochum, Germany.

Vaessens, R. J. M., Aarts, E. H. L., & Lenstra, J. K. (1996). Job shop scheduling
by local search. INFORMS Journal on Computing, 8:302-317.

Van Breedam, A. (1995). Improvement heuristics for the vehicle routing prob-
lem based on simulated annealing. Furopean Journal of Operational Research,
86:480-490.

Van Breedam, A. (1996). An analysis of the effect of local improvement operators
in genetic algorithms and simulated annealing for the vehicle routing problem.
Technical Report 96/14, Faculty of Applied Economics, University of Antwerp,
Antwerp, Belgium.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.
New York, NY, USA.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons. New
York, NY, USA.

Vapnik, V. N. & Chervonenkis, A. J. (1971). On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability and
its Applications, 16:264-280. Previously published in Russian in 1968.

Vapnik, V. N. & Chervonenkis, A. J. (1991). The necessary and sufficient con-
ditions for consistency of the method of empirical risk minimization. Pattern
Recognition and Image Analysis, 1(3):284-305.

Villacei, D., Bontempi, G., Vaccaro, A., & Birattari, M. (2004). The role of learn-
ing methods in the dynamic assessment of power components loading capabil-
ity. IEEFE Transactions on Industrial Electronics. Accepted for publication.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptoti-
cally optimal decoding algorithm. IEEE Transactions on Information Theory,
13:260-269.

References 291

Voss, S., Martello, S., Osman, I. H., & Roucairol, C., editors. (1999). Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimization.
Kluwer Academic Publisher. Boston, MA, USA. Post-conference proceedings
of the 2nd Metaheuristics International Conference, MIC’97.

Wachowski, A. & Wachowski, L. (1999). The Matrix. Warner Bros.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge, United Kingdom.

Weierstrafs, K. (1885a). iiber die analytische darstellbarkeit sogenannter willkiir-
licher functionen einer reellen verdnderlichen. Sitzungsberichte der Kdniglich
Preursischen Akademie der Wissenschaften zu Berlin, pp. 633-639. Part I.

Weierstraf, K. (1885b). iiber die analytische darstellbarkeit sogenannter willkiir-
licher functionen einer reellen verdnderlichen. Sitzungsberichte der Koniglich
Preugsischen Akademie der Wissenschaften zu Berlin, pp. 789-805. Part II.

Weiss, S. & Indurkhya, N. (1995). Rule-based machine learning methods for
functional prediction. Journal of Artificial Intelligence Research, 3:383—403.

Whitehead, S. D. & Ballard, D. H. (1991). Learning to perceive and act. Machine
Learning, 7(7):45-83.

Whitmore, G. A. & Findlay, M. C., editors. (1978). Stochastic Dominance: An
Approach to Decision Making Under Risk. D. C. Heath and Company. Lexing-
ton, MA, USA.

Widder, D. V. (1989). Advanced Calculus. Second edition. Dover Publications.
New York, NY, USA.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5(2):241-259.

Wolpert, D. H. & Macready, W. G. (1996). No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM, USA.

Wolpert, D. H. & Macready, W. G. (1997). No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67-82.

Xu, J., Chiu, S. Y., & Glover, F. (1998). Fine-tuning a tabu search algorithm with
statistical tests. International Transactions in Operational Research, 5(3):233—
244.

Xu, J. & Kelly, J. (1996). A network flow-based tabu search heuristic for the
veichle routing problem. Transportation Science, 30:379-393.

292 References

Yuan, B. & Gallagher, M. (2004). Statistical racing techniques for improved
empirical evaluation of evolutionary algorithms. In Yao, X., Burke, E., Lozano,
J. A., Smith, J., Merelo-Guervos, J. J., Bullinaria, J. A., Rowe, J., Tino, P.,
Kabéan, A., & Schwefel, H.-P. (Eds.), Parallel Problem Solving from Nature,
8th International Conference, PPSN VIII, volume 3242 of LNCS, pp. 172181,
Springer-Verlag. Berlin, Germany.

Zadeh, L. A. & Desoer, C. A. (1963). Linear System Theory. McGraw-Hill. New
York, NY, USA.

Zemel, E. (1981). Measuring the quality of approximate solutions to zero-one
programming problems. Mathematics of Operations Research, 6:319-332.

Zhang, W. & Dietterich, T. G. (1996). High-performance job-shop scheduling
with a time-delay TD(A) network. In Touretzky, D. S., Mozer, M. C., &

Hasselmo, M. E. (Eds.), Advances in Neural Information Processing Systems
8, pp. 1024-1030, MIT Press. Cambridge, MA, USA.

Zhang, W. & Dietterich, T. G. (1998). Solving combinatorial optimization
tasks by reinforcement learning: A general methodology applied to rescource-
constrained scheduling. Technical report, Department of Computer Science,
Oregon State University, Corvallis, OR, USA.

Zlochin, M., Birattari, M., & Dorigo, M. (2004). Towards a theory of practice
in metaheuristics design. A machine learning perspective. Technical Report
MCS04-01, Computer Science and Applied Mathematics, The Weizmann In-
stitute of Science, Rehovot, Israel. Submitted for journal publication.

Zlochin, M., Birattari, M., Meuleau, N., & Dorigo, M. (2004). Model-based
search for combinatorial optimization: A critical survey. Annals of Operations
Research, 131(1-4):373-395.

Zlochin, M. & Dorigo, M. (2002). Model based search for combinatorial opti-
mization: A comparative study. In Guervos, J. J. M., Adamidis, P., & Beyer,
H.-G. (Eds.), Parallel Problem Solving from Nature, 7th International Confer-
ence, PPSN VII, volume 2439 of LNCS, pp. 651-661, Springer-Verlag. Berlin,
Germany.

Lo duca e 10 per quel cammino ascoso
intrammo a ritornar nel chiaro mondo;
e sanza cura aver d’alcun riposo,

salimmo st, el primo e 10 secondo,
tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.

E quindi usctmmo a riveder le stelle.
Dante, Inferno XXXIV, 133-139

My guide and I came on that hidden road
to make our way back into the bright world;
and with no care for any rest,

we climbed—nhe first, I following—until I saw,
through a round opening, some of those things
of beauty Heaven bears. It was from there

that we emerged, to see—once more—the stars.
Dante, Inferno XXXIV, 133-139

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

