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Abstract

In recent years, much attention has been devoted to the development of
metaheuristics and local search algorithms for tackling stochastic combinato-
rial optimization problems. In this paper, we propose an effective local search
algorithm that makes use of empirical estimation techniques for a class of
stochastic combinatorial optimization problems. We illustrate our approach
and assess its performance on the PROBABILISTIC TRAVELING SALESMAN PROB-
LEM. Experimental results show that our approach is very competitive.

1 Introduction

The PROBABILISTIC TRAVELING SALESMAN PROBLEM (PTSP) [4] is a paradigmatic
example of a stochastic combinatorial optimization problem. It is similar to the
TSP with the difference that each node has a probability of requiring a visit. The
a priori optimization [1] approach for the PTSP consists in finding an a priori
solution that visits all the nodes such that the expected cost of a posteriori solutions
is minimized: The a priori solution must be found prior to knowing which nodes
are to be visited; the associated a posteriori solution is computed after knowing
which nodes need to be visited and it is obtained by skipping the nodes that do not
require to be visited and visiting others in the order in which they appear in the a
priori solution. This paper focuses on an iterative improvement algorithm, that is,
an algorithm that starts from some initial solution and then iteratively moves to an
improving neighboring one until a local optimum is found. Essential for designing
and implementing an effective iterative improvement algorithm is that the cost
differences among neighboring solutions are computed efficiently. Currently, the
state-of-the-art iterative improvement algorithms for the PTSP, namely, 2-p-opt
and 1-shift use for this task closed-form expressions based on heavy mathematical
derivations [2]. Recently, we introduced a new algorithm called 2.5-opt-ACs that
also uses closed-form expressions and moreover adopts the classical TSP speedup
techniques [3]. We showed that this algorithm is more effective than 2-p-opt and
1-shift with respect to both solution quality and computation time [3]. In this
paper, we propose an effective iterative improvement algorithm that makes use of
empirical estimation and variance reduction techniques.
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2 Estimation-based iterative improvement
algorithm for the PTSP

The PTSP is a stochastic combinatorial optimization problem that can be described
as: Minimize F(z)= E[f(x, Q)] ,subject to x € S, where z is an a priori solution,
S is the set of feasible solutions, the operator E denotes the mathematical expecta-
tion, and f(z, Q) is the cost of the a posteriori solution that depends on a random
variable 2, which is an n-variate Bernoulli distribution; a realization w of Q pre-
scribes which nodes need being visited. An unbiased estimator of F(x) of a PTSP
solution = can be computed on the basis of a sample of costs of a posteriori solutions
obtained from M independent realizations of the random variable 2.

In iterative improvement algorithms for the PTSP, we need to compare two
neighboring solutions = and &’ to select the one of lower cost. For 2/, an unbiased
estimator of F(z’) can be estimated analogously to F'(x) by using a different set
of M’ independent realizations of Q). However, in order to increase the accuracy
of this estimator, the well-known variance-reduction technique “common random
numbers” can be adopted. In the context of PTSP, this technique consists in using
the same set of realizations of ) for estimating the costs F(z') and F(z). Conse-
quently, we have M’ = M and the estimator Fi;(z') — Far(x) of the cost difference
is given by: Fy(2') — Fa(z) = + Zfil (f(:v',wT) - f(ac,wr)). We implemented
iterative improvement algorithms that use this way of estimating cost differences
exploiting a neighborhood structure that uses the node-insertion neighborhood on
top of the 2-exchange neighborhood structure, that is, the well-known 2.5-exchange
neighborhood. To make the computation of the cost differences as efficient as pos-
sible, given two neighboring a priori solutions and a realization w, the algorithm
needs to identify the edges that are not common to the two a posteriori solutions.
This is realized as follows: for every edge (i,j) that is deleted from x, one needs
to find the corresponding edge (i*, j*) that is deleted in the a posteriori solution of
x. We call this edge the a posteriori edge and it is obtained as follows: If node @
requires visit, then i* = i, otherwise, i* is the first predecessor of i in x such that
w[i*] = 1, that is, the first predecessor for which the realization is one, indicating it
requires visit. If node j requires visit, then j* = j, otherwise, j* is the first successor
of j such that w[j*] = 1. Recall that in a 2-ezchange move, the edges (a,b) and
(c,d) are deleted from = and replaced by (a,c) and (b,d). For a given realization
w and the corresponding a posteriori edges, (a*,b*), (c*,d*), the cost difference be-
tween the two a posterior: solutions is given by cgx o+ + Cpr g+ — Cax p* — Cex ,a+, Where
¢i; is the cost of edge (i, j). The procedure described can be directly extended to
node-insertion moves. Furthermore, the proposed algorithm adopts neighborhood
reduction techniques such as fized-radius search, candidate lists and don’t look bits.
This algorithm is called 2.5-opt-EEs. For further reference, see [3].

Intuitively, the variance of the cost difference estimator depends on the prob-
ability associated with each node. The smaller the probability values, the higher
the variance. In this case, the usage of a large number of realizations reduces the
variance of the estimator. Nevertheless, using a large number of realizations for
high probability values is simply a waste of time. In order to address this issue, we
adopt an adaptive sampling procedure that saves computational time by selecting
the most appropriate number of realizations with respect to the variance of the cost
difference estimator. This procedure is realized using Student’s t-test in the fol-
lowing way: Given two neighboring a priori solutions, the cost difference between
their corresponding a posteriori solutions is sequentially computed on a number
of realizations. As soon as the ¢-test rejects the null hypothesis that the cost dif-
ference estimator is equal to zero, the computation is stopped. If no statistical
evidence is gathered, then the computation is continued until a maximum number
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Table 1: Mean and standard deviation (s.d.) of final solution cost and computation
time in seconds.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

» = 0.050 2.5-opt-EEais 3995478 366491 13.47 2.29
2.5-opt-EEs 4012670 377854 41.95 6.41
2.5-opt-ACs 3993213 372801  780.85 115.84

p=0.075 2.5-opt-EEais 4576135 403363 6.90 0.98
2.5-opt-EEs 4579572 381368 22.39 3.35
2.5-opt-ACs 4579831 399972  581.56 77.68

p=0.100 2.5-opt-EEais 5073047 414194 4.52 0.53
2.5-opt-EEs 5078611 400207 14.57 1.94
2.5-opt-ACs 5088197 400986  454.79 64.91

p=0.125 2.5-opt-EEais 5524534 424238 3.39 0.40
2.5-opt-EEs 5537658 427805 10.81 1.33
2.5-opt-ACs 5555043 411029  367.22 45.81

p=0.150 2.5-opt-EEais 5952696 432452 2.71 0.25
2.5-opt-EEs 5963539 439965 8.51 1.00
2.5-opt-ACs 5978640 431100  309.45 41.62

p=0.175 2.5-opt-EEais 6349469 444421 2.23 0.21
2.5-opt-EEs 6357512 443292 7.09 0.81
2.5-opt-ACs 6380038 446660  258.70 36.76

» = 0.200 2.5-opt-EEais 6707241 476088 1.92 0.18
2.5-opt-EEs 6715865 470162 6.01 0.64
2.5-0pt-ACs 6690302 454250  226.89 27.66

of realizations—a parameter—has been considered. The sign of the estimator is
determines the solution of lower cost.

In order to reduce the high variance of the cost difference estimator for low
probability values, we use the variance reduction technique “importance sampling”.
Given two neighboring a priori solutions, this technique, instead of using realiza-
tions from the given distribution 2, considers realizations from another distribution
Q*—the so-called biased distribution—that forces the nodes involved in the cost
difference computation to occur more frequently. The resulting cost difference be-
tween two a posteriori solutions for each realization is corrected for the adoption of
the biased distribution and the correction is given by the likelihood ratio of the orig-
inal distribution with respect to the biased distribution. We denote the proposed
algorithm 2.5-opt-EEais.

Here we report some example results obtained on clustered homogeneous PTSP
instances of 1000 nodes, which are arranged in a 10° x 10° square and where each
node has a same probability p of appearing in a realization. We considered a
probability range in [0.050,0.200] with a step size of 0.025; 100 instances were
generated for each probability level. For the hardware setting and implementation
specific details, we refer the reader to [3]. Each iterative improvement algorithm
is run until it reaches a local optimum. In order to compare the cost of the a
priori solutions reached by each algorithms, we used the closed-form expression
that computes the exact cost [4]. The results, measured across the 100 instances,
are shown in Table 1.

Regarding the time required to reach local optima, irrespective of the value
of p, 2.5-opt-EEais is approximately 1.5 to 2 orders of magnitude faster than
2.5-0opt-ACs and it is faster than 2.5-opt-EEs by a factor of 3. The average cost of
local optima obtained by 2.5-opt-EEais is comparable to one of 2.5-opt-EEs and
2.5-opt-ACs: the paired Wilcoxon test («=0.05) does not reject the null hypothesis
that the algorithms produce equivalent results.
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3 Conclusion and Future Work

The main novelty of our approach consists of using the empirical estimation tech-
niques and variance reduction techniques in the delta evaluation procedure. The
proposed approach is conceptually simple, easy to implement, scalable to large in-
stance sizes and can be applied to problems in which the cost difference cannot be
expressed in a closed-form. We will devote our further research to assess the behav-
ior of the proposed approach when used as an embedded heuristic in metaheuris-
tics such as iterated local search, ant colony optimization and genetic algorithms.
From the application perspective, the estimation-based iterative improvement algo-
rithms will be applied to more complex problems such as stochastic vehicle routing,
stochastic scheduling, and TSP with time windows and stochastic service time.
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