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Preface

Go to the ant, you sluggard, watch her ways and get wisdom.

—Proverbs 6:6

Goal

This master’s thesis concludes my studies in artificial intelligence (AI) at the University
of Amsterdam. It reports on the work I have carried out during my stay at the Institut de
Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA)
in Brussels from September 1999 to January 2000. The aim was to investigate whether
the single machine total weighted tardiness scheduling problem (SMWTP) can be solved
efficiently by algorithms based on the ant colony optimization (ACO) meta-heuristic.
This research tries (i) to extend the range of problems which have been successfully
attacked by algorithms based on the ACO meta-heuristic, (ii) to gain further insight
into application issues of the ACO meta-heuristic, and (iii) to deepen the understanding
of the nature of the problem under consideration.

Motivation

The SMWTP is a classical example of machine scheduling, which is a crucial form of
decision—making in manufacturing as well as in service industries. For example, when
a company has to meet the shipping date on which it has committed its products to
the customers and the production time depends to a great extend on one resource, as is
often the case, it is faced with the SMWTP. The SMWTP is the problem of how jobs’
due dates can be met such that the cost of jobs being late, as measured by the weighted
tardiness, is minimized. The ability to cope efficiently with this kind of problems will
boost the company’s competitiveness. This thesis helps to achieve that aim.

When it comes to solving NP-hard combinatorial optimization problems like the
SMWTP, algorithms based on meta-heuristics, general schemes to improve local search
algorithms, often obtain impressive results. Ant colony optimization constitutes a re-
cently defined and particularly successful meta-heuristic. Ant colony optimization has
shown to be a versatile meta-heuristic that can easily be applied to a wide range of prob-
lems (see Section 1.3.4). Yet, like many other meta-heuristics, the ACO meta-heuristic is
not a prefab recipe for successful application to a problem, many design issues still have
to be decided when applying it to a particular problem. I can take advantage of the work
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of Bauer (1998) who has applied the ACO meta-heuristic to the single machine total
tardiness problem (SMTTP) and actually did a very straightforward application of ant
colony system which is developed by Dorigo and Gambardella (1997b). The SMWTP is
a generalization of the SMTTP that associates weights to the jobs’ tardiness. Since the
problems are related, algorithms that have success solving them can also be expected
to have a lot in common. So, with relatively small modifications of Bauer’s (1998) al-
gorithm a successful algorithm for the SMWTP can be obtained, which is what T will
pursue.

Work on meta-heuristics and local search receives increased attention in the AT com-
munity. Besides, the tasks Al researchers are concerned with are shifting from toy prob-
lems like the n-queens problem' to real world problems like route finding in dynamic
networks or scheduling problems like the SMWTP.

Yet another development within AT is the emergence of agent-based computing as an
overarching framework for bringing together the component sub-disciplines of Al that are
necessary to design and build intelligent entities. Russell and Norvig (1995) go as far as
to define AT as the study and construction of rational agents. Of all meta-heuristics, ant
colony optimization fits in most perfectly with this paradigm. Agent-based computing
is a software engineering methodology for the design of complex systems. Autonomous
entities, called agents, form the building blocks of a multi-agent system. In agent-based
terminology an ACO algorithm, which models the foraging behavior of ants, is a multi-
agent system where the artificial ants act as autonomous agents. Much of the research
in agent-based computing is spend on figuring out which communication schemes the
agents should use. As such, the experience with the communication scheme used in ant
colony optimization that is reported in this thesis can be of interest to the agent-based
computing community as well.

Not only is ACO an agent-based Al algorithm, one could even say that it fits in with
the ideas of Brooks (1990) which have gained popularity in robotics. Brooks states that
what makes robots intelligent is not their internal model of the world, but their ability
to interact with the environment they are placed in, their embodiment. Likewise, ACQO’s
artificial ants are highly reactive, with knowledge of the world distributed over the graph
environment with which the ants interact.

One thing that has remained unchanged ever since McCulloch and Pitts (1943) did
the first work on artificial intelligence is the tension between approaches that try to
achieve artificial intelligence through modeling of intelligent behavior found in real life
on the one hand and approaches that employ some sort of clever engineering as means
to this end on the other hand. By contrasting the nature inspired ant colony optimiza-
tion with the more ad hoc iterated local search meta-heuristic, this thesis contributes
to that debate. Some people are adherents of the hypothesis that there exists a connec-
tion between combinatorial optimization problems and the problems living beings face
in nature. For example, the application of the Hopfield network to the traveling sales-
man problem (Hopfield and Tank 1985) was motivated by this view. One step further,

!The goal of the n-queens problem is to place n queens on a chess-board such that no queen attacks
any other.

vi



intuitively, things that work well in nature can also be expected to yield good perfor-
mance on combinatorial optimization problems, as eons of evolution shaped the methods
and planed them to perfection. So, the mechanisms which enable the ants to find the
shortest path between their nest and a food source should also allow algorithms to solve
combinatorial optimization problems efficiently, even though, as will become clear in this
thesis, the artificial ants bear only little resemblance to their natural counterparts?.

Overview

In order to determine whether ant colony optimization forms a suitable approach to
the single machine total weighted tardiness scheduling problem, I will first analyze and
improve Bauer’s (1998) ACO algorithm of the SMTTP and then extend the improved
algorithm to the more complex and interesting SMWTP. Subsequently, I will compare
the algorithm against an algorithm which is based on a simple but for many problems
effective meta-heuristic known as iterated local search. Finally, I will analyze the results
and try to identify the relationship between problem characteristics and the algorithms’
performance.
This Master’s thesis is split into five chapters.

Chapter 1 (p. 1) provides background knowledge on single machine scheduling and
meta-heuristics. It indicates when scheduling can be of practical interest, ex-
plains the SMWTP and the SMTTP in relation to other scheduling problems and
it discusses standard strategies to solve scheduling problems. Next, local search,
ant colony optimization and iterated local search are introduced. The generic
algorithmic schemes are given along with the ideas that underlie the algorithms
and pointers to related applications are provided. Finally, I will explain how the
algorithms’ performance will be assessed.

Chapter 2 (p. 17) assesses ants’ intelligence solving the single machine total tardiness
problem. After an overview of the SMTTP and research devoted to this prob-
lem, it introduces a first ACO approach of Bauer, Bullnheimer, Hartl and Strauss
(1999a) discusses its configuration, and proposes improvements backed by com-
putational results on a series SMTTP instances. The algorithm’s performance is
compared with that of an iterated local search algorithm and with the performance
of the branch-and-bound algorithm of Swarc, Della Croce and Grosso (1998) and
conclusions are drawn with respect to ACQO’s suitability for the SMTTP.

Chapter 3 (p. 33) shows how to tune the ant colony optimization and iterated local
search in order to obtain a very well performing algorithm for the SMWTP and
compares the performance of the two. Tuning involves the adoption of algorithm
design choices and the algorithm’s parameters to achieve the best possible perfor-
mance on the problem under consideration, so that is what will be done. A crucial

2The same holds for other meta-heuristics. In fact natural paradigms are rather a source of new
inspiration of developing algorithmic solutions to computationally hard problems which has to be
adapted to efficiently solve these problems. In the process the resemblance will tend to faint.
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component of both meta-heuristics is local search. I have implemented several
variants of of local search algorithms and assess their effectiveness. Additionally,
I investigate the influence of algorithm parameters like the size of the ant colony
on the final performance. After the tuning the meta-heuristics’ performance is
contrasted against each other.

Chapter 4 (p. 71) analyzes the results given in Chapter 3. The aim of this analysis is
to identify the factors that cause the hardness of a SMWTP instance. First, the
correlation between certain aspects of the distribution of the due dates, the struc-
ture of an optimal solution, and the run time of the algorithm will be sought after.
Next, the search space of individual instances is investigated. The search space is
viewed as a fitness landscape and the landscape ruggedness and the distribution of
local optima on the landscape are determined. Finally, I will try to relate problem
characteristics to landscape topology.

Chapter 5 (p. 87) summarizes the results and gives a summary of the contributions
of this thesis. It also critically reflects upon the achievements reached in this
thesis and discusses directions to extend this work. The chapter ends with some
concluding remarks.

Supplementary results are given in detail in the appendices, and an index and a list
of acronyms should further help the reader to navigate through the report.
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1 Introduction

The concern of this thesis is to find efficient algorithms to solve N’P-hard scheduling
problems. This chapter introduces the main concepts used in this thesis, starting with
the problem to be solved, continuing with the methods employed to solve the problem
and, finally, clarifying how these methods’ performance will be compared.

1.1 Scheduling

The total weighted tardiness problem attacked in Chapter 3 and its non—weighted vari-
ant considered in Chapter 2 are scheduling problems. Before giving details on these two
problems, I will explain why scheduling is of practical interest and how scheduling prob-
lems relate to each other. Standard methods to solve scheduling problems are discussed
in the last part of this section.

1.1.1 Role of scheduling

A schedule is a detailed and timed plan that specifies how limited resources should be
allocated to tasks in order to meet one or more objectives. Scheduling is the art of
constructing such plans. The usable resources and tasks may take many forms. The
resources may be machines in a factory, runways at an airport, or processing units in a
computing environment, to name just a few. The tasks to be performed in these examples
could be operations in a production process, take—offs and landings at an airport, and
executions of computer programs, respectively. Each task may be characterized by the
time it needs the resource, the earliest possible starting time, the date it is due and its
priority relative to other tasks. The objectives to be met may also take many forms.
They are typically related to the time needed to accomplish the tasks.

Scheduling is a decision—making process that can be found in most manufacturing
and production systems as well as in most information—processing environments. Hence,
finding out how to solve scheduling problems is of considerable practical interest.

1.1.2 Scheduling models

A large number of scheduling problems and models have been studied and analyzed in
the literature. A neat introduction into the field is given by Pinedo (1995) who considers
the most important and interesting problems and models. These models assume that a
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finite number of jobs have to be scheduled on a finite number of machines’.

Scheduling models can be classified as either deterministic or stochastic. Determinis-
tic models suppose that the job data are exactly known in advance. In stochastic models,
on the other hand, only the distribution of the data is known. The actual processing
times, release dates and due dates are known only after the completion of the processing
or after the actual occurrence of the release or due date.

This thesis is concerned with deterministic models. The large amount of research
put into these models during the last four decades shows that they are already complex
enough to be of strong interest. Besides, the static nature of deterministic models is not
as restrictive as it may look on first sight, since many dynamic problems can actually
be solved as a series of static? problems. Such a decomposition is only useful if the
static sub-problems can be solved within a short period of time. One may have serious
time constraints on the solution time of the static problems and therefore one needs fast
algorithms to solve static problems. The acquisition of efficient algorithms needed in
these situations is what this thesis’ work hopes to achieve.

Deterministic models can be put in hierarchical order. In the commonly used repre-
sentation scheme of Graham, Lawler, Lenstra and Rinnooy Kan (1979) each problem is
specified by a three—field descriptor «|S|y where a represents the machine environment,
B defines the job characteristics and -y is the optimality criterion.

Machine environments

Different configurations of machines are possible. The problems treated in this thesis are
all placed in an environment constituted by a single machine. This machine is available
to process jobs at time zero and is continuously available as a resource. The three—field
representation for problems concerning this configuration is 1|3|y. Other configurations
of machines are left out of consideration for a number of reasons. Firstly, the single
machine environment is very simple and forms a special case of other environments.
Secondly, the results that can be obtained for single machine models provide a basis for
heuristics for more complex machine environments. Thirdly, in many real life situations
it is one machine that causes the bottleneck of the whole production environment. Pro-
duction planning should then be oriented towards this single machine and optimize the
schedule for that machine.

Job characteristics

The following pieces of data are associated with job j:

Processing time (p;;): p;; represents the processing time of job j on machine 7. The
subscript 7 will be omitted in the following since the problems in this thesis involve
only one machine.

!The terms job and machine are common usage, they are substitutes for task and resource respectively.
2Problems whose topology and costs do not change while they are being solved are called static.
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Release date (7;): The release date r; of job j is the time the job arrives at the system,
that is, the earliest time at which job j can start its processing.

Due date (d;): The due date d; of job j represents the committed shipping or comple-
tion date, the date the job is promised to the customer. The completion of a job
after its due date is allowed, but a penalty is incurred. When the due date must
absolutely be met, it is referred to as a deadline.

Weight (w;): The weight w; of job j is basically a priority factor. It denotes the
importance of job j relative to the other jobs in the system. For example, a weight
may represent the actual cost of keeping the job in the system.

The problems dealt with in this thesis assume that all jobs are immediately available
for processing, that setup times are sequence independent and added to the process-
ing times, and that jobs are not subject to precedence constraints. Furthermore, the
processing of a job cannot be interupted and the job has to be kept on the machine
until completion, preemption is not allowed. As they only concern jobs characterized
by the standard data, these problems are specified by an empty field in the tree—field
representation: 1| o |y.

Objectives

The objective to be minimized is always a function of the completion times of the jobs.
The completion time of job j depends on the schedule and is denoted by C;. In addi-
tion, many objectives take due dates into account. The lateness of job j is defined as
L; = C; — dj, which is positive when job j is completed late and negative when it is
completed early. The tardiness of job j is defined as T; = max{C; —d;,0} = max{L;,0}.
The difference between tardiness and lateness lies in the fact that tardiness is never neg-
ative. Complementary to tardiness one can encounter earliness, E; = max{d; — C},0}.
A possible objective function is the total weighted tardiness, TW = ) w;T;. The min-
imization of this function for a sequence of jobs in a single machine environment is the
goal of the single machine total weighted tardiness scheduling problem (SMWTP). The
three—field notation for this problem type is 1|| 3 w;T;. It is investigated in depth in
Chapters 3 and 4. Chapter 2 examines a variant of the SMWTP, that does not take the
weights into account®. The problem thus obtained, the single machine total tardiness
problem, is formally specified as 1|| > Tj.

An example

Consider an SMWTP instance of 5 jobs with the processing times, due dates and weights
that are given in Table 1.1 on the following page. For the permutation of jobs given
in Figure 1.1 on the next page, the completion time, the tardiness and the weighted
tardiness of the jobs are given in Table 1.2 on the following page. The total tardiness
of this permutation is 45 + 40 = 85, the weighted total tardiness is 135 + 400 = 535.

30r where all weights have the same, non-zero, value.
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<
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Figure 1.1: Gantt chart of a schedule

job| 1 2 3 4 5 job |4 1 2 3 5
p; |25 10 15 20 10 C; |20 45 55 70 80
d; |50 10 30 30 90 T; 0 0 45 40 O
w; |7 3 10 2 5 w;T; | 0 0 135 400 O
Table 1.1: A SMWTP instance Table 1.2: Evaluation of objectives for the

SMWTP instances

Permutation 7 = (2,3,1,4,5) is the optimal solution of this SMWTP instance with a
weigthed total tardiness of 80.

1.1.3 Problem solving strategies

The task in scheduling problems is to find a permutation of jobs that meets the problem’s
objective best. Many scheduling problems, including those considered in this thesis, are
known to be NP-hard (Lawler, Lenstra, Rinnooy Kan and Shmoys 1993). That is,
the time the best possible algorithm will need to solve the problem increases in the
worst case exponentially with the size of the problem®*. Despite being AN"P-hard, these
problems have to be solved efficiently in practice and a large number of different solution
strategies have been proposed to achieve that goal.

Exact methods

A straightforward strategy is to enumerate all possible solutions and then pick the best
one. Yet, this may take considerable time as there are n! different sequences for a
single machine problem of n jobs. Fortunately there exist more complex methods like
branch—and-bound algorithms that allow to discard parts of the search space in which
the optimal solution cannot be found. Branch-and-bound®. (Lawler and Wood 1966)
is a backtracking—type algorithm that searches through the space of partial solutions.
Search on a given branch is aborted and backtracking is done when the cost of the
current partial solution plus a lower bound on the cost of the completion of the solution
exceeds the best solution found to that point.

Construction heuristics

Often solutions are needed very fast, for example when the problem is an element of
a dynamic real world setting (see page 2). This requirement can generally not be met

4See Garey and Johnson (1979) for an introduction into complexity theory.
SBranch-and-bound is closely related to A* and other state—space search algorithms known in AI
(Kumal, Nau and Kanal 1988).
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by exact algorithms, especially when the problem is NP-hard. Besides, not everyone is
interested in the optimal solution. In many cases it is preferable to find a sub-optimal,
but good, solution in a short time. Constructive algorithms generate solutions from
scratch by adding solution components to an intially empty solution until it is complete.
A common approach is to generate a solution in a greedy manner, where a dispatching
rule decides heuristically which job should be added next to the sequence of jobs that
makes up the partial solution. A survey of this type of priority rule based scheduling is
given by Haupt (1989).

A distinction can be made between static and dynamic dispatching rules. Static
rules are just a function of the a priori known job—data. An example of a static rule
is earliest due date (EDD). This rule assigns the highest priority to the job with the
earliest due date. Dynamic dispatching rules, on the other hand, depend on the partial
solution constructed so far. An example of a dynamic rule is modified due date (MDD).
The value MDD uses to determine the relative priority of the jobs is the job’s completion
time for a late job and the job’s due date for a job that would finish early when processed
next. The highest priority is assigned to the job with the lowest MDD-value.

A possibility to get still better performing dispatching policies is to combine simple
rules like EDD or MDD. An example of a composite dispatching rule is the apparent
urgency (AU) rule which is used for the SMWTP-problem (see Section 3.2.2).

Local search

When better solutions are required than those obtained by the application of dispatching
rules and an exact algorithm takes too much time, then local search is often a good
choice. Local search starts on some solution and tries to alter this solution slightly in
order to obtain a better solution. Standard descent local search only considers improving
modifications. The problem of this hill-climbing-like methodology is that it will easily
get stuck in a local optimum before reaching the global best solution. Section 1.2 offers
a more detailed introduction into local search.

Meta-heuristics

Apart from the standard descent local search, several general search schemes have been
developed. These schemes are called meta-heuristics (Osman and Kelly 1996). A meta—
heuristic is an iterative generation process which guides a subordinate heuristic by intel-
ligent combination of different concepts of search space exploration and exploitation in
order to find near—optimal solutions in an efficient way. Examples of meta-heuristics are
simulated annealing (Kirkpatrick, Gelatt Jr. and Vecchi 1983), tabu search (Glover and
Laguna 1997), genetic algorithms (Goldberg 1989), and of course iterated local search
(Martin, Otto and Felten 1991) and ant colony optimization (Dorigo and Di Caro 1999)
which will be treated in the next sections.
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Figure 1.2: Moves that define a neighborhood

1.2 Local search

First applications of local search to NP-hard problems stem from a time as early as
the late fifties and the early sixties of the last century (Croes 1958, Lin 1965). Local
search algorithms start from some initial solution and try to replace the current solution
by a better solution in an appropriately defined neighborhood of the current solution.
The most basic local search algorithm is iterated descent which only replaces the current
solution with a better one and stops as soon as no better neighboring solutions can be
found anymore.

Implementations of local search differ in the problem representation they adopt,
the neighborhood they define on this representation, and the strategy they employ while
searching through this neighborhood. The application of local search to machine schedul-
ing is discussed in detail by Anderson, Glass and Potts (1997). This section only describes
the local search algorithms that are used for the thesis—work.

1.2.1 Solution representation

Solutions are represented by stating the order, or sequence in which the jobs are pro-
cessed, that is, a problem of n jobs is represented by a permutation of the integers
1,...n.

1.2.2 Neighborhoods

Three standard neighborhoods exist for the permutation representation. They are de-
fined by the moves that are allowed to be applied to a sequence of jobs.

transpose: Swap two adjacent jobs. The current permutation © = (1, ..., T, Tit1,.- -, Tn)
is modified to 7' = (71, .., Tit1, Tiy-- ., T2).

interchange: Interchange is generalization of transpose. In an interchange-move 7 =
: : I
(T1yeens Wiy enyWj...,mp) is modified to © = (my,...75,..., 7, ..., 7).

insert: Let (7,7) be a pair of positions and 7 = (71, ..., M1, T, Tig1, ..o, Ty Tjp1y- -+ > M)
the current permutation. The new permutation 7’ is obtained by removing the job
m; at position ¢ and inserting it at position j. If 4 < j a right insert is performed
and we obtain 7' = (m1,..., Mi—1, Tit1,- .., Tj, Wi, Tjg1,- .-, 7p) and if 4 > 7 we get
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Algorithm 1.1 Local Search: First improvement descent
Require: a solution s
Ensure: a solution s with a better or equal score of the objective function
1: repeat
2: repeat
3 pick a neighbor s; of s
4 if f(s1) < f(s2) then /* improvement */
5: S < 81
6
7

until an improving move is found V all neighbors of s have been considered
: until no more improvement is made

7 = (1, W1, Ty Tjy ooy Tie1, Wit1, - - -, M) Dy performing a left insert. Vari-
ants of this neighborhood allow only right insert moves or only left insert moves
or combine these moves in another way.

There is no complete consensus on the terminology. Transpose is sometimes referred to
as adjacent pairwise interchange, interchange is also called general pairwise interchange
or swap, and insert is also known as shift. Figure 1.2 on the preceding page illustrates
the moves on an example permutation.

There are some properties of neighborhoods which make them more or less suited
for scheduling problems. First, neighborhoods differ in size, that is, in the number of
neighbors for a single solution. Second, they differ in the ease at which new solution
values can be computed. Third, the underlying topology of the neighborhood structure
significantly affects the quality of solutions generated by a neighborhood search algo-
rithm. These properties may help explain the empirically observed quality of certain
neighborhoods in favor of others.

The sizes of transpose, insert and interchange are n — 1, (n — 1)? and n(n — 1)/2,
respectively, on a sequence of n jobs. Fortunately, all the neighborhood moves defined
above can be evaluated rapidly for their effect on the solution fitness in case of SMWTP.
Even without additional implementation tricks like those explained in Section 3.3.1 cal-
culating the objective function value has a complexity of only O(n). The topology
induced by these neighborhoods will be investigated in Chapter 4.

1.2.3 Pivoting rules

In a local search algorithm the pivoting rule determines which neighboring solution
replaces the current one. The first-improvement and the best—improvement rule are
most often used. In first—-improvement local search, the neighborhood is scanned and
the first found lower cost solution replaces the current solution. A skeleton of first
improvement local search is provided in Algorithm 1.1. The best—improvement pivoting
rule examines the whole neighborhood in each step and returns the best neighboring
solution. If the best move is taken, an optimal solution is arrived at in less steps than
following the first improvement would result in. On the other hand, determining which
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Figure 1.3: Experimental apparatus for the bridge experiment. Branches have different length.
Ants move from the nest to the food source and back.

move is best requires more effort than accepting the first move that is improving. Finding
out which pivoting rule to use requires experimental testing.

1.3 Ant colony optimization

One meta-heuristic in particular is employed in this thesis to solve scheduling problems:
ant colony optimization (ACO). The ACO meta-heuristic (Dorigo and Di Caro 1999) is
a framework that unifies approaches to combinatorial optimization problems which are
inspired by the foraging behavior of real ant colonies. Algorithms that fall under the
scope of the ACO meta-heuristic will be called ACO algorithms in the following.

1.3.1 The idea

The inspiring idea of ant colony optimization is the pheromone trail following behavior
of real ant colonies. Real ants use this form of indirect communication as a means for
cooperation. In particular, ants may deposit pheromone while walking and other ants
may detect this pheromone and follow it. The more intense the strength of pheromone,
the larger is the tendency to follow a particular pheromone trail.

Goss, Aron, Deneubourg and Pasteels (1989) carried out experiments with a labo-
ratory colony of Argentine ants. Figure 1.3 illustrates how the experiment is set up. A
nest is linked to a food source by a bridge with two branches of differing length. Ants
that travel from the nest to the food and back must choose one of the branches. After a
short transitory phase, most ants will use the shortest branch. This outcome, finding the
shortest path, is explained by the pheromone following behavior of ants: at the beginning
of the experiment there is no pheromone on the two branches and therefore the branches
have equal probability to be chosen by an ant. The ants release their pheromone both on
their way to the food and back. The shortest branch will collect more pheromone as ants
that take this branch will reach the food earlier. When the first ants come back from
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Algorithm 1.2 Ant colony optimization
1: set parameters, initialize pheromone trails
2: while termination criterion not met do
3:  construct solutions using trails
4:  apply local search /* optional */
5 update trails

the food there is already more pheromone on the shortest branch and therefore they
will tend to take that branch again. Ants that follow the ‘right’ branch can make the
travel between food and nest more often and deposit their pheromone at a higher rate.
In addition, more ants will tend to choose the shortest branch from the very moment it
has a larger pheromone intensity. In the end the large majority of ants will end up using
the shortest branch.

1.3.2 The algorithm

ACO algorithms make use of a mechanism derived from the pheromone following behav-
ior of real ants. Artificial ants construct solutions. This construction process is guided
by artificial pheromone and heuristic information. For many combinatorial optimization
problems high quality heuristic information is available (consider EDD, MDD and AU
introduced on page 5). This information can direct ants towards good solutions right
from the start. Later on, as they reflect the ants’ experience, the pheromone trails al-
low to improve upon these solutions. Some recent ACO algorithms achieve even better
performance by applying local search to the solutions constructed by the ants.

The first ACO algorithms have been applied to the traveling salesman problem
(TSP). The TSP is the problem a salesman faces when he wants to minimize the length
of the tour needed to visit all his customers. Because the TSP has been the primary
testbed for ant colony optimization and other ACO applications are often straight ex-
tensions upon the ACO algorithms for the TSP, I will explain the functioning of ACO
algorithms at the example of the application to this classical problem. Often, the prob-
lem can be represented by a graph and the artificial ants’ search can be interpreted as a
constrained shortest path search on that graph. This is also the case here. The TSP is
represented as a weighted graph with nodes as cities and edges as connections between
the cities. Pheromone trails are associated with edges, that is, 7;;(¢) is the pheromone
strength on edge (7, j) where ¢ indicates the dependence of the pheromone trail on time.
Additionally, the ant colony optimization'heuristic information coupled to the edges,
which in all applications of ACO algorithms to the TSP is taken as 7;; = ﬁj, makes the
ant prefer close cities.

In general, all ACO algorithms for the TSP follow a specific algorithmic scheme
which is outlined in Algorithm 1.2. Each cycle or iteration of the algorithm consists of
three phases. The ants first construct solutions which can then be improved using local
search. This is followed by a pheromone update to reflect the ants’ search experience
and to guide future ants. How exactly these phases are implemented differs between
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the ACO algorithms, below I will present the particular choices taken in ant colony
system (ACS), which was proposed by Dorigo and Gambardella (1997b).

Solution construction

Initially, each ant is put on some randomly chosen node. Ants choose the next node
using the pseudo-random-proportional action choice rule: When located at node ¢, ant
k moves with probability gy to node j for which 7;;(¢)* - n;;® is maximal. « and B
are paramters that determine the relative of pheromone trail and heuristic information.
With probability (1 — go) the ant chooses the next node probabilistically. In particular,
the probability with which ant k, currently at node 7 chooses to go to node j at the tth
iteration of the algorithm is:

y B
k Tij (t)a * Nij e . k
p(t) = if j €N 1.1
i(0) 2ient T (t)® - na® ! (1)

/\/Z-’C is the set of cities which ant k£ has not yet visited. Thus qg is a parameter that sets
the extent the ant will digress from the norm posed by the dominating trail and heuristic
information in the graph.

Pheromone update

In ACS, only one ant, the one that found the best solution, is allowed to deposit
pheromone. The trail update only applies to the edges of the global-best path and
the new pheromone trail strength on these edges is given as:

Tij(t +1) = (1= p) - 7ij(t) + p- 1/L%, (1.2)

where L9° is the length of the best tour found since the start of the algorithm. Intuitively,
1/L9% is the amount of pheromone added. In general, it is denoted by ATzrqu (t). pisasmall
constant value representing pheromone evaporation. Pheromone evaporation allows the
ant colony to slowly forget its past history so that it can direct its search without being
over-constrained by past decisions. In addition to the global updating rule, ants use a
local update rule that they apply immediately after having crossed an edge during the
solution construction:

Tij = (L= p) - 7ij + p- 70, (1.3)
where 7y is the initial trail intensity, a small constant value.® Through the local up-

date rule an already chosen edge is less desirable for the following ant. In this way a
exploration of not yet visited edges is favored.

5In the direct predecessor of ACS, Ant-Q (Gambardella and Dorigo 1995) the term 7o corresponds
to the discounted evaluation of the next state, a construct inspired by Q-learning. It was found
that replacing this discounted evaluation by a small constant results in approximately the same
performance and therefore ACS is preferred over Ant-Q. This small constant is given by 70 = 1/n- Ly,
where Ly, is the length of the tour constructed according to the nearest neighbor construction
heuristic.

10
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Local search

Recent research has indicated that, when applied to a wide variety of combinatorial
optimization problems, ACO-algorithms perform best if the solutions constructed by the
ants are improved by a local search algorithm. Such a combination may be very useful
when constructive algorithms result in a relatively poor solution quality compared to
local search algorithms. The hope is that the ants guide the local search by constructing
promising initial solutions. The initial solutions generated by the ants are promising
because the ants use with higher probability those edges which, according to the search
experience, have more often been contained in better solutions.

In particular, for the TSP the combination of ACS with a local search algorithm
proved to be such a favorable combination. Dorigo and Gambardella (1997b) have added
a 3-opt algorithm to ACS to improve the ants’ tours and could in that way achieve a
much improved performance compared to ACS without local search.

1.3.3 Other ACO algorithms

Ant system

Ant system (AS) is the seminal ACO algorithm (Dorigo, Maniezzo and Colorni 1991,
Dorigo 1992, Dorigo, Maniezzo and Colorni 1996). AS does not use local search, though
it could easily be added. This makes AS a pure constructive algorithm. Ants in AS do
not follow the pseudo-random—proportional , but instead they always choose the next
node in the graph probabilistically according to Equation 1.1. Pheromone intensity 7;;(%)
is updated as

7ij(t) = (1= p) 73 + f: 1/L3; (1.4)
k=1

In this equation, ij is the length of the tour constructed by ant k. The pheromone
update applies to all edges in the graph. In AS, the ants do not apply local pheromone
updating.

MAX-MIN ant system

Stiitzle (1998b) has proposed some improvements over ant system resulting in MAX—
MIN ant system (MMAS). The main modifications introduced by MMAS with re-
spect to AS are the following. First, to exploit the best solutions found, after each
iteration only one ant (like in ACS) is allowed to add pheromone. Second, to avoid
search stagnation, the allowed range of the pheromone trail strengths is limited to the
interval [Tynin, Tmaz), that is, V7 Tmin < Tij < Tmag- Last, the pheromone trails are
initialized to the upper trail limit, which causes a higher exploration at the start of the
algorithm. MMAS and ACS perform comparably well on the TSP. MMAS has also
been applied to other combinatorial optimization problems like the quadratic assignment
problem (Stiitzle 1997), the generalized assignment problem (Ramalhinho Lourengo and
Serra 1998), and the flow shop problem (Stiitzle 1998a).

11
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Algorithm 1.3 Iterated local search
1: generate initial solution s
2: apply local search sg — s
3: while termination criterion not met do
4:  modify solution s — s’
5:  apply local search s’ — s
6: if accept then
7 s« "

1.3.4 Applications of ACO

Applications of ACO algorithms cover problems like the traveling salesman problem
(Dorigo and Gambardella 1997a, Bullnheimer, Hartl and Strauss 1999b, Stiitzle and
Dorigo 1999b), the quadratic assignment problem (Maniezzo and Colorni 1999, Stiitzle
and Dorigo 1999a), the vehicle routing problem (Bullnheimer, Hartl and Strauss 1999a,
Gambardella, Taillard and Agazzi 1999), the sequential ordering problem (Gambardella
and Dorigo 1997). The use of ant colony optimization is not limited to static combina-
torial optimization problems. For example, the ACO algorithms for network routing (Di
Caro and Dorigo 1998, Schoonderwoerd, Holland, Bruten and Rothkrantz 1996) are a on
competitive level and even outperform state—of-the—art routing methods in internet—like
networks. An overview over these different applications of the ACO meta-heuristic is
provided by Dorigo, Di Caro and Gambardella (1999).

1.4 Iterated local search

In this thesis, the effectiveness of ant colony optimization is assessed by comparing its
performance with the performance of another meta-heuristic, iterated local search (ILS).
ILS is a relatively simple algorithm but, despite this fact, it yields very good results on
a variety of problems.

1.4.1 The algorithm

The problem of the descent local search getting stuck at local optima is attacked in
a very simple but effective way by iterated local search. It just kicks the hill-climber
out of the local optimum leading it to a solution beyond the neighborhood searched
in the local search algorithm in the hope that it will reach a better local optimum in
the next local search application. More specifically, the idea is to modify the current
solution s into an intermediate solution s’ by a series of kick—-moves and then apply
the local search to s’ to reach a new local optimal solution s”. An acceptance criterion
determines whether the search is continued for s’ or s”, or some other solution. This
idea stems from Baum (1986), has been developed further by Martin et al. (1991) and
is captured in Algorithm 1.3. The success of ILS is apart form local search dependent
on the type and strength of the kick—move, and on the specification of the acceptance

12
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criterion.

1.4.2 Applications of ILS

ILS algorithms are currently among the best performing approximation methods for
many combinatorial optimization problems like the traveling salesman problem (Martin
et al. 1991, Johnson and McGeoch 1997). ILS has also been applied with success to the
flow shop problem (Stiitzle 1999), the job shop problem (Ramalhinho Lourengo 1995),
and, most interesting, to the single machine total weighted tardiness scheduling problem
(Congram, Potts and Van de Velde 1998), where iterated dynasearch, as the algorithm
is called, is claimed to outperform all other meta-heuristics that have been applied to the
problem. In the literature, iterated local search is often disguised under another name
like “large step Markov chains” (Martin et al. 1991) or “simple variable neighborhood
search” (Hansen and Mladenovié¢ 1999).

1.5 Experimental methodology

1.5.1 Empirical evaluation

In this thesis, the performance of ant colony optimization (ACO) is compared with that
of iterated local search (ILS) on the single machine total tardiness problem (SMTTP)
and the single machine total weighted tardiness scheduling problem (SMWTP). The
comparison is accomplished by empirical evaluation of the meta-heuristics’ performance.
The guidelines put forward by Barr, Golden, Kelly, Resende and Steward (1995) are kept
in mind in this process. These researchers state that any report on heuristics should
reckon with at least the solution quality or effectiveness, the computational effort or
efficiency and the robustness of the performance.

The quality of a solution is measured relative to the optimal or best known solution
for the problem instance. The average solution quality produced by the ACO and ILS
will be reported. Most of the time, however, efficacy is interpreted as finding the optimal,
or best known, solution. In such cases, the estimated probability to find the optimal
solution in dependence on the run—time will be reported.

The efficiency of the algorithms is measured in CPU-time. Both the ACO and ILS
algorithm are implemented in the C++ programming language and tested on the same
computer. Whenever possible the same data—structures are used for both algorithms.

The ability of the meta-heuristics to perform well over a wide range of problems,
their robustness, is dealt with simply by testing them over a wide range of problems.
The test problems are benchmark instances which have been used in earlier studies.
These test problems cover the whole range of characteristics that the SMTTP and the
SMWTP have to offer. In addition problems of different size are examined.

13
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1.5.2 Run time distributions

In recent years, Hoos and Stiitzle (1998) have developed a novel type of evaluation
methodology to analyze algorithms which involve random decisions during the search.
This methodology, based on measuring run time distributions of algorithms applied to
optimization problems, will be used in this thesis to analyze the behavior of ACO and
ILS.

The run time required by an algorithm to achieve a specific goal, like finding an
optimal solution to a given problem instance, is a random variable. The run time
distribution (RTD) of this variable can give valuable information for the analysis and the
characterization of an algorithm’s behavior and can provide a basis for the comparison
of algorithms. Knowledge on the RTD is obtained by running the algorithm many times
on an instance and keeping track of the solution quality and run time whenever a new
best solution is found. The empirical distributions can then be estimated a posteriori.
The estimated cumulative run time distribution G, () to reach a solution quality bound
¢ is computed as

_ Hilrt() <t A f(sy) < e}
N k

In this equation, k is the number of times the algorithm is run, ¢ is required solution
quality, f(s;) the best solution found so far, and rt(j) the run-time of the j-th algorithm
run. In practice, an algorithm may fail to reach a required solution within the available
CPU-time. In that case a truncated RTD is measured.

The run time distribution gives information on the algorithm’s behavior on specific
problems instances. Often, similar behavior is observed on many of the instances and
in that case the RTD allows to draw conclusions on the algorithm’s conduct on this
problem class. Particularly in Chapter 3 run time distributions are used to tune and
evaluate the ACO and ILS algorithms.

Ge(t) (1.5)

1.6 Summary

In the foregoing, I have presented the two meta-heuristics that will compete on scheduling
problems for the rest of this report. The problems under investigation in Chapter 2 and
Chapter 3 are NP-hard, so approximation algorithms are needed. Both ant colony
optimization and iterated local search have a been successfully applied to a number of
NP-hard combinatorial optimization problems, however, it is hard to predict which of
the algorithms will come out best.

A meta-heuristic will be successful if it can strike the right balance between exploita-
tion of the accumulated search experience and the exploration of the search space to
identify regions with high quality solutions. The meta-heuristics under consideration
here differ in the tools they can employ to achieve that goal. More fundamental is the
difference in philosophy underlying iterated local search and ant colony optimization.
Ant colony optimization is based on behavior found in nature, iterated local search is
a direct solution to the problem of descent local search that gets trapped in a local
optimum. Similarly, the configuration of ant colony optimization tends to focus on the

14
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creation of circumstances in which the ants will thrive, obtaining a graph representation
of the problem on which ants can easily find the optimal solution, whereas the configu-
ration of iterated local search tends to focus on the acquisition of a mechanism that is
rich enough to help the descent procedure search through the landscape defined by the
local search operators. In the following it will become clear which approach is the most

viable.
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2 Algorithms for the single machine total
tardiness problem

2.1 Introduction

The single machine total tardiness problem (SMTTP) is a special case of the single ma-
chine total weighted tardiness scheduling problem that considers each job to be equally
important. Since the priority factors attached to jobs are discarded, the resulting prob-
lems are less complex and, in practice, easier to solve. The SMTTP is also interesting
in its own right and has attracted a large amount of attention throughout the years
(Koulamas 1994, Russell and Holsenback 1997). As a result a wide range of algorithms
has been developed that attempt to solve the problem. Most of these algorithms either
perform an exhaustive search or construct solutions according to a dispatching policy.
Only few applications of meta-heuristics to the SMTTP have been reported.

One of the algorithms that follow a meta-heuristic is the approach to the SMTTP
which was recently proposed by Bauer, Bullnheimer, Hartl and Strauss (1999a, 1999b).
These researchers applied ant colony system (ACS) to the problem and claim that their
approach, ACS-sMTTP, outperforms all leading heuristics. This claim deserves further
investigation, especially because it is not accompanied with information on the amount
of computation needed to reach the reported results. The performance of ACS-sMTTP
on the single machine total tardiness problem is a first test—case for the suitability of
ant colony optimization for single machine sequencing problems. Re-implementation
and further examination of this first ACO algorithm for the SMTTP will, in addition
to forming a check of their implementation choices, at least hint whether ant colony
optimization is appropriate for the single machine total weighted tardiness scheduling
problem. To put the performance of the algorithm into perspective, ACS-SMTTP is
compared with iterated local search.

The analysis performed in this chapter will remain rather shallow as it is intended to
get a basic feel with main issues of concern in this thesis only. A more profound analysis
of the algorithms is given in Chapter 3 which is concerned with the more complex and
interesting single machine total weighted tardiness scheduling problem.

17



2 Algorithms for the single machine total tardiness problem

2.2 The single machine total tardiness problem

2.2.1 The problem

A single machine that can handle only one job at a time processes m jobs without
preemption. Every job j is available for processing at time zero and requires a positive
processing time p;. The completion of the job is committed to a due date d;. If Cj
is the actual completion time of job j, then the job’s tardiness T is defined as T; =
max{0,C; —d;}, the time with which the job exceeds its due date. The objective of the
single machine total tardiness problem (SMTTP) is to find a feasible processing sequence
that includes all jobs (j = 1,...,n) and minimizes the total tardiness T' =} Tj.

2.2.2 Related research

The landmarks of SMTTP-research are set by Emmons (1969), Lawler (1977) and Du
and Leung (1990). Thirty years ago Hamilton Emmons formulated dominance conditions
that describe the circumstances under which jobs precede each other in at least one
optimal sequence. A decade later Lawler showed that an SMTTP—-instance is pseudo-
polynomially solvable by deriving an O(n* 25 p;) algorithm based on decomposition.
The complexity of the SMTTP has remained open for many years. Only recently Du
and Leung (1990) proved that the problem is NP-hard.

Likewise, three classes of algorithms have emerged. First of all, there are algorithms
that focus on getting a solution of reasonable quality without much computational effort.
The WTI heuristic (Wilkerson and Irwin 1971), the NBR heuristic (Holsenback and Russell
1992) and the PSK heuristic (Panwalkar, Smith and Koulamas 1993) are of this type.
These algorithms incorporate dispatching rules to get a quick estimate of the desirable
order of the jobs. A promising policy for the single machine total tardiness problem
is to give priority to the earliest due date (EDD). The shortest processing time (SPT)
dispatching rule works well if most of the jobs are delayed; the modified due date (MDD),
defined as MDD = max{C; + p;, d;}, seems the most suited since it is directly based on
the findings of Emmons (1969) and therefore meets the problem characteristics best.

Deterministic algorithms that focus on finding optimal solutions constitute the second
class. Considerable progress has been made in this area. The first branch-and-bound
approach (Emmons 1969) could only find optimal solutions on small problems. Potts and
Van Wassenhove (1982) combined Lawler’s decomposition approach with the dynamic
programming algorithm of Schrage and Baker (1978) to solve instances with up to 100
jobs. State—of-the—art results are obtained by the algorithm of Swarc et al. (1998) which
efficiently handles instances with up to 300 jobs.

After it was proven that there exist instances of the problem that are not solvable
within polynomial time, interest has risen to apply nondeterministic meta-heuristics.
They form the third class of algorithms. Ben-Daya and Al-Fawzan (1996), for example,
report on a simulated annealing approach. The ACS-SMTTP belongs to this class, too.
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2.3 Using ant colony optimization

2.2.3 Problem instances

Instances are generally classified by their tardiness factor (TF) and range of due dates
(RDD). TF is given by
?:1 d;

(n E;'l:1 pj)
It indicates how tight the due dates are. TF = 0 if due dates are on average as late as
the completion time of the job that is processed last. TF = 1 if, on the other hand, all
jobs are committed at the starting time of the system. RDD is the difference between
the earliest and the latest due date normalized over the sum of all processing times:

TF =1-— (2.1)

RDD = Zmax = dmin (2.2)
Cmax
RDD = 0 indicates that the jobs have a common due date. RDD =1 is obtained if due
dates differs as much as the sum of all jobs’ processing times.

Many of the SMTTP-instances are generated randomly. Often, in any case for
the instances I have applied, TF and RDD are used as parameters in the generation
process. The processing time p; is an integer generated randomly according to a uniform
distribution [1,100]. The integer due date d; is generated randomly according to a
uniform distribution in [(1 — TF — BDR) . S~ p. (1 — TF + 22B) . $°p,]. A range of
values for RDD and TF is chosen to form a representative sample of the problem. The
benchmark set of Potts and Van Wassenhove (1991), for example, consists of a group of
50—job problems and a group of 100—job problems. Each group contains five instances
of all pairs of TF and RDD taken from the set {0.2,0.4,0.6,0.8, 1.0} resulting in a total
of 2 x 125 instances in the benchmark set.

In this chapter, the algorithms’ performance is reported for the 125 100—job in-
stances. In addition, the algorithms are tested on problems of 150 to 400 jobs which
were generated by Karal.

2.3 Using ant colony optimization

I already mentioned that an ACO algorithm has been developed for the SMTTP. In this
section, the configuration of this algorithm, ACS-sMTTP, is described, and obscurities
in the approach are pointed out.

2.3.1 The Vienna approach

Andreas Bauer at the University of Vienna was the first to apply ACO algorithms to the
SMTTP. He adopted the ACO algorithms for the traveling salesman problem (TSP)
which are described in Section 1.3.2 and applied them to the SMTTP.

When applied to the SMTTP, each ant starts with an empty sequence and then iter-
atively appends an unscheduled job to the partial sequence constructed so far. The de-
sirability to add job j as ith element to the sequence is reflected in the value 7;;(£)% -7;;7,

! Available on http://www.bilkent.edu.tr/~bkara/start.html.
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2 Algorithms for the single machine total tardiness problem

where « and /3 are parameters. 7;;(t) is the pheromone trail associated to the assignment
of job j to position ¢, and 7;; is the heuristic information provided by dispatching rule.
For example, 1;; = 1/d; if the earliest due date rule is used.

The solutions constructed by the ants are evaluated and local search is applied to
the solution with the lowest total tardiness. Afterwards, a positive reinforcement A7;; =
1/T9° is given to the pheromone trail that corresponds to the best solution found so far
(see Equation 1.2 on page 10). T9 is the total tardiness of this solution. The initial
trail intensity 7 is 7o = 1/(n - Tepp), where TEpp is the total tardiness for a sequence
of jobs in non—decreasing EDD order and n is the number of jobs.

Four ACO variants, ant system, ant colony system, its predecessor Ant-Q, and
MAX-MIN ant system, were first tested on an SMTTP instance of 10 jobs posed
by Holsenback and Russell (1992). The ACO algorithms were run with various heuris-
tics. The combination of ant colony system (ACS) and the modified due date (MDD)
heuristic proved best for this problem, MAX-MZN ant system with MDD second best.

Next, ACS guided by MDD was combined with local search. For the local search,
algorithms based on the transpose neighborhood (- - - 77;" 1 - - -) and algorithms based on
the interchange neighborhood (- - - @0@ -) were considered (see Section 1.2.2);
additional tests were done to determine whether local search should be applied to all
solutions found by the ants or only to the best solutions. These tests were performed on
the 50—job and 100-job instances of Potts and Van Wassenhove (1991).

Finally, a number of settings for ACS parameters «, 3, o, p and population size were
tested on the instances. Based on the experimental results the following parameter—
settings were chosen for ACS-sMTTP: aa =1, 8 =2, g9 = 0.9, p = 0.1, 20 ants, heuristic
information provided by MDD with local search based on the interchange neighborhood
search and applied only to the iteration best solution of the colony.

2.3.2 Questions

The publications on the Vienna approach to SMTTP raise a number of questions. The
first two questions relate to design choices, the last three are on comparison, efficiency
and scaling — in that order.

1. Which neighborhood is searched and what type of descent is used? It is not entirely
clear which neighborhood was ultimately chosen. Bauer et al. (1999a, Section 4.3)
suggest a transpose neighborhood was used, while Bauer (1998, p. 58) reports
better results for the interchange neighborhood. It is not made explicit either
whether first improvement pivoting rule or best improvement pivoting rule is used
to search the neighborhood. A look at the code (Bauer 1998, p. 91, 92) reveals that
the first improvement rule is implemented. Yet, it could be that best improvement
or local search based on the insert neighborhood performs significantly better.

2. Wouldn't it be better to apply local search to all solutions? Previous research on the
extension of ant colonies with local search indicates that applying the local search
to all solutions is often the best approach (Stiitzle 1998b). Surprisingly, here the
opposite is done. The purpose of ants in ACO algorithms that make heavy use of

20



2.4 Implementation

local search is to guide the local search out of the local optimum so that it can find
a better optimum. It is by no means obvious that the solution that scores best on
the objective function gives the best starting point for the local search. What’s
more, such is solution has a high likelihood of being the old local optimum or near
to the old local optimum. So, if one wants to apply the local search to only one of
the ants’ solutions, then taking the worst solution is perhaps even a better choice.

. What is the quality of this approach relative to other more simple meta-heuristics
like iterated local search? Comparisons with results on Potts and Van Wassen-
hove’s (1991) benchmark set are published by Bauer, Bullnheimer, Hartl and
Strauss (1999a, 1999b). However, these are comparisons with simplistic algorithms
like NBR and PSK and they are not based on similar computing times and there-
fore of little use.

. How long does it take to solve an instance? How hard are the benchmark instances
anyway? Knowledge on these issues is a prerequisite for comparisons with other
algorithms. Still, so far nothing is reported on the computational effort ACS-
SMTTP requires to solve an instance of the SMTTP. For any problem there exist
instances which are easy to solve, but to assess ACS-SMTTP’s performance one
should identify hard instances and concentrate on them — on easy instances less
complex algorithms suffice, as will be shown later.

. What about larger instances? The parametric study on the 50—job set suggests that
ACO is not useful for problems of that size (Bauer 1998, p. 61, 72). The best value
for « is zero which indicates that the best performance is achieved if the pheromone
mechanism is not used at all. On the set of 100 jobs ant colony optimization seems
to be more effective, because here better performance is achieved with @ = 1 than
a = 0. One expects that on larger instances the need for a meta-heuristic like
ant colony optimization is even more obvious: local search is more expensive on
bigger search spaces and therefore guiding the search will be more necessary. This
conjecture remains to be confirmed, though.

Implementation

In the next section, an ACO algorithm and an ILS algorithm will be compared on a
number of SMTTP instances. Here details on the implementation of these algorithms
are presented.

2.4.1 Local search

Initially, naive implementations of local search were used, that is, evaluation of moves was
done by computing the tardiness for each of the jobs in the sequence. The neighborhood
moves described in Section 1.2.2 were implemented. Preliminary tests, which will be
discussed in a moment, singled out the interchange neighborhood as the most promising.
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2 Algorithms for the single machine total tardiness problem

Based on these results an effort was made to implement a more efficient interchange
neighborhood search. Less naive evaluation of interchange moves was obtained based on
the observation that the tardiness only changes for jobs within positions ¢ and j for the
move (--- @‘@ -+); jobs outside these positions need not be evaluated. Both a
local search using the best improvement pivoting rule and a local search using the first
improvement pivoting rule were implemented.

Even more efficiency was gained through adoption of the speedups which Congram
et al. (1998, Section 3.4) propose for the interchange local search on the single machine
total weighted tardiness scheduling problem (SMWTP). These speedups are explained in
depth in Section 3.3.1, since they were initially implemented for that problem and only
later adopted for the SMTTP. Even though the speedups are designed for application to
the SMWTP, they can be used for applications of local search to the SMTTP as well:
take a constant value, say one, everywhere a weight is considered in the procedure.

2.4.2 Ant colony system

The ant colony system I use differs at some minor points from Bauer’s implementation.
At the initialization of the ant colony system, a starting solution is build by application
of local search to a sequence of jobs that is constructed on the basis of the MDD rule.
The purpose of this initialization is twofold. First of all, it prevents that the ants come
into action for instances that can be solved with one local search application. Secondly,
as they start with a high quality trail, ants are immediately guided towards regions of
the search space where good solutions are found.

Superfluous computation is prevented by a somewhat ingenious initialization and
maintenance of the values of 7;;(¢)® - 7;;°. In a naive implementation each time an ant
requests its environment for information on the desirability to put job j on position i,
7;; would be looked up, 7;; would be computed — in case of EDD given as 1/d; — and
finally those values would be combined by applying the formula given above. When one
uses static heuristic information and only alters pheromone—-intensities of edges that are
part of the iteration or global best solution, then it is better to fill a table with the values
of 7;;(t)% - nijﬂ right at the start, use this table as a substitute, and update this table
only when necessary.

2.4.3 lterated local search

The implementation of ACS-sSMTTP is compared against an algorithm that consists of
multiple local search applications that are dependent as the initial solution of the local
search procedure is the suitably perturbed solution of the previous local search appli-
cation. The outline of algorithms of this type, known as iterated local search (ILS), is
given in Algorithm 1.3 on page 12. The ILS algorithm will use the same local search
as is employed by the ACO algorithm. Like in ant colony optimization, the initial solu-
tion is generated by the MDD construction heuristic. As long as the global optimum is
not found, the current best solution is perturbed by six random interchange moves and
then local search is applied to this solution. The search always continues by applying
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Aavg Ayorst TNopt
insert 0.42 7.04 61 Aavg Ayorst Nopt tavg
transpose | 1.28 12.57 54 first improvement | 0.07 1.80 92 0.08
interchange | 0.07 1.88 87 best improvement | 0.06 1.53 90 0.08
(a) local search neighborhoods (b) interchange local search search strategies

Table 2.1: Effectiveness of local search for the SMTTP. Each variant is run once on each of the
125 100-job instances. For a solution 7 the deviation A to the optimal solution 79° is defined
as A = 100 - (f(m) — f(w9®)/f(n9®) where f is the objective function of the SMTTP. A,,, is
then the average deviation and A.rst is the largest deviation. n,p: is the number of optimal
solutions found (out of 125) and t4,4 is the CPU time averaged over the 125 instances.

kick—-moves to the best solution found so far. This ILS configuration is merely based on
hunches on what might yield good results, a more thorough investigation of the design
choices and parameter settings for iterated local search is done in Section 3.4 on the
configuration of ILS algorithms to minimize total weighted tardiness.

2.5 Results

In this section, I discuss the computational results which hint how the questions posed
in Section 2.3.2 should be answered. These questions concern both the configuration of
ACS-sMTTP and its exact performance. To make comparison with the original results
easier, I will test my re-implementation on the 100—job SMTTP instances that were
used by Bauer, and kindly provided by H. A. J. Crauwels. In addition, more rigorous
performance assessment is made on some of the instances of over 100 jobs available at
http://www.bilkent.edu.tr/~bkara/start.html. The initial tests were run on a Pentium
IT (266 MHz) with 320 MB RAM, the other tests on problems of 150 and more jobs were
run on a Pentium IIT (450 MHz) with 256 MB RAM.

2.5.1 Local search configuration

Local search is one of the most important components for both ant colony optimization
and iterated local search and differences in neighborhoods and implementation of local
search may have a large effect on the meta-heuristic’s performance. To ascertain which
neighborhood works best and what pivoting rule should be employed, I have implemented
a series of local search variants and run them on the 125 100—job SMTTP instances.
Table 2.1 summarizes the results.

In Table 2.1(a) the transpose, the insert, and the interchange neighborhood are
compared with respect to the average deviation from the optimum (Ag,y), the worst
deviation from the optimum (Ayerst) and the number of optimal solutions (ngy¢) found
after one run on each of the 125 instances. The local search checks the neighborhood
according to the best improvement pivoting rule. Undoubtedly, local search with the
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2 Algorithms for the single machine total tardiness problem

Z'a'ug Ayorst TNopt ta’ug

ILS | 18,63 O 625 1.25
ACS-smTTP | 7.07 0.03 623 3.71
ACS-smTTP? | 0.72 0 625 1.85

Table 2.2: Effectiveness of ant colony op-
timization and iterated local search for the
SMTTP. The algorithms are run five times with
a computation bound of 100 seconds on the
100—job benchmark set. The average number of
iterations, 4444, the worst deviation to the opti-
mal solutions, Ay orst, the number of runs ter-
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Figure 2.1: Cumulative distribution of run
times of ACS-sMTTP/(x) and ILS(+) over the
125 benchmark instances. The algorithms were
run 5 times on each instance with a CPU limit
of 100 seconds. The average run times per in-
stance are sorted. A point in the plot depicts
the average run time on which the nth instance

minated successfully, n,p:, and the CPU time is solved.

are averaged over the 5 x 125 tries, t444 is given.

interchange neighborhood reaches the highest solution quality: it has the lowest average
and worst case deviation combined with the highest amount of solved instances.

The results in Table 2.1(b) do not clearly indicate which pivoting rule is best used.
In the end, T decided to use best improvement local search.

2.5.2 Local search application

Now that the a local search configuration is settled, it should be determined how the local
search is best employed. The first concern is whether the local search should be applied
to all the ant’s solutions, as is done in ACS-SMTTP/, or only to the best ones which is
done in the original ACS-sMmTTP. Of later concern is the question whether ant colony
optimization or iterated local search provides the best environment for application of
local search.

Table 2.2 summarizes the results for five runs of ACS-smTTP, ACS-sMTTP/, and ILS
on the 125 100—job SMTTP instances. The table’s data confirm the supposition that
it is better to apply the local search to all the ants’ solutions: on average ACS-SMTTP/
finds the optimal solution two times faster than ACS-sMTTP and while ACS-sMTTP/
always solves the instances, ACS-SMTTP does not succeed 2 times out of the 5 x 125
tries. Interestingly, ACS-SMTTP/ needs on average less than one iteration to solve an
instance. The explanation for this is that often instances are solved already after the
first local search — in the zeroth iteration, while only a few require more iterations. In
the 0.72 iterations of ACS-SMTTP/ containing 20 ants an equivalent of 20 - 0.72 = 14.4
local search applications are performed. This is less than ILS goes through on average.

24



2.5 Results

ACS-sMTTP needs even less local search applications: 7.07 — one per iteration. Yet,
the overhead required to achieve this smaller number of local search runs is more costly
than the savings it results in.

A cumulative distribution? of the average run time over the 125 instances is given
in Figure 2.1 on the facing page for the ILS algorithm and for ACS-smTTP/. The dis-
tribution of ACS-sMTTP/’s average run times shows a gap between 0.1 and 1 seconds.
During this period the algorithm is occupied with first the application of a local search
to each of the ants’ solutions. The approximately 90 instances that fall before the gap
are solved by the local search application at the algorithms’ initialization. This number
of instances corresponds to the n,,; values reported in Table 2.1 on page 23. The fact
that initialization of ACS-SMTTP/ is more costly than the ILS initialization is reflected
in the difference in the distribution of the easiest 90 instances.

Because ILS needs less time for one iteration it is able to solve more instances during
the first seconds. An iteration of ACS-SMTTP/ is in fact a sort of multi-start local
search. Multiply applying local search a slightly varying starting solutions is usually
outperformed by an iterated application. So, it is not surprising that iterated local search
has an advantage during the first iterations. Yet, in the end, the hardest instances require
the same run time of both ILS and ACS-sMTTP/. So, apparently, the ACO solution
construction process can catch up with the ILS solution modification mechanism for
more difficult SMTTP instances.

2.5.3 Hard instances

In the foregoing only global results were presented. It turned out that only a few
instances require more than one or two local search applications. Focusing on those in-
stances might provide more insight, therefore I shift the attention towards the individual
instances.

Figure 2.2 on the following page indicates how instances and the algorithms’ run
times relate to each other. More specifically, Figure 2.2(a) compares the run times of
ILS with the run times needed by ACS-sMTTP/ and Figure 2.2(b) plots for each of the
instances the corresponding average ILS run times. Figure 2.2(c) gives the values for the
parameters that were used in the generation of the instances. It helps to differentiate
among the instances.

Figure 2.2(a) shows that for most instances it makes no difference whether ILS or
ACS-sMmTTP! is applied. Still, there are considerably less instances where ILS needs more
time to find the optimum than ACS-sMTTP/.

It is risky to draw conclusions based on the results in Figure 2.2(b). Clearly, the run
times vary per instance. Yet it is not clear whether this is due to randomness in the
algorithm’s behavior or due to differences between the instances. Figure 2.2(b) shows
a kind of periodic behavior that suggests a link with the tardiness factor and range of
due dates of the job. According to Holsenback and Russell (1992) instances with a small

*This is not a run time distribution (RTD). An RTD considers the distribution of the algorithm’s run
times on a single run. Here, on the contrary, it is the distribution of instance solving time over the
benchmark set that is investigated.
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(a) difference between the average run time of ACS-sMTTP/ and ILS. A negative time indicates the
amount that the average run time of ILS exceeds the average run time of ACS-sMTTP/. A positive
time indicates how much ILS is faster.
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(c) tardiness factor (TF) and range of due dates (RDD) corresponding to each instance

Figure 2.2: Detailed results on the run times of the algorithms that were run five times on the
100—job benchmark set with a 100 second computation bound.
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Figure 2.3: Run time distributions giving the empirical cumulative probability of finding the
optimal solution for ACS-SMTTP/ (solid line) and iterated local search (dotted line) on SMTTP
instances of 150 and 200 jobs with TF = 0.6 and RDD = 0.2. The algorithms are run 100
times with a computation time of 20 minutes on each of the instances. The empirical solution
probability is given on the y-axis, the log CPU time in seconds on the x-axis.

range of due dates and a tardiness factor between 0.6 and 0.8 are especially difficult to
solve. A similar observation can be made from Figure 2.2(b).

2.5.4 Large instances

The 100—job problems alone cannot provide a sound basis for comparison of iterated local
search and ant colony optimization, as most instances are solved after one ACQO iteration.
On instances that contain more jobs, the local search will be more costly, the search space
much larger and more complex, and therefore the difference in performance of the meta-
heuristics may become more marked. On http://www.bilkent.edu.tr/~bkara/start.html
one can find SMTTP instances which are generated in the same way as the 100—job
benchmark set and contain more jobs. Problem instances were generated with 150, 200,
300, 400, and 500 jobs. It was found, again, that the instances with TF = 0.6 and
RDD = 0.2 were the most difficult to solve, so I tested the algorithms only on these
instances.

Figure 2.3 depicts the distribution of the run times the algorithms need to solve
instances of 150 and 200 jobs?. The corresponding numerical results are given in Table 2.4
on page 29 and Table 2.5 on page 30. The names of the instances correspond to their
original names on Kara’s web-page*. Clearly, the run times of ILS, given as a dotted line
in the figure, are generally shorter than ACQ’s run times, given as solid lines. Though

3See Section 1.5.2 for an introduction into run time distributions.
4The instances are numbered consecutively. Instances 1 to 10 have RDD = 0.2 and TF = 0.2, instances
11 to 20 RDD = 0.2 and TF = 0.4, etcetera.
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21 22 23 24 25 26 27 28 29 30

150 2 1 3 2 3 1 2 9 3 1
200 4 18 39 o4 7 31 13 27 16 40
300 172 219 320 310 221 206 418 340 113 264
400 1365 3029 2824

Table 2.3: Run times of Swarc et al.’s (1998) algorithm for the SMTTP measured on a Pentium
III (450 Mhz) with 250 MB RAM under Windows 95 (©.

the instances have the same tardiness factor and range of due dates, they differ strongly
in the run times needed to solve them: the 200—job instances generally require more time
due to problem size, yet some 150—job instance take longer to solve on average than some
200—job instances. In the tables, the average run time for ACS-sMTTP/ on the 150—job
instances ranges from 4.29 to 1203.21 seconds, for ILS from 0.37 to 748.77 seconds. In
addition, a run can be a factor 100 slower or faster than the another run with the same
algorithm on the same instance. Hence, even on a single instance run times differ very
strongly.

2.5.5 Comparison to exact methods

Table 2.3 gives the run times of Swarc et al.’s (1998) state—of-the—art algorithm for the
SMTTP. On problems up to 300 jobs this exact algorithm is clearly preferable over the
approximation algorithms devised in this chapter. At the same time, the meta-heuristics
are less severely affected by the increase of jobs. The run times of the exact algorithm
appear to scale exponentially with the increase of the number of jobs. This is clearly
not the case for the approximation algorithms (see Table 2.4 and Table 2.5). So, on
problems of 500 and more jobs it might well be that an ILS or ACO method is more
efficient than the algorithm of Swarc et al. (1998).

2.5.6 Summary of results

In Section 2.3.2, I formulated five questions on Bauer et al.’s (1999a) approach to the
SMTTP. They can now be answered.

1. The first question concerned the configuration of local search. The results of Sec-
tion 2.5.1 indicate that in ACS-SMTTP an interchange local search should have
been used to achieve the best performance. Whether the neighborhood check was
governed by the best improvement or first improvement pivoting rule does not
make a big difference.

2. Next, it was asked if it wouldn’t be better to apply the local search to all the
solutions. The results of ACS-SMTTP and ACS-SMTTP/ in Table 2.2 on page 24
strongly suggest the latter configuration should be used, contrary to the findings
of Bauer (1998).°

SBauer (1998, Section 3.3.2) has tested whether local search should be applied to all ants’ solutions or

28



2.5 Results

tmin tmaz tay g tstddev imin imaw i(w g istdde’u Topt

150:21 0.64 48.61 9.08 8.44 4 273 48.72 45.35 100
150:22 0.22 62.63 7.70 9.18 1 311 37.53 44.93 100
150:23 6.22 3579.62  748.77 664.12 33 18985 3884.48 3445.62 95
150:24 0.13 1.19 0.37 0.23 1 6 1.90 1.19 100
150:25 3.57  998.55  172.06 192.80 23 5697  983.45 1102.95 100
150:26 0.16 86.79 11.89  13.05 481 65.77 71.66 100

[a—y

150:27 043 9833  21.60 1743 3 501 113.93  91.47 100
150:28 007 11813  24.95 2670 1 628 130.84 139.34 100
150:29 024 460 143 088 1 27 742 491 100
150:30 012 4206 679 776 1 214 34.88  39.87 100
200:21  2.56 307.86 5845 4532 7 677 136.62 10248 100
200:22 023 1809 404 350 1 48 1046 874 100
200:23  3.88 305.65 7499 5830 9 629 15443 119.97 100
200:24  5.03 153540 210.77 251.38 10 3086  425.60 505.01 100
200:25 058 5773 1003 1115 2 142 2431 2647 100
200:26  3.89  540.71 12549 10458 8 1177  273.25  227.62 100
200:27  4.00 598.02 10296 90.89 8 1203  232.93  200.13 100
200:28 120 176.59  41.39 3153 3 440 103.68  79.24 100
200:29 123 5747 1893 14.02 3 139 4459  32.88 100
200:30 059 7621 1875 1637 1 154 3847  33.74 100
300:21  7.24 35229  86.61 59.11 5 255  61.31  41.98 100
300:22 2271 992.83  234.53 177.05 20 849 202.10 156.03 100

300:23  10.46 1001.92  212.29 212.90 9 681  139.62  143.29 100
300:24  22.04 3388.42  567.00 526.27 14 2282  388.86 361.30 100
300:25  22.61 760.22  300.16 215.41 17 694  255.71  186.75 83
300:26  59.47 2979.03 1141.27 839.70 42 2210  858.27  632.66 81
300:27  19.62 1275.16  280.03 225.39 18 843 197.02 154.91 100
300:28 164.91 3423.47 1179.71 820.34 107 2541 851.86  600.55 73
300:29  14.79 3200.84 905.45 755.36 12 2400 675.10 567.24 96
300:30 1.66  151.48 31.72  27.89 1 102 21.93 18.70 100

400:23  96.43 2940.67  748.34 601.92 27 766  201.85  159.32 79
400:24 248.07 3522.89 1550.16 865.78 76 1109 48798 271.80 64
400:27  85.68 2171.13  753.92 483.07 28 695 239.31  154.11 100

Table 2.4: Iterated local search for large SMTTP instances. The algorithm is run 100 times
per instance with a bound of 1 hour. Given are, out of 100 tests, the shortest run time (¢,in),
the longest run time (t,,q5), the average run time (¢,,4) to solve the instance,and the run times’
standard deviation (o;). In addition these statistics are given for the number of iterations, that
is, 9min for the shortest number of iteration, ¢y, for the maximum, 44,4 the average, and oy
the standard deviation. Finally, the number of tests that resulted in a globally optimal solution
(nopt) is given.
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tmin tmax tcwg tstddev Iimin imaw iavg istdde'u Topt
150:21 8.19 72.60 23.46 12.37 1 12 3.50 2.22 100
150:22 4.30 74.58 17.87  14.98 0 13 2.40 2.70 100
150:23 111.19 3204.78 1203.21 890.85 20 587 221.52 163.82 91
150:24 4.30 10.67 9.98 0.63 0 1 0.99 0.10 100
150:25 9.11 3569.71  321.37 449.04 1 699 62.63 88.35 100
150:26 3.93 9.18 4.29 0.50 0 1 0.01 0.10 100
150:27 9.34  366.17 91.24  73.03 1 68 16.25 13.53 100
150:28 4.68  207.60 44.19  44.53 0 38 7.07 8.07 100
150:29 7.81 24.54 11.85 2.43 1 3 1.13 0.37 100
150:30 9.98 106.59 26.34  19.83 1 19 3.99 3.69 100
200:21 47.24 224482 451.67 387.60 3 174 3426 30.08 99
200:22  9.37 113.63 3136 1853 0 9 187 159 100
200:23  52.68 2347.87  660.12 41147 3 169 4597 29.31 100
200:24 69.53 2867.66 817.37 544.39 4 197 5553  37.69 100
200:25  21.16 128.42 39.07  22.39 1 9 2.40 1.84 100
200:26  27.08 2800.46  832.91 591.76 1 199 58.42 42.26 100
300:21  82.53 3392.89 1038.29 827.49 1 74 2203 18.14 99

Table 2.5: Ant colony optimization for large SMTTP instances. The algorithm is run 100 times
with a bound of one hour. See Table 2.4 on the preceding page for a description of the entries.

3. The third question inquired after the quality of the ACS-sMTTP relative to other

algorithms for the SMTTP. The improved ACS-smTTP, ACS-SMTTP/ performs
worse than iterated local search (see Figure 2.2(a) on page 26 and Figure 2.3 on
page 27) and, at least for SMTTP instances of less than 300 jobs, exact algorithms
are able to outperform approximation algorithms like ILS and ACO (see Table 2.3
on page 28). However, more investigation in this last issue is needed and there is
still room for improvement of the implementations of ILS and ACO.

. The efficiency of ACS-sMTTP was the worry of the fourth question. For an efficient

PC-implementation, Bauer, Bullnheimer, Hartl and Strauss (1999b, p. 14) esti-
mate computation times of 10 seconds on the 100—job problems. This has proven
to be a correct estimate, yet, experience also shows that the instance are rather
easy to solve by standard local search. One local search already outperforms all
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only to the best. He ran both configurations on the 125 50—job instances. Although the deviation
to the optimum was smaller when local search was applied to all solutions, he choose the employ
local search only once per iteration on the ground that this last variant required less time to run and
could find the global optimum for the same amount of instances. Yet, considering that the 100—job
instances could on average be solved within one ACO iteration of twenty local search applications
(Section 2.5.2), tests on even smaller problems cannot possibly convey anything meaningful on the
application of local search in ant colony optimization. As noted, on such problems ACS-sMTTP/ with
twenty ants is just some kind of multi-start local search, no wonder it will be outperformed by the
more iterated ACS-SMTTP.



2.6 Summary

“leading heuristics” with which Bauer et al. (1999b, Table 2) compare ACS-SMTTP.
It is not clear how important the ant’s contribution is, hence one could question
the value of that comparision.

5. The fifth and last question’s anxiety was on the performance of ACS-SMTTP on
larger problem instances. From Section 2.5.4 and Section 2.5.5 it can be concluded
that ACO, and ILS scale well to larger problems. Yet, as pointed out earlier,
additional research is needed to get a definite picture of ACO’s scaling behavior.

2.6 Summary

The Vienna publications clearly demonstrate that ant colony optimization can be applied
to the SMTTP. Yet, the much simpler iterated local search which is described in this
chapter could achieve the same effectiveness in less time. Therefore one can at least
doubt whether ants are useful at all for the SMTTP. On the other hand, this chapter
has also shown that the proposed configuration of ACS-SMTTP is not optimal, which
suggests that there is still potential for further improvements.

I’ll leave the exploration of the SMTTP to future research. For now, I will concentrate
on the more challenging single machine total weighted tardiness scheduling problem
which is known to be much harder to solve.
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3 Algorithms for the single machine total
weighted tardiness scheduling problem

3.1 Introduction

This chapter presents a number of algorithms for the problem of scheduling a single
machine to minimize total weighted tardiness. The algorithms are variants of local
search, iterated local search, or ant colony optimization. They are mainly extensions of
the algorithms for the total tardiness problem presented in the previous chapter.

The adoption of a meta-heuristic’s components and parameter settings to the problem
to be solved is indispensable for arriving at a high—performing algorithm. In particular, it
is unlikely that a generic implementation of a meta-heuristic will outperform a problem—
specific and carefully tuned' implementation of another meta-heuristic. At the same
time, not all meta-heuristics are equally easy to tune. As tuning cannot last infinitely,
the initial solution—quality of a generic meta-heuristic combined with its tuning potential
decide for the worth of this meta-heuristic for the problem at hand. Documentation of
the process that consists of modification of the generic algorithms presented in Chapter 1
is indeed the main concern here. After an explanation of the problem and an overview of
algorithms applied to it (Section 3.2), Section 3.3, 3.4, and 3.5 describe the tuning of local
search, iterated local search, and ant colony optimization, respectively. In Section 3.6 the
resulting ant colony optimization algorithm is compared against the iterated local search
algorithm and Section 3.7 concludes with a summary of the findings of this chapter.

3.2 The single machine total weighted tardiness problem

3.2.1 The problem

The single machine total weighted tardiness scheduling problem (SMWTP) is a general-
ization of the single machine total tardiness problem. The objective is to minimize the
weighted sum of the jobs’ tardiness—values, T' = ) w;T;. Recall that the tardiness T of
a job j with completion time C; and due date d; is defined as T = max{C;—d,,0}. If all
job weights are the same, then actually the SMWTP is equivalent to the single machine
total tardiness problem, which was attacked in the previous chapter. The SMWTP is
strongly N"P-hard (Lawler 1977, Lenstra, Rinnooy Kan and Bruckner 1977)

!Tuning involves the adoption of algorithmic design choices and the algorithm’s parameter settings to
achieve the best possible performance on the problem under consideration.
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3 Algorithms for the single machine total weighted tardiness scheduling problem

3.2.2 Related research

Abdul-Razaq, Potts and Van Wassenhove (1990) performed a computational compari-
son of several state-of-the—art exact algorithms for the SMWTP. Each of the available
algorithms requires substantial computation time and/or memory, especially when the
number of jobs is more than about 50. Consequently, computer resources are not always
adequate to obtain exact solutions and therefore the problem comes within the realm of
approximation algorithms.

Congram et al. (1998) report remarkable results with iterated dynasearch. It is
currently the best known algorithm for the SMWTP, being superior to the simulated
annealing algorithm of Matsuo, Suh and Sullivan (1987), to descent and simulated an-
nealing algorithms of Potts and Van Wassenhove (1991), and to the algorithms developed
by Crauwels, Potts and Van Wassenhove (1998) which comprise simple descent local
search, simulated annealing, threshold accepting, tabu search and genetic algorithms.
Iterated dynasearch is an iterated local search algorithm that uses a carefully designed
local search algorithm for the SMWTP, called dynasearch.

Congram et al. (1998) employ a commonly used heuristic, apparent urgency, to
construct the initial solutions for the iterated dynasearch algorithm. The apparent
urgency (AU) rule of Morton, Rachamadugu and Vepsalainen (1984) performs quite
well relative to other simple heuristics (Potts and Van Wassenhove 1991). AU is a
dynamic dispatching rule that selects an unscheduled job j with the highest AU; value
to occupy the first unfilled position of the sequence, where AU is defined by

AU] = % exp (- maX{dj j Cj’ O}) (31)
pj kp

In this expression, P is the average of the processing times of the remaining jobs, and
k is a scaling parameter that is subject to tuning. AU combines the weighted shortest
processing time (WSPT) dispatching rule, which is optimal when all due dates are
zero, with the minimum slack (MS) heuristic, which is optimal when all due dates are
sufficiently loose and spread out. If k is very large, AU; reduces to Z—j, the WSPT—value,
and for small k the MS—value, max{d; — C},0}, is predominant. In my implementation,
k=0.5for TF <03, k = 0.9 for 0.3 < TF < 0.4 and k£ = 2.0 for TF > 0.4, where
TF = 1 — d/Cmax is the tardiness factor of the problem instance. These settings for k
were also used by Congram et al. (1998) who follow Potts and Van Wassenhove (1991)
in their AU implementation.

3.2.3 Problem instances

The instances I use are taken from ORLIBZ2. The sets with instances of 40 jobs, 50 jobs
and 100 jobs are generated in the same manner as those of the previous chapter, that is,
for each job j processing time p; is randomly drawn according to a uniform distribution
on the interval [1,100], due dates are randomly drawn according to a uniform distribution
on the interval [(1—TF — BDR). 5 p, (1 - TF+ BDR). %" ;). where tardiness factor (TTF)

*They can be found at http://mscmga.ms.ic.ac.uk/.
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and range of due dates (RDD) are parameters. There are five instances for each pair of
TF and RDD from the set {0.2,0.4,0.6,0.8,1.0}. Finally, the weights, randomly drawn
according to a uniform distribution of integers between 1 and 10, are added. A branch—
and-bound algorithm for the SMWTP (Potts and Van Wassenhove 1985) determined
the optimal solutions of the 40—job and 50—job instances. For the 100—job instances the
effectiveness of the algorithms is measured against the best known solutions known to
date which are given along with the instances in ORLIB.

3.3 Local search

Iterated local search (ILS) and ant colony optimization (ACO) have one component in
common, local search. Local search algorithms transform solutions into better solutions
by a series of small alterations. The local search neighborhood defines which alterations
may be considered. A good local search configuration is a necessary condition for high
performance of ILS and ACO algorithms.

The use of the dynasearch neighborhood search is the feature that distinguishes it-
erated dynasearch from other incarnations of iterated local search. Dynasearch takes
advantage of dynamic programming techniques allowing it to search a larger neighbor-
hood than standard descent methods, thereby enabling it to perform better. In spite of
this, T will not use dynasearch as a component in my ILS and ACO implementations.
Standard descent methods are easier to implement and applicable to a wider variety of
combinatorial optimization problems. Moreover, the gulf with dynasearch can possibly
be bridged by applying simple ideas to improve local search efficiency. Below I will
discuss some of these ideas.

3.3.1 Configuring local search

In general, the configuration of local search involves finding the right solution repre-
sentation, neighborhood, and search strategy (see Section 1.2). Here, the permuta-
tion representation is chosen. Interchange (- --) as well as left insert
(~lmy e v (7} - -) and right insert (--- @ ----.m;--) moves on this representation
are considered. Transpose (---7;m; 1 -+-) is not considered here, because results with
this neighborhood were already Aaﬁcouraging for the application to the single machine
total tardiness problem in the previous chapter. The neighborhoods are searched either
according to the first improvement search strategy or according to the best improvement
search strategy.

Search control

Sometimes it can be beneficial not to search the whole neighborhood. The two techniques
that I have tested are don’t look bits and a restriction on the number of moves evaluated
per step. Their usage is illustrated in Algorithm 3.1 on the next page, which is a
specification of the inner loop in the local search skeleton introduced in Section 1.2
(Algorithm 1.1 on page 7).
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3 Algorithms for the single machine total weighted tardiness scheduling problem

Algorithm 3.1 Local Search: Ways to shrink the neighborhood
Require: a permutation 7 of n jobs;
Kk €eN;
an array of don’t look bits initialized to false which are associated with positions in
7 and reset to false whenever jobs on the positions are involved in a move;
for i =0ton do
if —don’t-look(i) then
for j =i to min{n,i + x} do
evaluate-move(%, j, )
if —improvement then
don’t-look (i) < true
else
don’t-look (j) < false

Don’t look bits, first proposed by Bentley (1992) for the traveling salesman problem,
are used in the outer loop of the algorithm. Each position in the permutation has a
don’t look bit associated to it. Initially all don’t look bits are set to zero. The ith
don’t look bit is set to one if, for a job ¢ which is checked in the outer loop (Line 1
in Algorithm 3.1), there exist no moves involving the corresponding position that yield
improvement. If the don’t look bit is one that position is not considered in the outer
loop of the local search algorithm. The don’t look bit is reset to zero if the job has
been part of some improving move. Don’t look bits brand positions that are not worth
looking at, considering earlier experience. With this simple memory the local search can
concentrate on more promising moves and therefore save computation time.

Positions to be considered in the inner loop (Line 3 in Algorithm 3.1) can be limited
in two ways. Firstly, the inner loop candidate jobs can be limited to positions later
in the permutation than the position of the outer loop job. The idea is to prevent
double evaluations as jobs 1, ..., 7 have already been considered as outer loop candidates.
Secondly, the parameter x allows to specify the range in which the move should take
place. By setting x to a small value, the algorithm is forced to concentrate on jobs that
have a close position in the permutation. In this way the potential to disturb the current
solution is diminished and more energy is spend on exploring solutions near the current
one.

The ideas that are illustrated in Algorithm 3.1 rarely appear in that way. Their
usefullness depends, among others, on the pivoting rule: placing a bound on first im-
provement descent does not help much as this bound is either to low or never reached.
In case of best improvement descent don’t look bits often have a devastating effect on
the solution quality which is not by far countered by the increase in speed.

Directing the neighborhood and simplifying evaluation

The blunt methods described in the previous section are not the only way to limit the
search effort. It is often possible to devise heuristics which allow to reduce the checkout
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3.3 Local search

Algorithm 3.2 Local search: Preconditions prior to evaluation
Require: positions ¢ and j, 7 < 7;
permutation 7;
required improvement A;
a partition of w into runs of late and non-late jobs;
Let: run = partial sequence of jobs that fulfill the same criterion;
Cj = 25:1 Pr;s
run is late = Vr; € run (Cj > dy,);
V; =37 (wr, - max{C; — dr,,0});
W, = Z{:o(wm -U;), where U; = {1 if Ci>dr; .

0 otherwise ’

time, the time needed to examine to whole neighborhood, without losing effectiveness
of search. These heuristics cheaply filter out non-improving moves so that less moves
have to be evaluated per checkout. The moves that still have to be evaluated could be
computed naively by summation of the tardiness calculated for all separate jobs in the
sequence, but, fortunately, less expensive methods have been invented for the SMWTP.

The evaluation algorithm presented here has been introduced by Congram et al.
(1998) who implemented an interchange descent procedure to compare their dynasearch
against. Algorithm 3.3 on the next page specifies the speedups they propose. The
algorithm combines heuristics to direct the search towards promising moves with quite
cunning evaluation of the moves.

Some preprocessing allows for efficient implementation of the speedups (see Algo-
rithm 3.2). The partial sums of the processing times (denoted as C; for the jth job
in the permutation), the partial sums of the weighted tardiness values (Vj), and the
partial sums of the weights for late jobs (W;) are computed in advance. Additionally,
the sequence is partioned into rums, subsequences of jobs that share a property of all
being late or all being non-late. The run data-structure has three components: a bit
indicating whether it contains late or non—late jobs, an integer for the start of the run
in the permutation and an integer that gives the position of the last job belonging to
the run. The use of this data-structure will become clear in a moment.

First (Line 1), the combined weighted tardiness ¢ is computed for an interchange
move (-- -- --) that involves jobs m; and ;. On the basis of the value of §
it is decided whether the move is worth further evaluation. If job 7; requires more time
to process than job m; (Line 2), then ¢ is the best improvement one can expect from
the move, as the completion time for all jobs between ¢ and j increases by pr; — pr;.
Consequently, also the weighted tardiness could get longer. If, on the other hand, job
wj needs less processing than job m; (Line 9), then the best that could happen to the
jobs on positions ¢ + 1,...,7 — 1 is that they cease to be tardy, or, at least, that their
tardiness will decrease with the time pr; — p,, they can start earlier (Line 10). Only
if the estimated reduction § is better than the required improvement A, the effect of
the move has to be computed precisely (Line 3, 10). What improvement is demanded
depends on the search strategy. If A is zero any improvement passes the test. When
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Algorithm 3.3 Local Search: Interchange evaluation
Require: preprocessing of Algorithm 3.2 on the page before
Ensure: reduction ¢ due to exchange of job m; with job ;

Lo«Vi=Via+V; =V

2: if py; > pr; then

3: if 0 <A then

for all runs within positions ¢+ 1,...,57 — 1 do
if late then

4
5
6: 6+ 0+ (pﬁj - pm) : Zﬂ-kerun Wy,
7
8
9

else
: 6 0+, e run(wr, - max{Cy — dr,,0})
: else /* Pr; < Pm; */
10:  if 0 <min{V; —V;, (pr; — pr;) - (W; — W;)} — A then
11: for all late runs within positions ¢+ 1,...,5 — 1 do
12: 60+, e run(wr, - max{Cy — dr,,0})

Algorithm 3.4 Local Search: Left insert evaluation
Require: preprocessing of Algorithm 3.2 on the page before
Ensure: reduction § due to insertion of job 7; to position i;
1: 0 + wy; - (max{Cj — dr;,0} — max{C;j 1 + pr; — dr;,0})
2: if § < A then
3:  for all runs within positions ¢,...,5 — 1 do
4 if late then
5 0 0+pr; - 2o, € run Wy
6: else
7 00+, e run(Wr, - max{Cy — dr,,0})

the best improvement rule is followed, the A is adapted during the search so that only
moves which give a possibly better improvement than the best improvements found in
the current checkout are taken into consideration.

The evaluation that has to be carried out if the pretesting is passed exploits a number
of properties of the SMWTP. First, since start times for jobs only alter within position
i to 7, only those jobs have to be considered (Line 4, 11). Next, jobs that are already
late and have to start later as a result of the move will have their tardiness increased
proportionally to their weight (Line 5, 6). When, on the other hand, the start time is
earlier, which is only possible when pr, < pr;, non-late jobs can be ignored (Line 11).
In other cases, the increase in tardiness of the jobs still has to be computed (Line 8, 12).
Finally, sequences of high quality will typically consist of a few long runs of jobs that
are all late or non-late (see Figure 4.4 on page 75). With help of the run data-structure
such subsequences can be evaluated at once rather than having to evaluate each job
individually.

The speedup tricks for the interchange local search are also applicable for the insert
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Algorithm 3.5 Local Search: Right insert evaluation
Require: preprocessing of Algorithm 3.2 on page 37
Ensure: reduction § due to insertion of job m; to position j;
i 0 & wy, - (max{Cj_1 — pr; — dr;,0} — max{C; — dy,;,0})
if 6 <min{V; —V;,py, - (W; — W;)} — A then
for all late runs within positions ¢+ 1,...,5 do
00— r e run(Wny, - min{pr,, Cp — dr, })

-

algorithms. An insert move is equivalent to an interchange move that involves one
empty> job. So, the left insert evalution procedure in Algorithm 3.4 on the preceding
page is obtained by substituting p,, and V; — V;_; in Algorithm 3.3 on the facing page
with zero and Algorithm 3.5 describes the behavior Algorithm 3.3 would have when p;;
is zero and consequently the interchange would have been reduced to a right insert move.

Combining neighborhoods

In addition to the ideas discussed in the previous section it can often be useful to combine
descent neighborhoods. Solutions that represent a local optimum in one neighborhood
are not necessary local optima in another neighborhood as well (Reeves 1997). Combin-
ing neighborhoods can be done in a number of different ways. Most straightforward is to
evaluate all implemented neighborhood moves and then take the best one, or first run one
neighborhood search until it reaches a local optimum and then use this local optimum
as a starting solution for another neighborhood search. The systematic combination of
different neighborhoods in local search is actually the topic of the recently introduced
variable neighborhood search* meta-heuristic (Hansen and Mladenovié¢ 1997, Mladenovié
and Hansen 1997, Hansen and Mladenovié¢ 1999).

3.3.2 Computational results

This section reports on the performance of a number of local search configurations. The
results are obtained on the 3 sets of 125 instances of 40 jobs, 50 jobs and 100 jobs that
are available via ORLIB. The results are summarized in Tables 3.1-3.5. For each set
of 125 instances the following data are given: Ag,g, the average percentage deviation
from the local optimum, 7y, the number of instances for which a global, or best known,
optimum is found, and %4, the average run time of the local search.

Initialization

Table 3.1 on the following page gives indicative results of the effectiveness of dispatching
rules. It compares the earliest due date (EDD) and modified due date (MDD) dispatch-

3An empty job is a job that has no processing time and a due date beyond the worst completion time.

“Yes, T did say (on page 13) that variable neighborhood search is just another name for iterated local
search. It really is ..., it is only that the tuning concentrates on neighborhoods rather than kick
strengths and acceptance criteria.
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40 jobs 50 jobs 100 jobs
Aavg Nopt tavg Aa'ug Nopt tavg Aavg Nopt tavg
AU 12 26 0.0013 13 20 0.0020 21 21 0.0075
EDD | 139 22 < 0.0001 | 155 20 < 0.0001 | 135 24 0.0004
MDD 66 22 < 0.0001 65 20 0.0002 | 62 24 0.0010

AU + 1S 1.01 56 0.0070 0.84 52 0.0122 0.92 28 0.0675
EDD + LS 0.81 62 0.0174 0.75 54 0.0325 0.62 33 0.2327
MDD + LS 0.91 64 0.0124 0.91 93 0.0215 0.65 38 0.1323

Table 3.1: Comparison of the effectiveness of earliest due date (EDD), modified due date
(MDD), and apparent urgency (AU) on SMWTP-instances of 40, 50, and 100 jobs. Results
are presented for the initial solution as well as the solution obtained after applying a best im-
provement interchange local search that implements the evalution method of Algorithm 3.3 on
page 38. Results are averaged over 125 instances; A,,, is the average percentage deviation from
the optimum, n,p; the number of optima found (out of 125), t,.y the average CPU-time in
seconds.

ing rule that were also used in the previous chapter with the apparent urgency (AU)
dispatching rule introduced on page 34. The AU heuristic results in the smallest average
deviation from the optimal solution. When local search is applied to this solution, it
will reach a local optimum much faster than it would if started with a worse solution
— like, for example given by EDD. On the other hand, with local search, the EDD and
MDD heuristics appear to be slightly better: more global optima are found and a lower
overall deviation from the global optima is attained. Still, in the following tests the
initial solutions will be generated by the AU dispatching rule since this rule is the most
used in literature and leads to the shortest run times for the local search.

Neighborhoods and pivoting rules

Local search is characterized by the way in which the problem is represented, the
neighborhood structure defined on this representation and the way the neighborhood
is searched. In Table 3.2 on the next page results are given for a comparison between
four basic neighborhoods that are defined on the permutation—based representation for
the SMWTP: interchange, left insert, right insert, and an insert® neighborhood that
takes the best move of left insert and right insert. The neighborhoods are tested in
combination with the best improvement pivoting rule as well as the first improvement
pivoting rule. The local search procedures are implemented taking advantage of the
SMW TP-specific speedups described in Section 3.3.1.

A first observation is that small differences in neighborhood definition can have a

5The first improvement insert local search checks the neighborhood like in Algorithm 3.1 on page 36
but without don’t-look bits and with kK — co. The method ‘evaluate-move(s, j, 7)’ (Line 4) evaluates
both a left insertion of job 7; on position ¢ and the right insertion of job m; on position j. The
move that is most improving, is at all, is subsequently carried out. If no improvement is reported by
‘evalutate-move(s, j, 7)’, the neighborhood scan is continued. When the best improvement pivoting
rule is used, the local search move is, as one would expect, the best out of the left and right insert
neighborhoods.
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interchange left insert right insert insert
Aa'ug Nopt tzwg Aavg Nopt ta'ug Aavg Nopt ta'ug Aa'ug Nopt ttwg
40 | 1.07 57 0.005 | 9.43 48 0.01 | 1.61 58 0.004 | 0.62 70 0.02
50 | 1.00 48 0.008 | 10.34 28 0.02 | 3.08 34 0.009 | 1.35 49 0.05
100 | 0.90 29 0.057 | 13.49 24 0.27 | 3.40 28 0.139 | 0.68 38 1.60

(a) first improve descent

interchange left insert right insert insert
Aa.vg Nopt tavg Aowg Nopt tavg Aavg Nopt tavg Aa'ug Nopt tavg
40 | 1.01 56 0.004 | 9.24 53 0.01 | 1.36 59 0.003 | 0.56 85 0.01
50 | 0.84 52 0.008 | 10.22 34 0.02| 215 42 0.007 | 1.03 63 0.02
100 | 0.92 28 0.040 | 13.19 26 0.22 | 181 29 0.051 | 0.56 42  0.26

(b) best improve descent

Table 3.2: Comparison of neighborhoods’ and pivoting rules’ effectiveness for the SMWTP.
The local search procedures are applied to a solution generated by AU. Results are given for
the 40-job, 50—-job and 100-job instances. Results are averaged over 125 instances; Ag,g is the
average percentage deviation from the optimum, n,p; the number of optima found (out of 125),
tavg the average CPU-time in seconds.

large impact. Left insert can only slightly improve on the initial solution and needs a
large amount of computation time to do so. Right insert can obtain a much reduced
average deviation from the global optimum in less time. The best local search in terms
of solution quality, insert, evaluates both left and right insert moves and then chooses
the best of these.

The combined left+right insert local search is the most effective. Unfortunately, it
is the most time—consuming as well. The average CPU time it spends before halting
at a local optimum is more than the sum of the times required by just left or right
insert local search. There is a number of explanations for this phenomenon. First of
all, its neighborhood is effectively twice the size of the left or right insert neighborhood
and to check such a larger neighborhood simply requires more time. Secondly, being
in possession of a richer set of operators, the local search is less prone to get stuck
in a poor local optimum and is therefore able to make more moves. Finally, in a less
benign scenario, a big neighborhood allows for long detours. Especially when the first,
not necessarily steepest, descending move is followed, the richer set of operators offers
a bigger opportunity to make detours. This might explain the average of 1.60 seconds
required by insert local search on the 100—job instances (Table 3.2(a)) to reach a local
optimum.

For all the neighborhoods that are considered, it is better to use the best improvement
pivoting rule (Table 3.2(b)) than the first improvement pivoting rule (Table 3.2(a)). Best
improvement local search gives better solution quality and is faster.
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40 jobs 50 jobs 100 jobs
Aavg Nopt tavg Aavg Nopt tavg Aa,vg Nopt ta'ug
full search | 1.07 57 0.005 | 1.00 48 0.008 | 0.90 29 0.057
don’t look bit | 1.43 49 0.002 | 1.39 37 0.003 | 1.18 27 0.017

Table 3.3: Search control in first improvement interchange local search applied to a solution
generated by AU. See Table 3.2 on the page before for a description of the entries.
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Figure 3.1: Shrinking the neighborhood: Best improvement interchange with the search bound
to kK% - n. On the left side the number of optimal solutions is plotted against the neighborhood
size, on the right the average CPU time is given. Results are obtained from the 3 x 125 instances
of 40, 50 and 100 jobs.

Search control

In general, a full search of the neighborhood is likely to yield a better solution quality
than a partially searched neighborhood. It is still interesting to investigate into the
effect of narrowing down the search space. Especially when the local search is going
to be applied many times, as is the case in the ILS and ACO algorithms that will be
considered in Section 3.4 and Section 3.5 respectively, one might prefer a local search that
is not necessarily the most effective after one run, but requires much less computational
effort and can therefore be run more often.

Table 3.3 summarizes the effectiveness of a local search algorithm that puts the idea
of don’t look bits into practice. A look at this table reveals that don’t look bits enable
the algorithm to become about a factor 2 — 3 faster without effecting the efficacy too
much. Unfortunately don’t look bits are hard to incorporate successfully into local search
with a non—first improvement pivoting rule or local search that operates on the insert
neighborhood. I have tried it, but results were very bad.

That it can be advantageous to exchange checkout time for solution quality is also
illustrated in Figure 3.1. Here a best improvement pivoting rule is used on an inter-
change neighborhood, which is not entirely checked, but restricted by parameter x (see
Algorithm 3.1 on page 36). There is a clear tradeoff between solution quality and com-
putational effort: when x is bound to a small percentage of the problem size, the local
search is performed much faster, but less optimal solutions are found as well. The ideal
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first improve best improve first improve best improve
L R L&R| L R L&R L R L&R| L R L&R
40 | 3.3 79 43 40 6.4 4.8 40114 20 1.6 1.2 23 1.5
50 | 3.3 94 4.8 39 7.6 52 50 | 14 2.1 1.7 1.3 2.0 1.7
100 | 4.5 15.1 6.0 5.3 9.7 6.5 100 | 1.3 3.0 1.7 1.3 3.5 1.8
(a) naive — cunning (b) cunning — guiding

Table 3.4: Effect of programming effort on computation time. Local search using the insert
neighborhood is applied to an initial AU solution. Left insert (L) as well as right insert (R)
and “best of both” (L&R) are considered. Given two local search implementations a and f,

a — f3, each entry represents t5,, /t5 = where to,, is the average CPU time(sec) over the 125

instances of n jobs. Naive means evaluating move by simply computing the objective function
of the resulting permutation, cunning is Algorithm 3.4 on page 38 or Algorithm 3.5 on page 39
without the pretesting on Line 2. When this last element is added, guiding is obtained.

value of k has yet to be determined when combined with the ACO or ILS meta-heuristic.

Efficient evaluation

Quite some effort has been devoted to the implementation of the speedup techniques
introduced in Section 3.3.1. In the following, I give hints on their usefulness and show
that the programming effort is worthwhile.

Luckily, the effort the programmer invests in constructing ingenious implementations
does pay off with increased efficiency of the algorithm. In Table 3.4 the efficiency gain
is given for the insert® neighborhood with the first improvement and the best improve-
ment pivoting rule. The table entries represent the decrease in CPU-time averaged over
the 3 sets of 125 instances of 40, 50, and 100 jobs by the introduction of the particular
techniques indicated. In Table 3.4(a) the transition from a naive evaluation to a more
ingenious evaluation is considered. Table 3.4(b) shows the improvement obtained by
usage of heuristics to filter out non-improving moves. For both transitions the improve-
ment obtained increases with the instance size. This is what one would expect as more
moves need to be evaluated on these problem instances. The gain obtained by guiding
the search is rather independent with respect to the pivoting rule that is used to control
the search.

Combining neighborhoods

It will often be the case that one descent method can improve the solutions found by
another descent method if the neighborhood structure explored by the descent methods

5For the interchange neighborhood approximately the same results are obtained. However, a major
distinction between the interchange and the insert neighborhoods’ results is that the more ingenious
implementation has no effect on the solution quality of local search based on the insert neighborhood,
whereas it does make a difference for interchange—based local search. Small differences in, for example,
the search strategy, might cause the aberrant behavior of the interchange local search.
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inter. + right ins. inter. 4 insert right ins. + inter. insert + inter.
Aa'ug Nopt tavg Aavg Nopt tavg Aavg Nopt tavg A(M)g Nopt ta'ug
40 | 0.52 78 0.005 | 0.32 90 0.008 0.46 79 0.006 | 0.15 96 0.013
50 | 0.67 64 0.008 | 0.37 79 0.014 0.73 62 0.010 | 0.31 87 0.028
100 | 0.72 35 0.047 | 0.59 46 0.102 0.66 37 0.071 | 0.21 49 0.273

Table 3.5: Best improvement interchange local search followed by best improvement insert local
search and the other way around applied to a solution generated by AU. See Table 3.2 on page 41
for a description of the entries.

is different. Two neighborhood descent runs will, in general, also require more time than
one. It depends on the way in which the local search is employed by the meta—heuristic
whether the combination is worth the effort.

The results shown in Table 3.5 confirm the expectations in that combined neigh-
borhoods result in better quality solutions, but take more time to search than single
neighborhoods. The right half of the table gives results for interchange local search
which is directly followed by an right insert or left+right insert local search. The inter-
change local search acts as an initilization mechanism that prevents costly insert moves
and in addition enables the insert local search to achieve better solution quality. The
computational effort required by this combined local search is actually less than the
effort Table 3.2 on page 41 reports for a single insert local search.

The most effective however is a local search procedure that first searches the insert
neighborhood and then performs an interchange neighborhood search on the solution it
arrived at. This algorithm solves most instances in the benchmark set and comes closest
to the optimal solutions of instances it cannot yet solve. Unfortunately it is the most
CPU-consuming as well. Tests in the context of iterated local search and ant colony
optimization will show whether this is a serious impediment.

3.3.3 Related work

It would be nice to determine if the descent methods defined in this section can compete
with the dynasearch method. Alas, this it not possible. Congram et al. (1998) only
report results on multi-start and iterated local search employment of the dynasearch
neighborhood, and it is only in the iterated version that dynasearch is substantially
better than traditional interchange descent local search.

The generic idea of dynasearch is to consider a neighborhood of the type used in a
traditional descent local search algorithm, but to allow several moves of a certain type to
be made in a single iteration. Dynamic programming is used to find the best combination
of moves. More specifically, the dynasearch for the SMWTP considers an interchange
neighborhood consisting of all solutions that can be obtained from a permutation 7 by a
series of pairwise independent” interchange moves. This neighborhood has size 2" ~! —1.
Because a dynasearch interchange move is equivalent to a best series of independent
swaps, dynasearch uses effectively a best improvement search strategy.

"Two moves that interchange job m; with 7; and job 7 with job m; respectively are said to be inde-
pendent if max{s, j} < min{k,(} V min{s, j} > max{k,}.
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Tterated dynasearch owes its performance to the much larger neighborhood size it
can search compared with standard neighborhood search. In the foregoing I have inves-
tigated into another method to obtain a larger neighborhood: combination of standard
neighborhoods. Given the results with iterated dynasearch, an iterated combined neigh-
borhood search has much perspective, precisely how much perspective it has will be
investigated in the following.

Other ways to improve descent local search are discussed by Crauwels et al. (1998).
The authors propose a binary representation for the SMWTP that encodes a wealth of
knowledge about the problem and present computational results for local search methods
that use this representation and methods that represent the solution as a permutation
of jobs. The comparison shows that the permutation—based methods have a higher
likelihood of generating an optimal solution, but are less robust in that some poor
solutions are obtained. Based on these results the permutation representation is to be
preferred for the ILS and ACO algorithms. The algorithms will perform a series of
local search applications and the fact that some of the applications might result in poor
solutions forms not the least hindrance. Besides the permutation representation is much
simpler. It is also for simplicity sake that the ILS and ACO algorithms will contain
‘just’ descent local search and not some simulated annealing or tabu search algorithm
proposed in literature.

3.4 lterated local search

In this chapter, ant colony optimization (ACO) is compared against iterated local search
(ILS). There already exists a very successful ILS algorithm for the SMWTP, iterated
dynasearch of Congram et al. (1998). The ACO algorithm is not directly compared
against this algorithm since it was not made publicly available by the authors and its
re-implementation is not trivial. Besides, the comparison with a ILS algorithm which is
implemented by myself is more fair in the sense that the same programming skills and
data-structures used for the algorithms’ implementation.

3.4.1 Configuring iterated local search

The three main components of ILS are local search, the modification mechanism, and
the acceptance criterion (see Algorithm 1.3 on page 12). Section 3.3 already discussed
the local search, here the other two components are examined.

Solution modification

The purpose of the solution modification is to alter the current solution in such a way
that the subsequent neighborhood search can find a new local optimum. One simple pos-
sibility for solution modification is to apply a number of random neighborhood moves
to the current solution. Interchange moves as well as insert moves are considered. In-
tuitively, the kick—-move should operate on another neighborhood than the one used in
the local search to prevent that the kicks are immediately reversed and the local search
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halts at the old local optimum again. For the same reason, the kick should be sufficiently
large to move to a solution outside the neighborhood of the local optimum. On the other
hand, the kick should not be too large, or else the good characteristics of the previous
local optimum are lost, and the procedure is then effectively close to a multi-start al-
gorithm which is known to perform bad. The number of kicks need not necessarily be
constant. One possibility is to vary the kick—strength in a certain range. If an iteration
does not result in a better local optimum, the number of kicks is increased. If a better
local optimum is found, the kick—strength is reset to a minimum value. This last idea
was first proposed in the context of the variable neighborhood search meta-heuristic by
Mladenovi¢ and Hansen (1997).

Acceptance criterion

The acceptance criterion determines to which solution the next modification is applied.
How exactly the acceptance criterion is specified could affect the performance of iterated
local search. Congram et al. (1998) propose some sort of backtracking mechanism,
Martin et al. (1991) adopt a simulated annealing acceptance criterion, and Johnson
(1990) suggests to accept only solutions that have a better objective value than the
current solution. This last and most simple choice is actually applied in many other ILS
applications (Hansen and Mladenovi¢ 1999, Johnson and McGeoch 1997, Martin and
Otto 1996), and will also be applied in this ILS application to the SMWTP.

3.4.2 Computational results

The results discussed in this section are obtained on the 125 100—job instances of ORLIB.
The 40-job and 50-job instances are not considered since they were already almost
solved by local search alone (see Section 3.3.2). Much of the testing is performed on 10
instances that proved to be relatively hard on preliminary tests. The discussion of the
results subsequently focuses on 2—4 of these instances, in Appendix A summary results
for all 10 instances can be found.

Initialization

In general, I found that for the SMWTP the construction heuristic which is used to
initialize the iterated local search does not matter too much: In preliminary tests starting
with an AU-solution or an MDD-solution did not show any difference when averaged
over the 125 100-job instances. The run time distributions of the algorithm indicated,
however, that for some instances MDD-initialization causes shorter run—times whereas
for other instances AU should be used. Therefore the ILS will be initialized as follows:
run a local search on the solution constructed by MDD; subsequently run a local search
on the solution constructed by AU and take the better of these two solutions as starting
solution.
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full search don’t look bit full search % = 50 bound
Aavg Nopt ta,vg Aa,vg Topt tavg Aavg TNopt tavg Aavg Nopt tavg
1| 0.11 49  6.56 | 0.07 62 5.77 1| 0.11 50 6.41 | 0.10 55  6.17
0.09 62 578 | 0.09 65 542 1] 0.01 98 3.20 | 0.76 81 4.43
r| 0.19 50  6.37 | 0.26 43  6.89 r| 0.19 50  6.37 | 0.20 49  6.62

(a) iterated first improve interchange (b) iterated best improve interchange
left insert right insert insert insert+interch.
Aavg Nopt tavg Aavg Nopt tavg Aavg Nopt tavg Aavg Nopt tavg

i 727 27 835|031 43 7.06| 004 64 5.7 i] 0073 69 541
1062 26 838 | 005 62 569 | 008 56 5.95 110017 81 4.62
r| 018 55 688 | 046 42 697 | 009 60 5.99 r| 0041 69 5.73

(c) iterated best improve insert (d) iterated combined
full search don’t look bit full search k = 50 bound
Aavg TNopt tavg Aa'ug Topt tavg Aavg Topt ta,vg Aavg TNopt tavg

¢]0021 8 4.5 | 0.008 89 3.8 i | 0.016 87 3.8 | 0.015 8 3.9
0.007 92 3.8 [ 0.009 93 3.6 l|0.001 115 22 | 0.00r 114 2.4
r| 0018 81 46 | 0001 95 35 r | 0.011 87 4.5 | 0.001 98 3.5

(e) iterated first improve interchange + best (f) iterated best improve interchange + insert
improve insert

Table 3.6: Effectiveness of local search configurations for ILS on the SMWTP. Results are
obtained by testing a local search configuration once on each of the 125 100—job instances with
a CPU bound of 10 seconds. Three types of kicks are tried: i for the interchange kick, I for the
left insert kick and r for the right insert kick. Solution modification consists of applying a kick 6
times. Results are obtained by averaging over the 125 instances. Ag,4 is the average deviation
from the optimum, n,y is the number of instances solved to the optimum, 4,4 is the average
CPU time in seconds.
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Local search

Table 3.6 on the page before gives the average deviation, number of optima found, and
average CPU—time for ILS that is run once on each of the 125 instances for a time limit of
10 seconds. A number of local search configurations are tried in combination with three
possibilities to modify the local optima produced by the local search: the first method,
denoted by i, is to apply six random interchange moves. In the second method, denoted
by [, six random left insert moves are applied. The third method, denoted by r, employs
right insert moves. In general, method [ seems to be the best way to modify solutions
since it leads to the least deviation from the best known solutions and computation time
combined with the highest number of best known solutions found.

Neighborhoods and pivoting rules Table 3.6(a) compares two versions of iterated first
improvement interchange local search. The full search on the left is the standard version,
the version on the right uses the don’t look bits introduced on page 35. From the table
it is not entirely clear whether the don’t look bits should be used. It may yield better
results in combination with the interchange and almost the same with left insert kicks,
but worse performance is obtained in combination with right insert kicks. However, this
balance might easily change again if other elements, like the kick—strength, are modified.

More or less the same holds for Table 3.6(b). In this table a standard iterated version
of best improvement interchange local search is compared with a version that puts a
bound on the neighborhood with use of parameter x. An explanation on the meaning
and usage of k can be found on page 36. The value of 50 for x is based on preliminary
tests with a series of values for x with modification method s. There, k = 50 came out
best. Especially in combination with left insert kicks, the results of best improvement
local search in this table are better than those obtained with first improvement local
search.

In Table 3.6(c), the insert neighborhoods are compared. The differences between
these neighborhoods, which were so manifest after a single run (Table 3.2(b) on page 41),
are much less clear for the iterated version. Left insert is still performing badly, in
general, and the combination of left and right insert is still the most effective. However,
right insert local search outperforms the combined left+right insert when left insert kicks
are used to modify the solution and if right insert kicks are used, left insert local search
is not that bad at all. Yet, the performance of the ILS variants is not really surprising:
it is in line with the configuration guidelines that state that the solution modification
should preferably not be done on the same neighborhood as the local search®.

Combining neighborhoods The combination of interchange and insert is investigated
in Table 3.6(d), 3.6(e), and 3.6(f). For a single-run of local search the most important
effect of combining neighborhoods was that the faster interchange neighborhood provided

8Still, one might wonder why the combination of left and right insert neighborhoods works so well. The
left insert operator is the inverse of the right insert operator. Kicks by one operator can therefore be
easily reversed by search with the other operator, it seems. Apparently, this is not the case. Probably
because more than one kick is performed for a solution modification.
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Figure 3.2: Local search for ILS. Solutions are modified with 6 left insert kicks. The run time
distributions are based on 25 tries with a CPU time bound of 300 seconds.

an intelligent initialization for the more costly insert neighborhoods thus allowing to
save computational effort (Table 3.5 on page 44). The biggest gain due to intelligent
initialization is made in the first application of the local search. Yet, the positive effect
of combining neighborhoods also occurs in Table 3.6 on page 47. So, apparently the run
time of the iterated local search are sped up as well as a result of this neighborhood
combination.

The best way to combine neighborhoods is not by starting with insert local search
(Table 3.6(d)). Still, if one focuses on the number of optima obtained and the effort
required, the iterated employment of this local search is not worse than the employ-
ment of its constituent local searches — except for the combination of full iterated best
improvement interchange local search with left insert kicks (Table 3.6(b) on page 47).
The reduction of the checkout of the interchange neighborhood by means of don’t look
bits (Table 3.6(e)) or the x parameter (Table 3.6(f)) has, in general, a positive effect
on the performance of the combined local search except if the left insert kicks are used.
The best performance is achieved with an iterated local search algorithm that combines
standard best improvement interchange local search followed by best improvement insert
local search with six left insert kicks to modify the solution.
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Run time distributions Table 3.6 on page 47 helps selecting the right local search for
the ILS algorithm. Yet, it is a rather coarse filter. It provides no information about the
algorithm’s performance on individual instances and, even worse, it does not reflect the
variation in the algorithm’s behavior which is bound to occur due to the randomness
built in into the modification mechanism of ILS. Experience in the previous chapter
already indicated that this global measure is not sufficient to base gross conclusions
upon.

In order to acquire a better picture of the performance of the iterated local search
configurations, I have analyzed the run time distributions of these algorithms for 10 100
job SMWTP instances which were chosen because they showed to be relatively hard in
preliminary tests. Instances are numbered consecutively and the instance with number
i is the ith of the 125 available. An introduction into run time distributions is given
in Section 1.5.2. Here, an estimation of the distributions is made after running the
algorithm configuration twenty five times with a computation bound of five minutes.

Figure 3.2 on the page before gives the run time distributions for ILS algorithms
that use interchange, right insert, insert preceded by interchange, insert preceded by re-
stricted interchange, or interchange preceded by insert. All local searches follow the best
improvement pivoting rule in their neighborhood check. None of the variants performs
best on all the instances. That is, the left most curve in the plots does not belong to
one and the same local search algorithm used by ILS. In the plots of instance 19 and 71
in the left half of Figure 3.2 on the preceding page, the curve represents the run time
distribution of the interchange variant, in the other plots it is the variant that applies
insert local search after it has applied interchange local search which requires the least
effort to find an optimal solution.

Note also the huge variation in run times required by the algorithm. In ‘lucky’ runs,
it can find the optimal solutions for an instance within one second, but sometimes it
might take more than a minute on the same instance before finding the optimal solution.

Still, the big picture that one can derive from the run time distributions on the ten
instances confirms what the data of Table 3.6 on page 47 already suggested: the local
search that starts with interchange and then proceeds with insert is the best choice.
Alternative search control, like limiting evaluation to k moves, yields no clear advantage
and therefore the insert preceded by interchange local searches will check their neigh-
borhoods in the standard best improvement fashion in the following. Besides, without
K, the algorithm has a greater simplicity.

Solution modification
The investigation into solution modification concerns both the type of random moves

and the intensity of the perturbation.

Kick neighborhood The influence of the neighborhood structure which the kick—moves
use is investigated on the 10 instances as well. Figure 3.3 on the facing page gives the
run time distributions for two of the 10 instances. As can be observed, the quality
of the kick—move operator depends not only on the local search neighborhood but on
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Figure 3.3: Neighborhoods for local search and solution modification. The empirical solution
probability (y-axis) against the log CPU time in seconds (x-axis). For instance 14 and 120 the per-
formance of iterated interchange, (left€right) insert, interchange+insert and insert+interchange
local search modified by 6 interchange, left insert, or right insert kicks is given. The run time
distributions are based on 25 runs with a bound of five minutes.

51



3 Algorithms for the single machine total weighted tardiness scheduling problem

instance 14 instance 38

kicl|< strength I pig ) kick strength
D) o7 ; 5

08 | 4 S . 08 | 4

04 - - 04 -

empirical solution probability
N

\ o

empirical solution probability
>

0.1 1 10 100 1000 0.1 1 10
log CPU time(sec) log CPU time(sec)

instance 86

instance 120

" kick strength " kick strength
2 2

08 f 4 / 08| 4

06 ———— 16 ) - 06 ———— 16

04 0.4

0.2 02+

empirical solution probability
N
o

empirical solution probability
N
S

0 L0 ) ) 0 7 )
0.1 1 10 100 1 10 100 1000

log CPU time(sec) log CPU time(sec)

Figure 3.4: Kick strength for ILS on the SMWTP: run time distributions for 25 tries with a
bound of 300 seconds. The local search used is best improvement interchange + insert. The kick
is a random left insert move.

particular instances as well. On instance 14 an interchange kick (depicted by a solid
line) consistently gives the best performance. Yet, on instance 120 interchange and right
insert kicks lead to the entrapment of the algorithm in suboptimal local optima when the
local search is (first) done on an interchange neighborhood. The run time distributions
do not unequivocaly single out one of the neighborhoods as most suited modification
mechanism. However, the results of Table 3.6 on page 47 clearly indicate that in general
the best performance is achieved if random left insert kicks are used. So, I will stick to
that in the following.

Kick—strength In Section 3.4.1 it was noted that, in addition to the neighborhood the
kick operates upon, also the number of kicks applied in the modification procedure,
the kick-strength, is a crucial factor in the design of iterated local search. Figure 3.4
gives for four instances the run time distributions for iterated local search variants that
use 2, 4, 8, 12, 16, or 20 random left insert moves to modify solutions found by an
interchange local search succeeded by an insert local search. The figure shows that
though for some SMWTP instances the strength of the kick has only little effect on the
algorithm’s performance, on other instances the number of kicks applied does make a
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big difference. For example, the interchange+insert local search performed very badly
on the 14¢h instance when solutions were modified by six random left insert kicks (see
Figure 3.3 on page 51), but it is able to find the best known solution very fast when 16
or 20 kicks are applied.

The run time distributions on instance 120 neatly illustrate the maxim that the
number of kicks should not be too large and not too small either. A modification
consisting of six random kicks strikes the golden mean and applying only two kicks or as
many as twenty kicks leads to bad performance. Yet, on instance 38 the kick—strength
has virtually no effect. This is probably caused by the ease of the instance: it can
on average be solved within 5 iterations while on instance 120 about 500 iteration are
required.

Since there is no kick—strength that is optimal for each of the instances, the final ILS
will vary the kick strength between 4 and 20 random kicks. In the beginning only four
kicks are applied. If an ILS iteration does not result in the better solution the number
of kicks is incremented with one. Incrementing stops if a maximum of twenty kicks is
reached and the kick strength is reset to the minimum of four if a better solution is
found.

Acceptance criterion

The acceptance criterion used until now stated that the starting solution for the modify—
search—accept cycle is the best solution currently known to the algorithm. Yet, also other
acceptance criteria could be imagined which accept solutions of equal quality or, with
a certain probability, solutions of worse quality. I have tried different such acceptance
criteria in some preliminary tests. However, the increase of search space exploration
achieved by making the acceptance criterion more tolerant seemed not to improve the
ILS algorithm and, hence, I stay with the standard acceptance criterion.

3.4.3 Comparison with iterated dynasearch

Congram et al. (1998) were the first to develop an ILS algorithm for the SMWTP. Their
iterated local search has the following features:

e Three local search variants were considered: of course dynasearch and, for com-
parison, best improvement interchange descent and first improvement interchange
descent.

e The solution modification is done by application of six interchange kicks. Kicks
based on random exchanges of three jobs were also tried. A modification compris-
ing two 3—exchanges proved a reasonable alternative to six random interchanges,
but was nevertheless not employed in the final configuration.

e Every new solution, improving or not, is accepted to be the current solution, except
for every five iterations when backtracking occurs and the current solution is set
to the best solution found thus far.
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e For the first 100 iterations, a series of transposes of adjacent non—late jobs that are
not in EDD order is performed, starting at the beginning of the sequence. After the
first 100 iterations, a similar procedure transposes adjacent non—late jobs, either if
they are not currently in EDD order, or with probability 1/3 if they are currently
in EDD order and their interchange would not cause either one to become late.
All transposes are performed prior to the kick. Their purpose is to reduce the
computation time for the dynasearch descents in the beginning and to diversify
the search in the end.

In the light of the experience in Section 3.4.2 some of these features arouse wonder.
For example, the transpose of adjacent jobs according to EDD criteria looks sophisti-
cated, but what is exactly its contribution to the performance of the algorithm and why
is it only used in combination with the dynasearch neighborhood? And what is the use
of the backtracking mechanism? It allows for more exploration of the search space, but
is that really needed here? As for the modification mechanism, probably better per-
formance could be achieved with a variable number of left insert kicks, the mechanism
proposed in Section 3.4.2.

It might well be that dynasearch becomes redundant in the light of the combination of
interchange and insert neighborhoods which showed so successful in the previous section.
iterated dynasearch was outperformed iterated best improvement interchange descent,
but the interchange neighborhood is not the strongest standard neighborhood available
and it can be doubted whether the ILS configuration it was embedded in gets the most
out of this neighborhood.

3.5 Ant colony optimization

In the foregoing, we saw how local search can be configured and how it can be employed
in the framework of iterated local search. The hypothesis of this thesis is that ants have
more sophistication to guide the local search than this framework can offer. The ultimate
test of this hypothesis is described in Section 3.6. First, the ant colony optimization
(ACO) algorithm has to be tuned. This process is described below.

3.5.1 Configuring ant colony optimization

The tuning process starts with the improved ant colony system for the single machine to-
tal tardiness problem (SMTTP) (ACS-sMTTP/) which is described in Chapter 2. Though
this algorithm is configured for the SMTTP, it can be applied to the SMWTP virtually
without changes. The main changes concern the different objective function, different
heuristic and different local search.

The parameters to be tuned in ant colony system (ACS) are «, 3, go and the popu-
lation size (see Section 1.3.2). The performance of ACS and ant colony optimization, in
general, is known to be rather robust with respect to the exact settings of these parame-
ters. « is usually set to one, 3 is set to two, go should normally be high and p low (Dorigo
and Gambardella 1997b, Gambardella and Dorigo 1997). Together with the size of the
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colony these parameters determine the ratio of exploitation and exploration. There is a
number of other ways one can try to improve the ACO-algorithm. Naturally, the choice
of the local search and the meaning of the pheromone trails matters. Supplementary,
the modifications presented below can be considered.

Directing the population

The population of ants is directed by the pheromone on the edges of the graph and
by a heuristic value provided by a dispatching rule. More specifically, in ACS for the
SMWTP jobs are scheduled using the following action choice rule.

e With probability g, the unscheduled job j that maximizes 7;;(t)® - ;;° is put in
the current sequence at position i. Here, 7;;(t) is the pheromone trail associated to
the assignment of job j to position ¢, ¢ indicates the dependence of the pheromone
trail on the time, 7;; is the heuristic desirability of assigning job j to position
i, and « and 8 determine the relative influence of pheromone trail and heuristic
information, respectively.

e With probabiliy 1 — gg, job j is chosen randomly with a probability given by

p]-c-(t) _ Tij(t)a : nijﬂ if j € NFE (3.2)
K LNk Ti(t)® - P !

NF is the set of jobs which ant k has not yet scheduled.

Because only the pheromone trail of edges of the global-best solution the ants have
found so far is updated, it is likely that only few edges receive pheromone and that
therefore differentiation among edges is difficult. For a long time many edges will not
collect pheromone at all. The heuristic information provides then the only means to
differentiate among these edges, while perhaps other factors, like neighboring an edge
with a strong pheromone intensity, might make further differentiation possible. Below
I will discuss a number of ideas whose implementation should further help the ants to
pick the right edges.

Candidate list The candidate list is a trick that makes the pseudo-random—proportional
action choice rule more greedy. It is a standard speedup technique in algorithms for the
traveling salesman problem (Martin et al. 1991, Reinelt 1994, Johnson and McGeoch
1997). Usually, with a probability 1 — ¢ all jobs not already scheduled are considered to
be added to the partial solution. With the candidate list instead an ‘elite’ of the most
promising jobs is chosen first. Jobs not belonging to this elite are excluded from selection
by the ants. In the implementation used here, the candidate list is formed by the first
¢ jobs that belong to the best solution found so far and are not already scheduled. By
restricting the set of jobs to the most promising ones, it can be expected that, especially
for large SMWTP instances, the ants are able to concentrate their search faster on good
solutions. The candidate list is used in a number of ACO algorithms to achieve better
performance (e.g. Stiitzle 1998a).
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3 Algorithms for the single machine total weighted tardiness scheduling problem

Pheromone diffusion There is a high likelyhood that jobs which are, based on current
information, best scheduled on position 7 would also do well on position 7 + 1 or 7 — 1.
Pheromone for putting a job on position ¢ should then also have a positive effect on
the choice of putting a job on a neighboring position j. There are a number of ways to
achieve this effect, here I consider two of them: changing the pheromone trail update
and changing the action choice rule.

Equation 3.3 is an alternative for the update rule of Equation 1.2 on page 10. Tt
causes the pheromone to diffuse over the graph because the neighbored positions get
some pheromone in the update.

Tipkg(t+1) = (1= p)  Tipnj(t) + p- ATS /28 (3.3)

In this equation ATZ%b is the amount of pheromone that is added. Hence, if job j is put
on position ¢ in the best solution found so far, neighboring nodes get exponentially less
pheromone.

In Equation 3.4 des;; represents the desirability to put job j on position 7. des;; also
takes account of the desirability to put jobs at near by positions when choosing a job
for position .

k=n
A . B
desij _ Z Tz+k,]( )Qk Ni+k,j (3'4)
k=0

When 7;;(£)*-7;;” is substituted by des;; in the action choice rule described on the page
before, then jobs will be more likely to be put on positions near to their best known
position.

Problem representation

ACS-sMTTP uses a graph representation where nodes correspond to jobs to be put on
a position in the solution sequence. This is the absolute representation illustrated in
Figure 3.5(a). The pheromone value 7;; is interpreted as the desirability to assign job
j to position ¢. Such a representation is not a bad choice since often the absolute
position of a job is particularly important in scheduling applications. In contrast, ACO
applications to the TSP use a relative representation (Figure 3.5(b)). That is, each node
is associated to a city and a path through the graph directly maps to a tour from city
to city. Perhaps such a representation would fit the SMWTP better than the absolute
representation. This would indicate that predecessor—successor relationship of jobs is
more important for the minimization of the total weighted tardiness than their position
in the permutation.

Heuristic information

The heuristic information 7;; used by the ants is based on either the earliest due date
(EDD), the modified due date (MDD), or the apparent urgency (AU) dispatching rule.

ni; will be n;; = 1/d; or n;; = 1/ max{C; + p;,d;} or ni; = 1/((w;/p;) - exp(— max{d; —
C;,0}/kp)), respectively. It specifies the desirability to put a job j with processing time
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1 2 3 4 5
A
B L4 . .
E >
(a) absolute representation (b) relative representation

Figure 3.5: ACO’s graph representation for SMWTP. Ants’ solution (C, A, D, E, B) is a path
connecting all jobs. A node in the left graph associates a job to a certain position, while a node
in the right graph represents the relative position of jobs in a predecessor—successor relationship.
Arrows are the edges the ant might choose during the construction of the solution — solid arrows
are chosen.

pj, due date d; and weight w; on position ¢ in the schedule. Cj is the job’s completion
time, p the average processing time of the remaining jobs, and k is a scaling parameter
which is set as proposed on page 34. I have also considered modifications of EDD and
MDD that take account of the job’s weights. However, the modified heuristic information
resulted in dissappointingly bad performance in preliminary tests, so I have not pursued
this direction any further.

Other ACO—variants

ACS is by no means the only incarnation of ant colony optimization which could work
on the SMWTP. MAX-MZN ant system (MMAS) is the other ACO algorithm that
performed well on the traveling salesman problem. It could also be effective for the
SMWTP.

In fact, I have implemented the MMAS and tested it both with and without use of
ACS’s greedy action choice rule (p. 10). In both cases MMAS could not outperform
the ACS implementation. This is not surprising: MMAS tends to be better than ACS
on problems that require relatively much exploration of the search space, yet, as we have
seen and will see, for most SMWTP instances fully exploiting the current best solution
is enough, so further exploration is not needed.

3.5.2 Computational results

Like for ILS, the results presented here are based on the run time distributions for
algorithm configurations on 10 relatively hard SMWTP instances. Each configuration
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Figure 3.6: Run time distributions for the combination of ACS with different local search
algorithms. The algorithm performs 25 tries with CPU-time bounded to 300 seconds. The

colony contains 20 ants.

is run 25 times on an instance while limited to spend at most five minutes per instance.
Summary results are given in Appendix B.

Initial configuration

The initial ACO algorithm for the SMWTP has the following parameter settings: o = 1,
B =2, p=01 g = 0.9. The colony contains 20 ants. Local search is applied to
all solutions these ants construct and the AU dispatching rule provides the heuristic
information. The initial solution is formed by a sequence sorted in non—decreasing AU
order on which a local search is applied. Further details on the implementation are given

in Section 2.4.2.

In the following, I will successively investigate which local search is best used, whether
one should change the size of the colony, whether the ants’ solution construction can be
improved, what the effect is of the pheromone trail, and, finally, what source of heuristic
information is most valuable for the ants.
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3.5 Ant colony optimization

Local Search

Figure 3.6 on the facing page plots the run time distributions for five ACO configurations
on instance 14, 42, 71 and 92 of the 125 instance from the benchmark set. The algorithms
differ in the local search neighborhoods used. All local search algorithms use the best
improvement pivoting rule and a permutation solution representation.

Typically, the combined interchange+insert local search that first performs a local
search on an interchange neighborhood and then a local search on an insert neighborhood
and its counterpart insert+interchange local search, perform better than just a insert
or interchange local search. Which of these combined neighborhoods is best is instance
dependent. For example, on instance 14 insert+interchange finds 50 % of its runs on
optimal solution within 100 seconds, while interchange+insert finds a solution only 20
% of the runs. On the other hand, all runs of interchange+insert solve instance 92
within 10 seconds, while insert+interchange has not solved a single run in this time-
span. So, perhaps both combined neighborhoods should be used. This last idea is
incarnated in half/half which denotes an ACO algorithm that uses a heterogeneous colony
of ants, in which half of the ants apply interchange+insert and the other half apply
insert+interchange local search®. On most instances the run time of this algorithm will
be somewhere between the homogeneous colonies which apply one type of combined local
search. Sometimes, like on instance 42, the mix of ants performs even better.

Size of the colony

Many ACO run time distributions in Figure 3.6 on the preceding page approximate a
step function. This is most prominent on instance 92. Such distributions emerge because
the termination criterion is only checked after a whole iteration has finished, so after
local search has been applied to all the ant’s solutions and the pheromone trails have
been updated. So, twenty applications of interchange+insert cost slightly more than
three seconds on instance 92, while twenty applications of insert+interchange require
ten extra seconds. Since the algorithms have a high probability to find the optimal
solution of an instance within a few iterations, it is worth investigating if the time
needed per iteration could be shorter. Most straightforward this is done by using less
ants.10

Figure 3.7 on the following page gives the run time distributions for colonies of 2,
6, 10 and 20 ants on instance 42, 67, 92 and 117. Three effects of shrinking the colony
are: more frequent opportunities to terminate the algorithm, reduced exploration of the
search space, and increased ability to ‘learn’ about the problem through more frequent
pheromone update. The first effect, increased frequency of updating the information,

°In addition some test were carried out with a variant of half/half that insert local search is applied on
the first half of the ants solutions and interchange local search on the second half. This variant was
less succesful than the half/half that employes combined neighborhoods.

0 Another strategy would be to gradually increase the number of ants (Stiitzle 1998b, Section 4.3.4). Of
course, checking if the termination criterion is met more often, e.g. after each local search application,
will yield better results as well. However, note that the differences between the amount of ants are
not just an artifact of checking after each iteration.
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Figure 3.7: Run time distributions for a heterogeneous population of ants that uses the half/half
local search described on the page before. 25 tests with a 5 minute bound are done on each
instance with colonies containing 2, 6, 10 or 20 ants.
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3.5 Ant colony optimization

can sufficiently explain the run time distributions on instance 117 where independent of
the size of the colony 50 % of the runs have terminated successfully within 7 seconds.
The second effect, stagnation, occurs on instance 67 where the 20 ant colony has the
highest probability to find the optimal solution within 100 seconds. ‘Learning’, however,
is less easy to observe, yet that does not mean that it is not existent.

Since, in general, the best behavior is obtained with 6 or 10 ants, in the following
the colony will have 10 ants.

Directing the population

In Section 3.5.1, I proposed some ways to improve the solution costruction by the ants.
First, I added candidate lists. Based on some preliminary tests, the length of the candi-
date list was set to 20. With a candidate list of size 20 on many instances the performance
improved. Next, I tested the modifications to the pheromone trail update mechanism
(see Equation 3.3 on page 56) and the action choice rule (see Equation 3.4 on page 56).
These modification yield no improvement. An explanation for these results is that the
candidate list makes the ACO algorithm greedier, whereas the other mechanism support
further exploration. It seems that no exploration is needed here.

Figure 3.8 on the next page depicts the run time distributions on two instances for
an ant colony system of ten ants where on five of the ants’ solutions an interchange local
search succeeded by an insert local search is applied and on the other five an insert local
search succeeded by an interchange local search. It clearly demonstrates the devastating
effect the alternative updating rule or the alternative action choice rule can have on the
run time of an algorithm. In addition, it illustrates the performance improvement that
can be obtained by using a candidate list.

Problem representation

Another thing that could make a difference is the interpretation of the pheromone trail
definition which also influences the way the problem is represented in the graph. The
absolute, position based, representation performs clearly better then the relative, adja-
cency based, representation (see Figure 3.9 on page 63). Most of the time, though, it is
even better to have this representation than not to use pheromone at all. On instance 19
adjacency based pheromone yields the best performance, on instance 38 the worst. So,
the job’s position in the sequence is generally more important than whether it is near
an other job, why it is not always the case will be investigated in Chapter 4.

Heuristic information

Finally, it could be that heuristic information other than AU has a better effect on
the algorithm’s performance. In Table 3.1 on page 40, the effectiveness of earliest due
date (EDD), modified due date (MDD) and apparent urgency (AU) was estimated by
measuring the quality of solutions constructed by these heuristics. With AU the small-
est deviation to the globally optimal solution was attained, yet this was at a larger
computational cost relative to the times needed by MDD and EDD.
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Figure 3.8: Run time distributions for an ACS of 10 ants with half/half local search (described
on page 59). Compared are the ACS as presented initially (standard), an ACS with a candidate
list of length 20 (candidate list), an ACS with candidate list and alternative pheromone trail
update (alt. update), and an ACS with candidate list and alternative action choice rule (alt. action

choice).
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Figure 3.9: Comparison of run time distributions of an ACS of 10 ants with half/half local search
and a candidate list of length 20 where pheromone is associated to putting a job on a position
(position constraint), with an ACS that associates pheromone to putting a job after another one
(adjacency constraint) and an ACS that does not use pheromone at all (no pheromone) Except
for instance 19, the AU rule provides the heuristic information. For the 19¢h instance the run
time distribution of ACS runs that made use of the MDD rule is given, because best known
solutions could not be found at all when AU was used.
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Figure 3.10: Comparison of run time distributions of 10 ant half/half ACSs with a candidate list
of length 20 where pheromone reflects the ‘position constraint’ that use earliest due date (EDD),
modified due date (MDD), apparent urgency (AU), or no heuristic information at all.

For ant colony optimization the high computational cost of AU might be particularly
disadvantageous as the information is requested for each step each ant makes. Another
characteristic of AU, which makes things even worse, is that it is a dynamic heuristic
(see page 5). An important difference between static and dynamic heuristic information
is that static information does not depend on the partial solution constructed by the ant
while dynamic information does. When using static information, like in the EDD-based
heuristic information, the values of 7;;(t) -mjﬁ can be precomputed and need only to be
updated occasionally. With dynamic heuristic information, this is typically not possible
and in this case the solution construction incurs a higher computational cost. Yet, this
may be made up for by a higher accurateness of dynamic heuristic information. In
Figure 3.10 I give the run time distributions for four instances using the three different
heuristics and not using heuristic information at all. The EDD seems to provide false
heuristic information, since it often yields worse performance would be obtained if not
heuristic was used at all. However, the fact that on instance 19 the best performance is
achieved when no heuristic is used does not imply that AU and MDD give bad estimates
for the desirable sequence of jobs to solve this instance. On the contrary, it seems that
AU is so strong that it holds the ants so near to the old local optimum that local search
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can not escape from it to find a better solution.

In general, AU gives the best performance, so this dispatching rule should be used
in the final ACS configuration. However, on instance 14 and especially on instance 19
AU hinders ACS in finding the best known solution. These instances differ from other
instances in that they have a small range of due dates (RDD). Therefore a rather ad hoc
rule will be used that states that ACS uses MDD for RDD < 0.3 and AU otherwise.

3.5.3 Future work

An observation that can be made from the computational results discussed in Sec-
tion 3.5.2 is that there exists no single optimal ACO configuration for the entire set
of SMW'TP instances, a configuration that works very well on some instances may work
very badly on other instances.

Three directions can be followed to obtain a configuration that works well on all
instances. First of all, one can try to identify properties of an instance that make it suited
for a certain configuration and on the basis of this knowledge construct an algorithm
that classifies the instance and chooses a configuration on the basis of this classification.
The identification of such properties is one of the topics in Chapter 4. One could also
seek refuge in heterogenous ant colonies like is done in the half/half configuration where
one type of local search is applied to 50 % of the ants’ solutions and another type of
local search to the other 50 %. This idea can be extended to using more than two types
of local search or making the ants differ in other aspects like their greediness and the
heuristic information they employ. Finally, one could make the algorithm self-tuning
by using search feedback to adjust the configuration. For example, one might want to
adjust to colony size and the greediness of the ants to provoke more exploitation or
exploration of the search space dependent on the feedback.

Actually, there might be still another way to obtain a configuration that works well
on all instances: apply a dynasearch local search to the ants’ solutions. After all, it
could be that the dynasearch local search used by iterated dynasearch is so powerful
that the ACS becomes more robust with respect to other configuration issues, because
a bad configuration of the ants might be ‘repaired’ by the dynasearch local search and
dynasearch might outperform other local search procedures on all instances, making
half/half-like ideas superfluous. Still, in Section 3.3.3 and Section 3.4.3 I have argued
that the performance of iterated dynasearch might not be that exceptional at all. Yet,
to find out whether this is true, re-implementation will be required.

3.6 Iterated local search versus ant colony optimization

For comparison of iterated local search and ant colony optimization, I have run the final
algorithms of Section 3.4 and Section 3.5 on the benchmark set available in ORLIB. In
addition, I have generated some SMWTP problem instances of 200 jobs and tested the
algorithms on these instances.

To recapitulate: the ILS algorithm uses a interchange+insert local search, a local
search on the interchange neighborhood succeeded by a local search on the insert neigh-
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Figure 3.11: Ant colony optimization versus iterated local search for the SMWTP instance of
ORLIB. Each point has two components. Its x value is the average computation needed by the
ILS algorithm, the y value is the average run time of the ACO algorithm for that instance. Both
algorithms were tested 100 times on each instance except for the ACO tests on the 100 jobs
instances which were repeated only 25 times. The CPU bound was set to 10 minutes on 40— and
50—job instances and 20 minutes for 100—job instances.

borhood. Two solution are compared at the initialization, one is the result of a local
search application to a sequence of jobs in non—decreasing MDD order, the other of an
application to a sequence in non—decreasing AU order. The best of these solutions is
modified and local search is applied on the modified solution. The solution is modified
by random left insert kicks. The number of kicks is varied within the range [4,20] in the
way described on page 46. A solution found by the local search is accepted for modifi-
cation is it has a lower weighted total tardiness associated to it than the current best
known solution. The ACO algorithm has a colony of 10 ants. An interchange+insert
local search is applied to 5 solutions constructed by the ants. Insert+interchange local
search is applied to the remaining 5 solutions. A candidate list of length 20 is used to
improve the ants’ solution construction. On instances that have a small range of due
dates (RDD < 0.3), the MDD dispatching rule provides the heuristic information, AU
is used on the other instances. The remaining parameters settings can be found on page
58.

Figure 3.11 summarizes the results for the ORLIB benchmark. It compares the
average run times of the ACO algorithm (y—axis) and the ILS algorithm (x—axis) for
the each of the 125 instances in the set of 40, 50, and 100 jobs. Both algorithms were
tested 100 times on each instance except for the ACO tests on the 100 jobs instances
which were repeated only 25 times. The CPU bound was set to 10 minutes on 40— and
50—job instances and 20 minutes for 100—job instances. The dotted line indicates equal
CPU time for ILS and ACO and therefore divides the instances into those solved faster
by ACO and those solved faster by ILS — on average. Instance to the right side of the
line are solved faster by ACO, on the left faster by ILS.

The resulting plots are remarkably similar independent of instance size. With in-
creasing number of jobs the required computational effort grows, yet this has little effect
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on the balance between ACO and ILS. Generally ILS outperforms ACO. An exception
to this rule is formed by clusters of instances near the origin of the plot. These instances
are solved after only one local search application. The reason that ACO is faster on
these instances is that its initialization involves only one local search, while the initial-
ization mechanism chosen for ILS needs two local searches. So, the advantage of ACO
on small instances is just an artifact which would not have occurred if one would check
the termination criterion right after the first local search application. However, also the
advantage of ILS on instances that require on average less than 10 or perhaps even 20
or 30 local search applications can be attributed to the artifact that the ILS algorithm
checks the solution every local search application while the ACO algorithm with a colony
of ten ants checks only once every 10 applications.

A closer examination of the algorithms’ performance can be made for the 18 instances
for which Figure 3.12 on the following page gives the run time distributions for the ACO
algorithm (dotted line) and the ILS algorithm (solid line). The instances are either
among the ten instances on which the ACO algorithm required the most CPU time or
among the eleven instances on which the ILS algorithm required the most CPU time.
The ILS algorithm outperforms ant colony optimization on two third of these instances.
In many of the instances on which ILS is slower, ACO requires only few iterations. For
example, the ACO algorithm can solve the 98¢h instance (column two, row four in the
figure) within one iteration in 50% of the tests, over 90 % is solved within two iterations
and in the worst case it requires 3 iterations. Yet, the ILS algorithm requires an average
of 114 iterations to solve the same instance. An extreme case is instance 9. This instance
is solved right at the initialization of the ILS algorithm, whereas the ACO requires on
average 14 iterations. A case of ‘lucky’ initialization.

Though Figure 3.11 on the preceding page does not point in that direction, it could
be that the ant colony optimization would be more competitive with iterated local search
on larger problems. To test out, I have generated nine 200—job instances. Five of the
instances are characterized by a due date range RDD = 0.2 and a tardiness factor
TF = 0.6, the remaining have RDD = 0.2 and TF = 0.8. The instances are names
according to the scheme used for the ORLIB instances: instance 11-15 have TF = 0.6
and instance 16-19 TF = 0.8. Because these values of TF and RDD have proved to
yield hard single machine total tardiness problems in Chapter 2, they were chosen for
these instances. In order to obtain ‘best known’ solutions, I ran ILS ten times for one
hour on the instances and compared the total weighted tardiness of the solutions found.
Because the values of the ten runs were in complete agreement with each other, it seems
safe to take them as ‘best known’, so that’s what I did.

ILS and ACO were run 25 times with a CPU bound of 3600 seconds. Figure 3.13
on page 69 gives the run time distributions for these instances. Unfortunately for ACO
supporters, on these instances the ILS algorithm requires far less run time to find the
‘best known’ solution than the ACO algorithm. However, the picture given in the figure
might deformed by the artifact of checking for termination only once per iteration. For
example, on the 14th instance the ACO algorithm has found the ‘best known’ solution
with a probability of almost 80 % within one iteration. Yet, the ILS algorithm has ended
all 25 runs successfully before the ACO algorithm can finish its first iteration. Still, it
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Figure 3.12: Run time distributions for the toughest 100—job instances.
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3 Algorithms for the single machine total weighted tardiness scheduling problem

seems justified to state that iterated local search is more suited for the single machine
total weighted tardiness scheduling problem than ant colony optimization.

3.7 Summary

This chapter has presented a study into the application of ant colony optimization (ACO)
to the single machine total weighted tardiness scheduling problem (SMWTP). An im-
portant component in ACO algorithms for the SMWTP is local search and consequently
a considerable part of the chapter has been devoted to the configuration of local search.
In addition, an algorithm for the SMWTP was described which is based on the iter-
ated local search (ILS) meta-heuristic. Since ILS is a much simpler way to embed local
search than ACOQ, its performance forms an nice reference point for the ACO algorithm.
Finally, issues in the design of an ACO algorithm for the SMWTP were discussed.

This chapter has shown that it is possible to obtain good performance by applying
ACO to the SMWTP. However, even better performance is obtained when the ILS
meta-heuristic is used. So, the ILS approach is more suited. Still, it should be noted
that the most important factor for successful application is not whether one uses kick—
moves or ants, but which type of local search is embedded in the algorithm. The local
search which is used by ILS and ACO achieves good performance by combination of the
insert and the interchange neighborhood and a few application of this local search suffice
to find many best known solutions of instances in the ORLIB benchmark set.

The algorithms were not directly compared with iterated dynasearch which is cur-
rently the best algorithm for the SMWTP. This might be done in the near future. Con-
sidering that the ACO and ILS algorithm could find, for all known benchmark instances
available in ORLIB, the optimal or best known solution within reasonable computation
times, whereas iterated dynasearch found on average only 123.2 times the best known
solutions (Congram et al. 1998, Table 6) and considering the doubts about the optimal-
ity of design of iterated dynasearch expressed in Section 3.4.3, there is a chance that
the ILS algorithm presented in this chapter will leave iterated dynasearch behind in
performance.

The computational experience in this chapter indicates that there exist enormous
differences between individual SMWTP instances with respect to the computational
effort required to find the best known or optimal solution. In addition, instances that
are hard to solve with one algorithm might be straightforward for a slightly different
algorithm. What exactly causes an instance to be hard is the subject of the next chapter.
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4.1 Introduction

The experiments described in the previous chapter may give indications which kind of
algorithm design yields the best performance, yet they provide little information why
certain design choices are preferable or why the single machine total weighted tardiness
scheduling problem (SMWTP) is relatively easily solved. The question that should be
addressed is what makes a problem type or instance hard for a search algorithm.

Two directions are followed in this chapter to investigate this aspect. First, the
relationship between job data, structure of the global optima, and the algorithm’s effec-
tiveness is studied. Second, it is investigated what fitness landscapes are induced by the
search operators for the SMWTP.

An empirical analysis of these questions is performed on the 125 100—job SMWTP
instances which are available in ORLIB. The principal tool for the analysis is the cor-
relation coefficient p(z,y) which is a measure for the coherence of stochastic variables
z and y. Tt is given by p(z,y) = C(z,y)/(c(z) - o(y)) where C(z,y) is the covariance
of z and y and o(z) is the variance of z. It will for example be used to estimate how
strongly certain problem characteristics and the algorithm’s run time are related.

4.2 Problem characteristics

Two statistics, the tardiness factor (TF) and the range of due dates (RDD), are re-
peatedly used to characterize SMWTP instances. TF and RDD serve as parameters
that direct the generation of instances. For example, the ORLIB benchmark set for the
SMWTP that is used here contains five instances for each pair of TF and RDD in the set
{0.2, 0.4, 0.6, 0.8, 1.0}. TF and RDD can also be measured on a given instance to adjust
an algorithm like the apparent urgency dispatching rule whose scaling parameter k is
set dependent on the TF—value of an instance (see page 34). Apparently, these statistics
also may help discriminate easy instances from hard ones, but what values of TF and
RDD characterize hard instances? Is there possibly a relation between these statistics
and properties of the optimal solutions? In the following, it is investigated how tardiness
factor and range of due dates relate to the number of late jobs and runs in the globally
optimal solutions and it is determined to what extend these statistics can predict the
effort needed by iterated local search and ant colony optimization to find the optimal
solutions.
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Figure 4.1: Tardiness factors of the 125 100—job instances in ORLIB.

4.2.1 Tardiness factor and range of due dates

The due date tightness factor or tardiness factor (TF) is obtained by computing

TRoq- dae g 24 (4.1)

Cmax n Z pj
It indicates how far the average due date differs from the largest possible completion
time of any job. A low value of TF means that the jobs’ due dates will tend to be loose
and jobs can relatively easy be processed before they are due. The opposite is the case
if TF has a high value.
The due date range factor or range of due dates (RDD) is defined as

RDD = Jmax = dmin (4.2)
Cmax
For instances with a small RDD-value, when the jobs have a similar due date, the
tightness of the due date will have a greater impact than for instances with a high
RDD-value.

Figure 4.1 and Figure 4.2 on the facing page show the values of TF and RDD that
are associated with the instances of the 100—job benchmark for the SMWTP. The due
dates for these instances are said to be randomly drawn from the uniform distribution
[(1—TF — BBR) . Chyax, (1 — TF + BUB) . Oy, with five instances for each pair of TF
and RDD from the set {0.2, 0.4, 0.6, 0.8, 1.0}. This description does not correspond
to the empirically measured values of TF and RDD depicted in these figures, however.
The due dates of instances 21-25, 46-50, 71-75, 96—100, and 121-125 are spread only
half as much as they should be (Figure 4.2). Consequently the instances do not have
the promised tardiness factor (Figure 4.1). Apparently, the lower bounds for uniform
distribution of the due dates was specified as max{(1 — TF — BDR) 0} - Cpax instead
of (1 —TF — @) - Chmax, preventing negative due dates to occur. If due dates are not
allowed to be negative, then for the average of the due dates to approximate zero they
must have a small range. This explains that TF = 1 is not reached for large values of
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Figure 4.2: Due date ranges of the 125 100—job instances in ORLIB.

ILS logILS ACO log ACO
TF ~ 0264  0.736  0.422 0.740
RDD -0.001 -0.249 -0.032  -0.228

Table 4.1: Correlation between job statistics and algorithm efficiency.

TF. Accordingly, the range of due dates is effectively cut in half when TF should be one
but jobs cannot be committed before the system’s starting time. So, the lower bound of
zero results in instances that do not have the appropriate TF and RDD. In addition, the
distribution of the due dates in these instances will not be as uniform as in “regular”
instances since a large share of the due dates will have the common value of zero. In the
following I will consider the empirically measured TF and RDD values of the instances,
but this neglects the differences of the due date distribution though they could be an
important factor for the instance hardness.

4.2.2 Hardness in relation to TF and RDD

In Figure 4.3 on the next page the average time needed to find an optimal solution with
iterated local search (ILS) and ant colony optimization (ACO) for an instance is plotted
against the tardiness factor (TF) and the range of due dates (RDD) of the instances.
For most combinations of TF and RDD the instances are easily solved for both ILS and
ACO. Hard instances have TF > 0.5 and for ACO and TF > 0.5 A 0.4 < RDD < 0.7
in the case of ILS. Note that nothing can be said about the hardness of instances that
have TF > 0.8 ARDD > 0.7, as such instances do not occur in ORLIB’s benchmark for
the SMWTP.

The correlation coefficients between the algorithms’ efficiency measured in average
CPU-time and the instance—characteristics TF and RDD are given in Table 4.1. Clearly,
the job—statistics alone are not sufficient to predict the effort needed by iterated local
search or ant colony optimization to find the optimal solution for a given problem.
A stronger correlation is obtained between logarithmically scaled run times and TF
and RDD. This scaling accounts for the fact that run times increase exponentially, not
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Figure 4.3: Study of run times of ant colony optimization and iterated local search in depen-
dence to tardiness factor (TF) and range of due dates (RDD). A description of the experimental
setting in which the run times were measured can be found in Section 3.6.

linearly, as the instances become harder. A reason for the low correlation with RDD may
be that only linear correlation is measured by the correlation coefficient, but perhaps a
non-linear regression is needed. A better correlation may also be obtained if RDD and
TF are considered both.

4.2.3 Properties of the global optima determined by TF and RDD

We have seen that hard SMWTP instances all fall within a small range of TF and RDD
values. Perhaps these statistics reflect a particular structure of the problem that makes
it hard to solve.

To investigate this issue, I have run the ILS algorithm starting from random initial
solutions to generate 10 global optimal solutions for each of the 125 100—job instances.
For each solution the number of late jobs was counted and the number of runs was
determined. Recall that a job is late if it is completed after the committed date and a
run is a sequence of jobs that share the same property of being late or non—late. These
statistics are actually characteristics which all global optima for an instance have in
common: the difference between the maximum and minimum number of late jobs in the
set of global optima, for an instance was at most two jobs. For runs likewise, the largest
difference was 2 runs. In addition, a closer look at the partition of global optima for
an instance into run reveals that the optima consist almost without exception of the
same consecution of runs. Different ordering of jobs within the runs is the only cause
for having multiple global optima.

The tardiness factor of an instance turns out to be a precise predictor for the number
of late jobs in the global best solutions. The correlation coeflicient of these statistics is
p(TF, late) = 0.965. This coefficient reflects the observation that jobs will be early if
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Figure 4.4: The number of runs of jobs in global optima partitioned into runs of late jobs and
runs of non-late jobs.

TF RDD logILS log ACO
run  0.519 0.201  0.685 0.638

Table 4.2: Correlation between number of runs in best known solutions, tardiness factor (TF),
range of due dates (RDD) and logarithmic run times for iterated local search (ILS) and ant
colony optimization (ACO).

due dates are near the worst occurring completion time and will be late if due dates are
near the release date of the jobs.

The relationship between TF and RDD and the number of runs in global optima is
somewhat more complex. Figure 4.4 plots the number of runs per instance. Clearly,
high ranges of due dates and modest tardiness factors cause a high number of runs. The
reason why this is interesting is that this could partially explain why some instances take
more time to solve than others. The speedups used in the previous chapter make heavy
use of the run data-structure (see Algorithm 3.3 on page 38) which allows to evaluate
the effect a local search move has for all jobs of a run at the same time and avoids
having to calculate the effect of a move for each single job of a run. The highest gain
in evaluation—speed can be achieved when there are only few runs in the permutation.
Perhaps the number of runs is a better indicator for the size of the search space than the
number of jobs. At least, Table 4.2 indicates that the number of runs has a significant
influence on the instance-hardness. Yet, one has to keep in mind the run times were
measured on algorithms that used a local search that depends on the run data-structure
for the evaluation of its moves. It remains an open question if runs are that important
an indicator of then instance hardness when they are not taken advantage of in the
algorithm itself.
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4.3 Fitness landscapes

Supplementary to the analysis just made, one could try to determine in what way the
fitness landscapes on which the search algorithms operate differ among the instances.
This is the aim of the fitness landscape analysis.

4.3.1 The concept

Formally, the fitness landscape is defined by
1. the set of all possible solutions S;
2. an objective function that assigns to every s € S a fitness value f(s);
3. a neighborhood structure N C S x S.

This captures the intuitive idea of navigating search in a mountainous area. The local
search algorithm can be imagined as a wanderer that performs a biased walk in this
landscape. Sticking to this picture, it is obvious that the task for the wanderer strongly
depends on the ruggedness of the landscape, the distribution of the valleys and craters
and the local optima in the search space and the overall number of the local minima.
Being such an intuitive idea, the metaphor of fitness landscapes is commonly used to aid
the understanding of heuristic search methods for solving a combinatorial optimization
problem.

Essentially, there are two interesting elements in the analysis of fitness landscapes.
The first is which of the possible neighborhoods is the most appropriate. A fitness
landscape is induced by the particular operator which is used to define the neighborhood.
An operator that causes a smooth fitness landscape that is easy to search is of course
preferable over operators that cause rugged fitness landscapes. Measuring the ruggedness
of fitness landscapes is the subject of Section 4.3.2.

Secondly, more detailed knowledge on what the landscape ‘looks like’, that is, on
the gross relationship of the position of local optima relative to the global optima and
on the number of local optima, is needed to determine which search algorithm is most
suited for it. This is the second interesting element of fitness landscape analysis. In
particular, it would be nice if the topology of the fitness landscapes would explain the
good performance of iterated local search or ant colony optimization. Section 4.3.3 is
concerned with that subject.

4.3.2 Landscape ruggedness

The ruggedness of a fitness landscape indicates how hard it will be for a local search
algorithm to search that fitness landscape. If neighboring points in the fitness landscape
have more or less similar objective function values, the fitness landscape is smooth. On
the other hand, a fitness landscape is rugged if small moves lead to large changes in
solution quality.
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Figure 4.5: Plot of the random walk corre- Table 4.3: Correlation lengths for random
lation function r(s) for s = 1,...,100. The walks of 10000 right insert, left insert, inter-
random walk consists of 10 000 right insert, left change, or invert moves.

insert, interchange, or invert moves.

Basically, the ruggedness reflects the correlation structure of neighbored solutions in
the fitness landscape. To measure the ruggedness of a fitness fitness landscape, Wein-
berger (1990) suggested to use random walks. The random walk correlation function

r(s) = i’ (f(@e) = F) - (f (m4s) — F) (4.3)

o?(f)

of a time series {f(z¢)} defines the correlation of two points s steps away along a random
walk through the fitness landscape. Figure 4.5 plots the correlation of two points against
the number of steps between the points for a number of operators. The figure will be
discussed in more detail later on, it is enough to note that one can discern good and bad
operators based on the curves in this plot. That is to say, if the correlation remains high
for points that are separated by many steps, the fitness landscape is really smooth.

The correlation length [ of the fitness landscape is a summary statistic for curves like
in Figure 4.5. It is defined as

1
In(|r(1)])
where r(1) # 0. It assumes that the correlation between neighboring points will decay
exponentially with the number of steps these points are separated. In that case, the
correlation length is the number of steps after which there is no correlation left between
the points.

Table 4.3 gives the correlation lengths for a time series obtained by a random walk for
the 10 SMWTP instances that on which the tuning has concentrated in Section 3.4.2 and
Section 3.5.2. The walk consists of 10 000 random applications of either the interchange
(- ), right insert (--- @ ----m;---), left insert ( )
or the invert move. The invert move is a non—-standard operator for sequencing problems.
Given positions 4 and j in permutation 7, the invert move produces a permutation 7’
that has the jobs between positions ¢ and j in the inverse order. The correlation lengths

= (4.4)

7



4 Analysis

in Table 4.3 on the page before are much lower for this operator than for the others which
suggests that an invert neighborhood on the SMWTP should lead to worse performance.

What is really striking, however, is that the correlation lengths in Table 4.3 on the
preceding page are so large and that the autocorrelation in Figure 4.5 on the page
before remains so high. These values are much larger than what is observed on other
problems (Merz and Freisleben 1999). This might indicate that SMWTP instances
are relatively easy to solve. Furthermore, the huge difference in performance between
algorithms which use the right insert neighborhood and algorithms which search the left
insert neighborhood (see Section 3.3.2 and Section 3.4.2) is not reflected at all in the
correlation lengths for random walks based on these operators. Landscape ruggedness
is too coarse a measure to provide such detailed information.

4.3.3 Distribution of local optima

Another approach to the analysis of fitness landscapes is to generate local optima and
study how these local optima are distributed over the fitness landscape and what’s their
relationship to global optima. Such an approach is, for instance, followed by Boese,
Kahng and Muddu (1994). These authors suggest that, in the cases of the traveling
salesman problem and graph bisection, local optima tend to be relatively close to each
other and to the global optimum. Thus, for at least some problem fitness landscapes,
there is a big valley structure, where a global optimum is surrounded by local optima
of progressively increasing average quality as they approach that global optimum. On
such fitness landscapes iterated local search and ant colony optimization are almost
certain to outperform multi-start local search. The average distance between locally
optimal solutions is relatively small, compared to the size of the search space. Because
the interesting part is contained in a relatively small region of the total search space,
it is advantageous if one can focus on search near the current local optimum, which is
already situated in that area. This is what ant colony optimization and iterated local
search do by embedding a local search method into a global guiding mechanism which
provides new nearby starting solutions.

Distance Metrics

Mapping fitness landscapes requires knowledge on both altitude and amplitude of points
in the fitness landscapes. Altitude is defined by the objective function of the problem.
In principle, the distance between two solutions 7 and 7’ on a fitness landscape should
be measured by the minimal number of applications of the operator which would convert
7 into 7’. However, in general no polynomial algorithm is known for calculating this
number (Reeves 1997).

Yet, there are a number of surrogate distance metrics that could be used in such
cases to give a rough approximation of the true distance. Reeves (1997) proposes the
following three measures to estimate how many local search moves are at least needed
to transform one sequence into another.
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The adjacency metric. This metric counts the number of times n44; a pair 4, j of jobs is
adjacent in both 7 and #’. The distance dggj (7, 7') is then measured by subtracting
this amount from the maximum number of jobs that can be adjacent in a sequence,
that iS, dadj(ﬂ'a 7T’) =n—1-— Nadj-

The precedence metric. This metric tries to be a little more sophisticated. Rather than
simply looking at adjacencies, the number of times job j is preceded by job i in
both m and 7', nprec, is counted. To get a ‘distance’, this quantity is subtracted
from n(n — 1)/2, which corresponds to the maximum closeness of two solutions.

dprec(ﬂ-a 7T’) = n(n - 1)/2 — Nprec-

The position—based metric. This metric compares the actual positions of the jobs in the
permutations 7w and 7’. For a sequence m we can define the ‘inverse’ permutation
o where the position of job m; is given by o, = ¢. The position-based distance is
then dpos(m, 7') = 3% |oj — o}

In addition to these three metrics, I consider a variant that counts only the distance
for jobs that are late in the objective solution 7/. Such a modification is motivated by the
conjecture that often the ordering of non—late jobs is not very important for the weighted
tardiness objective. The tardiness of non-late jobs is zero. If these jobs are shifted from
their current position to a position more in front of the queue, their contribution to the
SMWTP objective will remain zero. If the due dates are not too tight, many jobs can
even be shifted backwards without effecting the quality of the permutation. In this way
one can obtain many local optima which are effectively one and the same if the non-late
jobs are ignored. By just considering late jobs the ‘noise’ generated by these redundant
solutions is filtered out.

Search operators

Distance metrics could help identify the constraints that are important for solving a
problem. A high correlation between the distances given by a metric and costs given by
the objective function suggests the use of search operators that are best approximated
by the metric. Still, the identification of constraints makes no sense if these constraints
cannot be taken into account in the algorithm’s design. Section 3.5.1 already illustrated
how the graph in ant colony optimization can be used to concentrate on the impor-
tant properties of the problem. To a less extend the same can be achieved with local
search operators. If the relative position of jobs is important, the transpose operator
- g1 - - -) will do well. Interchange (- - - o - -+) is suited for incorporation
gf the more g?eneral precedence constrai(nt, ert (- - ------- --+) will be useful
is the absolute position of jobs is what matters. Since insert and interchange subsume
transpose, these operators can also be used when adjacency is the dominating factor.
But, because the neighborhood they operate on is larger, search with these operators is
likely to consume more time.
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Distance correlations

The fitness distance relationship between metric and objective function can be examined
for any particular case by giving a plot of the distance versus fitness of local optima rela-
tive to the closest global optimum. However, it is clearly impossible to plot such a graph
for every operator, metric and problem instance. Therefore the correlation coefficients
between distances and differences in objective function of points in the landscape are
computed.

Observations

Along with the SMWTP benchmark, ORLIB provides a list with the best known total
weighted tardiness for each instance. The sequences of jobs that constitute a solution
which is assumed to be globally optimal are obtained by running the ILS algorithm until
it reaches this best known total weighted tardiness value. For each instance 10 ‘global
optima’ are obtained this way. The local optima are obtained by running a local search
1000 times per instance. For each local optimum found, the distance to the nearest global
optimum is computed together with the difference between the objective function values
of the local and global optimum. None of the local optima for the instances considered
in this section is also a global optimum.

The scatter plots in Figure 4.6 on the facing page show the dispersion of local optima,
over the search space of instance 19 and 67 for the three basic distance metrics. A
distribution of local optima like in Figure 4.6(e) almost ideal, it seems to indicate a
landscape topology resembling to a big valley (introduced on page 78). Hopping from
one local optimum to the next is likely to bring the algorithm near the global optimum if
the next optimum has a higher fitness. Correspondingly, the distances and the fitnesses
of the local optima in the plot are highly correlated.

In Figure 4.6(b) and Figure 4.6(c) there seem to be clusters of local optima that
are close in distance and cost. One could interpret such a distribution as reflecting a
landscape that consists of a number of craters. An effective algorithm should be able
to escape from these craters in order to arrive at a point nearer to the global optimum.
This is considerably harder than searching through a big valley. In Section 3.5.2 instance
19 has already shown to be a peculiar instance where it proved best not to use heuristic
information and the pheromone should best reflect the relative order of the heuristic.
Probably, using heuristic information the ant are too much attracted towards a cluster
and therefore the algorithm gets stuck at one of the clusters depicted in Figure 4.6(b).
Even though the correlation of Figure 4.6(a) is worse than the correlation of the position
based metric (Figure 4.6(c)), a pheromone representation reflecting the constraints of the
adjacency based metric allowed for better performance (Figure 3.9 on page 63). From
the point of view of the adjacency based metric the local optima are scattered around
without forming clusters. Apparently, ants who adopt this point of view are better able
to lead the local search out of the cluster. Having escaped the cluster the local search
can then move on.

Table 4.4 on the next page gives the correlations between the distance defined by
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instance 19; uni-directional adjacency based

instance 19; precendence based
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4.3 Fitness landscapes

instance 19; position based
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Figure 4.6: Fitness distance correlations for local optima of instance 67 and 19 generated by
local search on the interchange neighborhood. The correlation coefficients the correspond to the
plots are given in the caption of the sub-figures.

interchange l.opts insert l.opts inter+ins. Lopts

adj prec pos Lpos| adj prec pos Lpos | adj prec pos Lpos

14| 051 044 045 043034 052 048 0.50|0.43 040 0.38 0.56
19 | -0.09 0.64 072 057|043 068 0.67 0.68|0.63 080 0.82 0.77
38| 0.73 0.77 0.77 0.80]| 0.62 0.52 0.53 0.29 | 0.71 0.62 0.60 0.80
42 | 0.27 0.78 0.84 0.62|0.32 0.61 0.60 0.56 | 0.23 0.52 0.58 0.22
67 | 0.79 094 093 092|046 0.85 084 083|080 0.94 0.93 0.92
71| 029 0.83 088 0.8 | 038 0.78 0.79 0.79 | 0.60 0.86 0.87 0.86
8 | 0.57 0.87 0.92 046|049 0.79 078 0.71 | 0.66 0.89 0.91 0.57
92 | 0.73 095 097 096|041 0.82 081 0.82|0.66 097 098 0.97
117 | 042 095 096 095|026 0.83 080 0.80 | 0.50 0.98 0.99 0.98
120 | 0.65 0.95 096 096 | 048 0.80 0.78 0.78 | 0.75 094 095 094

Table 4.4: Fitness distance correlations for local optima generated by runs of local search
starting at a random solution. Coefficients are computed for several metrics: adj denotes the
adjacency based metric, prec the precedence based metric and pos the position based metric.
Lpos is a position based metric that only counts the late jobs in the global best solution.
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left ins  right ins  inter invert adj prec pos  Lpos

TF | 0.859 0.862 0.871 0.830 TF | 0.354 0.765 0.825 0.677

ILS | 0.621 0.628 0.597 0.519 ILS | 0.278 0.624 0.658 0.523

ACO | 0.624 0.654 0.593 0.465 ACO | 0.286 0.593 0.624 0.460

(a) ruggedness (correlation lengths) & prob- (b) fitness distance correlation & prob-
lem characteristics lem characteristics

Table 4.5: Correlations between fitness landscapes and problem characteristics. ILS is the log
CPU time the ILS algorithm needs to solve the instance averaged over 100 tries, ACO is the
same for the ACO algorithm for 25 tries.

some metric and the quality of the solution for the ten instances also investigated in
Section 4.3.2. Results are given for local optima generated by local search on the inter-
change neighborhood, for local optima of insert local search, and for optima generated by
putting these search procedures after each other. The differences in correlation between
the sets of local optima are only possible because the sets contain different local optima.
In addition to the random generation of initial solutions, differences of neighborhood
cause different local optima to be found. The set generated by the interchange-+insert
local search will for example contain local optima that are closer to the global optimum
than the sets of insert. In general the fitness distance correlation seems to be the weakest
for the set generated by the insert local search. The local optima being relatively remote
might perhaps be the cause.

When measuring the distance using the adjacency metric, in general a lower fitness
distance correlation is obtained. This confirms the finding already done in Section 3.5.2
that the absolute, position based, representation is a better way to represent the problem
than the relative representation. On the other hand, it remains vague whether one should
have the local search operators that are approximated by the position based metric or
the ones approximated by the precedence metric. Like the auto-correlation, the fitness
distance correlation is first of all high, so no very sophisticated means to search the
fitness landscape seem to be needed. However, one wonders how it can be the case that
fitness distance correlations of 0.95 are measured for the local optima on instance 120,
while the iterated local search algorithm requires on average the longest run time on just
this instance (see Table A.4 on page 100).

4.4 Fitness landscapes & problem characteristics

In this section, I investigate if differences in landscape ruggedness and fitness distance
correlations can explain the run times of the algorithms. In addition I try to identify
the problem characteristics that lead to the emergence of certain landscapes.

Some correlations between fitness landscape properties and problem characteristic
are given in Table 4.5. The fitness landscapes properties highly depend on the tardiness
factor (TF), but bear less relationship with the effort needed by the search algorithms
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Figure 4.7: Precedence based distances between 1000 local optima generated by inter-
change+insert local search on random initial solutions for instance of the 100—job ORLIB bench-
mark set.

to solve the problem. The correlation between the fitness landscape properties and com-
putational effort seems to be mainly due to the fact that effort is related to tardiness
factor. In particular, the correlation in Table 4.5(a) would imply that smooth fitness
landscapes with long correlation lengths are hard to solve for iterated local search or
ant colony optimization. This is not the kind of relationship one would expect. Simi-
larly Table 4.5(b) suggests that high correlations between distance and fitness cause the
instance to be hard.

Apparently something goes wrong in the analysis. An explanation for the low auto-
correlation for random walks through the search space of instances with a low tardiness
factor might be that such instances have local optima scattered all over the search space,
whereas instances with a high tardiness factor (TF) do not. This hypothesis seems to
hold: p(TF,d;d.) = —0.936, indicating there is a strong negative correlation between
TF and the average distance between local optima in the 125 100-job SMWTP instances
of ORLIB, and p(djpe., linterchange) = —0.801, which testifies that a large average dis-
tance coincides with a low correlation length for a random walk consisting of interchange
moves.

It is quite obvious that landscape ruggedness and the probability to encounter local
optima, which depends on the spread of the optima over the landscape, are connected.
A landscape is rugged if there are sudden and or big differences between neighboring
points in a landscape. If there is no local optimum nearby the landscape will probably
resemble a plateau or a not so steep hill, no sudden changes are expected here. On the
other hand, a local optimum is typically a place with sub—optimal points nearby. A
move from the local optimum to the neighboring sub—optimum can be a sudden change.

Figure 4.7 gives the actual minimum, maximum and average distances for the 1000
local optima generated by application of interchange+insert local search on each of the
instances. Considering that the maximum distance between two sequences is n(n —
1)/2 = 4950 for the 100—job problems, on many instances the local optima seem to be
all around. Moreover the figure confirms the relationship between the average distance
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between local optima and the distribution of the due date. In instances where the due
dates are near the latest possible completion time, most of the jobs will be non—late.
Since the ordering of non-late jobs has no influence on the total weighted tardiness as
long as the jobs complete before they are due, these instances will have many solutions
which have the same value. When, in addition, the differences between the due dates
are small, this effect will be even stronger because there are less due dates far before
the average date which lies near the latest completion time. Considering the minimum
distances in Figure 4.7 on the page before these solutions will be perceived as local
optima, scattered over the landscape defined by the precedence metric'.

Likewise, the fact that global optima are scattered around on instances with a low TF
value might disturb the predictive power of fitness distance correlations. The fitness—
distance analysis of the distribution of the local optima assumes there is one global
optimum which serves as reference point. The occurrence of multiple global optima is
no problem if they are very close to the reference point. Unfortunately, the distances
between the global optima are considerable for many instances, just like the distances
between local optima. Actually, the average distance between the 10 global optima and
the average distance between the 1000 local optima are highly correlated. Correlation co-
efficients like p(dp.d (gb), pos) = —0.882, for the average distances between the ten global
optima and the fitness distance correlation of the local optima when the position—based
metric is used, support the hypothesis that the existence of multiple global optima makes
fitness distance correlation useless as general indicator for the hardness of SMWTP in-
stances.

Yet, the average distance between the global optima and the average distance be-
tween the local optima are themselves good indicators of the hardness of an instance:
p(dpod (gb),log ILS) = —0.814 and p(dje? (gb), log ACO) = —0.804, where dj;¢(gb) is the
average position—based distance between the global optima, log ILS is the average loga-
rithmic run time of the ILS algorithm and log ACO is the average logarithmic run time
of the ACO algorithm. It seems the global optima being scattered over the landscape
leads to a shattering of the search space into small regions with each a global optimum.
The run time will often be reduced to searching this region, which explains why instances
with scattered global optima are easy to solve.

4.5 Summary

The aim of this chapter has been to identify the factors that bring about hard instances
of the single machine total weighted tardiness scheduling problem. Based on the analysis
performed in the foregoing, the following explanation seems plausible.

The distribution of the due dates of the jobs is an important factor for the hardness
of an instance. More in particular, the tardiness factor and the range of due dates
together determine how many jobs will be late in near optimal solutions. The number
of late jobs in turn has an effect on the number of local and global optima the instance

!For the position—based metric similar correlations between distance between local optima, ruggedness
and TF have been perceived.
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will contain and the extend in which these optima will be scattered over the landscape.
The scattering leads to shattering, that is a partitioning of the search space into small
regions. Random initial solutions will have a high likelihood to be near a global optimum
and the search regions are faster searched than the entire search space. Therefore these
instances will be easy.

In addition to the dispersion of the optima other factors contribute to the hard-
ness/easiness of an instance. For example, instances differ in the number of runs near
optimal sequences have when the are partitioned in arrays of subsequent late and non—
late jobs. The local search algorithm presented in Chapter 3 could achieve enormous
speedups for the evaluation of sequences that contain a few lengthy runs and therefore
the algorithm’s run—time is highly dependent on the number of runs.

Plots of the distribution of local optima over the search space can help explain the
algorithms’ performance on particular instances. However, as a general tool fitness
distance correlation and landscape ruggedness do not seem to be particularly useful,
these measures are too coarse to provide detailed information to guide the algorithm
design and too specific for information on the entire set of instances.
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This last chapter brings the report to completion. It summarizes the contributions,
critically reflects the achievements of this thesis and points out related research issues
that are worth further investigation.

5.1 Contributions

In this report, I have been concerned with the question whether ant colony optimiza-
tion (ACO) forms a suitable approach to the single machine total weighted tardiness
scheduling problem (SMWTP). I have dealt with this question in the following way. I
started with the ACO algorithm that Bauer (1998) had developed for the single machine
total tardiness problem (SMTTP). Some aspects of the algorithm design seemed pecu-
liar, so I checked them and subsequently assessed the algorithm’s quality (Chapter 2). I
then extended the algorithm and tuned it for the SMWTP (Chapter 3). The SMWTP
is significantly harder to solve to optimality with exact algorithms than the SMTTP.
This fact makes this problem much more interesting for meta-heuristic approaches like
ant colony optimization. Finally, in Chapter 4, I performed an analysis trying to relate
properties of problem instances to the performance of the algorithms.

Early in the course of the investigation it turned out that the only challenging task
for the SMWTP is finding the optimal solutions or best—known solutions on the instances
for which the optimality has not yet been proven (the conjecture in this thesis is that
these best-known solutions are optimal).

That is why I took the run times an algorithm needs to find the optimal solution
as a measure for its performance. These run times were collected for a large number
of publicly available problem instances. To put performance into perspective, the ACO
algorithm was compared against an algorithm that is based on the iterated local search
(ILS) meta-heuristic.

The main contributions of this thesis can be summarized as follows.

The single machine total tardiness problem (Chapter 2)

e [ have come up with an improved ACO algorithm for the SMTTP which performs
significantly better than the ACO approach of Bauer et al. (1999a) on which it is
based.

e [ have applied iterated local search to the SMTTP as well. This algorithm is among
the best approximation algorithms for the SMTTP known to date.
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e [ have compared the approximation algorithms based on iterated local search and
ant colony optimization against the state-of—the—art branch—-and-bound algorithm
of Swarc et al. (1998) for problems up to 400 jobs. On problems up to 300 jobs
the exact algorithm is the most effective, for problems with more jobs the results
indicate that the approximation algorithms might form an alternative for the exact
algorithms as they are better capable to cope with the exponential growth of the
search space.

The single machine total weighted tardiness scheduling problem (Chapter 3)

e [ have developed some very powerful local search algorithms for the SMWTP by
incorporating ideas of the variable neighborhood search meta-heuristic.

e | have extended the algorithms of Chapter 2 to the SMWTP and obtained algo-
rithm that are competitive with state-of-the-art algorithms for the SMWTP.

e I have provided some new ideas for tuning of the algorithms and evaluated their
success. More in particular, the idea to have a heterogeneous population of ants
with each half of the ants applying a different local search has proven to be very
useful.

Analysis (Chapter 4)

e I have investigated how the tardiness factor and the range of due dates of an
SMWTP instance relate to the run times of the algorithms on these instances.

e | have revealed how the algorithms’ run time on an instance is related to the
structure of the optimal solution of that instance.

o [ have mapped fitness landscapes induced by operators on instances of the SMWTP
and linked the landscape topology to properties of the problem. Two elements of
the landscape were investigated in detail: (i) the fitness distance correlation of a
set of local optima relative to a global optimum, that is, the correlation between
the difference of total weighted tardiness and the distance measured as the least
number of local search moves needed to cover the locally optimal solution into the
global optimum, and, (ii) the landscape ruggedness, that is, the degree in which
the fitness of neighboring points in the landscape differ.

5.2 Discussion

In this thesis research, I have studied the application of ant colony optimization to
single machine problems by means of competitive testing, that is, I tried to show that
ant colony optimization ‘beats’ other meta-heuristics, iterated local search in particular,
for a series of problems instances when the run times to find the optimal solution are
measured. Competitive testing is widely used in the algorithmic research community.
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Yet, criticism is rising. In his article “Testing heuristics: We have it all wrong”, Hooker
(1996) exposes the vices of competitive testing: it is hard to make fair comparisons
between algorithms and to assemble realistic test problems. Competitive testing tells us
which algorithm is faster but not why. Because it requires polished code, it consumes
time and energy that could be spend doing more scientific experiments.

Objection 1 (Unfair competition) Competition between iterated local search and
ant colony optimization is not fair since they differ in tuning effort invested. Adjusting
parameters may make an algorithm more effective on a given set of problems. The
difficulty is that is it not clear how much tuning is legitimate and how much tuning
of adversary code is commensurate with the tuning applied to the proponent code.
Therefore tuning presents a serious impediment to the fairness of the match.

Reply 1 Tuning is really the only test environment factor that might lead to unfair
competition. The ILS and ACO were tested on the same computer and made use of the
same operating system, language, compiler and compiler settings, even largely the same
data-structures. I was not suddenly a much more skilled programmer while implementing
one of the algorithms, so this latter aspect shouldn’t pose any problem either.

A fair approach to the tuning dilemma would be not to tune at all or, on the other
end of the spectrum, to exhaust the entire tuning potential of the meta-heuristic. Unfor-
tunately, neither of these approaches is feasible in practice. Not to tune would require
that there exist general-purpose parameter settings, but no developer will see any ra-
tionale for deliberately picking parameter settings that results in poor performance. In
addition, it would require that design choices of how exactly to apply the meta-heuristic
to a specific problem would be cooked up beforehand, yet these choices can not possibly
be general purpose, since the only reason to believe an algorithm will do better than a
random search is that its operators are correlated to the features of the problem (Wolpert
and Macready 1995).

Exhaustive tuning is no option either, considering the sheer infinite number of valid
modifications that can be made to the generic algorithmic scheme. The approach I
followed is situated somewhere in between these extremes and documented in Chapter 3.
As far as it can be determined, about the same effort was spend on iterated local search
and ant colony optimization. Most time is spend on tuning the local search. This favors
none of the algorithms in particular as both algorithms could take advantage of the local
search algorithms. So, it is by extensive sharing of data-structures that the competition
is kept fair.

Objection 2 (Unrealistic test problems) There are basically two problems with the
randomly generated benchmark problems that were used in this thesis. First of all, they
are randomly generated and therefore they are not likely to represent the real problem.
Secondly, they are benchmark problems. Often benchmarks are biased and limited in
scope. Competing algorithms which co-evolve around these problems might well loose
the real problem out of sight as the are only evaluated on the benchmark instances.
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Reply 2 To begin with the questions of bias and scope, these are less impending if
one allows for random generation. If one generates the problem, one can influence
the problem characteristics provided one knows which factors cause the nature of the
problem. With tardiness factor (TF) and range of due dates (RDD) one can for instance
influence the hardness of a problem instance to a great extend. In addition, one can
randomly generate instances which resemble ‘real problems’.

The TF and RDD values of this benchmark set range over all values that could
possibly be of interest. The TF and RDD which may be encountered in real world
SMW'TP cases, are certain to fall within this range. The choice to generate five instances
for each pair of TF and RDD in the set {0.2, 0.4, 0.6, 0.8, 1.0} results in a large majority
of the instances being easy to solve. This distribution of problem hardness does probably
not reflect that of real world cases. Yet, it is better than not having problems to solve
at all.

Objection 3 (No insight) When algorithms compete, they are packed with the clever-
est devices their authors can concoct and therefore differ in many respects. It is usually
impossible to discern which of these devises are responsible for the differences in perfor-
mance.

Reply 3 This problem is largely alleviated by the extensive documentation. Since the
implementation decisions are documented in detail, the relative influence of the algo-
rithms components can be determined.

What’s more, I did spend a whole chapter trying to obtain insight (Chapter 4). This
proved not a trivial exercise and still can be extended, yet yielded some valuable insight.

Objection 4 (Wrong allocation of time and resources) Competitive testing diverts
time and energy from more productive experimentation.

Reply 4 Objection 4 assumes that no insight is obtained (which is Objection 3). Not
that much time was spend of efficient coding. Most modifications to the algorithm did
not require much time to implement. Moreover, this process of hacking around yielded
new insights into the nature of the problem as well as deeper understanding of the
algorithms’ behavior. So, in that sense at least, the experimentation described in this
report has been productive. Besides, to repeat Reply 3, time and resources, indeed a
whole chapter, has been allocated to ‘productive experimentation’.

Scientific testing Hooker (1996) proposes ‘scientific testing’ as an alternative to com-
petitive testing. In an earlier publication, Hooker (1994) explains this methodology
thus:

In its early stages, an empirical study of an algorithm might well involve
nothing more than running a few tests to see what happens. But after a
while one develops an informed hunch about what is likely to affect per-
formance. This is a hypothesis. The hypothesis is then tested empirically
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using time-honored techniques of experimental design and statistical anal-
ysis. Eventually one may put together a unifying picture that appears to
explain why certain factors are important. This is a theory. From the theory
one can deduce consequences that can be put to the test.

On first sight this description corresponds perfectly to what I have been doing in
this thesis. The “early stages” are covered in Chapter 3 and the subsequent hypothesis
testing is done in Chapter 4. On page 84, I even tried to put together a unifying picture
that might explain why certain factors are important. On the other hand, Objection 4
on the facing page is not totally unjustified in that by far the most attention has been
paid to the “early stages”. Still, the hypothesis testing has been very productive because
I could take advantage of the insights obtained by competitive testing and tuning.

5.3 Future work

New questions have risen from the observations made in this thesis and the critical
reflection on the approach in the previous section. Possible extensions of this work are
outlined below.

The single machine total tardiness problem

e Without doubt, the algorithms for the SMTTP can be improved. It would be
interesting to test these algorithms on SMTTP instances of 300 jobs and more
and identify under what circumstances state-of-the—art exact algorithms for the
SMTTP can be outperformed.

The single machine total weighted tardiness scheduling problem

e In addition to what has already been tested in Chapter 3, there is still a number
of things that is worth trying.

— local search

> Incorporate speedups like the candidate list. Instead of checking the
whole neighborhood at each local search step, one could only consider
the top n moves that are the most promising according to the heuristic
information. If local search is combined with an ACO algorithm, one
could use the ants’ graph to provide the heuristic information.

> Explore other ways to combine the neighborhoods. The best performance
was in Chapter 3 achieved by preceding insert descent with interchange
descent. Other combinations of the interchange and insert operators
could possibly yield even better performance.

> Try dynasearch. Good performance on the SMWTP has been achieved
by iterated dynasearch (Congram et al. 1998). Dynasearch could be used
in stead of the variable neighborhood search which is now used as local
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search in the ILS and ACO algorithm. An open question for future re-
search is how use of dynasearch would affect the performance of ILS and
ACO.

— iterated local search

> One could use a more problem specific kick mechanism. For example,
apply the kick only to the late jobs. It is likely that a kick-move would
then tend to be more disruptive, so less kick—moves would be needed in
such a case.

— ant colony optimization

> The ACO algorithm was particularly successful when one type of local
search was applied to half of the colony’s solutions and another type of
local search was applied to the other half. Omne could push this idea
of an heterogeneous colony further by letting more local search variants
be at the colony’s disposition or by letting ants use different heuristic
informagtion.

> Similarly, a self-tuning ACO algorithm which uses search feedback to
adjust its configuration to the particular instance currently being solved
may be interesting.

e To get a better impression of the quality of the ACO and ILS algorithms presented
in this thesis, they should be tested on larger SMWTP instances and extended to
a wider range of single machine scheduling problems.

e Finally, configuration ideas that have proved to be useful on the SMWTP, like that
of a heterogeneous colony, might also result in improvements for ACO algorithms
in other applications where a strong instance dependence of the best algorithm
configuration has been noted.

Analysis

92

e An analysis of the SMTTP like the one done for the SMWTP would possibly clarify
the relationship between these problem—types.

e The occurrence of hardest instance at specific values of the tardiness factor and
range of due dates suggest there might exist of a kind of phase transition at a
critical point of the parameters used in the instance generation in the following
sense: When approaching the critical point from one side, the hardness increases,
reaching a maximum at the critical point and if this critical point is passed, the
instances become easier to solve again. Hogg, Huberman and Williams (1996)
observed this phenomenon in many other combinatorial optimization problems.

e Factors that determine the hardness of an instance in addition to tardiness factor
and range of due dates should be identified. For example, one could consider
whether the range of weights would have an impact on the harness of the solution.



5.3 Future work

In general, I think that Hooker is right in saying that we should shift our attention
towards more ‘scientific testing’. Still, prior to testing hypotheses and building theo-
ries, the collection of observations about the behavior of algorithms will continue to be
needed. Competitive testing of meta-heuristics fulfills this need, therefore it will stay an
important part in future research and the ongoing project to study the application of ant
colony optimization and iterated local search to even more combinatorial optimization
problems should/will continue.
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A. Summary results of ILS for the SMWTP

In this appendix summary results are given for the tests described in Section 3.4.2. The
aim of these tests is to configure iterated local search (ILS) for the single machine total
weighted tardiness scheduling problem. The tests focus on 10 100—job instances out of

14 19 88 42 67 T1 8 92 117 120

tardiness factor 0.6 08 06 08 0.8 09 06 08 0.75 0.75
range of due dates 0.2 0.2 04 04 05 03 08 06 07 0.5

Table A.1.: Characterization of the SMWTP instances

the 125 which are available in ORLIB. The instances are the 14th, the 19th, the 38th, the
42th, the 67th, the T1th, the 86th, the 92th, the 117¢th and the 120¢h instance. Table A.1
gives some statistics to characterize these instances.

Table A.2 compares local search algorithms embedded in ILS. in Table A.3 on the
next page results are given for ILS variant that differ in the number of kicks that is applied
to modify the local search solution. Table A.4 on page 100 gives for the summary results
for the tests described in Section 3.6.

Table A.2.: Efficiency of local search neighborhoods in the context
of ILS which modifies the local search solutions by means of 6
random left insert moves. All local search procedures use the best
improvement pivoting rule. 25 tests with a computation bound of
300 seconds are performed on each instance. Given are, out of 25
tests, the shortest run time (¢,,,;,,), the longest run time (¢,,4,) and
the average run time (tq,4) to solve the instance. In addition the
run times’ standard deviation (o;) and the number of tests that
resulted in a globally optimal solution (n,p) are given.

tmin tmaz tavg Ot Nopt tmin tmaz tavg Ot Nopt
INTERCHANGE INTERCHANGE
14 6.82 265.61 139.71 98.88 12 19 0.39 27.04 9.52 7.61 25
38 0.14 0.66 0.35 0.16 25 42 0.54 188.10 36.39 41.74 25
67 0.87 159.56 29.95 48.91 25 71 0.53 215.24 17.28 46.40 25
86 1.11 38.80 7.82 8.97 25 92 0.22 3.28 1.21 0.87 25
117 0.23 55.81 11.11  14.99 25 120 3.36 232.98 106.13 77.30
RIGHT INSERT RIGHT INSERT
14 1.58 14.11 7.43 6.31 3 19 1.98 268.39 36.73 59.74 23
38 0.78 151.84 19.27 37.94 25 42 151.26 151.26 151.26 0.00

67 32,52 235.24  91.23 65.09 16 71 9.32 18490 44.06 55.72
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A. Summary results of ILS for the SMWTP

Table A.2.: (continued)

tmin tmaz tavg (%47 Nopt tmin tmaz tavg ot Nopt
86 25.23 267.78 130.06 86.16 16 92 6.77 297.28 7575 77.43 25
117 492 7875 22.26 19.11 25 120 25.72 158.71  80.79 42.84 20
INTERCHANGE+INSERT INTERCHANGE+INSERT
14 35.04 215.50 128.63 79.43 6 19 0.47 6145 11.84 12.30 25
38 0.41 2.25 0.91 0.49 25 42 0.72  28.49 3.82 5.59 25
67 0.89 256.12 21.87 52.03 25 71 0.72 204.05 22.21 50.91 24
86 0.31 8.05 2.68 2.24 25 92 0.30 0.32 0.31 0.01 25
117 0.35  32.62 3.45 6.64 25 120 1.94 149.63 53.21 43.88 25
INSERT+INTERCHANGE INSERT+INTERCHANGE
14 0.00 0.00 0.00 0.00 0 19 2.08 267.74 88.46 82.07 25
38 144 2240 3.75 4.39 24 42 225.57 225.57 225.57  0.00 1
67 2.18 252.32 126.93 85.69 9 71 8.12 182.02 59.91 50.54 25
86 16.16 191.88 87.15 51.42 21 92 2.25  56.41 16.53 13.31 25
117 3.66 40.79 14.13 9.62 25 120 13.51 270.02 93.07 74.70 25
k = 50 INTERCHANGE—+INSERT k = 50 INTERCHANGE—+INSERT
14 195.19 296.63 245.91 T71.73 2 19 145 125.68 39.65 32.80 25
38 109.41 135.03 122.22 18.12 2 42 0.69 6.77 2.23 1.59 25
67 0.85 104.93 10.01 21.49 25 71 0.49 185.67 15.06 37.94 25
86 0.51 12.22 2.93 3.19 25 92 0.28 0.29 0.29 0.01 25
117 0.36  24.52 2.19 5.10 25 120 2.32 202.40 44.66 52.57 25
Table A.3.: Number of kicks for ILS with a left insert kick and
interchange-+insert local search. The kick strength is given in RO-
MAN. ILS is run 25 times with a CPU bound of 600 seconds. See
Table A.2 on the preceding page for a description of the entries.
tmin tmaz tavg ot Nopt tmin tmaz tavg ot Nopt
11 I
14 8.00 8.00 8.00 0.00 1 19 157 264.44 53.13 64.54 25
38 0.47 4.31 1.22  0.99 25 42  0.86  79.03 7.65 15.77 25
67 0.95 237.21 3419 67.21 25 71  0.50 149.20 13.73 32.46 23
86 0.33 18.66 3.99 5.19 25 92 0.31 0.33 0.31 0.01 25
117 0.29 17.01 1.23  3.30 25 120 6.61 133.97 54.20 36.43 25
v v
14 158.53 236.19 197.36 54.91 2 19 0.88 3492 11.97  9.58 25
38 0.41 3.06 0.91 0.69 25 42 0.84 17.42 5.39 4.44 25
67 1.01 157.68 24.78 40.02 25 71 0.57  59.47 8.59 13.35 23
86 0.53 15.21 3.93 4.08 25 92 031 0.32 0.31  0.00 25
117 0.31 2.53 0.75  0.58 25 120 252 171.02  36.29 36.80 25
VI VI
14 35.04 215.50 128.63 79.43 6 19 047 6145 11.84 12.30 25
38 0.41 2.25 0.91 0.49 25 42 0.72  28.49 3.82  5.59 25
67 0.89 256.12 21.87 52.03 25 71 0.72 204.05 22.21 50.91 24
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Table A.3.: (continued)

tmin tmaz tavg Ot Nopt tmin tmaz tavg ot Nopt
86 0.31 8.05 2.68 2.24 25 92  0.30 0.32 0.31 0.01 25
117 0.35 32.62 3.45 6.64 25 120 1.94 149.63 53.21 43.88 25
VIII VIII
14 1.29 225.11 87.19 75.61 23 19  0.59 29.12 8.08 7.12 25
38 0.44 1.82 0.87 0.38 25 42 0.76 11.28 4.08 2.84 25
67 0.89 46.59 8.563 12.37 25 71 1.06 120.85 19.36 36.02 24
86 0.34 4.78 1.80 1.27 25 92 0.31 0.32 0.31 0.00 25
117 0.33 13.65 2.30 3.06 25 120 4.20 197.96 42.11 52.13 25
X X
14 1.00 172.40 54.79  53.00 25 19 0.76 25.65 8.20 6.90 25
38 0.42 1.64 0.70 0.32 25 42 0.38 11.02 2.56 2.34 25
67 1.00 69.45 18.21 22.04 25 71 0.40 166.76 21.17 38.64 23
86 0.38 6.62 1.89 1.66 25 92 0.31 0.32 0.31 0.00 25
117 0.33 16.77 3.85 4.56 25 120 4.53 236.80 56.34 66.62 25
XII XIT
14 1.64 124.67 26.55 29.19 25 19  0.60 1741 5.60 4.04 25
38 0.43 1.63 077 0.34 25 42  0.54 10.19 3.97 299 25
67 1.45 103.68 16.43 22.48 25 71 0.39 202.80 25.99 49.49 24
86 0.40 7.41 1.92 1.68 25 92 0.31 0.32 0.31 0.01 25
117 0.33 17.49 3.82 4.86 25 120 5.05 251.40 69.42 67.29 25
X1V XIV
14 1.02 88.19 16.66 18.67 25 19 040 43.29 5.79 8.59 25
38 0.43 1.85 0.75 0.32 25 42 041 6.56 3.06 1.90 25
67 1.13 122.48 24.32 28.75 25 71 1.00 271.57 66.25 79.89 24
86 0.37 6.23 1.85 1.44 25 92 0.31 0.32 0.31 0.00 25
117 0.32 36.06 4.56 7.83 25 120 1.82 287.61 90.51 77.11 25
XVI XVI
14 0.60 28.18 8.20 7.40 25 19  0.55 21.81 7.21 6.39 25
38 0.42 1.79 0.86 0.44 25 42  0.54 11.04 3.69 3.06 25
67 0.83 145.84 26.37 33.57 25 71 147 27148 51.82 T72.15 25
86 0.40 4.67 1.53 0.98 25 92 0.31 0.32 0.31 0.00 25
117 0.36 31.76 7.33 8.42 25 120 2.38 285.63 85.85 T71.87 24
XVIIT XVIII
14 0.78 17.64 6.51 4.90 25 19  0.55 55.43 11.52 11.37 25
38 0.44 1.77 0.89 0.41 25 42 0.67 8.62 2.98 2.27 25
67 3.20 276.99 48.02 66.32 25 71 1.80 233.25 69.73 64.72 24
86 0.40 7.84 1.71 1.70 25 92 0.31 0.32 0.31 0.00 25
117 0.33 34.93 5.05 8.07 25 120 7.02 278.50 101.10 72.78 24
XX XX
14 0.80 28.86 5.80 6.69 25 19 0.80 45.28 11.15 10.91 25
38 0.45 1.75 0.87 0.39 25 42  0.84 16.59 4.59 3.52 25
67 1.86 256.91 55.18 57.04 25 71 5.75 283.49 77.39 84.76 19
86 0.45 5.08 2.40 1.51 25 92 0.31 0.37 0.32 0.01 25
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A. Summary results of ILS for the SMWTP

Table A.3.: (continued)

tmin tmaz tavg (%47 Nopt tmin tmaz tavg Ot Nopt
117 0.90 29.19 7.28 8.40 25 120 8.55 291.12 125.49 94.45 20

Table A.4.: Summary results on performance of final ILS algo-

rithm on 100—job and 200—job SMWTP instances (see Section 3.6).

The algorithm is run 100 times per instance with a bound of 600

seconds on the 100—job instances, 25 times with 3600 seconds on

the 200—job problems. Given are the shortest run time (¢in), the

longest run time (t;4,), the average run time (f5,4) to solve the

instance,and the run times’ standard deviation (o). In addition

these statistics are given for the number of iterations, that is, 4.,

for the shortest number of iteration, 4,,q, for the maximum, 44y,

the average, and oy the standard deviation. Finally, the number of

tests that resulted in a globally optimal solution (np¢) is given.

tmz’n tmaz‘ tavg Ot zrmn ima,z' Z'a'ug gj Nopt
100:9 0.20 0.21 0.20 0.00 0 0 0.00 0.00 100
100:19 0.75  33.51 7.73 6.51 5 224 59.67 45.43 100
100:44 0.66 13.93 3.37 2.46 1 75 18.92 13.82 100
100:45 1.11 19519 3554  33.99 11 1493  278.67 258.71 100
100:48 0.44 309.31 57.08 59.21 2 1625 301.80 310.87 100
100:66 0.54  43.45 4.70 6.71 1 230 27.48 37.58 100
100:67  0.93 10579 1192 17.28 4 639 75.25 105.22 100
100:71 0.47 698.72 63.30 106.99 3 5245 484.69 803.68 100
100:88 2.18 64.22 17.62 13.06 17 380 111.87 75.73 100
100:93 0.64  36.96 7.28 7.80 2 213 46.15 45.33 100
100:98 0.32 65.01 12.93 14.19 1 548 114.45 120.02 100
100:112 120 53.38 15.55  12.65 9 285 88.39 65.44 100
100:114  1.03  39.95 8.81 7.97 7 265 61.96 50.69 100
100:116  0.32  63.51 14.61 15.33 1 395 96.41 95.79 100
100:118 0.56 151.11 16.32 24.47 1 908 100.23 149.04 100
100:120  2.33 809.21 146.95 150.84 17 4463 812.80 827.65 100
100:122  6.19 718.47 129.55 133.74 78 7421 1349.01 1379.40 100
100:123  0.37 208.73  25.87  39.02 1 1261 159.81 236.88 100
200:11 419 48.03 1595 10.62 1 56 18.34 13.98 25
200:12 4.11 576.89 61.63 126.81 2 464 52.64 103.40 25
200:13 7.28 323.04 92.71  79.12 4 278 78.32 67.38 25
200:14 7.08 65.83 20.89 13.94 2 64 18.60 13.88 25
200:15 6.09 47.77 19.63 13.12 3 57 21.48 16.49 25
200:16 3.34  10.03 5.13 1.79 2 12 4.60 3.00 25
200:17 817 363.35 58.24  76.19 5 312 51.40 66.31 25
200:18 2546 621.21 234.34 148.40 29 568 232.60 136.86 25
200:19 8.86 83.64 29.39 19.92 11 94 33.40 22.79 25
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B. Summary results of ACO for the

This appendix gives the summary results for the tests described in Section 3.5.2 for
the configuration of an ant colony optimization (ACO) algorithm for the single machine
total weighted tardiness scheduling problem. The tests focus on ten 100—job instances

SMWTP

(described on 97). To test a configuration the algorithm is run 25 times with a CPU

bound of 300 seconds on the instance.

The initial ACO algorithm for the SMWTP has the following parameter settings:

a=1,8=2,p=0.1, go = 0.9. The colony contains 20 ants. Local search is applied
to all solutions these ants construct and the AU dispatching rule provides the heuristic

information. The initial solution is formed by a sequence sorted in non—decreasing AU

order on which a local search is applied. Further details on the implementation are given

in Section 2.4.2.

14

67
86
117

14
38
67
86
117

14

67
86
117

tmz’n

58.07
60.63
27.59
14.01
77.04

13.21
22.69

8.73
13.39
16.67

24.93
9.64
1.92
3.99

36.83

Table B.1.: Results for local search variants embedded in the
ACO algorithm. See Table A.2 on page 97 for a description of the

entries.

tmaz tavg ot
INSERT
24242  127.99 76.52
186.38 109.82 39.77
195.40 72.12  53.55
138.50 59.83 32.59
304.91 185.49 61.47

INSERT+INTERCHANGE
292.30 115.70 87.42
176.31  65.94 38.56
41.65 21.75  8.79
128.12  33.11 24.61
81.26  30.63 13.40

INTERCHANGE+INSERT
245.83 137.49 85.44
148.22  55.30 44.53
238.17  24.42 49.52

4.88 447  0.23
250.43 163.88 74.93

HALF/HALF

Nopt

17
10
25
21

21
25
25
25
25

13
24
23

19
42
71
92

120

19
42
71
92

120

19
42
71
92

120

tmin

0.00
20.46
131.86
24.27
93.11

0.00
10.43
16.51
13.33
14.15

0.00
3.29
3.81
3.05
3.36

tmaz tavg Ot Nopt
INSERT
0.00 0.00 0.00 0
304.63 130.31 93.75 20
309.58 206.15 76.40 7
171.01 91.21 48.52 25
261.23 170.77 52.76 13
INSERTH+INTERCHANGE
0.00 0.00  0.00 0
20.70 14.63 4.46 25
287.50 104.36 65.64 21
32.74 18.04 5.54 25
157.25  44.03 37.51 25
INTERCHANGE-INSERT
0.00 0.00  0.00 0
4.49 3.92 027 25
208.94 61.91 61.02 22
3.61 3.35 0.15 25
90.75 21.55 18.48 25
HALF /HALF
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B. Summary results of ACO for the SMWTP

Table B.1.: (continued)

tmin tmaz tavg ot Nopt tmin tmaz ta'ug ot Nopt
14 62.24 29247 130.89 65.12 15 19 0.00 0.00 0.00 0.00 0
38 7.70 8.76 8.12 0.27 25 42 7.99 67.44 17.48 13.40 25
67 16.66 134.38 42.89 29.04 24 71 6.32 171.64 37.61 50.39 25
86 8.90 55.99 20.16 13.63 25 92 6.43 27.45 12.77  4.54 25
117  6.87 94.86 17.32 18.79 25 120 8.43 58.48 25.06 14.15 25

Table B.2.: Investigation into the ideal colony size for an ACO
algorithm with half/half local search. The colony size is given in
ROMAN. See Table A.2 on page 97 for a description of the entries.

tmz’n tmaz‘ tavg Ot Nopt tmin tmaa: ta'ug Ot Nopt
II 11
14 6.37 251.72 89.64 72.96 22 19  0.00 0.00 0.00 0.00 0
38 0.74 3.22 1.31 0.70 25 42 121 27335 29.76 57.98 25
67 1.22  166.07 53.94  57.09 20 71 138 88.36 18.27 24.98 22
86 1.03 105.27 24.01 25.47 25 92 113 3283 11.92 7.96 25
117 079 5834 11.33 1331 25 120 2.93 15258 26.49 33.67 25
VI VI
14 8.84 286.54 133.16 100.33 13 19  0.00 0.00 0.00 0.00 0
38 2.15 4.68 2.59 0.63 25 42 226 2748 9.61 7.37 25
67 3.35 251.11 42.88 56.21 22 71 1.72  47.39 8.68 10.54 22
86 257  50.11 20.95 15.27 25 92 1.98 16.45 794 3.84 25
117 2.11 46.44 10.93 10.17 25 120 4.53 12998 24.79 32.54 25
X X
14 10.39 247.52 102.69  68.78 23 19  0.00 0.00 0.00 0.00 0
38 3.61 8.01 4.61 1.46 25 42 382 2570 925 6.15 25
67 4.79 230.87 48.92 62.39 22 71 3.15 12821 31.56 40.29 24
86 424 71.67  21.20 16.08 25 92 259 36.22 15.05  8.52 25
117  3.38  27.83 8.64 5.80 25 120 4.15 110.05 21.56 22.74 25
XX XX
14 6224 29247 130.89  65.12 15 19  0.00 0.00 0.00 0.00 0
38 7.70 8.76 8.12 0.27 25 42 799 6744 1748 13.40 25
67 16.66 134.38 42.89  29.04 24 71 6.32 171.64 37.61 50.39 25
86 890 55.99  20.16 13.63 25 92 643 2745 1277  4.54 25
117  6.87  94.86 17.32 18.79 25 120 843 5848 25.05 14.15 25
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Table B.3.: (continued)

tmin tmaz tavg ot Nopt tmin tmaz tavg Ot Nopt

Table B.3.: Summary results for additional tests on which are

presented in Figure 3.8 on page 62, Figure 3.9 on page 63 and

Figure 3.10 on page 64. A description of the variants can be found

in the caption of these figures. See Table A.2 on page 97 for a

description of the entries.

tmin tmaz tavg Ot Nopt tmin tmaz tavg Ot Nopt
CANDIDATE LIST CANDIDATE LIST
14 4.59 25810 105.03 91.33 20 19 0.00 0.00 0.00 0.00 0
38 3.05 3.70 3.36 0.19 25 42 2.90 5.85 3.69 1.05 25
67 6.68 118.53 27.16 28.88 24 71 1.83 12.14 3.92 2.28 25
86 3.74 49.08 1497 14.23 25 92 2.19 18.93 6.63 3.72 25
117 2.53 21.30 8.68 6.60 25 120 2.72 105.61 17.68 20.20 25
ALT. UPDATE ALT. UPDATE

14 8.08 269.92 122.24  84.53 14 19 0.00 0.00 0.00 0.00 0
38 2.97 3.73 3.29 0.19 25 42 9.64 65.35 24.58 16.78 25
67 3.74 273.45 95.80 96.28 16 71 243  15.65 8.11 4.09 19
86 3.42  224.29 40.37 52.64 25 92 5.62 12.49 7.79 2.25 25
117 2.98 108.56 24.98 24.41 25 120 6.67 75.78 20.93 15.39 25

ALT. ACTION CHOICE ALT. ACTION CHOICE
14 32.85 297.57 188.32  96.50 15 19 0.00 0.00 0.00 0.00 0
38 4.36 5.11 4.58 0.19 25 42 4.00 22230 56.06 56.98 25
67 4.80 291.40 125.70 146.62 7

ADJACENCY CONSTRAINT ADJACENCY CONSTRAINT
14 779 27783 9491  76.85 21 19 55.39 25249 149.89  74.48 5
38 6.30 7.48 7.10 0.32 25 42 151.55 294.15 21466 61.91 4
67 0.00 0.00 0.00 0.00 0 71 6.54 291.70 98.95 91.96 16
86 3.87  23.02 9.23 6.34 25 92 1722 6297 3711 20.54 5
117 9.42 25459 107.60 67.63 23 120 0.00 0.00 0.00 0.00 0
NO PHEROMONE NO PHEROMONE
14 708 77.66 3191  23.37 25 19 0.00 0.00 0.00 0.00 0
38 5.43 11.64 6.21 1.16 25 42 8.48 229.17 88.03 122.56 3
67 296.58 296.58 296.58 0.00 1 71 8.40 290.67 83.15 81.28 24
86 0.00 0.00 0.00 0.00 0 92 30.40 267.11 136.01  79.90 10
117 773 260.95 112.67 82.17 22 120  39.91 276.95 120.75  88.75 10
NO HEURISTIC NO HEURISTIC

14 2.05  26.02 9.23 5.62 25 19 10.05 18140 69.20 52.93 24
38 212  11.85 4.75 2.61 25 42 2.72 169.11  28.67  41.82 25
67 6.28 14522  36.20 39.91 23 71 2.20 230.52 35.35 61.26 25
86 14.88 135.20 54.23  28.89 25 92 342 66.31 19.44 17.19 25
117 3.27 9850 31.18 27.68 25 120 3.19 6842 23.79 17.55 25

EDD

EDD
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B. Summary results of ACO for the SMWTP

Table B.3.: (continued)

tmin tmaz tavg Ot Nopt tmin tmaz tavg ot Nopt
14 3.15 35.49 14.08 8.42 25 19 16.54 242.22 78.32 67.77 12
38 2.70 5.87 3.43 0.59 25 42 38.91 272.41 125.00 60.57 25
67  22.05 82.08 44.66 28.73 4 71 12.63 261.53 118.18  76.40 21
86 455 3732 11.86 7.31 25 92 61.34 303.43 158.72 79.13 19
117 0.00 0.00 0.00 0.00 0 120 0.00 0.00 0.00 0.00 0
MDD MDD
14 2.79 20.87 9.40 5.23 25 19 20.29 275.44 103.32 84.67 24
38 1.92 9.42 3.35 1.66 25 42 3.34 22.47 12.76 5.77 25
67 7.95 198.29 32.45 42.34 25 71 3.00 114.79 14.43 21.88 25
86 6.02 140.12 26.67 26.90 25 92 5.74 51.04 16.39 11.11 25
117 257  62.23 9.77  13.37 25 120 298 86.21 1873 16.95 25
Table B.4.: Summary results on the performance of the final
ACO algorithm on 100-job and 200—job SMWTP instances (see
Section 3.6). The algorithm is run 25 times with a CPU bound
of 600 seconds for the 100—job instances and 3600 seconds for the
200—job instances. See Table A.4 on page 100 for a description of
the entries.
tmin tmaz tavg Ot Tmin  mac iavg 0; Nopt
100:9 3.19 189.89 40.96 43.85 1 65 14.04 15.10 25
100:19 11.32 689.75 86.26 131.25 3 202 25.04 38.49 25
100:44 9.01 128.21 42.34 25.77 2 43 13.72 8.89 25
100:45 4.87 19.96 10.77 4.20 2 9 464 2.06 25
100:46 2.35 18.06 6.36 4.35 1 9 276 217 25
100:66 4.41 335.24 118.63 81.10 1 99 3492 24.17 25
100:67 7.70 422.22 37.49 82.13 2 135 12.00 26.40 25
100:71 2.44 115.28 22.25 31.23 1 59 10.96 16.08 25
100:88 10.89  253.10 82.41 71.26 3 84 2744 24.69 25
100:93 4.51 132.94 38.65 30.53 1 44 12.16 10.12 25
100:98 2.09 6.94 3.94 1.43 1 3 160 0.65 25
100:112 6.09 46.15 21.00 11.18 2 19 8.04 4.55 25
100:114 6.21 80.43 22.08 17.74 2 30 8.00 6.74 25
100:116 498 174.71 31.57 35.25 2 90 15.76 18.27 25
100:118 7.03 193.79 52.17 49.06 2 68 17.64 17.18 25
100:120 6.27 78.11 17.54 15.02 2 26 5.64 5.10 25
100:122 3.57 61.42 21.61 13.93 2 37 1236  8.36 25
100:123 3.21 30.78 12.32 6.17 1 13 4.64 2.56 25
200:11 974.24 320420 2089.22 157682 23 81 52.00 41.01 2
200:12 11732 2867.68 1139.69 1504.84 2 53 21.00 27.87 3
200:13 119.18 1007.02  330.61  170.17 2 17 568 2.88 25
200:14 70.82  402.46  132.03  107.53 1 6 188 1.64 25
200:15 48.72 232.31 117.93 40.34 1 5 2.44 0.87 25
200:16 81.95 1578.21  394.84  320.69 2 42 10.58  8.59 24
200:17  90.89  413.30 149.74 74.59 2 9 336 1.68 25
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Table B.4.: (continued)

tmin tmaz tavg Ot Tmin  mas 2.a'ug 0; Nopt

200:18 228.13 3364.63 1348.15 1071.42 6 86 34.50 27.54 6
200:19 43.61  869.60 270.36  191.69 1 19 584 417 25
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ton and Pentico 1993) Page 34
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consists in repeatedly applying a local search algorithm to solutions ob-
tained by small modifications to one of the previously visited locally
optimal solutions. (Martin et al. 1991, Stiitzle 1998b) Page 12

INSTITUT DE RECHERCHES INTERDISCIPLINAIRES ET DE DEVELOPPE-
MENTS EN INTELLIGENCE ARTIFICIELLE Al-laboratory at the Uni-
versité Libre de Bruxelles. Page v

LOCAL SEARCH A general approach for finding high quality solutions
to hard combinatorial optimization problems in reasonable time based
on the iterative exploration of neighborhoods of solutions trying to
improve the current solution by local changes. (Aarts and Lenstra
1997) Page 5

MODIFIED DUE DATE Dispatching rule for the SMTTP based on the
findings of Emmons (1969) that puts jobs in non-decreasing order of
modified due date, given by MDD; = max{C; + pj,d;}, where C; is
the completion time of job j with processing time p; and due date d;.
Page 18

MAX-MIN ANT SYSTEM  An ACO-algorithm derived from AS. It
features a simple mechanism for limiting the strengths of the pheromone
trails in order to avoid premature convergence of the search. (Stiitzle
and Hoos 2000) Page 11

MINIMUM SLACK Dispatching rule that puts jobs in non—decreasing
order of minimum slack, given by MS; = max{d; — C;,0}, where C;
is the completion time of a job j that has due date d;. Page 34

NET BENEFIT OF RELOCATION  Construction heuristic for the SMTTP
based on the theorems of Emmons (1969). (Holsenback and Russell
1992) Page 18

NON—DETERMINISTIC POLYNOMIAL A class of decision problems that
have polynomial time solutions but on a non—deterministic Turing ma-
chine. A problem is N"P—easy if there is a polynomial time algorithm,
if, on the other hand, the best possible algorithm will be exponential
it is N'P-hard. (Garey and Johnson 1979) Page 4

OPERATIONS RESEARCH LIBRARY A benchmark library available on
http://mscmga.ms.ic.ac.uk with benchmark instances for a wide variety
of combinatorial optimization problems. (Beasley 1990) Page 3/

PANWALKAR SMITH KOULAMAS A construction heuristic for the
SMTTP that uses the MDD dispatching rule. (Panwalkar et al. 1993,
Alidaee and Gopalan 1997) Page 18



RDD.......... RANGE OF DUE DATES A statistic that is used in combination with
TF to characterize instances of the SMTTP and SMWTP. Page 72

RTD.......... RUN TIME DISTRIBUTION The distribution of the run—time required
for an algorithm to achieve a specific goal — like finding an optimal so-
lution to a given problem instance. (Hoos and Stiitzle 1998) Page 14

SMTTP....... SINGLE MACHINE TOTAL TARDINESS PROBLEM A special case of the
SMWTP that assumes the jobs have equal non—zero weights and whose
objective it is to minimize the total tardiness of jobs that are pro-
cessed without preemption on a single machine. Treated in Chapter 2.
(Pinedo 1995) Page 18

SMWTP...... SINGLE MACHINE TOTAL WEIGHTED TARDINESS SCHEDULING PROB-
LEM The problem treated in this thesis. Its objective is to minimize
the total weighted tardiness of jobs that are processed without preemp-
tion on a single machine. (Pinedo 1995) Page 33

SPT........... SHORTEST PROCESSING TIME Dispatching rule that puts the jobs in
non-decreasing order of processing times. Page 18

TF............ TARDINESS FACTOR A statistic that is used in combination with RDD
to characterize instances of the SMTTP and SMWTP. Page 72

TSP........... TRAVELING SALESMAN PROBLEM The problem of a salesman who
wants to find, starting from his home town, a shortest possible trip
through a given set of customer cities and to return to its home town.
Page 9

WI............ WILKERSON IRWIN  Bauer (1998, p. 20) Heuristic for the SMTTP
that resembles a descent algorithm that applies the transpose neigh-
borhood to the EDD sequence. (Wilkerson and Irwin 1971) Page 18

WSPT........ WEIGHTED SHORTEST PROCESSING TIME  Dispatching rule that puts
jobs in non—decreasing order of the weighted processing times given by
w;/p; for weight w; and processing time p;. Page 34
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To, See initial trail intensity

7,5 (t), see pheromone trail

qo, 20, 54, 55

A* 4

Abdul-Razaq, T. S., Potts, C. N. and
Van Wassenhove, L. N., 34

absolute representation, 56, 61, 82

acceptance criterion, 12

ACO, see ant colony optimization

ACS, see ant colony system

ACS-smTTP, 17-25, 28, 30, 31, 56

ACS-smTTP/, 24, 24, 25, 27, 28, 30, 54

action choice rule, 55-57, 61

ant colony system, 10
ant system, 11

adjacency metric, 78, 80, 82

adjacent pairwise interchange, see trans-
pose

agent, vi

agent-based computing, vi

AT, see artificial intelligence

Anderson, E. J., Glass, C. A. and Potts,
C.N., 6

ant colony optimization, iii, v—vii, ix, x,
5, 8-12, 13, 14, 17, 19, 21-24,
27, 30, 31, 33, 35, 44, 45, 54—
65, 67, 70, 71, 73-76, 78, 79, 83,
87-89, 92, 93, 101, 115

118

algorithm, 9-11
application, 12
colony size, 59-61
heuristic information, 9, 10, 20, 55,
56, 61-65, 80, 92
local search, 11, 59
ant colony system, vi, 10, 17, 20, 22, 54,
61, 115
pheromone update, 10
solution construction, 10
ant system, 11, 20, 115
Ant-Q, 10, 20
apparent urgency, 5, 34, 40, 56, 61, 64,
71, 115, 115
approximation algorithm, 14, 34, 88
artificial intelligence, v, vi, 115
AS, see ant system
AU, see apparent urgency

Barr, R. S., Golden, B. L., Kelly, J. P.,
Resende, M. G. C. and Steward,
W. R, 13
Bauer, A., vi—viii, 19-23, 30, 87
and Bullnheimer, B., Hartl, R. F.
and Strauss, C., 87
Bullnheimer, B., Hartl, R. F. and
Strauss, C., vii, 17, 20, 21, 28,
30, 31
Baum, E. B., 12
Ben-Daya, M. and Al-Fawzan, M., 18
benchmark, 13, 19, 21, 24, 26, 27, 44, 59,
65, 66, 70-73, 80, 83, 90
Bentley, J. L., 36
best improvement pivoting rule, 7, 20,
40, 40, 41, 50
big valley, 78, 80
binary representation, 45



Boese, K. D., Kahng, A. B. and Muddu,
S., 78

branch-and-bound, vii, 4, 18, 35, 88

Brooks, R. A., vi

Bullnheimer, B., Hartl, R. F. and Strauss,
C., 12

candidate list, 55, 61, 66, 91

checkout time, 37, 42

Cj, see completion time

combinatorial optimization problem, v—
vii, 8, 9, 11-14, 35, 76, 92, 93,
115, 116

competitive testing, 88, 90

completion time, 3, 3, 18, 19, 33, 39, 57,
72, 84

complexity theory, 4

computational effort, 13, 18, 70

Congram, R. K., Potts, C. N. and Van
de Velde, S. L., 13, 34, 37, 44—
46, 53, 70

construction heuristic, 45, 10, 46

constructive algorithm, 5

correlation coefficient, 71, 73, 80

correlation length, 77, 78, 83

Crauwels, H. A. J., viii, 23

Potts, C. N. and Van Wassenhove,

L. N., 34, 45

Croes, G. A., 6

deadline, 3

Della Croce, F., viii

descent, 5, 7, 12, 20, 34, 43-45, 54, 91,
see local search

deterministic algorithm, see exact algo-
rithm

deterministic scheduling model, 2

Di Caro, G. and Dorigo, M., 12

dispatching rule, 5, 5, 18, 20, 39, 55, 65

d;, see due date

don’t look bit, 35, 36, 48, 49

Dorigo, M., viii, 11

and Di Caro, G., 5, 8

Index

and Gambardella, L. M., vi, 10, 12,
54
Di Caro, G. and Gambardella, L.
M., 12
Manniezzo, V. and Colorni, A., 11
Du, J. and Leung, J. Y.-T., 18
due date, v, viii, 3, 3, 18, 19, 33, 39, 57,
72,79, 84
dynamic
combinatorial optimization problem,
2
dispatching rule, 5, 34
dynamic programming, 18, 44
dynasearch, 34, 35, 37, 44, 53, 54, 65, 91

earliest due date, 5, 18, 20, 39, 40, 56,
61, 64, 115

EDD, see earliest due date

Emmons, H., 18

empty job, 39

Escher, M. C., iv

exact algorithm, 4, 34, 87

first improvement pivoting rule, 7, 20,
40, 41

fitness distance correlation, 82, 84, 85,
88

fitness landscape, viii, 15, 71, 76-82, 88

flow shop problem, 11, 13

Gambardella, L. M.
Taillard, E. and Agazzi, G., 12
and Dorigo, M., 10, 12, 54
Gannt chart, 4
Garey, M. R. and Johnson, D. S., 4
general pairwise interchange, see inter-
change
generalized assignment problem, 11
genetic algorithm, 5, 34
global update rule, 10
Glover, F. and Laguna, M., 5
Goldberg, D. E., 5
Goss, S., Aron, S., Deneubourg, J. L.
and Pasteels, J. M., 8

119



Index

Graham, R. L., Lawler, E. L., Lenstra,
J. K. and Rinnooy Kan, A. H.
G, 2

graph, 9, 11, 56, 91

graph bisection, 78

half/half, 59, 59, 65

Hansen, P. and Mladenovié, N., 13, 39,
46

Haupt, R., 5

hill-climbing, see descent

Hogg, T., Huberman, B. A., Williams,
C.P., 92

Holsenback, J. E. and Russell, R. M., 18,
20, 25

Hooker, J. N., 89, 90, 93

Hoos, H. H. and Stiitzle, T., 14

Hopfield network, vi

Hopfield, J. J. and Tank, D. W., vi

ILS, see iterated local search

insert, 6, 20, 23, 39-44, 48-50, 65, 70,
78, 79, 82, 91

insert+interchange, 51, 59, 66

Institut de Recherches Interdisciplinaires
et de Développements en Intel-
ligence Artificielle, v, 116

interchange, 6, 20-24, 28, 35, 39, 44, 48,
50, 54, 65, 70, 77, 79, 82, 83, 91

evaluation, 37-38

interchange+insert, 51, 53, 59, 65, 66,
82, 83

invert, 77

IRIDIA, see Institut de Recherches In-
terdisciplinaires et de Développe-
ments en Intelligence Artificielle

iterated dynasearch, 13, 34, 35, 45, 54,
65, 70

iterated local search, vi, vii, x, 5, 12-
13, 13-15, 17, 21-25, 27, 30, 31,
33-35, 39, 44-54, 65-67, 70, 71,
73-76, 78, 82, 83, 87-89, 92, 93,
97, 116

acceptance criterion, 46, 53

120

algorithm, 12-13

applications, 13

initialization, 46

local search, 48-50

solution modification, 45-46, 50-53

job, v, vi, 2, 3, 6, 18, 19, 33, 39, 55, 56,
71,72, 74, 79, 80
characteristic, 2, 2-3
job shop problem, 13
Johnson, D. S., 46
and McGeoch, L. A., 13, 46, 55

Kara, B. Y., viii, 19, 27

kick-move, 12, 45, 50, 70, 92

kick—strength, 46, 48, 52-53

Kirkpatrick, S., Gelatt Jr., C. D. and
Vecchi, M. P., 5

Koulamas, C. P., 17

Kumal, V. and Nau, D. S. and Kanal, L.
N, 4

landscape, see fitness landscape
ruggedness, see ruggedness
topology, see topology
large step Markov chains, 13
late job, 71, 74, 79, 84, 92
lateness, &
Lawler, E. L., 18, 33
and Wood, D. E., 4
Lenstra, J. K., Rinnooy Kan, A. H.
G. and Shmoys, D. B., 4
left insert, 7, 35, 40, 41, 77, 78
evaluation, 39
kick, 48, 49, 52-54, 66
Lenstra, E. L.
Rinnooy Kan, A. H. G. and Bruck-
ner, P., 33
Lin, S., 6
local
update rule, 10
local search, iii, v—viii, x, xvii, 5, 6-8, 9,
11, 12, 14, 15, 20-25, 27, 28, 30,
31, 33-46, 48-55, 58-67, 70, 75,



76, 78, 80, 82, 83, 85, 88, 89, 91,
92, 97, 98, 101, 102, 115, 116
initialization, 39
solution representation, 6, 35
LS, see local search

machine, 2, 33

machine environment, 2

machine scheduling, see scheduling

Manniezzo, V. and Colorni, A., 12

Martin, O. and Otto, S. W., 46

Martin, O., Otto, S. W. and Felten, E.
W., 5, 12, 46, 55

Matsuo, H., Suh, C. J. and Sullivan, R.
S., 34

MAX-MIN ant system, 11, 20, 57,
116

McCulloch, W. S. and Pitts, W., vi

MDD, see modified due date

Merz, P. and Freisleben, B., 78

meta-heuristic, iii, v—vii, J, 8, 12-14, 17,
18, 33, 88, 89, 93

minimum slack, 34, 116, 116

Mladenovié, N. and Hansen, P., 39, 46

MMAS, see MAX-MIN ant system

modified due date, 5, 18, 20, 39, 40, 56,
61, 64, 116, 116

Morton, T. E.

Rachamadugu, R. M. and Vepsalainen,

A, 34

MS, see minimum slack

multi-start local search, 25, 46, 78

multi-agent system, vi

n-queens problem, vi

NBR, 18, 21, 116

neighborhood, 6, 6-7, 12, 20-23, 35-37,

40, 41, 44, 46, 48, 54, 76, 91

ease, 7
size, 7, 45
topology, see topology

network routing, 12

NP, 116

NP-hard, v, 1, 4, 6, 14, 18, 33

Index

objective function, see scheduling, ob-
jective, 76

optimality criterion, 2

ORLIB, 34, 35, 39, 46, 65-67, 70, 71, 73,
83, 116

Osman, I.H. and Kelly, J. P., 5

Panwalkar, S. S., Smith, M. L. and Koula-
mas, C. P., 18
permutation representation, 35, 45
pheromone, 55, 56
diffusion, 55
evaporation, 10
trail, 8-10, 20, 55, 61
update, 9, 56, 61
ant colony system, 10
ant system, 11
Dij, See processing time
Pinedo, M., 1
pivoting rule, 7-8, 36, 40, 43, 48
position—based, 84
position—based metric, 79, 84
Potts, C. N. and Van Wassenhove, L. N.,
18-21, 34, 35
precedence constraint, 3
precedence metric, 79
preemption, 3, 18
priority factor, see weight
problem characteristic, 18, 71, 82, 90
processing time, 2, 3, 18, 19, 37, 39, 56
pseudo-random—proportional action choice
rule, 10, 55
PSK, 18, 21, 116

Q-learning, 10
q0, 10
quadratic assignment problem, 11, 12

Ramalhinho Lourenco, H., 13
and Serra, D., 11
random walk correlation function, 77
range of due dates, x, 19, 25-28, 35, 65,
66, 71-75, 84, 88, 90, 92, 97, 117
RDD, see range of due dates
real world problem, vi

121



Index

Reeves, C. R., 78

Reinelt, G., 55

relative representation, 56, 61, 82

release date, 3

resource, see machine

right insert, 6, 35, 40, 41, 44, 77

evaluation, 39
kick, 48

rj, see release date

robustness, 13

route finding, vi

RTD, see run time distribution

ruggedness, viii, 76-78, 82-85, 88

run, 37, 37, 38, 39, 71, 74, 75

run time, viii, 14, 25, 27-29, 40, 49, 50,
59, 61, 66, 67, 71, 73, 75, 82, 84,
87, 88, 100

run time distribution, 14, 25, 27, 46, 49—
53, 57, 59, 61, 63, 64, 67, 117

Russel, R. M. and Holsenback, J. E., 17

Russel, S. J. and Norvig, P., vi

scheduling, iii, v, vii, 1-5, 6, 8, 14, 33
model, 1-4
objective, 3

Schoonderwoerd, R., Holland, O., Bruten,
J. and Rothkrantz, L., 12

Schrage, L. E. and Baker, K. R., 18

scientific testing, 90

sequential ordering problem, 12

setup time, 3

shift, see insert

shipping date, see due date

shortest processing time, 18, 117

simulated annealing, 5, 18, 34, 45, 46

single machine total tardiness problem,
vi, vii, ix, 3, 13, 18, 17-19, 33,
35, 54, 67, 87, 91, 117

single machine total weighted tardiness
scheduling problem, i, iii, v, vii,
x, 3, 13, 17, 22, 31, 33, 33, 70,
71, 84, 87, 88, 91, 97, 101, 117

SMTTP, see single machine total tardi-
ness problem

122

SMWTP, see single machine total weighted
tardiness scheduling problem
software engineering, vi
solution quality, 13, 41-44
SPT, see shortest processing time
Stiitzle, T., viii, 11, 13, 20
and Dorigo, M., 12
static
combinatorial optimization problem,
2
dispatching rule, 5
stochastic scheduling model, 2
swap, see interchange
Swarc, W., Della Croce, F. and Grosso,
A, vii, 18, 28, 88

tabu search, 5, 34, 45

tardiness, vi, 3, &, 18, 33, 79

tardiness factor, 19, 25-28, 34, 67, 71—
75, 82-84, 88, 90, 92, 97, 117

task, see job

TF, see tardiness factor

threshold accepting, 34

topology, viii, 2, 7, 76, 88

total tardiness, 18

toy problem, vi

transpose, 6, 20, 23, 35, 79

traveling salesman problem, vi, 9, 12, 13,
19, 36, 55, 57, 78, 117

TSP, see traveling salesman problem

tuning, vii, 33, 54, 88, 89

variable neighborhood search, 13, 39, 46,
88, 92
vehicle routing problem, 12

weight, 3, 3, 57

weighted shortest processing time, 34,
117

Weinberger, E. D., 77

WI, 18, 117

Wilkerson, L. J. and Irwin, J. D., 18

w;, see weight

Wolpert, D. H. and Macready, W. G., 89



Index

WSPT, see weighted shortest processing
time

123



