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et de Développements en Intelligence Artificielle
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Abstract

The use of ant colony optimization for solving stochastic optimization

problems has received a significant amount of attention in recent years.

In this paper, we present a study of enhanced ant colony optimization

algorithms for tackling a stochastic optimization problem, the proba-

bilistic traveling salesman problem. In particular, we propose an

empirical estimation approach to evaluate the cost of the solutions con-

structed by the ants. Moreover, we use a recent estimation-based iterative

improvement algorithm as a local search. Experimental results on a large

number of problem instances show that the proposed ant colony optimiza-

tion algorithms outperform the current best algorithm tailored to solve

the given problem, which also happened to be an ant colony optimization

algorithm. As a consequence, we have obtained a new state-of-the-art ant

colony optimization algorithm for the probabilistic traveling sales-

man problem.

1 Introduction

Ant colony optimization (ACO) (Dorigo and Stützle, 2004) has become a very
successful and widely used swarm intelligence method (Dorigo and Birattari,
2007) for solving hard optimization problems. Its success has been proved not
only by the large number of problems to which it has been applied, but also
by the very good performance ACO algorithms have achieved in many fields,
especially for routing problems with complex features, such as stochastic infor-
mation, or time-varying data (Di Caro and Dorigo, 1998).
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In this paper, we study the application of ACO algorithms to the proba-

bilistic traveling salesman problem (PTSP) (Jaillet, 1985), which is also
known as traveling salesman problem with stochastic customers (Gendreau et al.,
1996). It is a stochastic extention of the classical traveling salesman problem
(TSP). In the PTSP, it is unknown in advance whether a node requires being
visited, but its probability of requiring a visit is given. The most widely used
approach to tackle the PTSP is to construct an a priori solution before knowing
which nodes require being visited. An a priori solution is a permutation of all
the nodes of the given instance. Once the set of nodes that require being visited
is known, the a posteriori solution is derived by visiting the nodes that require
being visited in the order prescribed by the a priori solution and by skipping
the nodes that do not require being visited. The objective of the PTSP is to find
an a priori solution, such that the expected cost of its associated a posteriori

solution is minimized.
The PTSP is an NP-hard problem. The stochastic nature and the com-

plexity of the problem limit the applicability of exact algorithms. The so far
best performing exact solution technique has been proposed by Laporte et al.
(1994), who formulated the problem as an integer linear stochastic program and
solved it by a branch-and-cut approach. The experimental results showed that
instances of size up to 50 can be solved to optimality.

Recent approaches to the PTSP mainly involve the application of stochas-
tic local search (SLS) methods (Hoos and Stützle, 2005), among which ACO
algorithms appear to be currently the best-performing. SLS methods for the
PTSP can be grouped into two classes: analytical computation and empirical

estimation.
Much of the early ACO algorithms for the PTSP are based on analytical

computation, that is, they compute the exact expected cost of the a priori so-
lution using a closed-form expression derived by Jaillet (1985). Bianchi et al.
(2002a,b) adopted this closed-form expression in an ant colony system (ACS)
and compared it with a version of ACS for the TSP. The preliminary results
showed that the PTSP-specific approach is more effective than its’ TSP counter-
part when the instance probability values are less than 0.5. Branke and Guntsch
(2004) explored the idea to employ an ad-hoc approximation to replace the ex-
act PTSP objective function, and showed that the computation time can be
significantly reduced without major loss in solution quality. Bianchi (2006) and
Bianchi and Gambardella (2007) proposed pACS+1-shift, which integrates the
PTSP-specific ACS with 1-shift (Bertsimas and Howell, 1993; Bianchi et al.,
2005), a local search tailored for the PTSP. The experimental results showed
that pACS+1-shift significantly outperforms all other algorithms proposed so
far in the literature, and it is up to now considered as the best-performing SLS
method for the PTSP.

Instead of using analytical computation, estimation-based algorithms esti-
mate the expected cost of the a priori solution by Monte Carlo simulation.
Gutjahr (2003, 2004) proposed S-ACO, a general-purpose estimation-based ACO
algorithm for tackling stochastic combinatorial optimization problems, and took
the PTSP as a test bed. In S-ACO, the solutions produced at a given iteration
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are compared on the basis of a single realization; then the iteration-best solution
is compared with the best-so-far solution on the basis of a number of realiza-
tions that increases with the number of iterations according to a static scheme.
Gutjahr (2004) also studied a variant of S-ACO called S-ACOa, in which the
number of realizations needed for comparing the iteration-best with the best-so-
far solution is determined dynamically based on a statistical test. Birattari et al.
(2006) proposed ACO/F-Race, which adopts the F-Race procedure (Birattari,
2004). In this algorithm, the solutions produced at a given iteration, together
with the best-so-far solution, are compared using a pairwise statistical test for
multiple comparisons. The preliminary results showed that for the instances
with probability values less than 0.5, ACO/F-Race achieved solution costs that
are significantly better than those of S-ACO and S-ACOa. However, S-ACO, S-
ACOa, and ACO/F-Race are not expected to perform as well as pACS+1-shift.
This is due to the following facts: Firstly, these algorithms are proposed as
proof-of-concepts; secondly, they are based on ant system, which is not typi-
cally as well performing as ACS; thirdly, they do not use any local search as
a subsidiary solution improvement procedure. Note that the adoption of local
search is crucial to the performance of ACO algorithms (Dorigo and Stützle,
2004). Bianchi (2006) and Bianchi and Gambardella (2007) also considered
the estimation-based solution evaluation approach of Gutjahr (2003, 2004) in
pACS+1-shift, but concluded that this variant is significantly worse performing
than the analytical computation variant of pACS+1-shift.

Besides the current research effort in solving the PTSP, our recent research
results in the context of local search algorithms (Balaprakash et al., 2007b;
Birattari et al., 2008) have shown that (i) the estimation-based approaches are
effective alternatives to the analytical computation approaches; (ii) the new
estimation-based local search procedure 2.5-opt-EEais that we developed is
very effective for solving the PTSP: it reaches significantly better solutions for a
wide range of instances and it is by two to three orders of magnitude faster than
1-shift. These recent results indicate that there is also a significant potential
to improve over pACS+1-shift. All the aforementioned factors motivated us
to develop a new state-of-the-art algorithm that adopts the estimation-based
approach in the ACO framework, with the goal of effectively solving the PTSP.

In order to assess the impact of each algorithmic component that we use,
we adopt the following systematic bottom-up design: in Section 4, we integrate
2.5-opt-EEais into pACS and we show that pACS+2.5-opt-EEais outperforms
pACS+1-shift; in Section 5, we bring the estimation-based solution evaluation
into pACS+2.5-opt-EEais and we show that the cost evaluation performed by
the estimation-based approach is comparable to that of the analytical computa-
tion approach; in Section 6, we customize three high performing ACO variants,
MAX–MIN ant system, rank-based ant system, and best-worst ant system.
We compare the three variants to ACS and we show that the differences in so-
lution costs among the four ACO variants are minor, once their parameters are
fine tuned. It should be noted that all the four estimation-based ACO variants
outperform the previously best ACO algorithm, pACS+1-shift.
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Figure 1: An a priori solution for a PTSP instance with 16 nodes, where the nodes are

visited in the following order: 1, 2, 3,. . ., 15, 16, and 1. Let us assume that the nodes 1, 3, 7,

9, 11, and 15 are prescribed to be visited by a realization of ω. The a posteriori solution visits

the nodes following the a priori solution but skipping the gray nodes that do not require to

be visited.

2 The probabilistic traveling salesman problem

A PTSP instance can be defined on a weighted graph G = {V, E, C, P} with V =
{1, 2, ..., n} being a set of nodes, E = {〈i, j〉|i, j ∈ V, i 6= j} being a set of edges
that connect the nodes, C = {cij |〈i, j〉 ∈ E} being a set of travel costs, where
cij is the travel cost imposed on edge 〈i, j〉 ∈ E, and P = {pi|i ∈ V, 0 ≤ pi ≤ 1}
being a set of probabilities, where pi is the probability that node i requires being
visited. It is assumed that an event of visiting a node is independent of visiting
other nodes. The probabilistic information can be modeled using a random
variable ω that follows an n-variate Bernoulli distribution. A realization of ω

is a vector of binary values, where a value ‘1’ in position i indicates that node
i requires being visited whereas a value ‘0’ means that it does not need a visit.
Note that the travel costs are assumed to be symmetric—for all pairs of nodes
i, j we have cij = cji. A PTSP instance is called homogeneous if all probabilities
in the set P are the same, and it is called heterogeneous otherwise.

The PTSP is usually tackled by the a priori optimization approach in two
stages. First, before the realization of ω is known, a Hamitonian tour containing
all the nodes is constructed, which is called an a priori solution; once the nodes
that require being visited are known, the a posteriori solution is obtained by
following the nodes in the order of the a priori solution and by excluding the
nodes that need not be visited. The goal is to find an a priori solution with the
minimum expected a posteriori solution cost.

Suppose x = (π(1), π(2), . . . , π(n), π(1)) is an a priori solution for the PTSP,
where π is a permutation of the set V . The analytical computation approach for
evaluating the expected cost F (x) of the a priori solution x uses the following
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closed-form expression (Jaillet, 1985):

F (x) =
n∑

i=1

n∑

j=i+1

cπ(i)π(j) pπ(i)pπ(j)

j−1∏

k=i+1

(1 − pπ(k))

+

n∑

j=1

j−1∑

i=1

cπ(j)π(i) pπ(i)pπ(j)

n∏

k=j+1

(1 − pπ(k))

i−1∏

k=1

(1 − pπ(k)). (1)

Note that for a homogenous instance with probability p and size n, Equation 1
reduces to F (x) =

∑n

i=1

∑n−1
j=1 p2(1 − p)

j−1
cπ(i),π(i+j).

In the empirical estimation approach for the PTSP, the cost F (x) is empiri-
cally estimated on the basis of sample costs of a posteriori solutions f(x, ω1), f(x, ω2), . . . ,
f(x, ωM ) obtained from M independent realizations ω1, ω2, . . . , ωM of the ran-
dom variable ω:

F̂M (x) =
1

M

M∑

r=1

f(x, ωr). (2)

As it can be shown easily, F̂M (x) is an unbiased estimator of F (x).

3 The pACS+1-shift algorithm

pACS+1-shift (Bianchi, 2006; Bianchi and Gambardella, 2007) is currently the
best performing ant colony optimization algorithm for the PTSP. It is a stan-
dard ACS algorithm (Dorigo and Gambardella, 1997) in which, at each itera-
tion, m ants construct solutions in the following way: with a probability q0,
an ant k at node i chooses to move to the node j that maximizes the prod-
uct τijη

β
ij ; with probability 1 − q0, the next node j is chosen with probability

pk
ij = τijη

β
ij/

∑
l∈Nk

i

τilη
β
il (the random proportional rule); τij and ηij = 1/cij are

the pheromone value and the heuristic value associated with edge 〈i, j〉, respec-
tively; β is a parameter that determines the relative influence of the heuristic
information; Nk

i is the set of nodes to which it is feasible to move from node i.
When an ant moves from node i to node j, the pheromone value associated with
the edge 〈i, j〉 is updated to τij = (1−ϕ) ·τij +ϕ ·τ0, where ϕ ∈ (0, 1] is a param-
eter, and τ0 is the initial value of the pheromone. At the end of each iteration,
the pheromone value associated with each edge 〈i, j〉 of the best-so-far solution
is updated to τij = (1− ρ) · τij + ρ ·∆τbest

ij , where ρ ∈ (0, 1] is a parameter. The
solutions generated at each iteration are evaluated by Equation 1.

1-shift local search, a PTSP-specific iterative improvement algorithm, is
applied to all solutions constructed by the ants prior to the pheromone up-
date. The algorithm proceeds in two phases: the first phase consists in ex-
ploring a swap-neighborhood, where the set of neighbors of a given solution
contains all the solutions that can be obtained by swapping two consecutive
nodes. The second phase explores the node-insertion neighborhood in a fixed
lexicographic order. The cost difference of neighboring solutions is obtained by
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delta evaluation, a technique that considers only the cost contribution of solu-
tion components that are not common between the two solutions. This is done
by recursive closed-form expressions, which are based on heavy mathematical
derivations (Bianchi et al., 2005; Bianchi, 2006; Bianchi and Campbell, 2007).

4 Effectiveness of 2.5-opt-EEais in pACS

In this section, we show that the adoption of 2.5-opt-EEais instead of 1-shift
as a subsidiary solution improvement procedure significantly improves the ef-
fectiveness of pACS.

2.5-opt-EEais (Balaprakash et al., 2007b) is the state-of-the-art iterative
improvement algorithm for the PTSP. 2.5-opt-EEais differs from 1-shift

in the following three elements: it adopts an empirical estimation technique
in the delta evaluation; it uses the 2.5-exchange neighborhood relation that
combines the 2-exchange and node-insertion neighborhoods (Bentley, 1992); and
it exploits typical TSP neighborhood reduction techniques such as fixed-radius
search, candidate lists, and don’t look bits (Martin et al., 1991; Bentley, 1992;
Johnson and McGeoch, 1997). The effectiveness of the algorithm is further
enhanced by the usage of variance reduction techniques such as the method
of common random numbers, adaptive sample size, and importance sampling.
In particular, importance sampling is used to tackle effectively the instances
with very low probability values and it is applied as follows: in a 2-exchange
move, whenever the number of nodes in a segment (a 2-exchange move always
leads to two segments) is less than minis% of the instance size, w% nodes of
the shorter segment are biased with probability p′. See Figure 2 for an example.
For the node-insertion move, only the insertion node is biased with a value
p′′. For a more detailed explanation of 2.5-opt-EEais, we refer the reader
to Balaprakash et al. (2007b). We denote pACS+2.5-opt-EEais the algorithm
obtained by combining pACS with 2.5-opt-EEais.

We tuned the four parameters of 2.5-opt-EEais through a parameter tun-
ing algorithm, Iterative F-Race (Balaprakash et al., 2007a). For tuning, we
used homogeneous instances obtained as follows: TSP instances are gener-
ated with the DIMACS instance generator (Johnson et al., 2001) from which
the PTSP instances are obtained by associating a probability value to each
node. We used clustered instances of 1000 nodes, in which the nodes are
arranged in a number of clusters in a 106 × 106 square. We considered val-
ues for p from 0.050 to 0.200 with an increment of 0.025 and from 0.3 to
0.5 with an increment of 0.1. We focus on probability values up to 0.5 be-
cause Bianchi and Gambardella (2007) showed that the instances with proba-
bility values greater than 0.5 can effectively be solved as a TSP by the con-
corde solver (Applegate et al., 2001). The generated instances are grouped
into three classes according to the value of p: {0.050, 0.075, 0.100} (Class-I),
{0.150, 0.175, 0.200} (Class-II), {0.300, 0.400, 0.500} (Class-III); for each proba-
bility level we generated 30 instances. The parameters of 2.5-opt-EEais are
fine tuned on each instance class. Table 1 shows the range of each parameter
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Figure 2: In this example, the two edges 〈1, 2〉 and 〈6, 7〉 are deleted and replaced with 〈1, 6〉

and 〈2, 7〉 by a 2-exchange move. Assume that minis and w are set to 50 and 40, respectively.

Since the number of nodes in the segment [2, . . . , 6] is less than 50% of 16, which is eight,

importance sampling is used to bias 40% of 5, that is, two nodes, between 2 and 6, one on

each side of the segment. The nodes that are biased are 2, 3, 5, and 6.

Table 1: Parameters values for 2.5-opt-EEais

algorithm parameters range selected value

Class-I Class-II Class-III

2.5-opt-EEais

minis [0.0, 50.0] 42.0 46.0 2.40
w [0.0, 20.0] 13.0 16.0 5.80
p′ [0.0, 1.0] 0.003 0.47 0.70
p′′ [0.0, 1.0] 0.92 0.67 0.95

given to the tuning algorithm and the selected value. For pACS, we adopted
the parameter values suggested by Bianchi and Gambardella (2007); Bianchi
(2006).

pACS+1-shift and pACS+2.5-opt-EEais are evaluated on the homogeneous
PTSP instances used by Bianchi (2006), which are obtained by assigning a prob-
ability value to each node for TSPLIB instances, ch150, d198, lin318, att532, and
rat783. The algorithms were implemented in C and compiled with gcc, version
3.3. Experiments were carried out on AMD OpteronTM244 1.75 GHz processors
with 1 MB L2-Cache and 2 GB RAM, running under Rocks Cluster GNU/Linux.
We used the stopping criterion suggested by Bianchi and Gambardella (2007)
and by Bianchi (2006), where each algorithm is allowed to run for a computa-
tion time of n2/100 CPU seconds. The computational results obtained on the
instance rat783 are shown in Table 2 and Figure 3.

The results show that the adoption of 2.5-opt-EEais in pACS is indeed
very effective. The average cost of the solutions found by pACS+2.5-opt-EEais

is between 2.0% to 12.1% less than those of pACS+1-shift and the observed
difference is significant according to the Student t-test. An exception is for
p = 0.050, where pACS+1-shift obtains an average solution cost that is 0.236%
less than that of pACS+2.5-opt-EEais. The general trends of the experimental
results obtained on the other instance sizes are similar; we refer the reader to
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Table 2: Comparison of the average cost obtained by pACS+2.5-opt-EEais and
pACS+1-shift over 30 independent runs on instance rat783. See footnote 1 on
this page for an explanation of the contents and the typographic conventions
adopted in the table.

pACS+2.5-opt-EEais
vs.

pACS+1-shift

p Difference 95% CI
0.050 +0 .236 [+0.014,+0.459]
0.075 −2.022 [−2.509,−1.534]
0.100 −3.029 [−3.430,−2.628]
0.150 −5.214 [−5.784,−4.644]
0.175 −5.798 [−6.270,−5.326]
0.200 −6.214 [−6.661,−5.766]
0.300 −9.401 [−9.924,−8.877]
0.400 −10.760 [−11.451,−10.069]
0.500 −12.176 [−12.759,−11.593]

Balaprakash et al. (2008) for the complete set of results and for the absolute
values.

5 Estimation-based ant colony system

In order to design a complete estimation-based ACS, in particular, to make
the solution evaluation approach of ACS coherent with that of the underlying
iterative improvement algorithm, we modified pACS+2.5-opt-EEais in such a
way that the solution costs are evaluated using Equation 2 instead of Equation 1.
In particular, for each solution xi, an unbiased estimator F̂Mi

(xi) of F (xi) is
obtained through Mi independent realizations of ω. Estimating solution costs
with low variance is crucial to the effectiveness of the estimation approach. In
a similar spirit as for 2.5-opt-EEais, we address this issue using two variance
reduction techniques: (i) the method of common random numbers and (ii) an
adaptive sample size.

As in 2.5-opt-EEais, the adoption of the method of common random num-
bers for ACS consists in using a same set of realizations to evaluate the solu-
tions produced at each iteration. The adaptive sample size in 2.5-opt-EEais

is implemented using the sequential application of a parametric statistical test,
Students t-test, which is appropriate for comparing two solutions. However,
since in ACS more than two solutions are compared at each iteration, we use

1For a given comparison A vs. B, the table reports the observed relative difference between
the two algorithms A and B and a 95% confidence interval (CI) obtained through the t-test.
Concerning the relative difference, if the value is positive (negative), the algorithm A (B)
obtained an average cost that is larger (smaller) than the one obtained by the algorithm B

(A). In this case, the value is typeset in boldface (italics) if it is significantly different from
zero according to the t-test, at a confidence of 95%.
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Figure 3: Experimental results on the instance rat783. The plots represent the cost of the

solutions obtained by pACS+2.5-opt-EEais normalized by the one obtained by pACS+1-shift.

The normalization is done on a run-by-run basis for 30 runs; the normalized solution cost is

then aggregated.

a parametric statistical test based on analysis of variance (ANOVA) (Fisher,
1925) and Tuckeys’ honestly significant differences (HSD) test (Tukey, 1949)
for multiple comparison. We implemented the adaptive sample size procedure
as a racing algorithm (Birattari, 2004): at each iteration, the a posteriori so-
lution cost of each a priori solution is computed sequentially on realizations.
Once Mmin realizations have been used, where Mmin is a parameter, ANOVA
is applied on a realization-by-realization basis to test the null hypothesis that
the cost estimates of all solutions are equal. The rejection of the null hypothesis
indicates that there is at least one solution whose cost estimate is significantly
worse than the one with best cost estimate. This particular worse solution
is identified using Tuckeys’ HSD and it is eliminated from further evaluation.
The procedure terminates when a single solution remains or when a maximum
number M of realizations is used, where M is a parameter. If more than one
solution survives at the end, the solution with the best cost estimate is selected
as the best solution. We denote this procedure ANOVA-Race. Note that the
aforementioned cost evaluation procedure takes place after the solutions con-
structed by the ants are improved by 2.5-opt-EEais. We denote the complete
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estimation-based algorithm ACS-EE, where EE stands for empirical estimation.

We evaluate ACS-EE and pACS+2.5-opt-EEais on clustered homogeneous
PTSP instances of size 1000, which are generated afresh using the DIMACS
instance generator as described in Section 4. For the instance size 1000, Bianchi
(2006) and Bianchi and Gambardella (2007) used 10000 (= n2/100) CPU sec-
onds as a stopping criterion, which allowed pACS+1-shift to perform more than
five iterations. Such a high computation time is needed because the computa-
tional complexity of 1-shift is very high. Since 2.5-opt-EEais is between
two and three orders of magnitude faster than 1-shift (Birattari et al., 2008;
Balaprakash et al., 2007b), we study the algorithms under 100 and 1000 CPU
seconds. The adoption of 10 CPU seconds is not insightful because it does not
allow the algorithms to perform more than five iterations. Note that Equation 1
is used for the post-evaluation of the best-so-far solutions found by ACS-EE.

The parameters of the adaptive sampling procedure are fixed a priori : Mmin

is set to 5 and M is set to 1000. The null hypothesis is rejected at a significance
level of 0.05. ACS-EE adopts the same parameter values as pACS+2.5-opt-EEais.
ACS-EE uses a same set of realizations for all iterations. In the context of the
PTSP, this strategy is more effective than changing realizations for each iter-
ation (Birattari et al., 2008). However, the realizations are selected randomly
from the given set for each iteration. Note that the implementation of ACS-EE
and pACS+2.5-opt-EEais is based on ACOTSP (Stützle, 2002) and the two
algorithms differ only in the solution evaluation procedure.

The computational results in Table 3 show that for both stopping criteria
the two algorithms are comparable to each other. With 95% confidence, under
the current experimental setting, we can state that should ever the expected
cost of solutions found by ACS-EE be higher than the one of those found by
pACS+2.5-opt-EEais, the difference between the expected costs would be at
most 0.73% and 0.48% under 100 CPU seconds and 1000 CPU seconds, respec-
tively.

We also tested the algorithms on instances with p > 0.5, where we found
that ACS-EE is significantly better than pACS+2.5-opt-EEais. This can be
explained as follows: instances with high probability values have low coefficient
of variation (Balaprakash et al., 2007b). In this case, ANOVA-Race needs only
few realizations to select the best solution. This allows ACS-EE to perform more
iterations when compared to pACS+2.5-opt-EEais, which eventually results in
higher quality solutions.

Note that the results presented in this section and in Section 4 contradict
the ones reported in Bianchi and Gambardella (2007), where, in pACS+1-shift

the adoption of an estimation-based approach is shown to be less effective than
that of the analytical computation approach. This contradiction is due to the
fact that the estimation-based approach adopted by Bianchi and Gambardella
(2007) is not tailored to the PTSP: it is a general purpose procedure proposed
for ACO that is allowed to run for a relatively long computation time without
any iterative improvement algorithm.
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Table 3: Comparison of the average cost obtained by ACS-EE and
pACS+2.5-opt-EEais over 30 clustered homogeneous instances. See footnote 1
on page 8 for an explanation of the contents and the typographic conventions
adopted.

100 CPU seconds

ACS-EE
vs.

pACS+2.5-opt-EEais

p Difference 95% CI
0.050 −0.540 [−1.246, +0.166]
0.075 +0.139 [−0.458, +0.736]
0.100 +0.044 [−0.273, +0.361]
0.150 −0.061 [−0.392, +0.270]
0.175 +0.129 [−0.116, +0.374]
0.200 −0.077 [−0.389, +0.235]
0.300 −0.192 [−0.437, +0.054]
0.400 −0.001 [−0.209, +0.208]
0.500 −0.156 [−0.411, +0.099]
0.600 −0.324 [−0.555,−0.094]
0.700 −0.486 [−0.763,−0.208]
0.800 −0.618 [−0.809,−0.426]
0.900 −0.994 [−1.221,−0.766]

1000 CPU seconds

ACS-EE
vs.

pACS+2.5-opt-EEais

p Difference 95% CI
0.050 +0.117 [−0.254,+0.488]
0.075 +0.024 [−0.046,+0.095]
0.100 +0.019 [−0.039,+0.077]
0.150 +0.041 [−0.063,+0.145]
0.175 +0.111 [−0.033,+0.256]
0.200 +0.043 [−0.113,+0.199]
0.300 −0.030 [−0.139,+0.078]
0.400 −0.068 [−0.154,+0.019]
0.500 −0.052 [−0.154,+0.050]
0.600 −0.019 [−0.116,+0.077]
0.700 −0.089 [−0.257,+0.078]
0.800 −0.206 [−0.308,−0.104]
0.900 −0.155 [−0.294,−0.015]

6 Comparison between estimation-based ACO

variants

One may wonder why ACS was adopted in Bianchi et al. (2002a,b), Bianchi
(2006), and Bianchi and Gambardella (2007). It is rather likely that this choice
is due to the authors background and their expertise with ACS, which has
been developed by Dorigo and Gambardella (1997). Although ACS is a high
performing ACO variant, we cannot rule out other existing variants as promising
for the PTSP. This is due to the fact that there is no theoretical justification
or empirical evidence in the PTSP literature that ACS is the best choice. We
address this issue by comparing several ACO variants. In addition to ACS,
we have considered the following three high performing variants: MAX–MIN
ant system (MMAS) (Stützle and Hoos, 2000), rank-based ant system (RAS)
(Bullnheimer et al., 1999), and best-worst ant system (BWAS) (Cordón et al.,
2002).

In all three variants, m ants construct solutions only using the random pro-
portional rule and they differ from ACS with respect to the pheromone update
procedure. In MMAS, only the iteration-best or best-so-far ant updates the
pheromone trail associated with each edge 〈i, j〉 to τij = (1 − ρ) · τij + ∆τbest

ij ,

where ρ is a parameter and ∆τbest
ij = 1/Cbest. The value of Cbest is equal to the

cost of the iteration-best or best-so-far solution depending on which of the two
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is chosen. The pheromone values are limited within a maximum and a minimum
value in order to reduce the risk of search stagnation; in case of search stagna-
tion, the search is restarted by re-initializing the pheromone values. In RAS,
at each iteration, from m solutions only the (w − 1) best ranked solutions and
the best-so-far solution are allowed to update the pheromone values using the
following equation: τij = τij +

∑w−1
r=1 (w− r)∆τr

ij +w∆τbest
ij , where r is the rank

of the solution obtained by sorting m solutions by increasing cost, ∆τr
ij = 1/Cr,

and ∆τbest
ij = 1/Cbest if edge 〈i, j〉 belongs to the best-so-far solution; Cr and

Cbest are the cost of the solution with rank r and the cost of the best-so-far solu-
tion, respectively. In BWAS, only the best-so-far solution is allowed to update
the pheromone values; the pheromone values of the edges that belong to the
worst ant but not to the best-so-far solution are reduced. To avoid premature
convergence, BWAS uses pheromone re-initialization and pheromone mutation.

All the aforementioned variants are extended to solve the PTSP by using
ANOVA-Race to evaluate the solution costs and by using 2.5-opt-EEais as the
underlying solution improvement procedure. We denote them MMAS-EE, RAS-EE,
and BWAS-EE.

Similar to ACS-EE, the implementations of MMAS-EE, RAS-EE, and BWAS-EE

were based on ACOTSP (Stützle, 2002). We evaluate all the variants on a new
set of clustered homogeneous PTSP instances of size 1000 obtained using the
DIMACS instance generator. We allowed each variant to run for 100 and 1000
CPU seconds. Concerning the parameter values of each variant, we use two sets
of values: default parameter values and tuned parameter values. We present
the empirical results in the following three sections.

6.1 Experiments with default parameter values

The default parameter values for each variant are chosen reasonably close to the
values proposed in the ACO literature for the TSP (Dorigo and Stützle, 2004;
Bullnheimer et al., 1999; Cordón et al., 2002): in all the variants m, α, and β
are set to 10, 1.0, and 2.0, respectively; in ACS-EE, ρ and q0 are set to 0.1 and
0.98, respectively; in MMAS-EE, ρ is set to 0.2; in RAS-EE, ρ and w are set to 0.5
and 6, respectively; in BWAS-EE, ρ is set to 0.2. We denote the variants that
adopt the default parameter values as ACS-EE(d) MMAS-EE(d), RAS-EE(d), and
BWAS-EE(d).

The results are shown in Table 4. For most probability levels, ACS-EE(d)
is better than other variants: the average cost of ACS-EE(d) is between 0.4%
and 3.9% and between 0.1% and 3.9% less than that of other variants for 100
and 1000 CPU seconds, respectively. Most of the differences that have been
observed are statistically significant according to the t-test.
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6.2 Comparison between the variants with tuned and de-

fault values

The parameter values of each variant are tuned separately for 100 and 1000
CPU seconds in the same way as described in Section 4 using Iterative F-Race.
The selected values are shown in Tables 5. We denote the variants that use
the fine tuned parameter values as ACS-EE(t), MMAS-EE(t), RAS-EE(t), and
BWAS-EE(t).

The results from Table 6 show that, as expected, the adoption of tuned pa-
rameter values allows each variant to achieve much better results. MMAS-EE(t),
RAS-EE(t), and BWAS-EE(t) profit much more from tuning than ACS-EE(t)

does. For 100 CPU seconds, the observed improvements are very large and are
up to 8.6%. For 1000 CPU seconds, the improvement is up to 3.5%.
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Table 4: Comparison of the average cost obtained by ACS-EE(d), MMAS-EE(d),
RAS-EE(d), and BWAS-EE(d), on the clustered instances of size 1000 for 100 and
1000 seconds. See footnote 1 on page 8 for an explanation of the contents and
the typographic conventions adopted.

100 CPU seconds

ACS-EE(d)
vs.

MMAS-EE(d)

ACS-EE(d)
vs.

RAS-EE(d)

ACS-EE(d)
vs.

BWAS-EE(d)

p Difference 95% CI Difference 95% CI Difference 95% CI
0.050 +2 .669 [+0.613, +4.726] +1.435 [−0.582, +3.451] +0.748 [−1.386, +2.883]
0.075 −2.838 [−3.421,−2.255] −3.417 [−4.030,−2.803] −3.144 [−3.649,−2.638]
0.100 −3.905 [−4.362,−3.448] −1.642 [−2.049,−1.235] −1.057 [−1.729,−0.385]
0.150 −0.696 [−0.882,−0.511] −0.605 [−0.838,−0.373] −0.117 [−0.289, +0.055]
0.175 −1.034 [−1.238,−0.830] −0.988 [−1.176,−0.801] −0.417 [−0.623,−0.212]
0.200 −1.162 [−1.357,−0.968] −1.081 [−1.257,−0.904] −0.523 [−0.688,−0.358]
0.300 −2.247 [−2.451,−2.043] −2.015 [−2.164,−1.866] −1.175 [−1.374,−0.975]
0.400 −3.111 [−3.323,−2.898] −2.883 [−3.068,−2.699] −1.586 [−1.773,−1.399]
0.500 −3.319 [−3.528,−3.110] −3.293 [−3.477,−3.109] −1.725 [−1.925,−1.525]

1000 CPU seconds

ACS-EE(d)
vs.

MMAS-EE(d)

ACS-EE(d)
vs.

RAS-EE(d)

ACS-EE(d)
vs.

BWAS-EE(d)

p Difference 95% CI Difference 95% CI Difference 95% CI
0.050 −1.893 [−2.222,−1.563] −1.076 [−1.427,−0.725] −0.905 [−1.176,−0.635]
0.075 −1.803 [−2.008,−1.599] −1.371 [−1.517,−1.224] −0.827 [−1.010,−0.643]
0.100 −0.746 [−0.846,−0.646] −0.700 [−0.793,−0.608] −0.378 [−0.464,−0.293]
0.150 −0.790 [−0.873,−0.708] −1.262 [−1.363,−1.160] −0.566 [−0.655,−0.477]
0.175 −0.925 [−1.032,−0.818] −1.738 [−1.831,−1.644] −0.553 [−0.637,−0.468]
0.200 −0.956 [−1.057,−0.856] −2.120 [−2.236,−2.004] −0.451 [−0.544,−0.358]
0.300 −0.618 [−0.730,−0.506] −3.189 [−3.307,−3.070] −0.275 [−0.379,−0.172]
0.400 −0.230 [−0.327,−0.134] −3.608 [−3.769,−3.447] −0.292 [−0.402,−0.181]
0.500 −0.139 [−0.246,−0.032] −3.900 [−4.031,−3.768] −0.406 [−0.501,−0.310]
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Table 5: Fine tuned parameters values

100 CPU seconds
algorithm parameters range selected value

Class-I Class-II Class-III

ACS-EE

m [3, 15] 5 4 11
β [0.0, 5.0] 3.3 0.16 1.0
ρ [0.001, 1.0] 0.75 0.84 1.0
q0 [0.0, 1.0] 0.84 1.0 0.99

MMAS-EE

m [3, 15] 5 4 15
α [0.001, 1.5] 1.4 1.3 0.99
β [0.0, 5.0] 3.2 0.97 2.1
ρ [0.001, 1.0] 1.0 1.0 0.97

RAS-EE

m [3, 15] 3 3 6
α [0.001, 1.5] 0.33 1.1 0.71
β [0.0, 5.0] 5.0 2.6 2.1
ρ [0.001, 1.0] 1.0 0.94 0.83
w [1, 10] 1 1 1

BWAS-EE

m [3, 15] 3 4 4
α [0.001, 1.5] 0.99 1.4 0.89
β [0.0, 5.0] 3.1 2.9 2.3
ρ [0.001, 1.0] 0.95 0.97 0.66

1000 CPU seconds
algorithm parameters range selected value

Class-I Class-II Class-III

ACS-EE

m [3, 15] 4 3 5
β [0.0, 5.0] 0.05 0.85 3.7
ρ [0.001, 1.0] 0.67 0.079 0.82
q0 [0.0, 1.0] 0.99 0.99 0.96

MMAS-EE

m [3, 15] 8 15 6
α [0.001, 1.5] 1.5 1.2 1.1
β [0.0, 5.0] 1.6 1.9 0.95
ρ [0.001, 1.0] 0.99 0.98 0.62

RAS-EE

m [3, 15] 10 6 11
α [0.001, 1.5] 1.2 1.5 1.4
β [0.0, 5.0] 0.85 2.1 2.7
ρ [0.001, 1.0] 1.0 0.57 0.37
w [1, 10] 1 1 1

BWAS-EE

m [3, 15] 5 10 6
α [0.001, 1.5] 0.6 1.1 0.9
β [0.0, 5.0] 2.7 0.09 2.4
ρ [0.001, 1.0] 0.99 0.85 0.27
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Table 6: Comparison of the average cost obtained by the four variants with tuned values to ones with default values on the
clustered instances of size 1000 for 100 and 1000 seconds. See footnote 1 on page 8 for an explanation of the contents and the
typographic conventions adopted.

100 CPU seconds

ACS-EE(t)
vs.

ACS-EE(d)

MMAS-EE(t)
vs.

MMAS-EE(d)

RAS-EE(t)
vs.

RAS-EE(d)

BWAS-EE(t)
vs.

BWAS-EE(d)

p Difference 95% CI Difference 95% CI Difference 95% CI Difference 95% CI
0.050 −8.051 [−9.708,−6.394] −5.030 [−6.240,−3.819] −8.629 [−10.088,−7.170] −7.874 [−9.468,−6.281]
0.075 −2.177 [−2.727,−1.626] −5.838 [−6.372,−5.305] −6.998 [−7.582,−6.413] −5.706 [−6.130,−5.282]
0.100 −0.208 [−0.486, +0.070] −4.813 [−5.248,−4.378] −2.795 [−3.143,−2.448] −1.741 [−2.480,−1.001]
0.150 −1.060 [−1.278,−0.842] −1.751 [−1.924,−1.579] −1.754 [−1.950,−1.558] −1.134 [−1.292,−0.977]
0.175 −0.972 [−1.170,−0.774] −2.062 [−2.238,−1.885] −2.046 [−2.170,−1.921] −1.263 [−1.406,−1.119]
0.200 −1.136 [−1.287,−0.986] −2.268 [−2.467,−2.069] −2.227 [−2.423,−2.031] −1.479 [−1.637,−1.321]
0.300 −0.663 [−0.824,−0.501] −2.779 [−2.968,−2.591] −2.654 [−2.826,−2.482] −1.577 [−1.766,−1.388]
0.400 −0.443 [−0.612,−0.274] −3.282 [−3.486,−3.077] −3.242 [−3.435,−3.050] −1.601 [−1.804,−1.399]
0.500 −0.053 [−0.178, +0.071] −3.192 [−3.393,−2.991] −3.099 [−3.297,−2.900] −1.157 [−1.364,−0.949]

1000 CPU seconds

ACS-EE(t)
vs.

ACS-EE(d)

MMAS-EE(t)
vs.

MMAS-EE(d)

RAS-EE(t)
vs.

RAS-EE(d)

BWAS-EE(t)
vs.

BWAS-EE(d)

p Difference 95% CI Difference 95% CI Difference 95% CI Difference 95% CI
0.050 −1.138 [−1.423,−0.852] −2.641 [−2.944,−2.338] −2.819 [−3.062,−2.577] −1.654 [−1.902,−1.405]
0.075 −0.297 [−0.360,−0.234] −2.077 [−2.283,−1.871] −1.670 [−1.812,−1.528] −1.094 [−1.299,−0.888]
0.100 −0.216 [−0.260,−0.173] −0.949 [−1.055,−0.843] −0.918 [−1.016,−0.820] −0.582 [−0.671,−0.494]
0.150 −0.155 [−0.223,−0.088] −0.941 [−1.040,−0.842] −1.436 [−1.532,−1.340] −0.681 [−0.778,−0.585]
0.175 −0.038 [−0.111, +0.035] −1.056 [−1.159,−0.954] −1.834 [−1.921,−1.746] −0.610 [−0.692,−0.529]
0.200 −0.087 [−0.170,−0.004] −1.067 [−1.153,−0.980] −2.134 [−2.257,−2.012] −0.440 [−0.536,−0.345]
0.300 +0 .186 [+0.077, +0.295] −0.721 [−0.819,−0.624] −3.188 [−3.294,−3.083] −0.106 [−0.210,−0.001]
0.400 +0.073 [−0.016, +0.162] −0.228 [−0.319,−0.138] −3.393 [−3.570,−3.217] −0.066 [−0.168, +0.036]
0.500 +0.104 [−0.001, +0.210] −0.089 [−0.184, +0.007] −3.531 [−3.663,−3.399] −0.104 [−0.225, +0.017]
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6.3 Comparison between the variants with tuned param-

eter values

The computational results of the four variants that adopt the tuned parame-
ter values are given in Table 7. For the absolute values, we refer the reader
to Balaprakash et al. (2008). From the results, we cannot identify a clear win-
ner among the considered variants. For 100 CPU seconds, with a confidence
level of 95%, under the current experimental setting, we can state that should
ever the expected cost of the solutions found by MMAS-EE(t), RAS-EE(t), and
BWAS-EE(t) be larger than those found by ACS-EE(t), the difference would be at
most 1.4%, 2.7% and 1.2%, respectively. For 1000 CPU seconds, the aforemen-
tioned differences would be at most 0.3%, 0.8% and 0.1%, respectively. There
are few exceptions, where the differences are significant but rather small: for
100 CPU seconds, the maximum observed difference is less than 1% (except for
p = 0.050 and p = 0.075, the average cost of RAS-EE(t) is 2.0% and 1.5% less
than that of ACS-EE(t), respectively) and for 1000 CPU seconds it is less than
0.7%.

From the absolute values reported in Balaprakash et al. (2008), we observed
that for 1000 CPU seconds all the variants obtain average solution costs that are
smaller than that of 100 CPU seconds; the improvements for 10 times increase
of the computation time are in the range of 0.4% to 2.1% except for p = 0.050,
where the improvements are between 2.9% to 4.5%.

In order to further assess the solution costs achieved by the variants for a
very long computation time, we allowed the variants to run for 10000 CPU
seconds as suggested by Bianchi and Gambardella (2007) and Bianchi (2006).
The parameter values of each variant are the same as that of 1000 CPU seconds.
The results are shown in Table 7. In spite of few significant differences between
the variants, the general trend is similar to that of shorter computation times:
there is no clear winner among the considered variants.

7 Conclusion and future work

The main contribution of the paper is the development and the empirical anal-
ysis of new state-of-the-art ACO algorithms for the PTSP. We used the cur-
rent best performing ACO algorithm pACS+1-shift as a starting point. We
showed that the adoption of the state-of-the-art iterative improvement algo-
rithm 2.5-opt-EEais allows pACS to obtain a significant improvement in the
solution cost. To develop a complete estimation-based ACS, we adopted an
estimation-based approach to evaluate the solution costs. Finally, we customized
MAX–MIN ant system, rank-based ant system, and best-worst ant system
to solve the PTSP. We showed that all of them can be used to effectively tackle
the PTSP provided that their parameter values are fine tuned. In a nutshell, we
showed that the proposed estimation-based approach is an effective alternative
to the analytical computation techniques when applying ACO and local search
to the PTSP. Note that this conclusion contradicts the previous results reported
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Table 7: Comparison of the average cost obtained by ACS-EE(t), MMAS-EE(t),
RAS-EE(t), and BWAS-EE(t), on the clustered instances of size 1000 for 100,
1000, and 10000 seconds. See footnote 1 on page 8 for an explanation of the
contents and the typographic conventions adopted.100 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference 95% CI Difference 95% CI Difference 95% CI
0.050 −0.597 [−1.498, +0.303] +2 .076 [+1.392, +2.759] +0.555 [−0.155, +1.264]
0.075 +0 .940 [+0.425, +1.455] +1 .590 [+1.184, +1.996] +0.481 [−0.023, +0.985]
0.100 +0 .744 [+0.515, +0.972] +0 .976 [+0.809, +1.143] +0 .487 [+0.297, +0.676]
0.150 +0.002 [−0.156, +0.160] +0.096 [−0.050, +0.243] −0.042 [−0.213, +0.128]
0.175 +0.067 [−0.062, +0.196] +0.097 [−0.025, +0.218] −0.125 [−0.261, +0.012]
0.200 −0.018 [−0.181, +0.145] +0.023 [−0.130, +0.175] −0.177 [−0.307,−0.048]
0.300 −0.119 [−0.262, +0.024] −0.011 [−0.166, +0.144] −0.256 [−0.415,−0.098]
0.400 −0.267 [−0.414,−0.119] −0.074 [−0.229, +0.082] −0.428 [−0.573,−0.282]
0.500 −0.185 [−0.332,−0.037] −0.254 [−0.406,−0.102] −0.628 [−0.757,−0.500]

1000 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference 95% CI Difference 95% CI Difference 95% CI
0.050 −0.378 [−0.592,−0.164] +0 .635 [+0.445, +0.826] −0.385 [−0.601,−0.169]
0.075 −0.019 [−0.042, +0.005] +0.007 [−0.051, +0.064] −0.028 [−0.055,−0.000]
0.100 −0.011 [−0.045, +0.022] +0.003 [−0.038, +0.045] −0.012 [−0.039, +0.016]
0.150 −0.003 [−0.060, +0.053] +0.021 [−0.037, +0.080] −0.039 [−0.087, +0.008]
0.175 +0 .095 [+0.020, +0.170] +0.060 [−0.019, +0.140] +0.021 [−0.051, +0.092]
0.200 +0.025 [−0.046, +0.096] −0.072 [−0.161, +0.018] −0.098 [−0.174,−0.021]
0.300 +0 .291 [+0.212, +0.369] +0 .186 [+0.106, +0.266] +0.016 [−0.078, +0.110]
0.400 +0.071 [−0.017, +0.159] −0.149 [−0.248,−0.051] −0.153 [−0.234,−0.072]
0.500 +0.054 [−0.047, +0.155] −0.278 [−0.378,−0.178] −0.198 [−0.294,−0.102]

10000 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference 95% CI Difference 95% CI Difference 95% CI
0.050 −0.165 [−0.258,−0.071] +0 .155 [+0.102, +0.208] +0 .087 [+0.046, +0.128]
0.075 −0.014 [−0.027,−0.000] +0.016 [−0.002, +0.034] +0 .019 [+0.007, +0.031]
0.100 −0.028 [−0.049,−0.007] −0.044 [−0.113, +0.025] −0.018 [−0.044, +0.007]
0.150 −0.035 [−0.078, +0.007] +0.020 [−0.010, +0.050] −0.050 [−0.114, +0.015]
0.175 −0.071 [−0.147, +0.006] −0.001 [−0.072, +0.070] −0.040 [−0.120, +0.040]
0.200 +0.003 [−0.084, +0.091] −0.053 [−0.140, +0.034] −0.013 [−0.121, +0.096]
0.300 +0.001 [−0.068, +0.070] −0.148 [−0.239,−0.058] −0.094 [−0.170,−0.018]
0.400 +0 .094 [+0.012, +0.175] −0.334 [−0.471,−0.197] −0.034 [−0.127, +0.059]
0.500 +0.016 [−0.086, +0.119] −0.483 [−0.618,−0.348] −0.058 [−0.135, +0.018]



IRIDIA – Technical Report Series: TR/IRIDIA/2008-020 19

in the ACO literature for the PTSP.

Our next step in future work is the customization of effective TSP-specific
SLS methods such as iterated local search, memetic algorithm and comparing
them with the proposed estimation-based ACO algorithms. Further research
effort will be devoted to design estimation-based SLS methods to solve stochastic
vehicle routing problems. Another promising research direction is to investigate
the application of estimation-based SLS methods to multi-objective stochastic
routing problems.
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Belgium, 2004.

M. Birattari, P. Balaprakash, and M. Dorigo. The ACO/F-RACE algorithm
for combinatorial optimization under uncertainty. In K. F. Doerner, M. Gen-
dreau, P. Greistorfer, W. J. Gutjahr, R. F. Hartl, and M. Reimann, editors,
Metaheuristics - Progress in Complex Systems Optimization, Operations Re-
search/Computer Science Interfaces Series, pages 189–203, Berlin, Germany,
2006. Springer-Verlag.
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