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1 Introduction

Stochastic local search (SLS) algorithms are powerful tools for tackling computa-
tionally hard decision and optimization problems that arise in many application
areas. The field of SLS is rather vast and there exists a large variety of algorithmic
techniques and strategies. They range from simple constructive and iterative im-
provement algorithms to general purpose SLS methods such as iterated local search,
tabu search, and ant colony optimization.

A frequently used approach for the development of SLS algorithms appears to be
that the algorithm designer takes his favorite general-purpose SLS method. Then,
this method is adapted in a sometimes more, often less organized way to the problem
under consideration, guided by the researcher’s intuitions and previous experiences.

There is an increasing awareness that the development of SLS algorithms should
be done in a more structured way, ideally in an engineering style following a well-
defined process and applying a set of well established procedures. One possibility
is to follow a bottom-up engineering process that starts from basic algorithms and
adds complexity step-by-step. Such a process could be organized as follows. First,
start by analyzing the problem under concern and gaining insights into its struc-
ture and possibly previous work on it. Second, develop basic constructive and iter-
ative improvement algorithms and analyze them experimentally. Third, integrate
these basic heuristics into simple SLS methods to improve upon their performance.
Fourth, if deemed necessary, add more advanced concepts to extend the SLS al-
gorithm by, for example, consider populations. Clearly, such an approach is to be
considered an iterative one where insights gained through experiments at one level
may lead to further refinements at the same or at previous levels.

In this chapter, we illustrate the steps that we have followed in the development
of new state-of-the-art algorithms for the PROBABILISTIC TRAVELING SALESMAN
PROBLEM (PTSP). In fact, we were following a bottom-up approach, which in this
case was mainly focused on the implementation and refinement of a very effective
iterative improvement algorithm. As it will be shown later, this process was sup-
ported by a comprehensive experimental analysis, the usage of the automatic tuning
of some algorithm parameters, an efficient implementation of supporting data struc-
tures, and an integration of the iterative improvement algorithm into an iterated
local search.
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Figure 1: An a priori solution for a PTSP instance with 8 nodes. The nodes in
the a priori solution are visited in the order 1, 2, 3, 4, 5, 6, 7, 8, and 1. Assume
that a realization of w prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The
a posteriori solution visits then nodes in the order in which they appear in the a
priori solution and skips nodes 2, 5, and 6 since they do not require being visited.

The high-level steps of the adopted bottom-up approach materialize in the fol-
lowing main elements. The main underlying ideas contributing to the success of this
research were (i) the inclusion of speed-up techniques known from the deterministic
TSP to the PTSP local search algorithms, and (ii) the use of empirical estima-
tion in the evaluation of local search moves. These ideas have been implemented
into a new estimation-based iterative improvement algorithm for the PTSP. Exper-
imental results with the final iterated local search algorithm show that we actually
have obtained a new state-of-the-art algorithm that outperforms the previous best
algorithm for this problem.

2 The probabilistic traveling salesman problem

The PTSP [13] is a paradigmatic example of routing problems under uncertainty.
It is similar to the TSP with the only difference that each node has a probability
of requiring being visited. The a priori optimization approach [5] for the PTSP
consists in finding an a priori solution that visits all the nodes and that minimizes
the expected cost of a posteriori solutions. The a priori solution must be found
prior to knowing which nodes are to be visited. The associated a posterior: solution
is computed after knowing which nodes need to be visited. It is obtained by skipping
the nodes that do not require being visited and visiting the others in the order in
which they appear in the a priori solution. An illustration is given in Figure 1.
Formally, a PTSP instance is defined on a complete graph G = (V, A, C, P), where
V ={1,2,...,n} is a set of nodes, A = {(i,j) : 4,5 € V,i # j} is the set of
edges that completely connects the nodes, C' = {c¢;; : (,j) € A} is a set of costs
associated with edges, and P = {p; : i € V'} is a set of probabilities that for each
node i specifies its probability p; of requiring being visited. Hence, for the PTSP
the stochastic element of the problem is defined by a random variable w that is
distributed according to an n-variate Bernoulli distribution and a realization of w
is a binary vector of size n where a ’1’ in position ¢ indicates that node ¢ requires
being visited and a ’0’ indicates that it does not. We assume that the costs are
symmetric. The goal in the PTSP is to find an a priori solution that minimizes the
expected cost of the a posteriori solution, where the expectation is computed with
respect to the given n-variate Bernoulli distribution.
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Figure 2: Plot 2(a) shows a 2-exchange move that is obtained by deleting two
edges (1,2) and (5,6) of the solution and by replacing them with (1,5) and (2, 6).
Plot 2(b) shows a node-insertion move obtained by deleting node 1 from its current
position in the solution and inserting it between nodes 5 and 6.

3 Iterative improvement algorithms for the PTSP

Iterative improvement algorithms start from some initial solution and repeatedly
try to move from a current solution = to a lower cost neighboring one. An iterative
improvement search terminates in a local optimum, that is, a solution that does
not have any improving neighbor. In the PTSP literature, mainly 2-exchange and
node-insertion neighborhood structures were considered (see Figure 2 for examples).

Crucial to the performance of many iterative improvement algorithms is the pos-
sibility of performing delta evaluation, that is, of computing the cost of a neighbor
by only considering the cost contribution of the solution components in which the
two solutions differ. For example, in the case of a 2-exchange move that deletes
edges (a,b) and (c,d) and adds edges (a,c) and (b,d), the cost difference is given
by Ca,c + Cv,d — Ca,b — Cc,d-

2-p-opt and 1-shift, the current state-of-the-art iterative improvement algo-
rithms for the PTSP, use closed-form expressions based on heavy mathematical
derivations for correctly taking into account the random variable w in such a delta
evaluation [4, 8, 6]. Unfortunately, to allow the re-use of already computed expres-
sions and, thus, to make the delta evaluation more efficient, 2-p-opt and 1-shift
require to scan the neighborhood in a fixed lexicographic order.

4 Engineering an iterative improvement algorithm
for the PTSP

We now present the main steps that we followed for engineering an iterative im-
provement algorithm for the PTSP. It is based on two main hypotheses.

Hypothesis 1: Exploiting known TSP speed-up techniques can increase compu-
tation speed.

Hypothesis 2: We can use estimations of the costs for the delta evaluation to

make the local search faster.

4.1 Introducing TSP speed-up techniques

Tterative improvement algorithms for the TSP strongly exploit neighborhood re-
duction techniques such as fixed radius search, candidate lists, and don’t look
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bits [14, 12]. These techniques allow the local search to focus on the most rele-
vant part for obtaining improvements by pruning a large part of the neighborhood.
While reducing very strongly the number of neighbors, the exploitation of these tech-
niques does not allow to scan the neighborhood in the lexicographic order, which is
required to use the speed-ups of the delta evaluation as it is used in 2-p-opt and
1-shift.

We implemented an iterative improvement algorithm using the three above men-
tioned TSP speed-up techniques. For doing so, we have to compute the cost dif-
ference between two neighboring solutions from scratch. This is done by using the
closed-form expressions proposed for the 2-exchange and the node-insertion neigh-
borhood structures [6]. In fact, we implemented an iterative improvement algo-
rithm based on the 2.5-exchange neighborhood [3]. The 2.5-exchange neighborhood
is well-known in TSP solving and it combines the node-insertion neighborhood and
the 2-exchange neighborhood structure into a hybrid one. We call the resulting algo-
rithm 2.5-opt-ACs, where AC and s stand for analytical computation and speedup,
respectively.

2.5-0opt-ACs was experimentally compared to 2-p-opt and 1-shift. Our anal-
ysis is based on PTSP instances that we obtained from TSP instances generated
with the DIMACS instance generator [15]. They are homogeneous PTSP instances,
where all nodes of an instance have a same probability p of appearing in a realiza-
tion. We carried out experiments on clustered instances of 300 nodes, where the
nodes are arranged in a number of clusters, in a 10% x 108 square. We considered
the following probability levels: [0.1,0.9] with a step size of 0.1. All algorithms
were implemented in C and the source codes were compiled with gcc, version 3.3.
Experiments were carried out on AMD Opteron™244 1.75 GHz processors with
1 MB L2-Cache and 2 GB RAM, running under the Rocks Cluster GNU/Linux.
Each iterative improvement algorithm is run until it reaches a local optimum. (In
the following we present only some of the most important results; more details are
given in [10].)

The results given in Figure 3, which illustrate the development of the average
cost obtained, show that 2.5-opt-ACs dominates 2-p-opt and 1-shift. Irrespec-
tive of the probability value, 2.5-opt-ACs reaches local optima about four times
faster than 2-p-opt. Compared to 1-shift, the same holds when p > 0.5; for small
p, however, the speed difference between 2.5-opt-ACs and 1-shift is small. Con-
cerning the average cost of local optima found, 2.5-opt-ACs is between 2% and 5%
better than 2-p-opt. The same trend is true when compared to 1-shift, except
for p < 0.3, where the difference between 2.5-opt-ACs and 1-shift is small. All
the observed cost differences are statistically significant, as shown by the ¢-test; an
exception is for p < 0.2, where the difference between 2.5-opt-ACs and 1-shift is
not significant.

4.2 Estimation-based local search

Empirical estimation is a technique for estimating the expectation through Monte
Carlo simulation. Empirical estimation can also be applied to estimate the cost for
the delta evaluation. This has the advantage that one can use any neighborhood
structure without requiring complex mathematical derivations. In particular, the
2.5-exchange neighborhood can easily be used. Clearly, an estimation-based delta
evaluation procedure also does not impose constraints on the order of exploring
the neighborhood. Thus, it is easy to integrate the TSP neighborhood reduction
techniques. Given these advantages, our hypothesis is that the estimation-based
delta evaluation procedure can lead to a very fast and highly effective iterative
improvement algorithms.

In empirical estimation, an unbiased estimator of F(z) for a solution z can



IRIDIA — Technical Report Series: TR/IRIDIA/2007-022 5

Clustered instances; Size = 300;

[=} Q
N 2+
- i
p=0.1
=} o
N N 4
i i
o o
— =
- i
%) B i
=
8
2 81 g |
8 ‘_' T T T T T T H T T T T T T
L le-04 1e-03 1le-02 1le-01 1e+00 1e+01 le-04 1e-03 1e-02 1le-01 1le+00 1le+01
k]
g8 S .
i i
g p=05 p=0.9
= m i
£ o =)
S N 4
Z d -
=} o
I 1
i i
[=} o
S~ <
il T T T T T T « T T T T T T
le-04 1e-03 1le-02 1le-01 1e+00 1e+01 le-04 1e-03 1e-02 1le-01 1e+00 1le+01

Normalized computational time

— 2.5-0pt-ACs 1-shift -+« 2-p-opt

Figure 3: Experimental results on clustered homogeneous PTSP instances of size
300. The plots represent the development of the average cost of the solutions ob-
tained by 2-p-opt and 1-shift normalized by the one obtained by 2.5-opt-ACs.
Each algorithm is stopped when it reaches a local optimum.

be computed using M independent realizations of the random variable w and the
resulting costs of these a posteriori solutions [11, 10]. The cost difference between a
solution # and a neighboring solution #’ can then be estimated by Fus(2') — Fy(z),
which is given by:

M
Far(a) = Fuae) = 225 (£l 00) = f ) 1)
r=1

We use the same M realizations for all steps of the iterative improvement algorithms.
Alternatively, one may sample for each comparison M new realizations; however,
this was proven to be not effective in our experiments (for details see [10]).

For estimating the cost differences between two neighboring a priori solutions
by a realization w, one needs to identify the edges that are not common in the
two a posteriori solutions. This is done as follows. For every edge (i,j) that is
deleted from x, one needs to find the corresponding edge (i*,;*) that is deleted
in the a posteriori solution of x. This so-called a posteriori edge is obtained as
follows. If node i requires being visited, we have ¢* = 4; otherwise, ¢* is the first
predecessor of 7 in x such that w[i*] = 1, that is, the first predecessor that requires
being visited. If node j requires being visited, then j* = j; otherwise, j* is the
first successor of j such that w[j*] = 1. In a 2-ezchange move that deletes the
edges (a,b) and (¢, d) from x and replaces them by (a,c) and (b, d), hence, first the
corresponding a posteriori edges (a*,b*) and (c*, d*) for a given realization w are to
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Figure 4: Experimental results on clustered homogeneous PTSP instances of size
300. The plots represent the average solution cost obtained by 2.5-opt-EEs-100
normalized by the one obtained by 2.5-opt-ACs. Each algorithm is stopped upon
reaching a local optimum.

be identified. The cost difference between the two a posteriori solutions is then given
by Cox,cx + Cb*,d+ — Cqx p» — Cex g+ and Eq. 1 then simply sums the cost differences
for each of the M realizations. This procedure can be directly extended to mode-
insertion moves. Furthermore, the algorithm adopts the neighborhood reduction
techniques fized-radius search, candidate lists, and don’t look bits [17, 3, 14]. We call
the resulting first-improvement algorithm 2.5-opt-EEs. (See [10] for more details).

As a default, we use 100 realizations in 2.5-opt-EEs, which is indicated by de-
noting this version as 2.5-opt-EEs-100. Next, we compare 2.5-opt-EEs-100 with
2.5-0pt-ACs; these two algorithms differ only in the delta evaluation procedure:
empirical estimation versus analytical computation. Figure 4 gives the experimen-
tal results. Both algorithms reach similar average costs with the only exception of
p = 0.1, where 2.5-0opt-EEs-100 returns local optima with an average cost that
is approximately 2% higher than that of 2.5-opt-ACs. However, 2.5-opt-EEs-
-100 is much faster than 2.5-opt-ACs; it reaches local optima, irrespective of the
probability value, approximately 1.5 orders of magnitude faster.

The poorer solution cost of 2.5-opt-EEs-100 for p = 0.1 can be attributed
to the number of realizations used to estimate the cost difference between two
solutions. Since the variance of the cost difference estimator is very high at low
probability levels, the adoption of 100 realizations is not sufficient to obtain a good
estimate of the cost difference. We therefore added experiments to examine the
impact of the number of realizations considered on the performance of 2.5-opt-EEs.
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Figure 5: Experimental results on clustered homogeneous PTSP instances of size
1000. The plots give the solution cost obtained by 2.5-opt-EEs-10, 2.5-0opt-EEs-
-100, 2.5-0opt-EEs-1000, 1-shift, and 2-p-opt normalized by the one obtained
by 2.5-opt-ACs. Each algorithm stops upon reaching a local optimum.

For this purpose, we consider samples of size 10, 100, and 1000 and we denote
the algorithms 2.5-opt-EEs-10, 2.5-0pt-EEs-100, and 2.5-opt-EEs-1000. We
considered PTSP instances with 1000 nodes, which are generated in the same way
as described before, to study the performance of the algorithms when applied to
large instances. (For a PTSP instance size of 1000, 2.5-opt-ACs, 2-p-opt, and
1-shift suffer from numerical problems and they need to resort to an arbitrary
precision arithmetic for p > 0.5 [10], which makes them even slower.) The results
are given in Figure 5.

As conjectured, the use of a large number of realizations, in our case M = 1000,
is effective with respect to the cost of the local optima for low probability values.
Even though larger sample sizes incur more computation time, the total search
time is very short compared to the analytical computation algorithms. On the
other hand, the use of few realizations, in our case M = 10, does not lead to
a further very significant reduction of computation time: concerning the average
computation time, 2.5-opt-EEs-10 is faster than 2.5-opt-EEs-100 approximately
by a factor of two, while 2.5-0pt-EEs-1000 is slower than 2.5-opt-EEs-100 by
a factor of four. Nonetheless, an important observation is that 2.5-opt-EEs-1000
is approximately 1.5 orders of magnitude faster than 2.5-opt-ACs. Concerning
the average solution cost, 2.5-opt-EEs-1000 is similar to 2.5-opt-EEs-100 and
2.5-0opt-ACs with the exception of p = 0.1, where the average cost of the local
optima obtained by 2.5-opt-EEs-1000 is approximately 3% lower than that of
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2.5-0opt-EEs-100 and comparable with the one of 2.5-opt-ACs. 2.5-0opt-EEs-10
reaches clearly much worse costs than the other estimation-based algorithms; only
for high probability values it appears to be competitive.

With respect to the instance size, the trends concerning the relative perfor-
mance of 2.5-opt-EEs-100 and 2.5-opt-ACs are similar as for instances of size
300. However, the differences between the computation times of the two algorithms
are larger and 2.5-opt-EEs-100 reaches, irrespective of the value of p, local op-
tima approximately 2.3 orders of magnitude faster than 2.5-opt-ACs. Similarly,
for the comparison between 2.5-opt-ACs and 1-shift and 2-p-opt, respectively,
the results for instance size 1000 are analogous to those for instance size 300.

4.3 Improving the estimation-based local search

The results of the previous section clearly show that the performance of 2.5-opt-EEs
depends on the number of realizations and the probabilities associated with the
nodes. In particular, for low probability values, 2.5-opt-EEs is less effective with
few realizations. This insight led to our third hypothesis:

Hypothesis 3: 2.5-opt-EEs can be improved by choosing an appropriate sample
size and a special treatment of the low probability cases.

Two main ideas were developed to improve 2.5-opt-EEs. The first is to use an
adaptive sampling procedure that selects the appropriate number of realizations with
respect to the variance of the cost estimator. In fact, as shown in [2], the variance of
the cost of the a posterior:i solutions depends strongly on the probabilities associated
with the nodes: the smaller the probability values, the higher the variance. The
increased variance could be handled by increasing the sample size since averaging
over a large number of realizations reduces the variance of the estimator. However,
for high probability values using a large number of realizations is a waste of time. For
addressing this issue, we adopted an adaptive sampling procedure that makes use
of Student’s t-test in the following way: Given two neighboring a priori solutions,
the cost difference between their corresponding a posteriori solutions is sequentially
computed on a number of realizations. Once the t-test rejects the null hypothesis
of zero cost difference, the computation is stopped; if the null hypothesis cannot be
rejected, the computation is stopped after a maximum of M realizations, where M
is a parameter. The sign of the estimator determines the solution of lower cost. The
estimation-based iterative improvement algorithm that adds adaptive sampling to
2.5-opt-EEs will be called 2.5-opt-EEas.

The second main idea is to adopt the importance sampling technique for re-
ducing the variance of the estimator when dealing with highly stochastic problem
instances: given two neighboring a priori solutions, this technique considers, instead
of realizations from the given distribution w, realizations from another distribution
w*—the so-called biased distribution. w* forces the nodes involved in the cost dif-
ference computation to occur more frequently. The resulting cost difference between
two a posterior: solutions for each realization is corrected for the adoption of the
biased distribution and the correction is given by the likelihood ratio of the origi-
nal distribution with respect to the biased distribution. We denote 2.5-opt-EEais
the algorithm that adds to 2.5-opt-EEas the above described importance sam-
pling procedure. Note that the adoption of the importance sampling technique in
2.5-opt-EEas requires additional parameters for defining the biased distribution.
These parameters have been tuned by Iterative F-Race [1]. We refer the reader
to [2] for a more detailed description of 2.5-opt-EEais and its tuning.

Next, we compared the performance of 2.5-opt-EEas and 2.5-opt-EEais to
2.5-opt-EEs, which does not use an adaptive sample size and importance sampling.
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Figure 6: Experimental results on clustered homogeneous PTSP instances of size
1000. The plots represent the cost of the solutions obtained by 2.5-opt-EEas,
2.5-opt-EEais, 2.5-opt-EEs-10, and 2.5-opt-EEs-100 normalized by the one
obtained by 2.5-opt-EEs-1000. Each algorithm is stopped when it reaches a local
optimum.

In the case of 2.5-opt-EEs, we again consider samples of size 10, 100, and 1000. The
clustered instances of 1000 nodes are used for the experiments with the probability
levels [0.050,0.200] with a step size of 0.025 and [0.3,0.9] with a step size of 0.1.
Results of the comparison are given in Figure 6, where 2.5-opt-EEs-1000 is taken
as a reference. (We only highlight the most important results; more details are
given in [2].)

The computational results show that, especially for low probabilities, 2.5-opt--
EEais is more effective than the other algorithms. For what concerns the compar-
ison of 2.5-opt-EEais and 2.5-opt-EEas, the results show that the adoption of
importance sampling allows the former to achieve high quality solutions for very
low probabilities, that is, for p < 0.2—the average cost of the local optima obtained
by 2.5-opt-EEais is between 1% and 3% less than that of 2.5-opt-EEas. The
observed differences are significant according to the paired t-test. For p > 0.3, the
average solution cost and the computation time of 2.5-opt-EEais are comparable
to the ones of 2.5-opt-EEas.

Concerning the comparison to 2.5-opt-EEs, the following results are most note-
worthy. 2.5-opt-EEaisreaches an average solution similar to that of 2.5-opt-EEs-1000,
but it does so approximately four times faster. Compared to 2.5-opt-EEs-100,
2.5-opt-EEais reaches for low probability values, p < 0.2, an average cost that
is between 1% and 3% lower (the differences are statistically significant according
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Figure 7: Experimental results on clustered homogeneous PTSP instances of size
1000. The plots represent the solution cost obtained by 2.5-opt-EEais normalized
by the one obtained by 2.5-opt-ACs. Each algorithm stops upon reaching a local
optimum.

to the paired t-test), while for p > 0.3 the two algorithms are comparable. Taking
into account both the computation time and the cost of the solutions obtained,
we can see that 2.5-opt-EEais emerges as a clear winner among the considered
estimation-based algorithms.

Finally, we compared 2.5-opt-EEais with 2.5-opt-ACs. In order to avoid over-
tuning [9], we generated 100 new instances for each probability level. The results
are shown in Figure 7. The computational results show that 2.5-opt-EEais is very
competitive. Regarding the time required to reach local optima, irrespective of the
probability levels, 2.5-opt-EEais is approximately 2 orders of magnitude faster
than 2.5-opt-ACs. The average cost of local optima obtained by 2.5-opt-EEais
is comparable to the one of 2.5-opt-ACs.

5 Estimation based iterated local search

As a final step, we tried to derive a new state-of-the-art SLS algorithm for the PTSP.
Clearly, the significant performance gains obtained by 2.5-opt-EEais over the
previous state-of-the-art iterative improvement algorithms should make this feasible.
Given the very high performance of iterated local search (ILS) [16] algorithms for
the TSP, we decided to adopt this general-purpose SLS method also for the PTSP.
That is, we implement our fourth hypothesis:
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Hypothesis 4: 2.5-opt-EEais is a good candidate procedure to derive a new
state-of-the-art SLS algorithm for the PTSP.

Our ILS algorithm is a straightforward adaptation of ILS algorithms for the
TSP. It starts from a nearest neighbor tour and uses 2.5-opt-EEais as the sub-
sidiary local search algorithm. The acceptance criterion compares two local optima
by using the t-test with up to a maximum of n realizations. If no statistically
significant difference is detected, the solution with lower cost estimate is accepted.
The perturbation consists of a number of simple moves. In particular, we perform
two random double-bridge moves and perturbe the position of ps% of the nodes,
where ps is a parameter. This change of the position is done by picking uniformly
at random ps% of nodes, removing them from the tour and then re-inserting them
again according to the farthest insertion heuristic. This composite perturbation is
motivated by the change of the usefulness of edge exchange moves and insertion
moves, as indicated by the crossover in the relative performance of 2-p-opt and
1-shift. We denote the final algorithm by ILS-2.5-opt-EEais.

We first tuned the parameter ps of ILS-2.5-opt-EEais using Iterative F-Race,
resulting in a value of ps = 6. Next, we compared its performance to ACS/-
1-shift [7], an ant colony optimization algorithm [18] that uses 1-shift as the
underlying local search and was shown to be a state-of-the-art metaheuristic for the
PTSP. For this task, we adopted the parameter settings of ACS/1-shift that were
fine-tuned in [7]. We compared the two algorithms on clustered instances with 1000
nodes using 10 000 seconds as a stopping criterion.

The experimental results in Figure 8 show that ILS-2.5-opt-EEais outperforms
ACS/1-shift both in terms of final solution quality and computation time to reach
a specific bound on the solution quality. In fact, the final average solution cost of
ILS-2.5-opt-EEais is between 1% and 5% lower that that of ACS/1-shift; all
observed differences are statistically significant according to a paired ¢-test with
a = 0.05.

6 Conclusions

In this chapter, we presented a case study in engineering an effective SLS algorithm
for the PTSP. Our approach has used a bottom-up process. It had the particularity
that it focused very strongly on the development and refinement of the underlying
iterative improvement algorithm. We do not claim that this strong focus on this
element of the process is always necessary. In fact, this process required, in this
particular case, a significant number of new ideas. However, we strongly believe
that this bottom-up approach is a potentially very successful way of deriving very
high performing algorithms.

SLS engineering is relatively a new area of research in SLS algorithms and it
is receiving considerable attention in recent years. Therefore, it has a number of
avenues open for further contributions. One of the main focus of research in SLS
engineering is to develop a framework of principled procedures for SLS design, imple-
mentation, analysis, and in-depth experimental studies. Moreover, SLS engineering
needs a tight integration with tools that support the algorithm development pro-
cess such as software frameworks, statistical tools, experimental design, automated
tuning, search space analysis, and efficient data structures. Given researchers’ and
practitioners’ quest for high performing algorithms, we strongly believe that SLS
engineering is going to play a major role in designing SLS algorithms.
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solution cost obtained by ILS-2.5-opt-EEais normalized by the one obtained by
ACS/1-shift.

Site funded by the Commission of the European Community, and by the ANTS project, an Action
de Recherche Concertée funded by the French Community of Belgium. The authors acknowledge
support from the fund for scientific research F.R.S.-FNRS of the French Community of Belgium.

References

[1] P. Balaprakash, M. Birattari, and T. Stiitzle. Improvement strategies for the F-Race algo-

2]

rithm: Sampling design and iterative refinement. In T. Bartz-Beielstein, M.J. Blesa, C. Blum,
B. Naujoks, A. Roli, G. Rudolph, and M. Sampels, editors, Hybrid Metaheuristics, volume
4771 of LNCS, pages 113-127, Berlin, Germany, 2007. Springer-Verlag.

P. Balaprakash, M. Birattari, T. Stiitzle, and M. Dorigo. Adaptive sample size and impor-
tance sampling in estimation-based local search for stochastic combinatorial optimization:
A complete analysis. Technical Report TR/IRIDIA /2007-014, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium, 2007.

J. L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal on
Computing, 4(4):387-411, 1992.

D. Bertsimas. Probabilistic Combinatorial Optimization Problems. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1988.

D. Bertsimas, P. Jaillet, and A. Odoni.
38(6):1019-1033, 1990.

A priori optimization. Operations Research,

L. Bianchi. Ant Colony Optimization and Local Search for the Probabilistic Traveling Sales-
man Problem: A Case Study in Stochastic Combinatorial Optimization. PhD thesis, Univer-
sité Libre de Bruxelles, Brussels, Belgium, 2006.



IRIDIA — Technical Report Series: TR/IRIDIA /2007-022 13

7]

(8]

[10]

11]

12]

13]

(14]

(15]

[16]

(17]

(18]

L. Bianchi and L. Gambardella. Ant colony optimization and local search based on exact and
estimated objective values for the probabilistic traveling salesman problem. Technical Report
IDSIA-06-07, IDSIA, Lugano, Switzerland, 2007.

L. Bianchi, J. Knowles, and N. Bowler. Local search for the probabilistic traveling salesman
problem: Correction to the 2-p-opt and 1-shift algorithms. FEuropean Journal of Operational
Research, 162(1):206-219, 2005.

M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine Learning
Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.

M. Birattari, P. Balaprakash, T. Stiitzle, and M. Dorigo. Estimation-based local search
for stochastic combinatorial optimization. Technical Report TR/IRIDIA /2007-003, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, 2007.

W.J. Gutjahr. S-ACO: An ant based approach to combinatorial optimization under uncertain-
ity. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stiitzle, ed-
itors, Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS
2004, volume 3172 of LNCS, pages 238-249, Berlin, Germany, 2004. Springer-Verlag.

H. Hoos and T. Stiitzle. Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann, 2005.

P. Jaillet. Probabilistic Traveling Salesman Problems. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1985.

D. S. Johnson and L. A. McGeoch. The travelling salesman problem: A case study in local
optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215-310. John Wiley & Sons, Chichester, United Kingdom, 1997.

D. S. Johnson, L. A. McGeoch, C. Rego, and F. Glover. 8th DIMACS implementation
challenge, 2001.

H. R. Lourengo, O. Martin, and T. Stiitzle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics, pages 321-353. Kluwar Academic Publishers,
Norwell, MA, 2002.

O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the traveling salesman
problem. Complex Systems, 5(3):299-326, 1991.

M.Dorigo and T.Stiitzle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.



