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Abstract

Metaheuristics and local search algorithms have received considerable attention as promis-
ing methods for tackling stochastic combinatorial optimization problems. However, in stochas-
tic settings, these algorithms are usually simple extensions of the versions that are originally
designed for deterministic optimization and often they lack rigorous integration with tech-
niques that handle the stochastic character. In this paper, we discuss two generally applicable
procedures that can be integrated into metaheuristics and local search algorithms that use
Monte Carlo evaluation for estimating the solution cost. The first is an adaptive sampling
procedure that selects the appropriate size of the sample to be used in Monte Carlo evalu-
ation; the second is a procedure that adopts the importance sampling technique in order to
reduce the variance of the cost estimator. We illustrate our approach and assess its perfor-
mance using an estimation-based local search algorithm for the PROBABILISTIC TRAVELING
SALESMAN PROBLEM. Experimental results show that an integration of the two procedures
into the estimation-based local search increases significantly its effectiveness in cases where
the variance of the cost estimator is high.

1 Introduction

Optimization problems that are both combinatorial and stochastic are important in a large number
of practically relevant settings. Examples include portfolio management, vehicle routing, resource
allocation, scheduling, and the modeling and simulation of large molecular systems (Eu, 2002).
These problems are customarily tackled by considering the cost of each solution as a random
variable and by finding a solution that minimizes some statistics of the cost. For a number of
practical and theoretical reasons, the optimization is performed with respect to the expectation
(Fu, 11994, 2002). The most widely used approach for this task is empirical estimation, where the
expectation is estimated through Monte Carlo simulation.

In recent years, metaheuristics and local search algorithms that adopt the empirical estimation
techniques emerged as the most promising approaches to tackle industrial and large scale stochas-
tic combinatorial optimization problems ([Ful, 1994, 2002). We refer the reader to [Fil (1994) and
Bianchi (2006) for surveys on solution techniques for stochastic combinatorial optimization prob-
lems. However, [F (2002) and |Gutjahi (2004) explicitly state that, although metaheuristics are
widely used for practical applications, there is a huge gap between metaheuristics and research in
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specialized algorithms that handle the stochastic character of the problem. In particular, [Fil (2002)
forecasts that the effectiveness of metaheuristics and local search algorithms can be increased by
a systematic integration of optimization algorithms and statistical procedures.

This paper focusses on techniques that aid local search algorithms to handle the stochastic
character of the problem. More precisely, we adopt techniques that reduce the variance of the
cost estimator, which are crucial for the effectiveness of the estimation techniques. We use two
generally applicable procedures that can be integrated with a number of local search algorithms
(such as iterative improvement, simulated annealing, iterated local search, tabu search, and vari-
able neighborhood search), where the costs of the solutions are evaluated by empirical estimation.
The first is an adaptive sampling procedure that selects the appropriate size of the sample with
respect to the variance of the cost estimator; the second is a procedure that adopts the impor-
tance sampling technique in order to reduce the variance of the estimator when dealing with highly
stochastic problem instances. We illustrate the methodology that we propose by integrating it
into an estimation-based local search algorithm, 2.5-opt-EEs (Birattari et all, 20074). This is
an iterative improvement algorithm that starts from some initial solution and then iteratively
moves to an improving neighboring one until a local optimum is found. 2.5-opt-EEs is an algo-
rithm for tackling the PROBABILISTIC TRAVELING SALESMAN PROBLEM (PTSP) (Jaillefl, 1987), a
paradigmatic example of a stochastic combinatorial optimization problem.

The paper is organized as follows: In Section 2, we introduce the proposed approach; in Section
3, we study its performance and in Section 4, we conclude the paper.

2 Estimation-based iterative improvement
algorithm for the PTSP

For the sake of completeness and in order to make this section self-contained, we first provide a
short description of the PTSP and then we sketch the 2.5-opt-EEs algorithm; finally, we describe
the procedures introduced in this paper.

2.1 The probabilistic traveling salesman problem

The PROBABILISTIC TRAVELING SALESMAN PROBLEM (PTSP) is similar to the TSP with the
difference that each node has a probability of requiring a visit. The a priori optimization approach
(Bertsimas et all, [1990) for the PTSP consists in finding an a priori solution that visits all the
nodes such that the expected cost of a posteriori solutions is minimized: The a prior: solution
must be found prior to knowing which nodes are to be visited; the associated a posteriori solution
is computed after knowing which nodes need to be visited and it is obtained from the a priori
solution by skipping the nodes that do not require to be visited and visiting the others in the
order in which they appear in the a priori solution. Formally, the PTSP can be described as
follows: Minimize F(z) = E[f(z,Q)],subject to « € S, where z is an a priori solution, S is the
set of feasible solutions, the operator F denotes the mathematical expectation, and f(z,(2) is the
cost of the a posteriori solution that depends on a random variable €. In the PTSP, € is described
by an n-variate Bernoulli distribution parameterized by P, where n is the number of nodes and P
= {p1,...,pn} is a set of probabilities that for each node ¢ specifies its probability p; of requiring
a visit. A realization w of ) is a binary vector of size n where a ‘1’ in position ¢ indicates that
node ¢ requires visit and a ‘0’ indicates that it does not. See Figure [ for an illustration.

The usage of effective delta evaluation procedures is of crucial importance for a fast local search
for the PTSP. Currently, the state-of-the-art iterative improvement algorithms for the PTSP,
namely, 2-p-opt and 1-shift use for the delta evaluation recursive closed-form expressions based
on heavy mathematical derivations (Bertsimad, [1988; IChervi, [1988; [Bertsimas and Howell, [1993;
Bianchi et all, [2005; [Bianchi, 2006; Bianchi and Campbell, 2007). Recently, we introduced a more
effective algorithm called 2.5-opt-ACs
(Birattari et all, 120074). Tt also uses closed-form expressions but adopts the classical TSP neigh-
borhood reduction techniques, which is not possible in 2-p-opt and 1-shift since these algo-
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Figure 1: An a priori solution for a PTSP instance with 8 nodes. The nodes in the a priori
solution are visited in following order: 1, 2, 3, 4, 5, 6, 7, 8, and 1. Assume that a realization of
Q prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The resulting a posteriori solution is
obtained by visiting the nodes in the order in which they appear in the a priori solution and by
skipping the nodes 2, 5, and 6, which do not require visit.

rithms require to search the neighborhood solutions in a fixed lexicographic order. 2.5-opt-EEs
(Birattari et all, 20074), the algorithm on which we focus in this paper, makes use of empirical
estimation techniques and the classical TSP neighborhood reduction techniques. The experimen-
tal results show that this approach is more effective than the state-of-the-art PTSP algorithms.
However, highly stochastic PTSP instances, that is, instances where the probability of visiting
nodes is very low, are not as effectively tackled by the empirical estimation technique as by the
closed-form computations used in 2.5-opt-ACs. The methodology that we propose in this paper
addresses this issue.

2.2 The 2.5-opt-EEs algorithm

In iterative improvement algorithms for the PTSP, we need to compare two neighboring solutions
x and 2’ to select the one of lower cost. An unbiased estimator of F(z) for a solution z can be
computed on the basis of a sample of costs of a posteriori solutions obtained from M independent
realizations of the random variable Q (Gutjahi, [2004; Birattari et all, [2007a). Using the method
of common random numbers, for ' an unbiased estimator of F(z') can be estimated analogously
to F(z) using a same set of M independent realizations of €. The estimator Fys(z') — Fas(z) of
the cost difference is given by:

M

Paala') = ) = 223 (£l ) = fo, ). 1)

r=1

We implemented iterative improvement algorithms that use this way of estimating cost dif-
ferences exploiting a neighborhood structure that consists of a node-insertion neighborhood on
top of a 2-exchange neighborhood structure, that is, the well-known 2.5-exchange neighborhood:
when checking for a 2-exchange move on any two edges (a,b) and (¢, d), it is also checked whether
deleting any one of the nodes of an edge, say for example a, and inserting it between nodes c
and d results in an improved solution (?)—see Figure To make the computation of the cost
differences as efficient as possible, given two neighboring a priori solutions and a realization w,
the algorithm needs to identify the edges that are not common to the two a posteriori solutions.
These edges are found as follows: for every edge (i, j) that is deleted from x, one needs to find the
corresponding edge (i*, j*) that is deleted in the a posteriori solution of . We call this edge the
a posteriori edge. It is obtained as follows. If node ¢ requires visit, then ¢* = i; otherwise, i* is the
first predecessor of 7 in = such that w[i*] = 1, that is, the first predecessor for which the realization
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Figure 2: Plot shows a 2-exchange move that is obtained by deleting the two edges (1,2) and
(5,6) of the solution and by replacing them with (1,5) and (2,6). Plot 2(b)]shows a node-insertion
move obtained by deleting node 1 from its current position in the solution and inserting it between
nodes 5 and 6.

is one, indicating it requires visit. If node j requires visit, then j* = j; otherwise, j* is the first
successor of j such that w[j*] = 1. Recall that in a 2-ezchange move, the edges (a, b) and (¢, d) are
deleted from x and replaced by (a,c) and (b,d). For a given realization w and the corresponding
a posteriori edges (a*,b*) and (c*,d*), the cost difference between the two a posteriori solutions
is given by cgx v + Cor dx — Co* b+ — Cex,d+, Where ¢; ; is the cost of edge (i,j). The procedure
described can be directly extended to node-insertion moves. Furthermore, the algorithm adopts
neighborhood reduction techniques such as fized-radius search, candidate lists, and don’t look bits
(?7Iohnson and McGeochl, [1991). This algorithm is called 2.5-opt-EEs. Note that 2.5-opt-EEs
uses the first-improvement rule. For a more detailed explanation, see Birattari et all (20074).

2.3 Advanced sampling methods

In this section, we focus on the main contribution of the paper, that is, the two procedures that
we adopt in order to increase the effectiveness of 2.5-opt-EEs.

2.3.1 Adaptive sampling

Intuitively, the variance of the cost difference estimator depends on the probabilities associated
with the nodes. The smaller the probability values, the higher the variance. A discussion about
this issue is given in Section BLA In this case, averaging over a large number of realizations
reduces the variance of the estimator. However, using a large number of realizations for high
probability values is simply a waste of time. In order to address this issue, we adopt an adaptive
sampling procedure that saves computation time by selecting the most appropriate number of
realizations for each estimation. This procedure is realized using Student’s t-test in the following
way: Given two neighboring a priori solutions, the cost difference between their corresponding a
posteriori solutions is sequentially computed on a number of realizations. As soon as the t-test
rejects the null hypothesis that the value of the cost difference estimator is equal to zero, the
computation is stopped. If no statistical evidence is gathered, then the computation is continued
until a maximum number M of realizations is considered, where M is a parameter of the algorithm.
The sign of the estimator determines the solution of lower cost.

The estimation-based iterative improvement algorithm that adds the adaptive sampling pro-
cedure to 2.5-opt-EEs will be called 2.5-opt-EEas.
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(a) Assume that a realization of Q prescribes that (b) Assume that a realization of Q prescribes that
nodes 1, 6, 7, and 8 are to be visited. The 2-exchange nodes 2, 3, 4, 5, 6, 7, and 8 are to be visited. The
neighboring solutions shown in Figure 2(a)| lead to node-insertion neighboring solutions shown in Fig-
the same a posteriori solution. The cost difference is uremload to the same a posteriori solution. Since
therefore zero. the two a posteriori solutions are the same, the cost

difference is zero.

Figure 3: Some degenerate cases that can occur in the evaluation of cost differences.

2.3.2 Importance sampling

A difficulty in the adoption of the ¢-test is that for low probability values often the test statistic
cannot be computed: since the nodes involved in the cost difference computation may not require
visit in the realizations considered, the sample mean and the sample variance of the cost difference
estimator are null. Some degenerate cases in which this problem appears are the following. In a
2-exchange move that deletes the edges (a,b) and (c,d), and where no node between the nodes
b and ¢ (or between a and d) requires visit, the difference between the two a posteriori solutions
is zero—see Figure for an illustration. In particular, this case is very frequent when the
number of nodes between b and ¢ (or between a and d) is small. In a node-insertion move, if the
insertion node does not require visit, the cost difference between the two a posteriori solutions is
zero—see Figure A naive strategy to handle this problem consists in postponing the t-test
until non-zero sample mean and sample variance are obtained. However, this might increase the
number of realizations needed for the cost difference computation. The key idea to address this
issue consists in forcing the nodes involved in the cost difference computation to appear frequently
in the realizations. More in general, we need to reduce the variance of the cost difference estimator
for low probability values. For this purpose, we use the variance reduction technique known as
importance sampling (Srinivasan, 2002).

In order to compute the cost difference between two a posteriori solutions, importance sam-
pling, instead of using realizations of the given variable (2 parameterized by P, considers realiza-
tions of another variable Q* parameterized by P*; this so-called biased distribution P* biases the
nodes involved in the cost difference computation to occur more frequently. This is achieved by
choosing probabilities in P* greater than the probabilities in P. The resulting biased cost differ-
ence between two a posteriori solutions for each realization is then corrected for the adoption of
the biased distribution: the correction is given by the likelihood ratio of the original distribution
with respect to the biased distribution and the unbiased cost difference is simply given by the
product of the biased cost difference and the likelihood ratio.

The adoption of importance sampling can be made more effective: As illustrated in Figure Bl
among all the nodes that are involved in the cost difference computation, few nodes are more
important than others—in a 2-exchange move, the nodes in the shorter segment; in a node-
insertion move, the insertion node. We use importance sampling to bias these few important
nodes in the following way:

e in a 2-exchange move, importance sampling is used to bias the nodes between b and ¢, only if
their number is less than min;s, where min;s is a parameter of the algorithm. The likelihood
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ratio is given by the product of the likelihood ratio of each node ¢ between b and ¢, which
has been used in finding a posteriori edges. The likelihood ratio of each node ¢ is given by

(po)* 11 (1 — py) 1=l
()<l (1 = p)rt=w'l)

where p/ is the biased probability of node i to be used in a 2-exchange move and w'[i] is
sampled with probability p}.

LR = (2)

e in a node-insertion move, importance sampling is used to bias only the insertion node i to
appear in a realization and the likelihood ratio is given by

(po)* 1 (1 = piy i
()< (1= plfy =

where p! is the biased probability of the insertion node i to be used in a node-insertion move

LRI = (3)

and w” [i] is sampled with probability p!.

We denote 2.5-opt-EEais the algorithm that adds to 2.5-opt-EEas the above described impor-
tance sampling procedure.

2.4 Implementation-specific details

In order to implement 2.5-opt-EEais efficiently, we use the same data structure as that of
2.5-opt-EEs, which is composed of a doubly circularly linked list and some auxiliary arrays
as described in [Birattari et all (2007a). Additionally, for each node three realization arrays, w, o',
and w” are stored, each of size M, indexed from 1 to M. Element r of a realization array is either
1 or 0 indicating whether node % requires visit or not in a realization and it is obtained as follows:
first a random number between 0 and 1 is generated; if this number is less than or equal to p;,
p}, or pi, node i requires visit in realization w,, w,., or w}’, respectively. Moreover, if the biased
probability p} is less than the original probability p;, then p} is set to p;. The same condition holds
for p/. Given p;, p, and p for a node 4, the likelihood ratio is pre-computed and stored when the
algorithm starts.

For low probability values, the computational results of the state-of-the-art local searches show
that the 2-exchange neighborhood relation is not effective (Bianchi, 2006; Birattari et all, 2007aH).
In order to alleviate this problem in 2.5-opt-EEais, the way in which importance sampling is
applied to a 2-exchange move is slightly modified. Instead of biasing all the nodes between b and
¢ when the number of nodes between them is less than min;,, only a certain number of nodes, w
(a parameter), close to b and ¢ are biased: Given the nodes from b to ¢ as [b,b',b",...,¢",c, ], if
w is set to 1, then the nodes that are biased are b and ¢; if w is set to 2, then the nodes that are
biased are b,b’ and ¢, ¢/, etc. The usage of min;, and w is illustrated in Figure @l

2.5-opt-EEais uses a same set of realizations for all iterative improvement steps. In the con-
text of the PTSP, this strategy is more effective than changing realizations for each improvement
or for each comparison (Birattari et all, 2007a). However, the order in which the realizations are
considered for the cost difference computation is randomly shuffled for each improvement.

The following techniques are used to speed up the computations involved in the t-test: the
critical values of the Student’s t-distribution are hand-coded and stored in a lookup table; the
sample mean and the sample variance of the cost difference estimator are computed recursively.

The implementation of 2.5-opt-EEas is similar to 2. 5-opt-EEais with the difference that the
importance sampling procedure and pre-computations required for 2.5-opt-EEais are excluded.

3 Experimental analysis

In this section, we present the experimental setting considered and the empirical results. We ana-
lyze the algorithms by classifying them in two groups: the analytical computation based algorithms
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Figure 4: In this example, a 2-exchange move is obtained by deleting the two edges (1,2) and
(6,7) and by replacing them with (1,6) and (2,7). The parameter min;s is set to 8. Since the
number of nodes in the segment [2,...,6] is less than min;s, importance sampling is used to bias
the nodes between them. However, instead of biasing all the nodes between 2 and 6, only a certain
number of nodes that are close to them are biased. In this example, w is set to 2, therefore the
nodes that are biased are 2, 3, 5, and 6.

and the estimation-based algorithms. We select the best from each group and we finally compare
them. For what concerns the comparison of the different estimation-based algorithms, our goal is
to show that the integration of the adaptive sample size and the importance sampling procedures
into the estimation-based local search increases significantly its effectiveness—in particular, for the
problem instances where the variance of the cost estimator is high. In Section Bl we describe the
setup of the experiments; in Section and B3, we present the results of the analytical computa-
tion based algorithms and the estimation-based algorithms, respectively; finally in Section B4l we
show the effectiveness of the 2.5-opt-EEais by comparing it with the state-of-the-art algorithm,
2.5-opt-ACs.

3.1 Experimental setup

In this section, we present the experimental setting considered and the empirical results. We
analyzed the algorithms by classifying them in two groups: the analytical computation based algo-
rithms and the estimation-based algorithms. We selected the best from each group and we finally
compared them. Our analysis is based on PTSP instances that we obtained from TSP instances
generated with the DIMACS instance generator (Johnson et all, 2001). They are homogeneous
PTSP instances, where all the nodes of an instance have a same probability p of appearing in a
realization. We carried out experiments on clustered instances of 1000 nodes, where the nodes are
arranged in a number of clusters, in a 10% x 10° square. We considered the following probability
levels: [0.050,0.200] with a step size of 0.025 and [0.3,0.9] with a step size of 0.1. For a PTSP
instance of size 1000, the algorithms 2.5-opt-ACs, 2-p-opt, and 1-shift suffer from numerical
problems for p > 0.5 (Birattari et all, 20074). Therefore, these algorithms are examined only for
probability values up to 0.5. Note that the algorithms based on empirical estimation do not suffer
from this numerical problem.

All algorithms were implemented in C and the source codes were compiled with gcc, version 3.3.
Experiments were carried out on AMD Opteron™244 1.75 GHz processors with 1 MB L2-Cache
and 2 GB RAM, running under the Rocks Cluster GNU/Linux.

The nearest-neighbor heuristic is used to generate initial solutions. The candidate list is set
to size 40 and it is constructed with the quadrant nearest-neighbor strategy (Penky and Mille,
1994; .Tohnson and McGeoch, [1997). Each iterative improvement algorithm is run until it reaches
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a local optimum.

In 2.5-opt-EEas and 2.5-opt-EEais, the minimum number of realizations used in the adap-
tive sampling procedure before applying the t-test is set to five. The null hypothesis is rejected at
a significance level of 0.05. If the test statistic cannot be computed after five realizations, then the
cost difference computation is stopped and the algorithm considers the next neighboring solution.
The maximum number M of realizations is set to one thousand.

For the homogenous PTSP with probability p and size n, given an a priori solution x, the exact
cost F(z) of x can be computed using the formula F(z) = >."'_, 23:11 p?(1 —p)vilc(m(um(v)),
where z(u) and z(v) are the nodes at index u and v in z, respectively (Jaillefl, [1985). We use this
formula only for post-evaluation purposes: for each algorithm, whenever an improved solution is
found, we record the solution. In order to compare the cost of the a priori solutions reached by
the algorithms, we use this formula to compute the cost of the recorded solutions obtained from
each algorithm.

In addition to tables, the results are visualized using runtime development plots. These plots
show how the cost of solutions develops over computation time and they can be used to compare
the performance of several algorithms over time. In these plots, the z-axis indicates computation
time in logarithmic scale and the y-axis indicates the cost of the solutions found, averaged over 100
instances. For comparing several algorithms, one of them has been taken as a reference: for each
instance, the computation time and the cost of the solutions of the algorithms are normalized by
the average computation time and the average cost of the local optima obtained by the reference
algorithm.

In order to test whether the observed differences between the expected solution costs of different
algorithms are significant in a statistical sense, a paired Wilcoxon test with av = 0.05 is adopted;
the two sided p-value is computed for each comparison and it is adjusted by Holm’s method in
the case of multiple comparison.

3.1.1 Parameter tuning

2.5-opt-EEais is a parameterized algorithm and its full potential cannot be achieved unless its
parameters are fine tuned. We used Iterative F-Race (Balaprakash et all, [2007) to tune its
parameters. The parameters tuned are the following: (i) min;s, the parameter that is used to
decide whether importance sampling should be adopted or not in a 2-exchange move; if the number
of nodes between b and ¢ (or between a and d) is less than min;s, then importance sampling is
employed; (ii) w, the number of nodes close to b and ¢ (or a and d) that should be biased in a
2-exchange move; (iii) p}, the biased probability of node i to be used in a 2-exchange move; (iv)
pY, the biased probability of node i to be used in a node-insertion move. Instead of tuning p)
for each node i, a parameter p’ has been tuned and is given as the biased probability for all the
nodes. Similarly, for the node-insertion biased probability, p” has been tuned. The range for each
parameter given to the tuning algorithm and the selected value are shown in Table [l

The selected values, min;s = 8, w =1 and p’ = 0.11 allow 2.5-opt-EEais to use importance
sampling in 2-exchange moves only occasionally. This is due to the ineffectiveness of the 2-
exchange neighborhood relation for low probability values as discussed in Section Z41 We also
made some tests in which importance sampling is completely disabled in 2-exchange moves. The
results showed that indeed the occasional usage of importance sampling in 2-exchange moves
resulted in solutions’ costs that were slightly better than the ones in which importance sampling
was completely disabled. It should be noted that the tuned biased probability for node-insertion
moves, p’’ = 0.60, allows 2.5-opt-EEais to use importance sampling in all the node-insertion
moves up to p < 0.6.

3.1.2 A note on the variance of the cost estimator

The relationship between the probabilities associated with the nodes of the PTSP and the variance
of the cost estimator can be shown empirically. To do so, first we generated a TSP instance
with 1000 nodes, from which we obtained 14 PTSP instances with different probability levels:
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Table 1: Parameter values considered for tuning 2.5-opt-EEais and the values selected by
Iterative/F-Race

| parameter range selected value |
mings (1,50] 8
w 0,100 1
o 00,10 0.11
o (0.0,1.0]  0.60

Clustered instances; Size = 1000;

normalized standard deviation
: 0.02 0.03 004 0.05
|
(]
‘o
7 d
o

0.01
L
/

0.050 0.200 0.400 0.600 0.800
probability

Figure 5: Relationship between the probability levels and the variance of the cost estimator.
The y-axis represents the normalized standard deviation, an indicator of the variance of the cost
estimator. This is computed on 1000 a posteriori solution costs.

[0.050,0.200] with a step size of 0.025 and [0.3,0.9] with a step size of 0.1. The local optimum of
each PTSP instance, obtained using 2.5-opt-EEais, was then evaluated on 1000 freshly generated
realizations. In order to visualize the variance of the cost estimator in a simple way, we plot the
normalized standard deviation, which is an indicator of the variance of the cost estimator. This
normalized standard deviation is computed on 1000 a posteriori solution costs. Its relationship
with different probability levels is shown in Figure [l From this plot, we can see that the variance
of the cost estimator increases with decreasing probability values, in particular, it increases rapidly
for p <0.2.

3.2 Preliminary experiments

For homogeneous PTSP with p > 0.1, 2.5-0opt-ACs has already been shown to be more effective
than 1-shift and 2-p-opt (Birattari et all,2007a]H). In Figureld, we show that the same tendency
holds also for low probability values, that is, for p < 0.1. Concerning the time required to
reach local optima, irrespective of the probability levels, 2.5-opt-ACs is faster than 2-p-opt
by approximately a factor of five. In the case of 1-shift, the same tendency holds when p >
0.2. However, for small values of p, the difference in speed between 2.5-opt-ACs and 1-shift
becomes small. Concerning the average cost of local optima found, 2.5-opt-ACs is between 2%
and 5% better than 2-p-opt and it is 1% and 4% better than 1-shift. For absolute values, see
Table Bl The p-values of the paired Wilcoxon test given in Table Pl show that the cost of the local
optima obtained by 2.5-opt-ACs is significantly lower than that of 1-shift and 2-p-opt for all
probability levels. Therefore, in the following sections, we take 2.5-opt-ACs as a yardstick for
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Figure 6: Experimental results on clustered homogeneous PTSP instances of size 1000. The plots
represent the average cost of the solutions obtained by 2-p-opt and 1-shift normalized by the
one obtained by 2.5-opt-ACs. Each algorithm is stopped when it reaches a local optimum.
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measuring the effectiveness of the proposed algorithms.

Table 2: The p-values of the comparison of 2.5-opt-ACs, 2-p-opt and 1-shift on clustered
instances of size 1000. Each algorithm is allowed to run until it reaches a local optimum. The
statistical test adopted is the paired Wilcoxon test with p-values adjusted by Holm’s method. The
confidence level is 95%. Values in bold mean that the algorithm in the row performs significantly
better than the algorithm in the column, while values in italic mean that the algorithm in the
column performs significantly better than the algorithm in the row.

p-values

2.5-0pt-ACs 1-shift 2-p-opt

P 2.5-0pt-ACs - 0.000 0.000

P =0.050  ihire 0.000 - 0.000
2-p-opt 0.000 0.000 -

2.5-0pt-ACs 1-shift 2-p-opt

2.5-0pt-ACs - 0.000 0.000

p=0.075 anite 0.000 - 0.000
2-p-opt 0.000 0.000 R

2.5-opt-ACs 1-shift 2-p-opt

2.5-0pt-ACs - 0.000 0.000

p=0100 12 0.000 - 0.000
2-p-opt 0.000 0.000 R

2.5-opt-ACs 1-shift 2-p-opt

_ . 2.5-0pt-ACs - 0.000 0.000

p=0.125 1-shift 0.000 - 0.000
2-p-opt 0.000 0.000 -

2.5-0pt-ACs 1-shift 2-p-opt

2.5-0pt-ACs - 0.000 0.000

p=0150 1% 0.000 - 0.000
2-p-opt 0.000 0.000 -

2.5-0pt-ACs 1-shift 2-p-opt

_ 2.5-0pt-ACs - 0.017 0.000

p=0.175 1-shift 0.017 - 0.000
2-p-opt 0.000 0.000 R

2.5-opt-ACs 1-shift 2-p-opt

_ 2.5-0pt-ACs - 0.043 0.000

P =0.2000 pire 0.043 - 0.000
2-p-opt 0.000 0.000 R

2.5-0pt-ACs 1-shift 2-p-opt

b= 0.3 2.5-0pt-ACs - 0.000 0.000

1-shift 0.000 - 0.000
2-p-opt 0.000 0.000 -

2.5-0pt-ACs 1-shift 2-p-opt

p=04 2.5-0pt-ACs - 0.000 0.000

: 1-shift 0.000 R 0.001
2-p-opt 0.000 0.001 R

2.5-opt-ACs 1-shift 2-p-opt

p=05 2.5-0pt-ACs - 0.000 0.000

1-shift 0.000 - 0.032

2-p-opt 0.000 0.032

3.3 Experiments on estimation-based algorithms

In this section, we study the performance of 2.5-opt-EEas and 2.5-opt-EEais by comparing their
solution cost and computation time to 2.5-opt-EEs. In the case of 2.5-opt-EEs, we consider
samples of size 10, 100, and 1000; we denote these algorithms by 2.5-opt-EEs-10, 2.5-opt-EEs-
-100, and 2.5-opt-EEs-1000 (note that these algorithms do not use the adaptive sample size
and the importance sampling procedures). The results of the comparison of the five algorithms
are given in Figure [l where 2.5-0opt-EEs-1000 is taken as a reference. Tables Bl and Bl show the
absolute values and the p-values of the paired Wilcoxon test, respectively.

The computational results show that 2.5-opt-EEais is more effective than the other algorithms—
in particular, for low probability levels. For what concerns the comparison of 2.5-opt-EEais and
2.5-opt-EEas, the results show that the adoption of importance sampling allows the former to
achieve high quality solutions for very low probability values, that is, for p < 0.2—the average cost
of the local optima obtained by 2.5-opt-EEais is between 1% and 3% less than that of 2.5-opt--
EEas. The observed differences are significant in a statistical sense—see Table @l For p > 0.3, the
average cost of the solutions and the computation time of 2.5-opt-EEais are comparable to the
ones of 2.5-opt-EEas.

Concerning the comparison of 2.5-opt-EEais and 2.5-opt-EEs-1000, the former achieves
an average cost similar to that of the latter. However, the advantage of 2.5-opt-EEais is the
computation time: it is faster than 2.5-opt-EEs-1000 approximately by a factor of four.
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Figure 7: Experimental results on clustered homogeneous PTSP instances of size 1000. The plots
represent the cost of the solutions obtained by 2.5-opt-EEas, 2.5-opt-EEais, 2.5-opt-EEs-10,
and 2.5-opt-EEs-100 normalized by the one obtained by 2.5-0opt-EEs-1000. Each algorithm is
stopped when it reaches a local optimum.
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Regarding the comparison of 2.5-opt-EEais and 2.5-opt-EEs-100, for low probability values,
p < 0.2, the average cost of the solutions obtained by the former is between 1% and 3% lower
that that of 2.5-opt-EEs-100. This clearly shows that the adoption of 100 realizations is not
sufficient for these probability levels. Note that these differences are significant according to the
paired Wilcoxon test. On the other hand, for p > 0.3, the two algorithms are comparable to one
another with respect to solution quality and computation time.

Although faster, 2.5-opt-EEs-10 achieves a very poor solution quality: the average cost of the
solutions obtained by 2.5-opt-EEs-101is between 17% and 2% higher that that of 2.5-opt-EEais.

For probability levels greater than 0.5, the numerical results show that the algorithms achieve
equivalent results with respect to the solution quality. Moreover, the results of 2.5-opt-EEs-10
show that a sample size of 10 is sufficient to tackle instances with p > 0.5. For what concerns
the computation time, 2.5-opt-EEais and 2.5-opt-EEs-100 are comparable to 2.5-opt-EEs-
-10. However, 2.5-opt-EEais is faster than 2.5-opt-EEs-1000 by a factor of three. Note that
2.5-opt-EEais and 2.5-opt-EEas are essentially the same for these probability levels.

Taking into account both the computation time and the cost of the solutions obtained, we
can see that 2.5-opt-EEais emerges as a clear winner among the considered estimation-based
algorithms.

Table 3: Experimental results for 2.5-opt-EEas, 2.5-opt-EEais, 2.5-opt-EEs—
-10, 2.5-0pt-EEs-100, 2.5-0opt-EEs-1000, 2.5-opt-ACs, 2-p-opt and 1-shift
on clustered instances of size 1000. Each algorithm is allowed to run until
it reaches a local optimum. The table gives mean and standard deviation
(s.d.) of final solution cost and computation time in seconds. The results
are given for 100 instances at each probability level. The symbol X indicates
that the algorithms do not produce meaningful results due to the numerical
problem. The algorithms based on the empirical estimation do not suffer from
this problem.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

2.5-opt-EEais 3979071 396999 10.985 1.506
2.5-opt-EEas 4113281 400094 3.017 0.506
2.5-opt-EEs-1000 3987514 414951 41.725 7.145

» = 0.050 2.5-opt-EEs-100 4145766 411885 4.378 0.718
2.5-opt-EEs-10 4665151 438176 0.477 0.039
2.5-opt-ACs 3981009 387310 785.410  113.257

1-shift 4104861 445292 634.526  146.398

2-p-opt 4187971 421438  2204.397  649.341
2.5-opt-EEais 4547516 412236 6.119 0.820
2.5-opt-EEas 4665403 410482 2.606 0.322
2.5-opt-EEs-1000 4565251 425792 22.624 2.829

p=0.075 2.5-opt-EEs-100 4673597 411925 3.411 0.386
2.5-opt-EEs-10 5364829 452497 0.535 0.037
2.5-opt-ACs 4559679 428530 587.990 71.020

1-shift 4672661 453726 688.678  114.010

2-p-opt 4800235 436085  1884.282  455.744
2.5-opt-EEais 5061985 438942 4.125 0.470
2.5-opt-EEas 5157133 437331 2.279 0.241
2.5-opt-EEs-1000 5068797 448162 14.808 1.930

»=0.100 2.5-opt-EEs-100 5152785 438530 2.685 0.308
2.5-opt-EEs-10 5915152 446106 0.583 0.049
2.5-opt-ACs 5068223 450709 452.868 60.388

1-shift 5178144 469977 674.985 87.745

2-p-opt 5365486 449318 1505.189  333.144
2.5-opt-EEais 5515565 451263 3.076 0.343
2.5-opt-EEas 5625240 468537 2.013 0.215
2.5-opt-EEs-1000 5534344 449688 10.917 1.372

p=0125 2.5-opt-EEs-100 5550938 446171 2.218 0.222
' 2.5-opt-EEs-10 6400616 472372 0.619 0.053
2.5-opt-ACs 5522776 439088 363.594 47.541

1-shift 5615434 469014 660.757 90.551

2-p-opt 5820694 467656 1303.610  264.699
2.5-opt-EEais 5943406 455610 2.487 0.280

p =0.150
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2.5-opt-EEas 6041281 454513 1.776 0.161
2.5-0pt-EEs-1000 5930674 441599 8.674 1.202
2.5-opt-EEs-100 5997015 458452 1.857 0.200
2.5-0opt-EEs-10 6785563 485912 0.650 0.050
2.5-opt-ACs 5920742 472133 308.862 39.959
1-shift 6018464 481164 635.003 88.903
2-p-opt 6256054 476219  1117.438  226.919
2.5-opt-EEais 6330797 457716 2.041 0.209
2.5-opt-EEas 6414473 476255 1.602 0.142
2.5-0opt-EEs-1000 6333479 466420 7.066 0.854
p=0.175 2.5-opt-EEs-100 6360582 474837 1.596 0.153
2.5-0opt-EEs-10 7097122 535544 0.663 0.047
2.5-opt-ACs 6326607 468850 264.233 35.623
1-shift 6394590 491996 599.314 87.826
2-p-opt 6643060 474838 992.219  192.012
2.5-opt-EEais 6674573 493872 1.775 0.157
2.5-opt-EEas 6736742 504954 1.474 0.137
2.5-opt-EEs-1000 6686638 491334 6.102 0.641
p = 0.200 2.5-0opt-EEs-100 6735824 502516 1.378 0.128
2.5-0opt-EEs-10 7408193 520731 0.655 0.049
2.5-opt-ACs 6697814 480609 226.968 26.906
1-shift 6744906 494658 580.355 74.488
2-p-opt 6978848 477593 888.112  160.210
2.5-opt-EEais 7879210 525179 1.158 0.090
2.5-opt-EEas 7899805 553771 1.078 0.086
2.5-opt-EEs-1000 7895340 522287 3.948 0.410
p = 0.300 2.5-0opt-EEs-100 7902533 551358 0.948 0.080
2.5-opt-EEs-10 8240490 548645 0.617 0.048
2.5-0opt-ACs 7901717 524412 150.528 22.110
1-shift 7982502 531786 480.545 64.266
2-p-opt 8175024 547814 576.815  103.943
2.5-opt-EEais 8789879 573340 0.898 0.075
2.5-opt-EEas 8840983 574245 0.872 0.071
2.5-opt-EEs-1000 8810714 579258 3.093 0.334
p = 0.400 2.5-0opt-EEs-100 8832988 592100 0.763 0.061
2.5-opt-EEs-10 9015844 583343 0.547 0.037
2.5-0opt-ACs 8848198 549139 109.622 15.532
1-shift 8995824 567472 385.921 51.510
2-p-opt 9060178 551378 433.499 73.642
2.5-opt-EEais 9559588 619031 0.757 0.056
2.5-opt-EEas 9565592 619559 0.745 0.049
2.5-0opt-EEs-1000 9582160 630991 2.550 0.257
p = 0.500 2.5-0opt-EEs-100 9602311 615180 0.670 0.048
2.5-opt-EEs-10 9684247 599151 0.494 0.029
2.5-0opt-ACs 9597432 599270 89.415 12.716
1-shift 9856073 579796 326.975 46.330
2-p-opt 9799469 594428 347.427 61.300
2.5-opt-EEais 10232166 651824 0.665 0.035
2.5-opt-EEas 10227292 652924 0.659 0.036
2.5-0opt-EEs-1000 10271570 650493 2.216 0.197
p = 0.600 2.5-opt-EEs-100 10280701 653690 0.606 0.037
2.5-opt-EEs-10 10254630 610135 0.459 0.028
2.5-opt-ACs X X X X
1-shift X X X X
2-p-opt X X X X
2.5-opt-EEais 10815818 661729 0.613 0.032
2.5-opt-EEas 10815731 661732 0.607 0.030
2.5-opt-EEs-1000 10812671 665515 1.999 0.184
p = 0.700 2.5-opt-EEs-100 10834997 630350 0.566 0.038
2.5-0opt-EEs-10 10866704 673214 0.427 0.022
2.5-opt-ACs X X X X
1-shift X X X X
2-p-opt X X X X
2.5-opt-EEais 11314317 669416 0.574 0.028
2.5-opt-EEas 11314319 669565 0.569 0.028
2.5-0opt-EEs-1000 11329129 702036 1.811 0.154
2.5-opt-EEs-100 11353344 682321 0.536 0.028

p = 0.800
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2.5-opt-EEs-10 11342206 674372 0.410 0.023
2.5-opt-ACs X X X X
1-shift X X X X
2-p-opt X X X X
2.5-opt-EEais 11775623 718848 0.544 0.021
2.5-opt-EEas 11774558 718768 0.540 0.022
2.5-opt-EEs-1000 11776547 718035 1.685 0.132

p = 0.900 2.5-opt-EEs-100 11771051 705646 0.517 0.029
' 2.5-opt-EEs-10 11777405 698347 0.401 0.021
2.5-opt-ACs X X X X
1-shift X X X X
2-p-opt X X X X

15

Table 4: The p-values of the pairwise comparisons of 2.5-opt-EEas, 2.5-opt-EEais, 2.5-opt--
EEs-10, 2.5-0pt-EEs-100, and 2.5-opt-EEs-1000 on clustered instances of size 1000 for proba-
bility levels less than 0.5. Values in bold mean that the algorithm in the row performs significantly
better than the algorithm in the column, while values in italic mean that the algorithm in the
column performs significantly better than the algorithm in the row.

p-values
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 0.000 0.045 0.000 0.000
p = 0.050 2.5-opt-EEas 0.000 - 0.000 0.003 0.000
2.5-0pt-EEs-1000 0.045 0.000 - 0.000 0.000
2.5-0pt-EEs-100 0.000 0.003 0.000 - 0.000
2.5-opt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-opt-EEs-10
2.5-opt-EEais - 0.000 0.206 0.000 0.000
p = 0.075 2.5-opt-EEas 0.000 - 0.000 0.732 0.000
2.5-0pt-EEs-1000 0.206 0.000 - 0.000 0.000
2.5-0pt-EEs-100 0.000 0.732 0.000 - 0.000
2.5-0pt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 0.000 0.899 0.000
p = 0.100 2.5-opt-EEas 0.000 - 0.000 0.423 0.000
2.5-0pt-EEs-1000 0.899 0.000 - 0.000 0.000
2.5-0pt-EEs-100 0.000 0.423 0.000 - 0.000
2.5-0pt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-opt-EEs-10
2.5-opt-EEais - 0.000 0.974 0.010 0.000
p=0.125 2. 0.000 - 0.000 0.000 0.000
2. 0.974 0.000 - 0.108 0.000
2. 0.010 0.000 0.108 - 0.000
2.5-0pt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-opt-EEs-10
2.5-opt-EEais - 0.000 0.725 0.000 0.000
p = 0.150 2. 0.000 - 0.000 0.020 0.000
2. 0.725 0.000 - 0.000 0.000
2. 0.000 0.020 0.000 - 0.000
2.5-0pt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 0.000 857 052 0.000
p=0.175 2.5-opt-EEas 0.000 - 0.000 0.004 0.000
: 2.5-0pt-EEs-1000 0.857 0.000 - 0.111 0.000
2.5-opt-EEs-100 0.052 0.004 0.111 - 0.000
2.5-opt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 0.000 0.999 0.001 0.000
p = 0.200 2.5-opt-EEas 0.000 - 0.001 0.999 0.000
: 2.5-0pt-EEs-1000 0.999 0.001 - 0.015 0.000
2.5-opt-EEs-100 0.001 0.999 0.015 - 0.000
2.5-opt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 0.244 1.000 1.000 0.000
p = 0.300 2.5-opt-EEas 0.244 - 1.000 1.000 0.000
2.5-0pt-EEs-1000 1.000 1.000 - 1.000 0.000
2.5-0pt-EEs-100 1.000 1.000 1.000 - 0.000
2.5-opt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 0.195 0.441 0.441 0.000
p = 0.400 2.5-opt-EEas 0.195 - 0.112 0.441 0.000
. 2.5-0pt-EEs-1000 0.441 0.112 - 0.441 0.000
2.5-opt-EEs-100 0.441 0.441 0.441 - 0.000
2.5-opt-EEs-10 0.000 0.000 0.000 0.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 1.000 1.000 0.973 0.000
p = 0.500 2.5-opt-EEas 1.000 - 0.973 1.000 0.000
2.5-0pt-EEs-1000 1.000 0.973 - 1.000 0.000
2.5-0pt-EEs-100 0.973 1.000 1.000 - 0.000
2.5-opt-EEs-10 0.000 0.000 0.000 0.000 -
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Table 5: The p-values of the comparison of 2.5-opt-EEas, 2.5-opt-EEais, 2.5-opt-EEs-10,
2.5-0pt-EEs-100, and 2.5-0opt-EEs-1000 on clustered instances of size 1000 for probability levels
greater than 0.5. Each algorithm is allowed to run until it reaches a local optimum. The statistical
test adopted is the paired Wilcoxon test with p-values adjusted by Holm’s method. The confidence
level is 95%. The statistical test does not reject the null hypothesis that the algorithms achieve
equivalent results.

p-values

2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 1.000 0.144 0.493 0.493
p = 0.600 2.5-opt-EEas 1.000 - 0.085 0.412 0.395
2.5-0pt-EEs-1000 0.144 0.085 - 1.000 1.000
2.5-0pt-EEs-100 0.493 0.412 1.000 - 1.000
2.5-0pt-EEs-10 0.493 0.395 1.000 1.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-opt-EEs-10
2.5-opt-EEais - 1.000 1.000 1.000 0.137
p = 0.700 2.5-opt-EEas 1.000 - 1.000 1.000 0.137
2.5-0pt-EEs-1000 1.000 1.000 - 1.000 0.059
2.5-0pt-EEs-100 1.000 1.000 1.000 - 0.699
2.5-0pt-EEs-10 0.137 0.137 0.059 0.699 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-opt-EEs-10
2.5-opt-EEais - 1.000 1.000 1.000 0.951
p = 0.800 2.5-opt-EEas 1.000 - 1.000 1.000 0.951
2.5-0pt-EEs-1000 1.000 1.000 - 1.000 1.000
2.5-0pt-EEs-100 1.000 1.000 1.000 - 1.000
2.5-0pt-EEs-10 0.951 0.951 1.000 1.000 -
2.5-opt-EEais 2.5-opt-EEas 2.5-0pt-EEs-1000 2.5-0pt-EEs-100 2.5-0pt-EEs-10
2.5-opt-EEais - 1.000 1.000 1.000 1.000
p = 0.900 2.5-opt-EEas 1.000 - 1.000 1.000 1.000
2.5-0pt-EEs-1000 1.000 1.000 - 1.000 1.000
2.5-0pt-EEs-100 1.000 1.000 1.000 - 1.000
2.5-opt-EEs-10 1.000 1.000 1.000 1.000 -

3.4 Final assessment

In this section, we compare 2.5-opt-EEais with 2.5-opt-ACs. For this purpose, we generated
another 100 instances for each probability level. The rationale behind the adoption of a new set
of instances is the following: 2.5-opt-EEais and 2.5-opt-ACs are selected as winners from a set
of 5 and 3 algorithms, respectively, where all of them are evaluated on a same set of instances.
Basing the comparison of 2.5-opt-EEais and 2.5-opt-ACs on the same set of instances might
possibly introduce a bias in favor of 2.5-opt-EEais. This issue is known as over-tuning; we refer
the reader to [Birattar] (2004) for further discussion.

The computational results given in Figure [ and Table @l show that 2.5-opt-EEais is very
competitive. Regarding the time required to reach local optima, irrespective of the probability
levels, 2.5-opt-EEais is approximately 2 orders of magnitude faster than 2.5-opt-ACs. The
average cost of local optima obtained by 2.5-opt-EEais is comparable to the one of 2.5-opt-ACs.

In Table B we report the observed relative difference between the cost of the local optima
obtained by the two algorithms and a 95% confidence bound on this relative difference. This
bound is obtained through a one-sided paired Wilcoxon test. TableB confirms that, concerning the
average cost of the local optima found, 2.5-opt-EEais is essentially equivalent to 2.5-opt-ACs.
On average, 2.5-opt-EEais obtains slightly better results, even if our experiments were not able
to detect statistical significance except for p = 0.400. Nonetheless, irrespective of probability
levels, should ever the average cost obtained by 2.5-opt-EEais be higher than the one obtained
by 2.5-opt-ACs, the difference would be at most 0.39%.

4 Conclusion and Future Work

Motivated by the lack of systematic integration between optimization algorithms and specialized
simulation techniques for stochastic combinatorial optimization, we integrated the adaptive sam-
ple size and the importance sampling procedures into an estimation-based iterative improvement
algorithm. We used the PROBABILISTIC TRAVELING SALESMAN PROBLEM as a test bed and we
showed that the two procedures are effective. The proposed methodology is general purpose, con-
ceptually simple, easy to implement, scalable to large instances of large sizes and can be applied
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Figure 8: Experimental results on clustered homogeneous PTSP instances of size 1000. The plots
represent the cost of the solutions obtained by 2.5-opt-EEais normalized by the one obtained by
2.5-opt-ACs. Each algorithm is stopped when it reaches a local optimum.
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Table 6: Experimental results for 2.5-opt-EEais and 2.5-opt-ACs, on clustered instances of size
1000. Each algorithm is allowed to run until it reaches a local optimum. The table gives the mean
and the standard deviation (s.d.) of the final solution cost and the computation time in seconds.
The results are given for 100 instances at each probability level.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

» = 0.050 2.5-opt-EEais 4005088 383890 11.133 1.780
2.5-opt-ACs 3998071 373847  791.594 112.789

»=0.075 2.5-opt-EEais 4574323 399872 6.082 0.773
2.5-opt-ACs 4574761 406584  577.353 90.806

p = 0.100 2.5-opt-EEais 5077261 415954 4.134 0.473
2.5-opt-ACs 5083587 412256  449.297 67.028

p=0125 2.5-opt-EEais 5543550 448682 3.036 0.320
2.5-opt-ACs 5557740 443416  374.634 53.923

p = 0.150 2.5-opt-EEais 5950184 444116 2.470 0.281
2.5-opt-ACs 5959829 446971  311.533 40.494

p=0175 2.5-opt-EEais 6341762 481888 2.042 0.197
2.5-opt-ACs 6347748 489415  261.905 32.857

p = 0.200 2.5-opt-EEais 6714236 507386 1.742 0.154
2.5-opt-ACs 6699148 481917  224.652 28.431

» = 0.300 2.5-opt-EEais 7896103 541727 1.758 5.884
2.5-opt-ACs 7890603 537486  148.077 22.784

» = 0.400 2.5-opt-EEais 8825878 596968 0.898 0.061
2.5-opt-ACs 8860822 563736  110.226 16.785

» = 0.500 2.5-opt-EEais 9622254 616871 0.753 0.046
2.5-opt-ACs 9637212 651691 90.801 13.193

to other classes of problems in which the cost difference cannot be expressed in a closed-form.

Further research will be devoted to assess the behavior of the proposed approach when used
as an embedded heuristic in metaheuristics such as iterated local search, ant colony optimization
and memetic algorithms.
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