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Abstract In a recent work, it has been shown that Boolean networks (BN), a well-
known genetic regulatory network model, can be utilised to control robots. In this
work, we use a genetic algorithm to train robots controlled by a BN so as to ac-
complish a sequence learning task. We analyse the robots’ dynamics by studying
the corresponding BNs’ phase space. Our results show that a phase space structure
emerges enabling the robot to have memory of the past and to exploit this piece of
information to choose the next action to perform. This finding is in accordance with
previous results on minimally cognitive behaviours and shows that the phase space
of Boolean networks can be shaped by the learning process in such a way that the
robot can accomplish non-trivial tasks requiring the use of memory.

33.1 Introduction

Dynamical systems provide metaphors and tools which can be effectively used to
analyse artificial agents, such as robots [3, 15]. The dynamical systems metaphor
has also been advocated as a powerful source of design principles for robotics [8].
The core idea supporting this viewpoint is that information processing can be seen
as the evolution in time of a dynamical system [12]. In this paper, we show that a
dynamical systems perspective makes it possible to analyse the behaviour of a robot
controlled by Boolean networks and explain it in terms of trajectories in the Boolean
network’s state space.

Boolean networks (BNs) have been introduced by Kauffman [4] as a gene reg-
ulatory network (GRN) model. BNs have been proven to reproduce very impor-
tant phenomena in genetics and they have also received considerable attention in
the research communities on complex systems [1, 4]. A BN is a discrete-state and
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discrete-time dynamical system whose structure is defined by a directed graph of N

nodes, each associated to a Boolean variable xi , i = 1, . . . ,N , and a Boolean func-
tion fi(xi1, . . . , xiKi

), where Ki is the number of inputs of node i. The arguments
of the Boolean function fi are the values of the nodes whose outgoing arcs are con-
nected to node i. The state of the system at time t , t ∈ N, is defined by the array of
the N Boolean variable values at time t : s(t) ≡ (x1(t), . . . , xN(t)). The most stud-
ied BN models are characterised by having a synchronous dynamics—i.e., nodes
update their states at the same instant—and deterministic functions. However, many
variants exist, including asynchronous and probabilistic update rules [13]. BN mod-
els’ dynamics can be studied by means of usual dynamical systems methods [2, 12],
hence the usage of concepts such as state (or phase) space, trajectories, attractors
and basins of attraction. BNs can exhibit complex dynamics and some special en-
sembles have been deeply investigated, such as that of Random BNs [4, 11].

In a recent work, it has been shown that BNs can be utilised to control robots [10].
A BN is coupled with a robot by defining a set of input nodes, whose values are im-
posed by the robot’s sensor readings, and a set of output nodes, which are used to
maneuver the robot’s actuators. The BN is trained by means of a learning algorithm
that manipulates the Boolean functions. The algorithm employs as learning feed-
back a measure of the performance of the BN-controlled robot (in the following,
BN-robot) on the task to perform.

In this work, we use a genetic algorithm to train a BN-robot so as to accomplish
a task concerning sequence learning and we analyse their dynamics by studying the
characteristics of the corresponding BNs’ state space. Our results show that a state
space structure emerges enabling the robot to have memory of the past and to exploit
this piece of information to choose the next action to perform. In the following
of this brief contribution, we outline the task to accomplish and we illustrate the
main results achieved. For completeness, we include a description of materials and
methods.

33.2 The Task

Sequence learning is one of the most prominent activities in humans, animals, as
well as artificial agents and systems [14]. Sequence tasks involve the use of some
kind of memory which enables the agent to choose the next action depending on the
past. The main kinds of sequence tasks are: sequence prediction, generation, recog-
nition and sequential decision making. Sequence learning is clearly a difficult task,
due to the fact that forms of memory structures are needed. Several techniques exist
to tackle the problem, including recurrent neural networks, hidden Markov model,
dynamic programming, reinforcement learning and evolutionary computation tech-
niques, such as the ones used in this work.

In our experiment, the BN-robot must learn to recognise a sequence of colours,
by performing certain actions. The environment in which the BN-robot operates
is a straight corridor. Along the corridor, the ground is painted in three different
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Fig. 33.1 An example of the BN-robot’s working environment. The order of black and grey stripes
is randomly chosen at each trial

colours: white (W) represents the background, while black (B) and grey (G) denote
the symbols of a sequence to be recognised. See Fig. 33.1 for an example of the
environment. The BN-robot, placed at the beginning of the corridor, moves along it,
turning its LEDs on when it encounters a black or grey stripe in the right sequence
and keeping the LEDs off when the colour is not in the right order or it is the back-
ground colour. In our case, the sequence to be recognised is a cyclic repetition of
black and grey. For example:

Colours along the corridor: W B W G W G W B W B
BN-robot’s LEDs status: OFF ON OFF ON OFF OFF OFF ON OFF OFF

This task is dynamic, in that the robot needs to decide whether to switch on or off
the LED, on the basis of information concerning the past. To carry out this task, the
robot needs to exploit some sort of memory.

33.3 Results

A successful BN-robot is one which correctly switches its LEDs on and off accord-
ing to the desired sequence, when encountering different colours on the ground.
Since this task requires some kind of memory structure to be constructed, we anal-
ysed the state space traversed by the BN controlling a robot with the aim to under-
stand its operation and dynamics. A similar approach has also been used in previous
works in evolutionary robotics [6, 15]. To analyse a BN, we extracted a sample of
1000 trajectories in the state space by simulating the robot in corridors with colours
in random order. We gathered such trajectories and generated a graph of the ob-
served state transitions. The first relevant observation we derived from this analysis
is that the size of the state space traversed by the BN is a very tiny fraction of the
whole potential state space, which is of size 230. Indeed, the number of states in the
collected trajectories is about 200, on average; hence, the learning process shapes
the BN in such a way that its dynamics is confined in a limited portion of the state
space. A further notable property of the BN dynamics of the robot is that memory
is implicitly represented by connecting different areas of the state space, each de-
voted to a specific set of actions. A compact view of the state space can be provided
in the form of a finite state automaton (FSA), in which states represent clusters of
connected states in the BN phase space. Indeed, the BN phase space can be clus-
tered in sets of states which encode the memory of the previous colour encountered
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Fig. 33.2 Finite state automaton representation of the trajectory graph over the state space for a
typical BN. A state in the automaton represents a cluster of BN’s states in which the BN remains
until a specific input is received

by the robot. In Fig. 33.2, we report the FSA of a typical successful BN-robot. At
the beginning of the trial, the BN is in a state space area in which the values of the
output nodes are such that the BN-robot goes straight and keeps its LEDs off until a
coloured stripe is found. Then, depending on the detected colour, the BN goes into
either of two regions, which we will denote as the upper (red) and lower (blue) rect-
angles. As we can see, the mechanisms in the two clusters is dual: in the upper one,
the robot switches its LEDs on when it encounters a black stripe either if it is the
first non-background colour it detects or if a grey stripe has been previously found;
conversely, the second state space cluster is devoted to recognising grey stripes, after
a black one has been encountered.

In summary, we can assert that the information concerning the last seen colour is
implicitly stored in the state space area in which the BN operates. This finding is in
accordance with previous results on minimally cognitive behaviours [15] and shows
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that the state space of BNs can be shaped by the learning process in such a way that
the BN-robot can accomplish non-trivial tasks requiring the use of memory.

33.4 Materials and Methods

In this experiment, we control an e-puck robot [5] by means of a BN. The robots are
simulated with the ARGoS simulator [9]. The values of a set of network nodes (BN
input nodes) are imposed by the robot’s sensor readings, and the values of another
set of nodes (BN output nodes) are observed and used to encode the signals for
maneuvering the robot’s actuators. The BN controlling the robot has 30 nodes in
total and the function of each node depends on the value of 3 other nodes, chosen
at random. Four nodes are used as inputs and encode the proximity sensors (North,
South, East, West)—the node is set to 1 if an obstacle is near the robot—and two
encode the ground colours (00 ↔ black, 01 ↔ grey, 11 ↔ white). Two nodes are
used to control the robot wheels, which can be individually either set to a constant
non-zero speed or stopped.

The BNs controlling the robots are designed by means of a genetic algorithm
(GA),1 according to the evolutionary robotics approach [7]. The genetic algorithm
adopts a proportional selection and applies mutation and crossover operators. Muta-
tion is implemented by randomly choosing a node and an entry in its Boolean func-
tion truth table and flipping it.2 The crossover operator is a single point crossover,
operating on the binary string given by the concatenation of the nodes’ Boolean
functions. The training process changes the Boolean functions, while the BN topol-
ogy is kept constant (it is generated according to the random BN model, as described
by Kauffman [4]). The fitness function is computed as the average of the perfor-
mance across 10 trials, in which the sequence of colours is randomly generated.
The performance of the BN-robot in a trial is computed as the distance it can walk
along the corridor by correctly switching its LEDs and avoiding the walls. The GA
is run with the following parameter setting: population size equal to 20, elitism set
to 2, pmut = 0.02, pcx = 0.1, the number of generations is set to 5000. The GA is
run 60 times, starting from randomly generated BNs. The successful runs, i.e., those
returning BN-robots correctly performing the sequence task, were 10 out of 60.

33.5 Conclusion

In this brief contribution, we have outlined the results of the analysis of the be-
haviour of BN-robots trained to accomplish a sequential task. The behaviour of a
BN-robot is studied by means of the phase space analysis of the corresponding BN.

1Other search techniques have also been used and we obtained the same qualitative results.
2Details can be found in [10].
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The results show that the training process shapes the phase space so as to restrict
the BN dynamics to few, relatively small, areas. Phase space areas play the role of
memory, as they implicitly store the information concerning the past which is rel-
evant for the BN-robot to choose the next action. In addition, we observe that the
analysis of the BN phase space can be simplified by clustering the set of states and
studying the corresponding finite state automata. This method may also be subject
to formal verification, making it possible to validate the robot’s behaviour.
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