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Abstract

The increasing availability of parallel hardware encourages the design and adoption of
parallel algorithms. In this article, we present a study in which we analyze the impact that
different communication policies have on the solution quality reached by a parallel homoge-
neous multi-colony ACO algorithm for the traveling salesman problem. We empirically test
different configurations of each algorithm on a distributed-memory parallel architecture, and
analyze the results with a fixed-effects model of the analysis of variance. We consider sev-
eral factors that influence the performance of a multi-colony ACO algorithm: the number of
colonies, migration schedules, communication strategies on different interconnection topolo-
gies, and the use of local search. We show that the importance of the communication strategy
employed decreases with increasing search effort and stronger local search, and that the rela-
tive effectiveness of one communication strategy versus another changes with the addition of
local search.

1 Introduction

Ant colony optimization (ACO) [14] is a metaheuristic for combinatorial optimization problems
inspired by the pheromone trail laying and following behavior of some species of ants [10]. In ACO,
artificial ants are a set of stochastic procedures that incrementally construct candidate solutions
using artificial pheromone and, if available, heuristic information. The artificial pheromone is a
parametrized probabilistic model that is modified at computation time based on previously seen
solutions [40]. ACO algorithms have been tested on a large number of academic and real-world
problems, and have obtained world-class performance on many of them, such as for some variants
of the vehicle routing [18], sequential ordering [17], open-shop scheduling [2], and protein-ligand
docking [22] problems. See [15] for a recent survey on ACO.

The cooperation of multiple colonies is a common adaptation of ACO to a parallel environment
(see Section 3 for a more detailed discussion). In this arrangement, several ant colonies run in
parallel, sharing information to focus the search on promising regions of the search space. However,
some degree of independent exploration must be preserved, so that the computational effort of the
colonies does not become wastefully concentrated in one region of the search space. To balance
these two objectives, the colonies cooperate with a given communication policy specifying the
details of what kind of information to exchange, when to exchange it, and among which colonies.
A main focus of previous studies on multi-colony cooperation has been what kind of information
to share and what communication topology to use to define each colony’s neighbors. For the
information to be exchanged, the results in Krüger et al. [23] and Doerner et al. [11] indicate
that it is better to exchange the best solutions found than to exchange pheromone matrices. For
the topologies to be used, the ring and the fully connected topologies are among the most tested
topologies in the literature.

∗The ordering of the authors’ names was chosen at random.
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Unfortunately, many previous studies on multi-colony cooperation suffer from a lack of rigorous
empirical analysis. In some cases, empirical tests are done on only very few instances of small
size, as in [5, 38, 8, 39]. Other studies do not make comparisons with the non-cooperative policy,
i.e., the parallel independent runs on multiple processors of the single colony algorithm (PIR), as
in [36]. Thus, it is difficult to draw general conclusions from the results presented in the literature
(again, see Section 3 for a more detailed discussion). This situation leaves open the question of
how best to implement efficient parallel versions and what improvement in performance can be
expected over PIR.

The most complete study on the cooperation of multiple colonies is that of Middendorf et al.
[29, 30], which investigated four communication policies for a homogeneous multi-colony approach
based on a variant of ant system to solve the traveling salesman problem and the quadratic
assignment problem. The study compared the multi-colony ant algorithm with PIR, with the
result that, if a high solution quality is desired, “... information exchange between the colonies
is useful but otherwise no information exchange is better.” ([30], p. 319), which we interpret to
mean that increasing levels of communication for equivalent computational effort results in better
solution quality than parallel independent runs of the same algorithm.

On the basis of our preliminary results [25, 26], we believe that the conclusions obtained in [30]
do not extend to cooperative multi-colony ACO algorithms composed of high-performing sequen-
tial implementations employing a local search component. Hence our hypothesis: the cooperation
of multiple homogeneous colonies becomes less effective for increasing search effort and stronger
local search algorithms. We present a detailed study that analyzes the impact various communi-
cation policies for parallel homogeneous multi-colony ACO algorithms have on solution quality.
We extensively test the parallel variants on a distributed-memory parallel architecture, and we
analyze the impact of the factors studied on the solution quality with a fixed-effects model of
the analysis of variance (ANOVA). The four factors considered are: the number of colonies (2
levels), the migration schedule (2 levels), the communication strategy (4 levels), and the local
search component (3 levels). All together, the factors result in 2 ·2 ·4 ·3 = 48 different algorithmic
configurations. As the test problem we have chosen the traveling salesman problem because of its
central role in ACO research.

The rest of the paper is organized as follows. In Section 2, we briefly describe the ACO
framework and the MAX–MIN ant system variant that we use for our parallel implementations.
In Section 3, we review different communication policies proposed in the ACO literature. Section
4 presents the policies we investigated, and Section 5 describes the experimental setup. The
empirical results of our parallel implementations are given in Section 7, while scalability tests for
the most successful policies (with up to 64 colonies) are discussed in Section 8. In Section 9 we
report the results of confirmatory experiments on the predictions made from our earlier results.
In Section 10 we discuss the implications of the overall results.

2 ACO for the traveling salesman problem

The traveling salesman problem (TSP) is an NP-hard combinatorial optimization problem [24]
that has often been used as a benchmark to test new algorithmic ideas in ACO and other stochastic
local search methods [21]. Formally, it is the problem of finding a Hamiltonian cycle of minimal
length on a complete weighted graph G = (V,E), where each vertex v ∈ V of the graph represents
a location and each edge e ∈ E represents a connection between two locations. Each edge e is
assigned a weight ce, which represents the distance between the locations it connects.

ACO is an iterative procedure. In every iteration, each ant of the colony constructs a solution
to the given problem. When applied to the TSP, each ant is initially placed on a randomly chosen
vertex and has a memory to store the partial solution it has constructed so far in the iteration.
Each ant performs a construction step by moving from its current vertex to one of its still unvisited
vertices. At each construction step, an ant chooses stochastically among the unvisited vertices.
Each edge has associated with it two kinds of information to bias the movement of the ants:
artificial pheromone information (that can be modified by ants) and heuristic information (usually
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a measure inversely proportional to the distances between the locations). An ant k ∈ {1, · · · ,m}
moves from vertex i to vertex j with a probability given by:
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, if j ∈ Nk;

0, otherwise;
(1)

where Nk is the set of vertices not yet visited by the k-th ant, τij is the value of the artificial
pheromone information associated to the edge connecting vertex i to vertex j, and ηij is the value
of the heuristic information associated with the same edge. The parameters α and β determine
the relative importance of the pheromone information and heuristic information.

At the end of an iteration, the pheromone on the edges is updated. The pheromone update
consists of two parts. First, a pheromone evaporation is performed, which uniformly decreases
all the pheromone values to avoid a too rapid convergence of the algorithm. Then, one or more
solutions from the current and/or earlier iterations are used to increase the values of pheromone
information on the edges of these solutions.

In MAX–MIN ant system (MMAS), only the best ant is used to update the pheromone
trails, and the minimum and maximum values of the pheromone are limited. A design choice is
whether to use the ant with the best tour found in the current iteration—iteration-best update—or
the ant with the best tour found among all iterations so far—best-so-far update—or even the ant
with the best tour found since the last re-initialization of the pheromone information—restart-best
update—or a combination of all of them. The pheromone trails are initialized to the maximum
pheromone value to allow for greater exploration during the initial phase of the search—or when
the pheromone matrix is re-initialized, which is occasionally done in MMAS. The pheromone
update for the edge (i, j) is performed as follows:

τij = (1− ρ) · τij + ∆τbest
ij , (2)

where 0 < ρ ≤ 1 is the evaporation rate and ∆τbest
ij is the quantity of pheromone deposited on

edge (i,j) by the best ant. Formally:

∆τbest
ij =

{
1

Lbest
, if the best ant used edge (i, j) in its tour;

0, otherwise;
(3)

where Lbest is the length of its tour.
For what concerns the limits on the pheromone values, respectively τmin for the minimum and

τmax for the maximum, Stützle and Hoos [35] suggest that they should be chosen according to the
problem instance at hand from among the general values they have determined.

The pheromone update process in MMAS is concluded by enforcing that all pheromone values
are within the imposed limits.

3 Related work on parallel ACO

The use of ACO or other stochastic local search methods to solve optimization problems may
require significant computational effort. For this reason, parallel implementations of such algo-
rithms are desirable. Within the ACO framework, several opportunities for parallelization exist.
In ACO, each artificial ant builds a solution independently from other ants (with the exception of
ant colony system, proposed by Dorigo and Gambardella [13]). Hence, executing the construction
of the solutions in parallel seems to be a straightforward way to parallelize the algorithm. Most
of the early studies on ACO parallelization focus on this possibility. The primary goal of such an
approach is to take advantage of the increased computing resources to reduce the computation
time of a single run of the algorithm. This approach has been tested on a variety of parallel archi-
tectures, with both shared [3, 12, 9] and distributed [3, 32] memory. However, it was found that
very often the communication overhead neutralizes the advantages of parallelizing the construc-
tion phase. Inspired by work in the evolutionary computation community (such as the work done
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on distributed genetic algorithms [37, 1]), ACO researchers have begun to investigate a different
approach: the cooperation of multiple colonies.

As described below, several researchers have investigated policies for sharing information in
multi-colony ACO algorithms to find the best method of cooperation for achieving the highest
overall performance. To define a policy one has to specify each of the following elements:

• migrants: what kind of information should be exchanged between colonies (e.g., the colony’s
parameters, solutions, or pheromone information);

• policy for migrants selection: how many and which migrants should be selected from
the source colonies;

• strategy: which colonies should send migrants to which other colonies (e.g. global-best,
replace-worst, uni/bi-directional ring, hypercube, grid, or random connection topologies);

• migration schedule: when migrants should be sent/received;

• policy for migrant integration: how many and which migrants should be integrated into
the target colonies.

The simplest policy is the null policy, i.e., the parallel independent execution on multiple
processors of the single colony algorithm. This approach—parallel independent runs (PIR)—is
appealing because no communication overhead is involved and nearly no additional implementation
effort is necessary. In [34], Stützle has shown that such a simple policy can be highly efficient in the
case of a MMAS algorithm for solving the TSP. More elaborate mechanisms are justified if they
give better performance than the execution of parallel independent runs. Therefore, a comparison
with the PIR policy should always be performed when introducing a new communication policy.

Michel and Middendorf’s study [28] is one of the first investigations on information sharing
among multiple ant colonies. The authors implemented a variant of ant system (AS) with elitist
strategy to solve the shortest common supersequence problem. In their approach, each colony
selects for migration its best-so-far solution. Following a global-best strategy (each colony is
the neighbor of all the other colonies and the overall best-so-far solution is distributed in the
neighborhood), migrants are circulated with a high fixed-frequency migration schedule. The policy
for migrants integration is such that a received migrant replaces the local best-so-far solution. A
small difference in solution quality from the single colony approach (SEQ) was found, but no
statistical analysis was provided to assess the significance of the difference.

In subsequent studies, Middendorf et al. [29, 30] further investigated communication policies for
a multi-colony approach based on a variant of AS for solving the TSP and the quadratic assignment
problem. They chose the colony best-so-far (and/or a certain number of elitist) solutions to be
their migrants, a fixed-frequency migration schedule, and two different strategies for comparison:
global-best and unidirectional ring. The policy providing the better results was compared with
a PIR approach, but was empirically validated on only a single instance of the TSP—a clear
shortcoming in their empirical analysis. The overall best policy found was the unidirectional
ring strategy with exchange of the colony best-so-far solution, with the conclusion that, for the
TSP, no information exchange is an advantage for quickly finding solutions of lower quality, while
information exchange is advantageous for finding solutions of high quality.

Other studies investigating multi-colony approaches using fixed-frequency migration schedules
have found mixed results with regards to the comparison of the communication policies considered
and PIR and/or SEQ. Such experiments have been conducted by, among others, Piriyakumar and
Levi [31] and Manfrin et al. [25], using a multi-colony variant of MMAS with local search. In
both studies, little difference was found between the considered policies and SEQ, and even some
indication in Manfrin et al. that PIR was better than cooperation. In contrast, Chu et al. [5, 6]
and Ellabib et al. [16], both using ant colony systems (ACS) for the TSP (and the vehicle routing
problem in [16]), found that in fact some communication policies perform significantly better than
SEQ.
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The difference in result may in part be due to the strength of the multi-colony variant of
MMAS when coupled with local search relative to that of ACS for the TSP, but this is not clear
from the literature. Both Piriyakumar and Levi and Chu et al. share a significant shortcoming
in their empirical analysis: they only use a very small set of TSP instances (one and three,
respectively) for their trials. In the latter case it must also be noted that the parameter settings
used for the single colony ACS are known to result in poor performance, and, hence, the results
presented are not very conclusive.

While it may be unclear what the impact an ACO variant’s strength has on the best communi-
cation policy to be used, it also remains unclear what frequency is best to use for a fixed-frequency
migration schedule, and whether or not a fixed-frequency migration schedule is even the appro-
priate choice. Doerner et al. [11] investigated different frequencies of information exchange using
the fixed-frequency policy for a multi-colony implementation based on the savings-based AS, and
a parallel version of D-Ants (an approach that decomposes the original problem into smaller sub-
problems, which are then solved in parallel). From their study, it appears that for the fastest
schedule the exchange of the overall best-so-far solution led to the best results, while for the slow-
est schedule there was a dependency on the number of colonies: when two colonies were used,
the exchange of the overall best-so-far solution and elitist solutions led to the best results; when
four colonies were used, the re-initialization of the pheromone matrices before the exchange of the
solutions led to the best results.

Rather than use a fixed-frequency schedule, Chen and Zhang [4] proposed two communication
policies for a multi-colony approach, based on a variant of AS for solving the TSP, employing a
variable-frequency migration schedule and two interconnection topologies. The proposed migration
schedule adjusts the time interval between two exchanges adaptively according to the diversity
of the solutions. The diversity in a colony is measured as the ratio between the average colony’s
solution cost and the colony’s best-so-far solution cost. The diversity for the whole system is the
average diversity among the colonies. The less (more) diversity in the whole system, the shorter
(longer) the time interval for the next exchange. The policies were compared with: the standard
sequential ant system, the unidirectional ring topology, the exchange of the colony best-so-far
solutions of [30], and a fixed-frequency migration schedule for different intervals. The results
indicate that the adaptive variable-frequency schedule performs better than the others considered,
but it must be noted that the comparisons were conducted for only five TSP instances of small
size, which weakens the generality of their results.

As pointed out in Section 1, some of the previous studies presented in the literature suffer
from a lack of rigorous empirical analysis. Tests were conducted on only a few instances of often
small size, there was a lack of comparisons to control experiments (e.g. with PIR), or tests were
conducted with parameter settings that are known to result in poor performance. It is therefore
difficult to compare and generalize from these results.

Consequently, the question remains open as to how best to design efficient communication
policies for parallel versions of ant colony optimization, especially with regards to the inclusion of
stronger local search. This study will address this question with a more comprehensive approach
than what has been attempted before, using a significantly larger range of problem instances, a
broad set of communication policies, both fixed and variable frequency migration schedules, the
strongest known settings for MMAS, and the incorporation of local search. These factors will
be carefully controlled for in an experimental study with parallel independent runs serving as a
meaningful baseline for comparison.

4 Considered communication policies

In our investigation, we fixed the following elements in the considered communication policies: each
colony selects as the only migrant its best-so-far solution, and the policy for migration integration
is such that a received solution becomes the new colony’s best-so-far solution (and the new colony’s
restart-best solution) if and only if the received solution has a lower cost than the colony’s current
best-so-far solution.
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Ring (R) Hypercube (HC) Fully connected (FC)

4 Colonies

8 Colonies

Figure 1: The communication topologies under consideration: unidirectional ring (R), hypercube
(HC), and fully-connected (FC), for each of the two different levels of number of colonies: 4 and 8.
(Replace-worst (RW) is implemented on the FC topology, with the difference that only at most one
node is changed each iteration.)

For the other elements, in order to limit the explosion in the number of possible policies, we
restricted our investigation to two levels for the factors number of colonies and migration schedules,
and to four levels for the element communication strategies.

We examined a number of interconnection topologies that allowed us to consider increasing
communication volumes. The considered topologies were the directional ring, in which each colony
has one predecessor and one successor, the hypercube, in which each colony is located on a vertex
of a hypercube (see [19] for a detailed explanation of the topology) and communicates only with
colonies that are located in adjacent vertices, and the fully-connected topology, in which each
colony is in the neighborhood of every other colony. In this way, we moved from more localized to
more global communication. On the three considered topologies (Figure 1) we implemented the
following four communication strategies:

Unidirectional ring (R). The p colonies are connected in a ring such that colony Ci sends its
best-so-far solution only to colony C(i+1) mod p, and receives a best-so-far solution only from colony
C(i−1+p) mod p.

Hypercube (HC). Each colony is located on a vertex of a hypercube (2-D hypercube for p = 4
and 3-D hypercube for p = 8) and sends its best-so-far solution to the colonies that are located in
adjacent vertices. It receives a best-so-far solution from each colony located in adjacent vertices.

Replace-worst (RW). One colony acts as a master collecting the cost of the best-so-far solutions
of the other p − 1 colonies. The master identifies and broadcasts the identity of the colony with
the overall best-so-far solution and the colony with the worst best-so-far solution. At this point,
the former colony sends its best-so-far solution to the latter colony.

Fully-connected (FC). This parallel model is similar to RW, with the difference that the master
identifies and broadcasts the identity of the colony with the overall best-so-far solution, that
subsequently broadcasts its best-so-far solution.

For the number of colonies we considered two levels: 4 and 8 identical colonies. In Section
8, we report on the tests to check if performance trends identified using these two levels were
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maintained for the most successful policies when the number of colonies was increased to 16, 32
and 64.

The two levels used for the migration schedules were (1) a fixed-frequency schedule and (2)
an increasing-frequency schedule. The rationale for an increasing-frequency schedule is to have
colonies focusing on promising areas of the search space during the later intensification phase
of the search. Colonies perform the initial T iterations without exchanging any solution, to
favor an independent exploration of the search space. In the fixed schedule, colonies exchange
solutions every c > 0 iterations. In the increasing schedule, solutions are exchanged with increasing
frequency, but taking care that at least c iterations pass between two exchanges, where 0 < c < T .
The ith exchange happens at iteration

∑i−1
k=0bbk · T cc, with 0 < b ≤ 1, and where bxcc = c if

x < c, bxcc = bxc otherwise, where bxc is the largest integer not exceeding x. For example, when
T = 1000, b = 0.9, and c = 25 the first 10 exchanges happen at iterations 1000, 1900, 2710, 3439,
4095, 4685, 5216, 5694, 6124, 6511.

5 Experimental setup

For our investigation, we considered MAX−MIN Ant System, one of the best-performing se-
quential variants of the ACO framework for the TSP. Our parallel implementation of MMAS is
based on the publicly available ACOTSP software1. We extended the ACOTSP code by adding a
quadrant nearest neighbor candidate list of size 20, and we modified the pheromone update sched-
ule in order to schedule only best-so-far and restart-best solutions.2 The parameters of MMAS
were chosen in order to guarantee robust performance over different instance sizes, and were the
same as the ones proposed in [35]: α = 1, β = 2, ρ = 0.2, and m = 25. The two considered
schedules for migration frequency were the fixed schedule with T = 100 and c = 25, and the
increasing schedule with T = 1000, b = 0.9, and c = 25.

Each algorithm was tested with three levels of the local search component: none, 2-opt and
3-opt. The local search component was applied to all the solutions constructed in each iteration.
Experiments were performed on a homogeneous cluster with 4 units, each featuring two AMD
OpteronTM 244 CPUs with 2 GB of RAM. The processing nodes were connected by a 1 Gbit
Ethernet communication network that allowed every processing node to communicate directly
with every other processing node. Each unit was running the Rocks Cluster Linux 4.2.1 operating
system at the time of the experiments. 3

Properties of the problem instances to be solved can have an impact on the performance of
the algorithm. From the benchmark library TSPLIB [33], we considered various instances with
different properties (the specific names are provided in Sections 6 and 7). The optimal solution is
known for all the chosen instances. For each instance, 30 runs were performed in order to create
a large enough sample size to allow for a statistical analysis of the results. The results report
percentage error from the optimal cost.

For experiments involving metaheuristics, it is a common practice to have a specific bound for
the computational effort (a maximum CPU time or a maximum number of iterations). When not
indicated differently, our algorithms were stopped after each colony performed 10000 iterations.
To evaluate the quality of a communication policy, the parallel independent runs (PIR) variant was
used as a baseline for comparison. In PIR, 4 or 8 runs of the same single colony MMAS algorithm
are simultaneously and independently executed using different random seeds. The final result is
the overall best-so-far solution.

The naming convention for the configurations is the following: a number, indicating how many
identical ant colonies are used (4 or 8), followed by the communication strategy label of the
algorithm (R, HC, RW, FC, and PIR), followed by a letter indicating the adopted migration schedule

1The source code for the current version of ACOTSP is licensed under the GNU General Public License and is
available for download at http://www.aco-metaheuristic.org/aco-code/public-software.html

2Experiments performed by one of the authors indicate that for large instances the schedule without iteration-
best solutions does not worsen the quality of the solution.

3The sources were compiled in the following environment: glibc 2.3.4, gcc 3.4.6, with optimization flag -O3,
and the LAM/MPI 7.1.1 communication libraries.
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Table 1: Full-factorial design: configurations are obtained considering all combinations of factor
levels.

number of communication migration local
colonies strategy schedule search

4 R fixed none

8 HC increasing 2-opt

RW 3-opt

FC

Table 2: Instances and corresponding maximum CPU time (search time). Number of iterations
done by each algorithm for each instance, averaged over 30 runs (iterations).

instance search time iterations
SEQ0 SEQ2 SEQ3

lin318 60 sec 8577 5842 2035
rat783 300 sec 12957 9458 4522
nrw1379 1200 sec 20460 16185 7277
pr2392 1800 sec 17912 16977 7604

(f for fixed, i for increasing), followed, finally, by a number indicating the adopted local search (0
for no local search, 2 for the 2-opt local search, and 3 for the 3-opt local search). The reference
algorithm implementing the PIR strategy does not have the migration frequency schema’s letter
in its name because PIR has no migration schedule. According to this naming convention, the
label 4RWf2 identifies a configuration with 4 identical colonies, a replace-worst strategy on a fully-
connected topology, adoption of the fixed-frequency migration schedule, and 2-opt local search;
while the label 8PIR3 identifies an algorithm with 8 identical colonies, a parallel independent
runs strategy and 3-opt local search. In Section 6, where SEQ was used, no colony number pre-
fix is necessary, nor is a migration frequency identifier letter. Thus, the label SEQ0 identifies a
configuration with 1 colony that uses no local search. In Table 1, we show the factorial design of
the experiments considered in this investigation. Adopting a full-factorial design, the number of
considered configurations is 2 · 4 · 2 · 3 = 48.

6 Preliminary experiments

When dealing with the traveling salesman problem and many other NP-hard combinatorial op-
timization problems, local search is known to play a major role in improving the performance
of ACO algorithms. To assess the impact of this component on the final solution quality in our
implementation of MMAS, we compared SEQ0, SEQ2, and SEQ3 on four TSPLIB instances. To
conduct a fair comparison we used a stopping criterion based on maximum CPU time rather than
a maximum number of iterations due to the different time complexities of the three algorithms.
The average number of iterations completed in the considered time is listed in Table 2.

We use a two-sided pairwise Wilcoxon rank sum test [7] with p-values adjusted by Holm’s
method [20] to assess the statistical significance of the differences in solution costs obtained by
the algorithms under analysis.

Figure 2 contains the boxplot of normalized solution costs with respect to the percentage error
from the known optimal cost. Full raw data and statistical analyses are available in [27]. The
differences are statistically significant for all the instances with the exception of the results of
SEQ2 and SEQ3 on the smallest instance (lin318). The boxplots confirm that SEQ3 achieves, on
average, the best performance, while SEQ0 obtains the worst. We observe that the larger the
instance, the wider the gap in performance between SEQ0 and SEQ2, SEQ3. It appears that the
local search component and problem instance are factors with excessive effects and, therefore,
to better comply with the ANOVA assumptions, we will analyze the configurations in separate
groups according to the problem instance and to the levels of the local search factor.
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Figure 2: Boxplot over 30 independent trials of the sequential MMAS algorithms using: no local
search (SEQ0), 2-opt local search (SEQ2), and 3-opt local search (SEQ3).

7 Experimental results

As suggested in the previous section, we analyzed the results of the various configurations in
separate groups according to the levels of the local search factor and the problem instance. In
each of these analyses we compared the different configurations with PIR by means of two-sided
pairwise Wilcoxon rank sum tests with p-values adjusted by Holm’s method in order to evaluate
the quality of the communication policies. To investigate the impact of the computational effort
on the solution cost obtained by each policy, we performed the comparison considering the results
after 1000 iterations (short runs), after 3162 iterations (medium runs), and after 10000 iterations
(long runs). For those readers interested in the full raw data and statistical analyses, we refer to
[27].

A common element in all analyses is that, for short runs, we were unable to find statistically
significant differences between the configurations using an increasing-frequency migration schedule
and PIR according to the Wilcoxon test. This was expected since for those configurations colonies
do not exchange solutions during the first 1000 iterations, and thus behave like PIR.

A second element common to all analyses is that, as expected, the factor number of colonies
produces consistently better results for a level of 8 rather than 4, and, therefore, we will not report
on this result in the following.

Lastly, ANOVA analyses were conducted for each of the seven TSPLIB instances, at each level
of local search, considering the results for short, medium and long runs, separately. The outcomes
of the ANOVA analyses are summarized in Table 6, and are taken into account in the following
presentation of the results.
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Table 3: The values in the table represent the number of times a configuration performed signifi-
cantly better than PIR (numbers with a plus) and the number of times it performed significantly
worse than PIR (numbers with a minus), according to the two-sided pairwise Wilcoxon rank sum
test. Positive entries are integers in [+1,+7], while negative entries are integers in [−7,−1]. Only
8 CPU configurations are listed.

LS
migr. comm. run length
freq. strat. short medium long

none

fixed

FC +5 −0 +4 −1 +4 −2
HC +6 −0 +4 −1 +3 −1
RW +6 −0 +4 −1 +4 −0
R +6 −0 +5 −1 +4 −2

increasing

FC +0 −0 +4 −1 +3 −1
HC +0 −0 +5 −1 +4 −1
RW +0 −0 +2 −1 +4 −0
R +0 −0 +2 −0 +4 −0

7.1 Configurations without local search

In a first set of experiments, we compared the configurations that do not use local search. The
experiments were carried out on 7 TSPLIB instances: kroA100, eil101, kroA200, lin318,
pcb442, att532, and rat783 within the experimental framework described in Section 5.

For short runs, the differences in performance between configurations using a fixed-frequency
schedule and that of PIR are statistically significant according to the Wilcoxon test (Table 3),
achieving better performance than PIR (with exceptions for some small instances). When the
computational effort was extended to medium runs, the fixed-frequency schedule continued to
achieve better performance than PIR, with the exception of the smallest instance kroA100, for
which it performed worse. For long runs, configurations using the increasing-frequency schedule
matched the fixed-frequency schedule configurations in terms of the number of statistically sig-
nificantly better performances than PIR, while the fixed-frequency schedule configurations had
more statistically significantly worse performances than PIR compared to the increasing-frequency
schedule configurations. Overall, in the long run case there was a reduction in the number of
configurations that performed better than PIR. When communication policies were found to have
an advantage over PIR, it was typically on the largest instances considered. More generally,
greater amounts of communication (here achieved with FC and HC, as opposed to R and RW) in
multi-colony ACO algorithms without local search seems to have a positive impact on solution
quality, supporting earlier work in the literature [30]. The magnitude of the impact appears to be
mainly dependent on the computational effort and on the migration schedule. As can be seen from
the values in Table 3, the beneficial effects of communication with a fixed-frequency migration
schedule are overall bigger but tend to be reduced when the computational effort is increased.
In contrast, when an increasing-frequency schedule is adopted, the beneficial effects tend to grow
with increasing computational effort. The overall best communication strategies, on average, are
the replace-worst and the unidirectional ring with the fixed-frequency migration schedule.

7.2 Configurations with 2-opt local search

In a second set of experiments, we compared configurations that have the local search factor set
to 2-opt. Considering that ACO algorithms using a local search component perform better than
those not using one, experiments were carried out on a set of larger TSPLIB instances than in the
previous case: pcb442, att532, rat783, u1060, nrw1379, d1655, and pr2392.

Cooperation was less beneficial for configurations adopting a 2-opt local search than for those
adopting none, though RW and R were relatively less affected than FC and HC in the fixed-frequency
case. Medium run results were more dependent on the migration schedule factor. Configurations
using the fixed-frequency schedule obtained worse results more often than PIR when compared to
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Table 4: Numbers with a plus indicate a configuration performed significantly better than PIR; a
minus indicates performance significantly worse than PIR. See Table 3 for a complete description.

LS
migr. comm. run length
freq. strat. short medium long

2-opt

fixed

FC +2 −0 +2 −1 +1 −4
HC +1 −0 +2 −1 +1 −4
RW +5 −0 +3 −0 +1 −0
R +4 −0 +3 −0 +1 −1

increasing

FC +0 −0 +2 −1 +1 −3
HC +0 −0 +2 −1 +1 −3
RW +0 −0 +2 −0 +1 −0
R +0 −0 +2 −0 +2 −1

Table 5: Numbers with a plus indicate a configuration performed significantly better than PIR; a
minus indicates performance significantly worse than PIR. See Table 3 for a complete description.

LS
migr. comm. run length
freq. strat. short medium long

3-opt

fixed

FC +2 −0 +1 −2 +1 −3
HC +0 −0 +1 −1 +1 −2
RW +3 −0 +2 −0 +1 −0
R +3 −0 +2 −0 +1 −2

increasing

FC +1 −0 +2 −0 +1 −0
HC +0 −0 +1 −0 +1 −0
RW +1 −0 +1 −0 +1 −0
R +0 −0 +1 −0 +1 −0

configurations using the increasing-frequency schedule.
The best policy when using 2-opt seems to be dependent on the computational effort. For

short runs, the replace-worst strategy with a fixed-frequency migration schedule should be used;
for long runs, the replace-worst strategy with an increasing-frequency migration schedule be used
instead. For medium runs, the best policy depends on the instance.

7.3 Configurations with 3-opt local search

The configurations using 3-opt local search were compared in a third set of experiments. To
match the increase in performance of the algorithms when compared to those using 2-opt, the
experiments were carried out on even larger TSPLIB instances: rat783, u1060, nrw1379, d1655,
pr2392, fnl4461, and rl5915.

For all the configurations, there was a reduction in the number of times that configurations
performed better or worse than PIR with respect to the 2-opt and none local search cases (Table 5).
As with the 2-opt and none local search cases, even the small beneficial effects of cooperation in
the 3-opt case tend to be reduced with increasing computational effort.

For medium and long runs, configurations adopting the fixed-frequency schedule more often
performed worse than PIR. Overall, the best policy seems to be the replace-worst policy with an
increasing-frequency schedule.

7.4 Summary of all local search configurations

For each set of local search configurations, we performed ANOVA analyses considering the results
for short, medium, and long runs separately for each of the seven TSPLIB instances used. The
set of instances chosen corresponded to the strength of the local search, with smaller instances for
no local search and larger instances for stronger local search. As described in Section 6, before
applying an ANOVA to a given set of data, we must check the validity of the key assumptions for
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Table 6: ANOVAs were performed on the configurations for each instance at each run length of each
local search level. The results are summarized in this table showing the (usually) best performing
migration frequency and communication strategy (not including PIR). Exceptions to the listed
overall trends are noted. ANOVA assumptions were violated in many cases, and those results
are excluded from this summary. For configurations with no local search, ANOVA assumptions
were violated on: kroA100 for all run lengths; att532 for medium runs; and kroA200 and pb442
for long runs. For configurations with 2-opt local search, ANOVA assumptions were violated
on: pcb442 for all run lengths; att532 for medium and long runs; and rat783 for long runs. For
configurations with 3-opt local search, ANOVA assumptions were violated on rat783, u1060, and
d1655 for all run lengths, and pr2392 for long runs.

LS
run migr. comm.

exceptions
length freq. strat.

none

short fixed FC, HC HC (not FC) for eil101

medium fixed FC
FC increasing for eil101

RW for att532

long increasing FC, HC
R for eil101

fixed for pcb442

2-opt

short fixed HC, R
HC for nrw1379 and larger
R for u1060 and smaller

medium fixed RW

long increasing RW, R
fixed for RW

R for pr2392 and larger

3-opt

short fixed RW, R FC for fnl4461

medium fixed RW R for fnl4461

long increasing R FC for fnl4461

the fixed-effects model (homoscedasticity, independence of residuals, and normality of residuals).
The results of the ANOVA analyses, as well as instances which were excluded due to violated
assumptions, are summarized in Table 6. Overall, the ANOVAs indicate that the best performing
communication strategies without local search are not the same as the strategies with increasing
levels of local search. However, and especially when factoring in the number of instances excluded
and the number of exceptions to the trends found, the trends shown by Table 6 would benefit
from the collection of additional data.

This was done for the 8 colonies case, sampling across a broader range of problem instances
to help determine the consistency of the trends seen earlier. In the additional data, the trends
remained the same. The amount that communication benefited each of the configurations varied
by the strength of the local search and the length of the run (see Figure 4 for a summary of all
the configurations by local search level). In general, and especially for the fixed case, the stronger
the local search the less helpful increasing amounts of communication become for longer runs on
smaller instances. In Figure 3, which shows a representative fraction of the results (8 colonies,
fixed frequency migration schedule configurations), it is clear that, in the absence of local search,
the communication strategy plays an important role in achieving high solution quality. That role
is diminished by increasing levels of local search and longer run lengths. Moreover, increased levels
of local search changes which communication strategies perform the best.

Statistical significance of differences in performance between communication strategies was
determined by means of a permutation test for each local search level, run length, and combination
of two communication strategies, with p-values adjusted by Holm’s method. Data labels were
exchanged within blocks determined by the instance that that data was collected on (e.g., FCf0
data points from the short run case on instance kroA100 were exchanged with RWf0 data points
from the short run case on instance kroA100 as part of the comparison between FC and RW for
short runs with no local search). Without local search, FC and HC policies typically performed
better than both R and RW. However, when including local search, the HC and FC policies typically
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Table 7: The values in the table represent the number of times the communication policy in the
row performed significantly better than parallel independent runs (numbers with a plus) and the
number of times it performed significantly worse than parallel independent runs (numbers with a
minus), according to the two-sided pairwise Wilcoxon rank sum test. Positive entries are integers
in [+1,+3], while negative entries are integers in [−3,−1].

LS
comm. run length
strat. medium long

16 32 64 16 32 64

2-opt
RWi +1 −0 +1 −0 +1 −0 +1 −0 +1 −0 +0 −0
Ri +2 −0 +2 −0 +3 −0 +3 −0 +3 −0 +3 −0

3-opt
RWi +0 −0 +1 −0 +0 −0 +2 −0 +1 −0 +1 −0
Ri +1 −0 +1 −0 +0 −0 +2 −0 +2 −0 +2 −0

Table 8: The symbols in the table indicate the performance of the communication policy in the
row with respect to parallel independent runs for the tested instances of size as in the column.
A plus (+) means that it has performed significantly better, according to the two-sided pairwise
Wilcoxon rank sum test.

configuration
run length

short medium long

316 1000 3162 316 1000 3162 316 1000 3162

8RWf2 + + + + + +
8Rf2 + + + + +

perform statistically significantly worse than RW, and, at the highest level of local search, worse
than both RW and R. This is consistent with the trends found earlier (Table 6), and confirms that
the best performing communication strategy changes depending on the level of local search used.

8 Scalability test

In a fourth set of experiments, the most successful policies identified previously were tested with
three more levels of the number of colonies factor: 16, 32, and 64. In Section 7 we concluded that
the overall best communication strategies are the replace-worst and the unidirectional ring when
including a local search component. We also showed that the increasing-frequency schedule has
beneficial effects that tend to be more noticeable for 8 colonies rather than for 4. This fourth set
of experiments was carried out on three TSPLIB instances (nrw1379, pr2392, and rl5915) with
20 runs of 10000 iterations each. As can be seen in Table 7, the beneficial effects of communication
are still apparent even though their magnitude depends on both the length of the search and the
level of the local search factor. Both RWi and Ri have a better average performance compared to
PIR consistently over all the levels of the number of colonies factor in the long run case. While
the RWi strategy still performs well overall, it performs worse than Ri when dealing with 16, 32
and 64 colonies. The greater the computational effort, the more evident the effect.

9 Test on unseen instances with 2-opt local search

To lend additional support for the conclusion of Section 8—that the cooperation of multiple
colonies becomes less effective for increasing search length—we conducted a set of experiments
on randomly generated traveling salesman problem instances. We generated several instances of
different sizes where cities are distributed uniformly in a square: 30 instances of size 316, 30
instances of size 1000, and 30 instances of size 3162. On each instance, 1 run of 10000 iterations
was performed. The results are grouped by instance size and were analyzed as if they were a single
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Figure 3: The average percent distance from the optimal solution, with a 95% confidence interval,
of each communication strategy (in order from top to bottom: FC, HC, R, RW, and PIR, with PIR
highlighted in light grey), split by run length and local search strength, and averaged across all
instances tested. Results are shown for the 8 colonies, fixed frequency migration configurations
only. Configurations (excluding PIR) not linked by brackets were statistically significantly different
from each other using a permutation test with p-values adjusted by Holm’s method.
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Figure 4: Each stack of increasingly larger boxes represents a set of increasingly larger problem
instances. Each stack is subdivided into four parts by the number of colonies (the columns) and
the migration schedule (the rows). The stacks themselves are grouped by the local search amount,
the run length, and the strategy employed. When a particular configuration performs better than
PIR on a particular instance, the corresponding box is colored light grey. It is dark grey if the
configuration performed worse, and medium grey otherwise. If the instance was not tested for
that configuration, its coloration is left blank (white).
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instance with multiple runs.4 To assess the statistical significance of the differences in solution
costs obtained by the algorithms under analysis, we rely on a two-sided pairwise Wilcoxon rank sum
test with p-values adjusted by Holm’s method. To limit the computational budget, we restricted
our test to the configurations 8RWf2 and 8Rf2.

The results in Table 8 show that, as the run length is increased, both the RWf and Rf communi-
cation strategies are only statistically significantly better than PIR for the largest instances. This
is consistent with our conjecture that the cooperation of multiple colonies becomes less effective
for increasing search length and smaller instances.

10 Discussion and Conclusions

Some preliminary studies on cooperation in multi-colony ACO algorithms, using 3-opt local search
and a fixed frequency migration schedule [25], led us to conjecture that information sharing be-
comes less effective for increasing search length and higher-performing algorithms. In this article,
we have presented a study in which we have analyzed the impact that communication policies
have on the solution quality reached by a parallel homogeneous multi-colony ACO algorithm for
the traveling salesman problem. We adopted a full factorial design, empirically testing the con-
figurations on a distributed-memory parallel architecture, and we have analyzed the results with
a fixed-effects model ANOVA. We have considered several factors that influence the performance
of a multi-colony ACO algorithm: the number of colonies, migration schedules, communication
strategies on different interconnection topologies, and the usage of local search.

As a first step in the analysis of the experimental results, every configuration was compared
against the most basic policy for multi-colony ACO algorithms—the parallel independent execution
on multiple processors of the single colony algorithm—using the percentage error deviation from
the known optimal cost. As a second step, we compared the configurations against the same
single colony MAX–MIN Ant System running for the same overall number of iterations as
the multi-colony variants. Our analysis suggests that, for the considered instances, the best
communication policy for ACO algorithms that do not use local search are very different from
those where the ACO algorithm makes use of a local search procedure. This indicates three
things. First, studying communication policies in multi-colony ACO algorithms for the traveling
salesman problem without local search and then simply adding the local search component leads to
suboptimal performance. Second, the replace-worst (RW) and the unidirectional ring (R) seem to be
the best performing strategies for multi-colony ACO algorithms using local search for the traveling
salesman problem. And third, a variable increasing-frequency schedule to migrate solutions scales
better with the search length and the number of colonies.

We can interpret these three conclusions as part of an exploitation/exploration tradeoff. Com-
munication emphasizes exploitation by recruiting colonies to work in the same region of the search
space. Less communication has an explorative effect, since each colony is more likely to be search-
ing in a different part of the search space. Without local search, PIR appears to suffer from an
overemphasis on exploration. Thus, any increase in exploitation results in improved solution qual-
ity, as when communication alone is added. Local search is also exploitative, and coupling it alone
with PIR can be expected to create a similarly more favorable balance of exploitation/exploration
for problem sizes proportional to the amount of local search used. When adding local search and
communication together, the algorithms tend to perform still better on larger problem instances,
but poorer on smaller ones than PIR (see Figure 4)—suffering from an overemphasis on exploita-
tion in those cases. The smallest problems are generally solved with ease by algorithms that
employ local search, and this mitigates the effect of any overemphasis on exploitation in those
cases (such as for the instances kroA100, ei101, kroA200, lin318, and pcb442 in this study).

4The optimal value for each instance has been obtained either by exactly solving the problem us-
ing the publicly available TSP solver CONCORDE or, for the few instances for which the opti-
mal solution was not found after 24 hours, taking the best solution found after 1 hour by a pub-
licly available implementation of the Iterated Lin-Kernigham Helsgaun algorithm available at the URL:
http://www.akira.ruc.dk/∼keld/research/LKH/index-1.3.html
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Since replace-worst is the closest in terms of communication to PIR (the colonies work inde-
pendently, with the exception that one is updated with the current best so far solution), it is
interesting that it typically never performs worse, and often times better than PIR. In contrast
to fully-connected (FC), a small amount of communication can provide a modest improvement on
larger problems with a minimum of over-exploitation on smaller problems. The ring strategy (R)
is the next most similar strategy to PIR (in that it does not involve as many solution exchanges
as HC or FC). Thus it seems that, as stated before, when adding local search, a large amount of
communication is not necessarily desirable because it tends to lead towards an overemphasis on
exploitation at the expense of exploration in some instances.

The fact that a variable increasing-frequency schedule tends to perform better than a fixed
frequency schedule, especially for larger runtimes, indicates that changing the ratio of exploitation
to exploration over time is a better strategy than a fixed ratio. Shifting the emphasis in the
course of a run from exploration to exploitation may initially delay finding high solution qualities
(compare the short and medium run lengths to the long run lengths for the increasing strategy in
Figure 4), but it results in a more consistent final improvement over PIR in the long run.

This study demonstrates that the cooperation of multiple homogenous colonies becomes less
effective for increasing search effort and stronger local search algorithms. Additionally, and most
importantly for subsequent studies, it shows that the relative effectiveness of different commu-
nication policies changes with the addition of local search or, implying more generally, with the
overall strength of the algorithm. As such, local search should be considered by studies that aim
to recommend one communication policy over another for multi-colony ACO algorithms.
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supersequence problem. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN V, volume 1498 of Lecture Notes in Computer Science, pages
692–701, Heidelberg, Germany, Sep 1998. Springer-Verlag.

[29] M. Middendorf, F. Reischle, and H. Schmeck. Information exchange in multi colony ant algorithms.
In J. Rolim, G. Chiola, G. Conte, L. V. Mancini, O. H. Ibarra, and H. Nakano, editors, Parallel
and Distributed Processing: 15 IPDPS 2000 Workshops, volume 1800 of Lecture Notes in Computer
Science, pages 645–652, Heidelberg, Germany, May 2000. Springer-Verlag.

[30] M. Middendorf, F. Reischle, and H. Schmeck. Multi colony ant algorithms. Journal of Heuristics,
8(3):305–320, May 2002.

[31] D. A. L. Piriyakumar and P. Levi. A new approach to exploiting parallelism in ant colony optimiza-
tion. In International Symposium on Micromechatronics and Human Science (MHS) 2002, pages
237–243. IEEE, 2002.

[32] M. Randall and A. Lewis. A parallel implementation of ant colony optimization. Journal of Parallel
and Distributed Computing, 62(9):1421–1432, Sep 2002.

[33] G. Reinelt. TSPLIB—A traveling salesman problem library. ORSA Journal on Computing, 3:376–384,
1991.
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