
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

Frankenstein’s PSO: An Engineered

Composite Particle Swarm Optimization

Algorithm

Marco A. Montes de Oca, Thomas Stützle,
Mauro Birattari and Marco Dorigo

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2007-006

March 2007

IRIDIA – Technical Report Series

ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2007-006

Revision history:

TR/IRIDIA/2007-006.001 March 2007

The information provided is the sole responsibility of the authors and
does not necessarily reflect the opinion of the members of IRIDIA. The
authors take full responsability for any copyright breaches that may
result from publication of this paper in the IRIDIA – Technical Report
Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Frankenstein’s PSO: An Engineered Composite

Particle Swarm Optimization Algorithm

Marco A. Montes de Oca mmontes@ulb.ac.be

Thomas Stützle stuetzle@ulb.ac.be

Mauro Birattari mbiro@ulb.ac.be

Marco Dorigo mdorigo@ulb.ac.be

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

March 2007

Abstract

We introduce a high-performing composite particle swarm optimiza-
tion (PSO) algorithm. In an analogy to the popular character of Mary
Shelley’s famous novel, we call our algorithm Frankenstein’s PSO, as it
consists of different algorithmic components drawn from other PSO vari-
ants. Frankenstein’s PSO constituents were selected after careful evalua-
tion of their impact on speed and reliability.

We present the process that guided us in selecting and adapting the
algorithmic components included in the final version of the algorithm. The
algorithm is validated through a comparison with other PSO variants on
a number of well-known benchmark problems.

Frankenstein’s PSO typically reaches high quality solutions faster and
more frequently than the most commonly used PSO algorithms. We pro-
vide parameter selection guidelines for properly configuring Frankenstein’s
PSO taking into account the requirements of the optimization task at
hand.

1 Introduction

In particle swarm optimization (PSO) algorithms [1, 2, 3], entities (called parti-
cles) move in a d-dimensional space by following a set of velocity- and position-
update rules that use only local information. In the context of optimization,
the desired behavior is a fast collective movement toward the tallest peak or
the deepest valley of a landscape. Finding a set of rules that consistently leads
the swarm toward these extremes across different landscapes is one of the most
active research topics in the field.

In striving for the most effective PSO algorithm, many PSO variants have
been proposed. Differences between variants range from added constants [4]
to evolved particle-movement rules for specific problems [5, 6]. The underlying
problem that justifies the existence of these completely different approaches
is the lack of specific knowledge about which algorithmic components provide
good performance on particular types of problems and under different operating
conditions.

1

2 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

In this article, we experimentally compare some of the most influential and
promising PSO variants on a number of benchmarks functions. The experimen-
tal setup and the choice of the PSO variants allow the identification of perfor-
mance differences that can only be ascribed to specific algorithmic components.
In particular, our comparison focuses on the differences between mechanisms
for updating a particle’s velocity. This includes the selection of the popula-
tion topology, the number of particles and the strategies for updating various
parameters that influence performance. Furthermore, we assume that no a pri-
ori knowledge about the structure of the problem is available so that we can
compare different PSO algorithms with their most commonly used parameter
settings.

The algorithmic components that, according to the results of the compari-
son, provide good performance are then “patched together” in a composite PSO
algorithm that we call Frankenstein’s PSO, as it consists of different algorith-
mic components drawn from other PSO variants. Frankenstein’s PSO is an
engineered algorithm in the sense that it is assembled based on the observed
strengths and weaknesses of the studied algorithms.

The performance of Frankenstein’s PSO is evaluated by comparing it with
that of other PSO algorithms. The results show that Frankenstein’s PSO typ-
ically reaches a specific required solution quality in fewer function evaluations
and with a higher success probability than the most commonly used PSO algo-
rithms. We provide parameter selection guidelines for configuring Frankenstein’s
PSO taking into account the requirements of the optimization task at hand.

2 Particle Swarm Optimization Algorithms

Given an unconstrained d-dimensional objective function f : R
d → R, a pop-

ulation of particles P = {p1, . . . , pn} (called swarm) is randomly placed in the
solution space. The objective function determines the quality of the solution
represented by a particle’s position. (Without loss of generality, we restrict the
following discussion to minimization problems.)

At time step t, a particle pi has an associated position vector x t
i and a veloc-

ity vector v t
i . A vector pb

t
i (known as personal best) stores the best position the

particle has found until time step t. This vector is updated every time particle
pi finds a better position.

A particle pi has a topological neighborhood Ni ⊆ P of particles. The best
personal best vector in a particle’s neighborhood (called local best) is a vector
lb

t
i such that f(lb t

i) ≤ f(pb
t
j) ∀pj ∈ Ni.

PSO algorithms iterate updating the particles’ velocities and positions until
a stopping criterion is met. The basic velocity- and position-update rules are:

v t+1
i = v t

i + ϕ1U
t
1(pb

t
i − x t

i) + ϕ2U
t
2(lb

t
i − x t

i) , (1)

and
x t+1

i = x t
i + v t+1

i , (2)

where ϕ1 and ϕ2 are two parameters called the cognitive and social acceleration
coefficients respectively, U t

1 and U t
2 are two d × d diagonal matrices with in-

diagonal elements uniformly distributed in the interval [0, 1]. (These matrices
are generated at every iteration.) A particle’s maximum velocity is a parameter
that prevents velocities from growing to extremely large values [7, 8].

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 3

It is useful to think of the topology of a PSO algorithm as an undirected
graph G, with a vertex set V (G) having a one-to-one correspondence with the
set of particles P , and with an edge set E(G) corresponding to the neighborhood
relations between pairs of particles. Fig. 1 shows three example topologies.

(a) Fully connected (b) Square

(c) Ring

Figure 1: Some commonly used topologies in PSO algorithms. A particle’s neighbor-

hood is composed of all the particles directly connected to it. In (a), a fully connected

topology is shown, in which each node is a neighbor of any other particle in the swarm.

In (b), a square topology is shown, in which each particle is a neighbor of other 4 par-

ticles. In (c), a ring topology is shown, in which each particle is a neighbor of another

2 particles.

In the following, we describe the algorithmic variants that are part of our
study. They are among the most influential and promising algorithmic variants.
Moreover, they are representatives of the most common approaches taken to
date for modifying the original PSO algorithm.

2.1 Canonical Particle Swarm Optimizer

Clerc and Kennedy [4] introduced a so-called constriction factor to avoid the
unlimited growth of particles’ velocities and to eliminate the maximum velocity
parameter. The constriction factor χ modifies Eq. 1 to

v t+1
i = χ

(

v t
i + ϕ1U

t
1(pb

t
i − x t

i) + ϕ2U
t
2(lb t

i − x t
i)

)

, (3)

with

χ =
2k

∣

∣

∣
2 − ϕ −

√

ϕ2 − 4ϕ
∣

∣

∣

, (4)

where k ∈ [0, 1], ϕ =
∑

i ϕi and ϕ > 4. Usually, k is set to 1 and both ϕ1 and
ϕ2 are set to 2.05, giving as a result χ equal to 0.729 [8, 9]. This way of setting
the parameter values is now so widely used that it is known as the canonical
PSO. We will refer to it simply as canonical.

4 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

2.2 Time-Varying Inertia Weight Particle Swarm Opti-

mizer

Shi and Eberhart [10, 11] noticed that the first term of the right side of Eq. 1
plays the role of a particle’s “inertia” and they introduced the idea of an inertia
weight. The velocity-update rule was modified to

v t+1
i = w tv t

i + ϕ1U
t
1(pb

t
i − x t

i) + ϕ2U
t
2(lb

t
i − x t

i) , (5)

where w t is the time-dependent inertia weight. Shi and Eberhart proposed to
set the inertia weight according to a time-decreasing function; the idea is to have
an algorithm that initially explores the search space and only later focuses on
the most promising regions. Experimental results showed that this approach is
effective [10, 7, 11]. The function used to schedule the inertia weight is defined
as

w t =
wtmax − t

wtmax

(wmax − wmin) + wmin , (6)

where wtmax marks the time at which w t = wmin; wmax and wmin are the
maximum and minimum values the inertia weight can take, respectively. Usual
settings are wmax = 0.9 and wmin = 0.4. We identify this variant as decreasing-
IW.

Zheng et al. [12, 13] studied the effects of using a time-increasing inertia
weight function obtaining, in some cases, better results than with the time-
decreasing inertia weight variant. Concerning the schedule of the inertia weight,
Zheng et al. used also Eq. 5, except that the values of wmax and wmin were
interchanged. This variant is referred to as increasing-IW.

Eberhart and Shi [14] proposed another variant in which an inertia weight
vector is randomly generated according to a uniform distribution in the range
[0.5,1.0] (a different inertia weight per dimension). This range was inspired
by Clerc and Kennedy’s constriction factor because the expected value of the
inertia weight in this case is 0.75 ≈ 0.729. Accordingly, in this stochastic-IW
algorithm, acceleration coefficients are set to χϕi with i ∈ {1, 2}.

2.3 Fully Informed Particle Swarm Optimizer

In PSO, population topologies serve as a method to select the vector lb
t
i that

will guide particle i in its search. To avoid relying only on the best neighbor,
Mendes et al. [15] proposed the fully informed particle swarm (FIPS), in which a
particle uses information from all its topological neighbors. Clerc and Kennedy’s
constriction factor is also adopted in FIPS; however, the value ϕ (i.e., the sum
of the acceleration coefficients) is equally distributed among all the neighbors
of a particle.

For a given particle pi, we decompose, as suggested in [15], ϕ as ϕk =
ϕ/|Ni| ∀pk ∈ Ni. As a result, the velocity-update equation becomes

v t+1
i = χ



v t
i +

∑

pk∈Ni

ϕkU t
k(pb

t
k − x t

i)



 . (7)

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 5

2.4 Self-Organizing Hierarchical Particle Swarm Optimizer

with Time-varying Acceleration Coefficients

Ratnaweera et al. [16] proposed the self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients (HPSOTVAC), in which
the inertia term in the velocity-update rule is eliminated. Additionally, if any
component of a particle’s velocity vector becomes zero (or very close to zero), it
is reinitialized to a value proportional to the maximum velocity allowed Vmax.
This gives the algorithm a local search behavior which is amplified by linearly
adapting the value of the acceleration coefficients ϕ1 and ϕ2. The cognitive
coefficient ϕ1 is decreased from 2.5 to 0.5 and the social coefficient ϕ2 is increased
from 0.5 to 2.5. In HPSOTVAC, Vmax is linearly decreased during a run so as to
reach the value Vmax/10 at the end. A low reinitialization velocity near the end
of the run allows particles to move slowly near the best region they have found.
The resulting PSO variant is a kind of local search algorithm with occasional
magnitude-decreasing unidimensional restarts.

2.5 Adaptive Hierarchical Particle Swarm Optimizer

Differently from the other variants, the adaptive hierarchical PSO (AHPSO)
[17] modifies the neighborhood topology at run time. It uses a tree-like topol-
ogy structure in which particles with better objective function evaluations are
located in the upper nodes of the tree. At each iteration, a child particle updates
its velocity considering its own previous best performance and the previous best
performance of its parent. Before the velocity-update process takes place, the
previous best fitness value of any particle is compared with that of its parent.
If it is better, child and parent swap their positions in the hierarchy. Addition-
ally, AHPSO adapts the branching degree of the tree while solving a problem to
balance the diversification-intensification behavior of the algorithm: a hierarchy
with a low branching degree has a more explorative behavior than a hierarchy
with a high branching degree. In AHPSO, the branching degree is decreased by
kadapt degrees (one at a time) until a certain minimum degree dmin is reached.
This process takes place every fadapt number of iterations. For more details, see
[17].

3 Experimental Setup

The focus of the comparison is on the performance effects of different mecha-
nisms for updating a particle’s velocity. However, other factors are also consid-
ered. The complete experimental design examines five factors:

1. PSO algorithm. This factor considers differences between PSO vari-
ants. Specifically, we focused on different strategies for updating inertia
weights (fixed and time-varying inertia weight variants), dynamic popula-
tion topologies (AHPSO) and different strategies for updating a particle’s
velocity (FIPS and HPSOTVAC).

2. Problem. We selected some of the most commonly used benchmark func-
tions in experimental evolutionary computation. Most of these functions
have their global optimum at the origin, but since it is known that some

6 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Table 1: Benchmark Problems
Function Name Search Range Modality

Ackley [−32.0, 32.0]n Multimodal
Griewank [−600.0, 600.0]n Multimodal
Rastrigin [−5.12, 5.12]n Multimodal
Salomon [−100.0, 100.0]n Multimodal

Schwefel (sine root) [−512.0, 512.0]n Multimodal
Step [−5.12, 5.12]n Multimodal

Rosenbrock [−30.0, 30.0]n Unimodal
Sphere [−100.0, 100.0]n Unimodal

PSO variants have a tendency to search near this region [18], we shifted
and biased their optimum value. In most cases, we used exactly the same
values that were proposed in the set of benchmark functions used for the
special session on real parameter optimization of the IEEE CEC 2005 [19].
Table 1 lists the benchmark functions used in our study. In all cases, we
used their 30-dimensional versions. (Their mathematical definitions can
be found in this paper’s supplementary information web page [20]1.) All
algorithms were run 100 times on each problem.

3. Population topology. We considered three population topologies: fully
connected, square, and ring (see Fig. 1). These topologies provide differ-
ent degrees of connectivity between particles. Different topologies favor
exploration in different degrees: The less connected is a topology, the
more it delays the propagation of the best-so-far solution. Thus, low
connected topologies result in more explorative behavior than highly con-
nected ones [21].

4. Population size. For this factor, we considered three levels: 20, 40 and
60 particles. Square topologies can have different configurations for the
same number of particles. The configurations that we considered for 20, 40
and 60 particles were 5×4, 5×8 and 6×10 respectively. Large population
sizes provide higher initial diversity.

5. Maximum number of function evaluations. This factor determined
the stopping criterion. The limit was set to 106 function evaluations. How-
ever, data were collected during a run to determine relative performances
for shorter runs.

We assume that no a priori knowledge about the structure of the problem
is available. This situation is not uncommon when solving practical problems.
If this is the case, our first approach would probably be to use a state-of-the-
art algorithm with good parameter settings recommended by earlier studies.
Our experimental setup reflects this reasoning by using, for each algorithm,
the same parameterization across all benchmark problems. When possible, we
use the most commonly used parameter settings found in the literature. These
parameter settings are listed in Table 2.

1 At this same address the reader can find all the supplementary information that, for the
sake of conciseness, we do not present here.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 7

Table 2: Parameter settings
Algorithm Settings
Canonical Acceleration coefficients ϕ1 = ϕ2 =

2.05. Constriction factor χ = 0.729.
Maximum velocity Vmax = ±Xmax,
where Xmax is the maximum of the
search range.

Decreasing-
IW

Acceleration coefficients ϕ1 = ϕ2 = 2.0.
Linearly-decreasing inertia weight from
0.9 to 0.4. The final value is reached at
the end of the run. Maximum velocity
Vmax = ±Xmax.

Increasing-
IW

Acceleration coefficients ϕ1 = ϕ2 = 2.0.
Linearly-increasing inertia weight from
0.4 to 0.9. The final value is reached at
the end of the run. Maximum velocity
Vmax = ±Xmax.

Stochastic-
IW

Acceleration coefficients ϕ1 = ϕ2 =
1.494. Uniformly distributed random
inertia weight in the range [0.5, 1.0].
Maximum velocity Vmax = ±Xmax.

FIPS Acceleration parameter ϕ = 4.1. Con-
striction factor χ = 0.729. Maximum
velocity Vmax = ±Xmax.

HPSOTVAC Linearly decreased ϕ1 from 2.5 to 0.5.
Linearly increased ϕ2 from 0.5 to 2.5.
Linearly decreased reinitialization ve-
locity from Vmax to 0.1 · Vmax. Max-
imum velocity Vmax = ±Xmax.

AHPSO Acceleration coefficients ϕ1 = ϕ2 =
2.05. Constriction factor χ = 0.729.
Initial branching factor is set to 20,
dmin, fadapt, and kadapt were set to 2,
1000 ·m, and 3 respectively, where m is
the number of particles.

8 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

In total, we have 6 × 9 plus 3 configurations (note that AHPSO adapts its
topology automatically and, hence, only the population size is varied), that is,
a total of 57 algorithm configurations.

In our experimental analysis, we examined the algorithms’ performance at
different levels of aggregation. At the lowest level, we used an analysis on
individual instances based on run-time distributions (RTDs) [22], while for a
more aggregate view, we ranked the algorithms according to the solution qual-
ity reached after different numbers of function evaluations. While the way of
aggregating results is explained later, we describe here the most important ele-
ments of the RTD methodology; for more details see [22].

For our experimental analysis, we examined qualified RTDs, which give the
empirical cumulative probability distribution of the time required by an algo-
rithm to reach a specific bound on the solution quality. Rather than measuring
computation time, we used the number of function evaluations as a surrogate
measure. This is justified since in continuous optimization the evaluation of the
objective function is typically the most expensive operation. Hence, in fact, we
measured qualified run-length distributions (RLDs). Note that from the data
collected for measuring RLDs, other typical performance characteristics can be
derived easily. This also includes the so-called “success rate”, that is, the ratio
between the number of runs finding a solution of a certain quality and the total
number of runs. The latter performance measure is actually only a “snapshot”
of an RLD at a specific number of function evaluations.

Apart from the use of RLDs for the comparison of algorithms, another im-
portant aspect is that they give a clear indication on the convergence speed
and stagnation tendency of an algorithm. In PSO literature, the term conver-
gence has been given different meanings in different contexts [23]. Here, we use
the term convergence to refer to the progress of an algorithm toward a definite
solution quality value. We say that an algorithm stagnates if it shows a very
slowly increasing or a non-increasing RLD toward the right tail of the distribu-
tion —see [22] for a more detailed discussion. In such situations, it is possible
to improve an algorithm’s performance by using occasional restarts and optimal
restart policies can be derived a posteriori. If an algorithm restarts after l func-
tion evaluations and RLq(l) is the estimated probability of finding a solution
of quality q after l function evaluations, one can easily estimate the number of
function evaluations needed by the modified algorithm to find a required solu-
tion with a probability greater than or equal to z. This estimation is also called
the computational effort in [24] and it is defined as

effort = min
l

l ·
ln(1 − z)

ln(1 − RLq(l))
. (8)

Fig. 2 shows the empirical RLDs of an algorithm with and without restarts
together with an exponential distribution that the algorithm with restarts is
ideally following. Both the cut-off time and the estimated effort for a probability
of z = 0.99 are indicated with arrows.

A measure that will be used in the description of results is the first hitting
time Lq for a specific solution quality q. Lq is the minimum number of function
evaluations that an algorithm needs for finding a solution of a quality level q.
It is defined as

Lq = min{l ≥ 0; RLq(l) > 0} . (9)

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

 Cut-off

Estimated effort

Exp(median=7397)
With restarts

Without restarts

Figure 2: Example of empirical RLDs of an algorithm with and without restarts. See

the text for more details.

4 Performance Comparison of Particle Swarm

Optimization Algorithms

We carried out a two-phase experimental study. In the first phase, a problem-
dependent run-time behavior comparison based on RLDs was performed (a pre-
liminary series of results is published in [25]). In the second phase, aggregated
information across all the problems of our benchmark suite was obtained. In
this phase, the performance of the algorithms is analyzed as a function of the
stopping criterion. Results that are valid for all tested problems are explicitly
summarized in italics.

4.1 Results: Run-Length Distributions

The graphs presented below show a curve for each of the compared algorithms
corresponding to a particular combination of a population topology and a pop-
ulation size. Since AHPSO does not use a fixed topology, its RLDs are the
same across topologies and its results can be used as a fixed point to compare
the influence of the neighborhood topology. The RLDs we present here were
obtained using swarms of 20 and 60 particles.

As a first example, Fig. 3 shows the RLDs on the Griewank function. These
plots are given with respect to a bound of 0.001% above the optimum value,
corresponding to an absolute error of 0.0018. The fastest first hitting times
for the same algorithm across different population size and topology settings
are obtained with a population size of 20 and the fully connected topology.
Conversely, the longest are obtained with a population size of 60 and the ring
topology. The right tails of the distributions show a slowly-increasing or a non-
increasing slope. This means that all PSO variants have a strong stagnation
tendency, which is probably due to being trapped in a specific region of the
search space. In fact, no variant is capable of finding a solution of the required
quality with a probability of 1.0 with a population size of 20 particles. With 60
particles and a ring topology, only FIPS finds the required solution quality with

10 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Table 3: Best performing configurations of each algorithm
using independent restarts on the Griewank function1,2

Algorithm Pop. Size Topology Cut-off Effort Restarts
FIPS 60 Ring 46440 46440 0

Canonical 60 Ring 71880 71880 0
Sto-IW 40 Ring 52160 131075 2
Inc-IW 20 Ring 24040 138644 5

HPSOTVAC 40 Ring 132080 155482 1
AHPSO 40 Adaptive 17360 207295 11
Dec-IW 60 Ring 663000 1326000 1

1 Probabilities taken from the RLDs.
2 Cut-off and effort measured in function evaluations. The effort

is computed using Eq. 8.

a probability of 1.0, while the canonical PSO and HPSOTVAC reach a solution
of the required quality with a probability of 0.99.

Result 1: Depending on the required solution quality, PSO algorithms ex-
hibit a stagnation tendency with different degrees of severity. This tendency is
less strong with large population sizes and/or low connected topologies, that is,
when a more explorative behavior is favored. However, even though the proba-
bility of solving the problem increases, first hitting times are delayed. In other
words, there is no sign of a clear dominance of one configuration over the others
across the whole range of allowed function evaluations.

Another interesting observation is the strong influence of the topology on
FIPS’s results: while FIPS with a fully connected topology fails completely
(i.e., it does not find a single solution of the required quality), with a ring
topology, it is among the fastest algorithms with a high probability of success.

Result 2: The algorithms are sensitive to a change in the population
topology in different degrees. Among those tested, FIPS is the variant that shows
the largest sensitivity to a change of this nature. On the contrary, HPSOTVAC
and the decreasing inertia weight PSO algorithm are quite stable to topology
changes.

Clearly, the differences in the algorithms’ relative performance may differ if
the possibility of restarting them is considered. Assuming optimal restarts, in
Table 3 we show for each algorithm the best configuration to solve this problem
with a probability of 0.99 (at 0.001% above the global optimum). The best
performing configurations of FIPS and the canonical PSO, both with 60 particles
and the ring topology, do not profit from restarts under these conditions and
they are overall also the two best variants for the considered goal. Hence, in
this case the joint effect of choosing the right algorithm, a large population size
and the right topology (in this case, ring), cannot be outperformed by strongly
stagnating configurations and independent restarts.

As a second example, Fig. 4 shows the RLDs obtained by the compared PSO
algorithms on the Rastrigin function. The solution quality bound is of 20.0%
above the optimum, which corresponds to an absolute error of 66.0. While the
overall shape of the RLDs is similar to that observed on Griewank, the stagna-
tion tendency seems to be lower and the curves increase over a wider interval.
Nevertheless, stagnation is still a major problem. On the Rastrigin function,
the best performance is achieved when the algorithms use a square topology.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(a) 20 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(b) 60 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(c) 20 particles, Square topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(d) 60 particles, Square topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(e) 20 particles, Ring topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(f) 60 particles, Ring topology

Figure 3: RLDs on the Griewank function. The solution bound is set to 0.001% above

the global optimum (equivalent to an absolute error of 0.0018). Plots (a), (c), and (e)

in the left column show the RLDs obtained with 20 particles. Plots (b), (d), and (f)

in the right column show the RLDs obtained with 60 particles. The effect of using

different population topologies can be seen by comparing plots in different rows. The

effect of using different number of particles can be seen by comparing columns.

12 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(a) 20 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(b) 60 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(c) 20 particles, Square topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(d) 60 particles, Square topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(e) 20 particles, Ring topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Canonical
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(f) 60 particles, Ring topology

Figure 4: RLDs on the Rastrigin function. The solution bound is set to 20.0% above

the global optimum (equivalent to an absolute error of 66.0). Plots (a), (c), and (e)

in the left column show the RLDs obtained with 20 particles. Plots (b), (d), and (f)

in the right column show the RLDs obtained with 60 particles. The effect of using

different population topologies can be seen by comparing plots in different rows. The

effect of using different number of particles can be seen by comparing columns.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 13

Table 4: Best performing configurations of each algorithm
using independent restarts on the Rastrigin function1,2

Algorithm Pop. Size Topology Cut-off Effort Restarts
Inc-IW 40 Fully connected 12760 41176 3
Sto-IW 60 Square 50220 59119 1

Canonical 40 Square 17880 61126 3
AHPSO 60 Adaptive 18660 63792 3

HPSOTVAC 20 Ring 70220 70220 0
FIPS 40 Square 38640 93797 2

Dec-IW 20 Fully connected 460200 460200 0
1 Probabilities taken from the RLDs.
2 Cut-off and effort measured in function evaluations. The effort is

computed using Eq. 8.

The only two variants that can find the required solution quality (regardless
of the population topology used) with probability 1.0, are HPSOTVAC and
decreasing-IW.

Assuming we optimally restart the algorithms, the best configurations to
solve this problem with a probability of 0.99 (at 20.0% away from the global
optimum) are shown in Table 4. Differently from what was observed on the
Griewank function, on the Rastrigin function the best performing variants use
a configuration with a strong stagnation tendency that benefits strongly from
restarts.

Result 3: Independent restarts can improve the performance of various
PSO algorithms. In some cases, fast convergent configurations (that usually
show a strong stagnation tendency) can outperform explorative ones. However,
the optimal restart policy is problem and algorithm dependent.

4.2 Results: Aggregated Data

Next, we analyze and present aggregated views of the results based on the me-
dian solution quality achieved by an algorithm after some specific number of
function evaluations. This analysis considers only the 40 particles case which
seemed a sensible choice to balance fast convergence and high population di-
versity. For each problem, we ranked 19 configurations (6 PSO algorithms ×
3 topologies + AHPSO) and selected only those that were ranked in the first
three places (what we call the top-three group). For this analysis, we do
not assume that the algorithms are restarted in any way. Although restarting
might improve the performance of some variants on some problems, the optimal
cut-off time can only be determined after an estimate of success probabilities is
available —i.e., when knowledge about the structure of the problem is available.
This is in contradiction with the assumptions of our experimental setting.

Table 5 shows the distribution of appearances of the compared PSO algo-
rithms in the top-three group. The table shows configurations ranked among the
three best algorithms after 103, 104, 105, and 106 function evaluations (FES).
The topology used by a particular configuration is shown in parenthesis. If two
or more configurations found solutions with the same quality level (differences
lower than 10−15 are not considered) and it was among the three best solution
qualities, these configurations were considered to be part of the top-three group.
In fact, we observed that, as the number of function evaluations increases, more

14 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

algorithms appear in the top-three group. This indicates that the difference in
the solution quality achieved by different algorithms decreases and that many
algorithms achieve the same quality level.

IR
ID

IA
–

T
ech

n
ica

l
R

ep
o
rt

S
eries:

T
R

/
IR

ID
IA

/
2
0
0
7
-0

0
6

1
5

Table 5: Distribution of appearances of different PSO algorithms in the top-three group1

FES Ackley Griewank Rastrigin Salomon Schwefel Step Rosenbrock Sphere

103

FIPS (F,S) FIPS (F,S) FIPS (F,S) FIPS (F,S) Inc-IW (F,S,R) FIPS (F,S) AHPSO FIPS (F,S)
Inc-IW (F) Inc-IW (F) Inc-IW (F) HPSOTVAC Inc-IW (F) Canonical (F) Inc-IW (F)

Sto-IW (F)

104

FIPS (S,R) Canonical (F) AHPSO Canonical (F) AHPSO AHPSO AHPSO AHPSO
Inc-IW (F) FIPS (S) Canonical (F) Inc-IW (F) Inc-IW (F) Canonical (F) Canonical (F) Canonical (F)

Inc-IW (F) Inc-IW (F) Sto-IW (F) Sto-IW (F) Inc-IW (F) Sto-IW (F) Inc-IW (F)
Sto-IW (F)

105

Canonical (S) Canonical (S,R) FIPS (S) Canonical (S,R) HPSOTVAC (F,S,R) Canonical (S) AHPSO AHPSO
FIPS (R) FIPS (R) Inc-IW (S) FIPS (R) Inc-IW (F) Canonical (F)Canonical (F,S,R)

Inc-IW (F) Inc-IW (S,R) Sto-IW (S) Inc-IW (F,S) Sto-IW (F) Sto-IW (F) FIPS (R)
Sto-IW (S,R) Sto-IW (F,S,R) Inc-IW (F,S,R)

Sto-IW (F,S,R)

106

Canonical (S,R) Canonical (S,R) HPSOTVAC (F,S,R) Canonical (S,R) Dec-IW (S) Canonical (S,R) AHPSO AHPSO
Dec-IW (F,S,R) Dec-IW (S,R) Dec-IW (F,S,R) FIPS (R) Dec-IW (F,S,R) Canonical (F)Canonical (F,S,R)

FIPS (R) FIPS (R) FIPS (R) HPSOTVAC (R) FIPS (R) Sto-IW (F) Dec-IW (F,S,R)
Inc-IW (S,R) HPSOTVAC (F,S,R) HPSOTVAC (F,S,R) HPSOTVAC (F,S,R) FIPS (R)
Sto-IW (S,R) Inc-IW (S,R) Inc-IW (S,R) Inc-IW (F,S,R) HPSOTVAC (S)

Sto-IW (S,R) Sto-IW (S,R) Sto-IW (F,S,R) Inc-IW (F,S,R)
Sto-IW (F,S,R)

1 F, S and R stand for fully connected, square and ring respectively.

16 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

If we consider the maximum number of function evaluations as a termination
criterion, we want to know which PSO variants are the best for different numbers
of function evaluations. Table 6 shows the algorithms that most often appear in
the top-three group in Table 5 for different termination criteria. The column Σ
shows the total number of times each algorithm appeared in the top-three group.
The rightmost column shows the distribution of appearances in the top-three
group between multi- and unimodal functions.

Result 4: If only a very limited number of function evaluations is allowed,
quickly converging configurations (i.e., those with highly connected topologies
and/or low inertia weights) obtain the best results. When solution quality is the
most important aspect, algorithms with explorative properties perform best.

4.3 Results: Different Inertia Weight Schedules

In the time-decreasing inertia weight PSO algorithm, the schedule of the inertia
weight is decreased from a maximum to a minimum over the whole optimization
process. We wanted to know whether by a faster decrease of the inertia weight
and the resulting faster convergence, decreasing-IW would still be able to find
high-quality solutions. To do so, we modified the inertia weight schedule, which
is based on Eq. 6: whenever the inertia weight reaches its minimum value, it
remains there. Five inertia weight schedules of wtmax ∈ {102, 103, 104, 105, 106}
function evaluations each, were tried. The remaining parameters were set as
shown in Table 2.

As an example of the effects of different inertia weight schedules, Fig. 5 shows
the RLDs obtained by the decreasing inertia weight PSO algorithm on the Rast-
rigin function at a solution quality of 20.0% away from the global optimum. We
only show the graphs corresponding to configurations using 20 and 60 particles
with a fully connected topology and a ring topology, respectively. The results
obtained with other configurations and other problems show a similar pattern.

Table 6: Best PSO variants for different termination criteria
Budget (in FES) Algorithm(Topology) Σ multi/unimodal

103 Inc-IW(F), FIPS(F,S) 6 5/1
104 Inc-IW(F) 7 6/1
105 Canonical(S) 5 4/1
106 Dec-IW(S), FIPS(R) 6 5/1

As expected, faster schedules make the algorithm behave more greedily. In
some cases, this greediness results in a strong reduction of the first hitting
time. How much it is reduced, depends also on the number of particles and
the population topology. However, the more aggressive the schedules are, the
stronger is the stagnation tendency. For a same schedule, the severity of the
stagnation tendency is alleviated by both an increase in the number of particles
and the use of a low connected topology.

Fig. 6 shows the development over time of the solution quality for different
inertia weight schedules on the Rastrigin function. Even though slow schedules
perform very poorly during the first phase in the optimization process, they are
the ones that are capable of finding the best quality solutions. On the other
hand, for short run-times the best solutions are found with fast schedules. The
trade-off between fast convergence and high quality reaching capabilities is clear.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

100
1000

10000
100000

1000000

(a) 20 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

100
1000

10000
100000

1000000

(b) 60 particles, Ring topology

Figure 5: RLDs obtained by the decreasing inertia weight PSO with different inertia

weight schedules on the Rastrigin function. The solution quality demanded is of 20.0%

away from the global optimum.

 1

 10

 100

 100 1000 10000 100000 1e+06

R
el

at
iv

e
so

lu
tio

n
qu

al
ity

 [%
]

Number of function evaluations

RLD reference
100

1000
10000

100000
1000000

(a) 20 particles, Fully connected topology

 1

 10

 100

 100 1000 10000 100000 1e+06

R
el

at
iv

e
so

lu
tio

n
qu

al
ity

 [%
]

Number of function evaluations

RLD reference
100

1000
10000

100000
1000000

(b) 60 particles, Ring topology

Figure 6: Solution quality development over time for different inertia weight schedules

on Rastrigin function. These plots are based on the medians of the algorithms’ RLDs.

The horizontal line represents the solution quality requirement used to obtain the

RLDs shown in Fig. 5.

Table 7: Best performing decreasing inertia weight con-
figurations using independent restarts on the Rastrigin
function1,2

Schedule Pop. Size Topology Cut-off Effort Restarts
102 20 Square 10120 44393 4
103 40 Fully connected 12440 34496 2
104 40 Fully connected 20960 38217 1
105 40 Fully connected 73800 73800 0
106 20 Fully connected 460200 460200 0

1 Probabilities taken from the RLDs.
2 Cut-off and effort measured in function evaluations. The effort

is computed using Eq. 8.

18 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Table 7 shows the results of using independent restarts together with differ-
ent inertia weight schedules. The best configuration is the one with the compu-
tational effort highlighted in boldface. The results show that, when solving the
Rastrigin function, it is possible to outperform configurations with relatively
slow schedules through the use of independent restarts. Additionally, the best
decreasing inertia weight PSO configuration would outperform the best PSO
algorithm of the first comparison if both were optimally restarted (compare
Tables 7 and 4).

Result 5: Faster inertia weight schedules induce a faster convergence
of decreasing-IW. At the same time, they increase the algorithm’s stagnation
tendencies. The inertia weight schedule can be used as a tunable parameter to
control the algorithm’s convergence speed and, consequently, its ability to find
high-quality solutions. The application scenario defines the compromise to be
taken: speed or quality.

We carried out an analysis similar to the one just presented with the increas-
ing inertia weight PSO algorithm. In this case, only with schedules of 105 and
106 function evaluations meaningful results are obtained.

4.4 Summary of Results

The results of our experimental study can be summarized as follows.

Stagnation tendencies of PSO algorithms can be alleviated by using a large
population and/or low connected topologies. However, this comes at the price
of a slower convergence speed. Another approach to reduce stagnation is to
use restarts. Fast convergent variants can outperform explorative ones if in-
dependent restarts are used. However, optimal restart schedules are problem-
dependent and determining them requires previous experimentation [22].

Some PSO algorithms use time-varying parameters and scheduling them in
different ways has a major impact on their performance. Slow inertia weight
schedules favor exploration in the decreasing inertia weight PSO while fast ones
favor fast convergence. An appropriate schedule can be selected to meet the
requirements of an application scenario.

Finally, the usage of different population topologies can have a tremendous
impact on the performance of a PSO algorithm. FIPS, for example, is among
the best algorithms for short runs when using a fully connected topology. With
a ring topology, it is among the best ones for long runs.

5 Frankenstein’s Particle Swarm Optimization

Algorithm

Insights on experimental results ideally also guide towards the definition of new,
better performing algorithms. In fact, here we introduce a new PSO algorithm
that is assembled from algorithmic components that are taken from the other
PSO algorithms we have examined. The algorithmic components included in
our Frankenstein’s PSO algorithm contribute in their original context to either
find solutions of very good quality in the long run or find good quality solutions
in few function evaluations.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 19

5.1 Constituent Algorithmic Components

Frankenstein’s PSO is composed of three main algorithmic components, namely
(i) an adaptive population topology, (ii) a mechanism for updating a particle’s
velocity and position that provides fast convergence, and (iii) a decreasing in-
ertia weight.

The adaptive population topology starts as a fully connected one that, as the
optimization process evolves, decreases its connectivity until it ends up being
a ring topology. Interestingly enough, it is exactly the opposite approach than
the one taken by Suganthan [26]. However, note that our approach is entirely
based on the results of the empirical analysis presented in the previous section.
Specifically, our choice is based on the fact that a highly connected topology
during the first iterations gives an algorithm a fast convergent behavior that
allows it to find good quality solutions early in a run (see Results 1 and 4).
The topology connectivity is then decreased, so that the risk of getting trapped
somewhere in the search space is lowered and, hence, exploration is enhanced.
Including this component into the algorithm permits the achievement of good
performance across a wider range of run lengths as is shown later.

The connectivity of the population topology is also decreased in AHPSO.
However, we do not use a hierarchical topology as it is not clear from our results
what its contribution to a good performance is.

The topology adaptation scheme works as follows. Suppose we have a parti-
cle swarm composed of n particles. We schedule the adaptation of the topology
so that in k iterations (with k ≥ n), we transform a fully connected topology
with n(n − 1)/2 edges into a ring topology that has only n edges. The total
number of edges that have to be eliminated is n(n − 3)/2. Every dk/(n − 3)e
iterations we remove m edges. The number m of edges to remove follows an
arithmetic regression pattern of the form n− 2, n− 3, . . . , 2. We sweep m nodes
removing one edge per node chosen uniformly at random from the edges that
do not belong to the exterior ring which is predefined in advance (just as it is
done when using the normal ring topology). In this way, in n − 3 elimination
steps we transform the population topology. Fig. 7 shows a graphical example
of how the process just described is carried out.

The adaptation of the population topology must be exploited by the under-
lying particles’ velocity- and position-update mechanism. If we refer to Table 6,
we see that the only velocity- and position-update mechanism that is ranked
among the best and that uses different topologies is FIPS: For short runs, FIPS’s
best performance is obtained with the fully connected topology; for longer runs,
this algorithm reaches very high performance with a low connected topology.
Hence, the second main component of Frankenstein’s PSO is FIPS’s velocity
and position-update mechanism, since it allows for a fast convergence during
the very first iterations and it effectively uses the ring topology for long runs.
The only modification to this component is that Clerc and Kennedy’s constric-
tion factor is not used. We employ a decreasing inertia weight since it allows
the user to tune the algorithm’s exploration/exploitation capabilities. In Sec-
tion 4.3, we saw how a proper selection of the schedule of the inertia weight can
dramatically change the performance of a PSO algorithm. We use a decreas-
ing inertia weight so that the exploration behavior, which is favored by a low
connected topology, can be controlled.

The pseudocode of Frankenstein’s PSO is shown in Algorithm 1. The main

20 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

(a) t = 0 (b) t = 4

(c) t = 8 (d) t = 12

Figure 7: Topology adaptation process. Suppose n = 6 and k = 12. Then, every

d12/(6 − 3)e = 4 iterations we remove some edges from the graph. In 6 − 3 = 3 steps,

the elimination process will be finished. (a), at t = 0 a fully connected topology is

used. (b), at t = 4 the 6 − 2 = 4 edges to be removed are shown in dashed lines. (c),

at t = 8 the 6 − 3 = 3 edges to be removed are shown in dashed lines. (d), at t = 12

the remaining 6 − 4 = 2 edges to be removed are shown in dashed lines. From t = 12

on, the algorithm uses a ring topology.

loop cycles through the three algorithmic components: topology adaptation,
inertia weight, and the particles’ velocity and position updates. The topology
update mechanism is only executed while the algorithm’s current number of
iterations is lower than or equal to a parameter k, which specifies the topology
update schedule. Since it is guaranteed that the ring topology is reached after
iteration k, there is no need to call this procedure thereafter. In Algorithm 1,
a variable esteps is used to ensure that the number of eliminated edges in the
topology follows an arithmetic regression pattern. Note that the elimination of
neighborhood relations is symmetrical, that is, if particle r is removed from the
neighborhood of particle i, particle i is also removed from the neighborhood of
particle r. The inertia weight is updated as in the decreasing inertia weight PSO
with different schedules. Finally, the velocity- and position-update mechanism
is applied in the same way as in FIPS. The user needs to specify the value of
the parameter ϕ.

5.2 Parameterization Effects

We studied the impact on the algorithm’s performance of different parameter
settings. In particular, on the effects of the topology adaptation and the inertia
weight schedules. The remaining parameters were the same as those used in the
original context of the different algorithmic components as is shown in Table 8.

The experimental conditions under which we evaluated the performance of
the algorithm were the same that we used in the comparison of the different

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 21

Algorithm 1: Frankenstein’s PSO algorithm

/* Initialization */
for i = 1 to n do

Create particle pi and add it to the set of particles P
Initialize its vectors xi and vi to random values within the search range and maximum
allowed velocities
Set pbi = xi

Set Ni = P
end for

/* Main Loop */
Set t = 0
Set esteps = 0
repeat

/* Evaluation Loop */
for i = 1 to n do

if f(xi) is better than f(pbi) then

Set pbi = xi

end if

end for

/* Topology Update */
if t > 0 ∧ t <= k ∧ t mod dk/(n − 3)e = 0 then

/* t > 0 ensures that a fully connected topology is used first */
/* t <= k ensures that the topology adaptation process is not called after iteration k
*/
/* t mod dk/(n − 3)e = 0 ensures the correct scheduling of the topology adaptation
process */
for i = 1 to n − (2 + esteps) do

/* n − (2 + esteps) ensures the arithmetic regression pattern */
if |Ni| > 2 then

/* |Ni| > 2 ensures proper node selection */
Select at random particle pr from Ni such that pr is not adjacent to pi

Eliminate particle pr from Ni

Eliminate particle pi from Nr

end if

end for

Set esteps = esteps + 1
end if

/* Inertia Weight Update */
if t ≤ iwtmax then

Set w(t) = wtmax−t
wtmax

(wmax − wmin) + wmin

else

Set w(t) = wmin

end if

/* Velocity and Position Update */
for i = 1 to n do

Generate U t
m ∀pm ∈ Ni

Set ϕm = ϕ/|Ni| ∀pm ∈ Ni

Set v
t+1

i = w tv t
i +

X

pm∈Ni

ϕkU t
k(pb t

k − x t
i)

Set xi = xi + vi

end for

Set t = t + 1
Set sol = argmin

pi∈P

f(pb t
i)

until f(sol) value is good enough or t = tmax

PSO algorithms. Three swarm sizes (n = 20, 40, 60), four schedules of the

22 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Table 8: Frankenstein’s PSO Parameter Settings
Algorithm Settings
Frankenstein’s
PSO

Maximum velocity Vmax = ±Xmax.
Linearly-decreasing inertia weight from
0.9 to 0.4. The sum of the acceleration
coefficients, ϕ, is equal to 4.0.

topology adaptation (measured in iterations) (k = n, 2n, 3n, 4n) and four
schedules of the inertia weight (measured in function evaluations) (wtmax = n2,
2n2, 3n2, 4n2) were tried.

As an illustrative example of the results, consider Fig. 8. It shows the RLDs
obtained by Frankenstein’s PSO algorithm on the Rastrigin function. These dis-
tributions correspond, as before, to a solution quality 20.0% above the optimum
value. Only the results obtained with the extreme configurations are shown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(a) 20 particles, 1 × n iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(b) 60 particles, 1 × n iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(c) 20 particles, 4 × n iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(d) 60 particles, 4 × n iterations

Figure 8: RLDs obtained by Frankenstein’s PSO algorithm on Rastrigin function. The

solution quality demanded is of 20.0% above the global optimum. Columns show the

RLDs obtained with different number of particles. Rows show the RLDs obtained with

different topology adaptation schedules. Each graph shows four RLDs that correspond

to different inertia weight schedules.

A combination of a slow topology adaptation schedule (3n or 4n) and a
fast inertia weight schedule (n2 or 2n2) promotes the stagnation of the algo-
rithm. This can be explained if we recall that FIPS has a strong stagnation
tendency when using a highly connected topology: A slow topology adaptation
schedule maintains for more iterations a high topology connectivity and a fast
inertia weight schedule reduces quickly the exploration capabilities of the parti-
cle swarm. These two effects also increase the algorithm’s stagnation tendency.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 23

However, such a configuration also reduces the first hitting time, as can be ob-
served in the graphs. To counteract a fast convergence/stagnation tendency, the
two possibilities are to slow down the inertia weight schedule or to fasten the
adaptation of the topology. This again comes with a delay of the first hitting
times.

Increasing the number of particles increases initial diversity during the al-
gorithm’s first iterations. The exploitation of this initial diversity depends on
the topology adaptation and inertia weight schedules. The configurations that
appear to better exploit initial diversity are those in which these two schedules
are slow.

-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality

 Best
 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(a) 20 particles, 103 evaluations

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality

 Best

 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(b) 60 particles, 103 evaluations

-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality

 Best

 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(c) 20 particles, 106 evaluations

-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality
 Best

 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(d) 60 particles, 106 evaluations

Figure 9: Average standard solution quality as a function of the topology adaptation

and the inertia weight schedules for different termination criteria. Columns show the

results obtained with different number of particles. Rows show the results obtained

for different termination criteria. In each case, the best configuration is pointed by an

arrow.

Fig. 9 shows the average (over the 8 benchmark problems of the experimental
setup) standard solution quality (i.e., for each group, the mean is equal to zero
and the standard deviation is one) as a function of the topology adaptation and
the inertia weight schedules for different termination criteria. Since we work
with minimization, a more negative average standard solution quality means
that the specific configuration found better solutions.

According to Fig. 9, the algorithm needs more explorative configurations
(i.e., fast topology adaptation schedules and slow inertia weight schedules) for
long runs. For short runs, greedy configurations (i.e., slow topology adaptation
schedules and fast inertia weight schedules) yield the best results. For runs of
104 and 105 function evaluations, the best configurations are intermediate ones
(i.e., either fast or slow topology adaptation or inertia weight schedules).

The extra diversity that a large population provides, needs to be counter-

24 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

balanced by the chosen configuration. For example, at 103 function evaluations,
the best configuration tends to have faster inertia weight schedules for larger
swarms. With 20 particles, the best configuration is at point (4, 3) while with
40 and 60 particles, the best configurations are at (4, 2) and (4, 1), respectively.
These results are consistent with those of the experimental comparison.

6 Performance Validation

Finally, we evaluate the performance of Frankenstein’s PSO by comparing its
best configurations with those of the PSO algorithms described in Section 4.

To do so, we first identify the best configurations of every PSO variant as a
function of the maximum number of function evaluations in an analogous way
to Section 4.2. (We select candidate configurations for each PSO algorithm
separately to avoid artificially favoring some PSO variants because of having
more representatives in the ranking.) For each PSO algorithm we consider
all its configurations resulting from our experimental setup and we choose, for
each termination criterion, the best performing ones. Table 9 shows these best
configurations for each PSO algorithm and termination criterion.

In a second step, we compared the algorithms’ configurations shown in Ta-
ble 9. For this purpose, and to be able to compare their relative effectiveness,
we standardized the median solution qualities achieved by each one of them.
Table 10 shows the standardized median solution quality obtained by each con-
figuration (identified only by the algorithm’s name) for each termination crite-
rion. The best values for each individual problem and stopping criterion are
highlighted in boldface.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 25

Table 9: Best configurations of different PSO variants for different
termination criteria

Configuration

FES Algorithm Particles (n) Topology1 Topology
Schedule

Inertia
Weight

Schedule

103

Canonical 20 F - -
Decreasing-IW 20 F - 102

Increasing-IW 20 F - 105

Stochastic-IW 20 F - -
FIPS 20 S - -

HPSOTVAC 20 S - -
AHPSO 20 T - -

Frankenstein’s PSO 20 A 4n 3n2

104

Canonical 20 S - -
Decreasing-IW 20 F - 103

Increasing-IW 20 S - 106

Stochastic-IW 20 S - -
FIPS 20 R - -

HPSOTVAC 20 S - -
AHPSO 40 T - -

Frankenstein’s PSO 20 A 4n 4n2

105

Canonical 40 S - -
Decreasing-IW 60 F - 104

Increasing-IW 60 F - 106

Stochastic-IW 20 S - -
FIPS 40 R - -

HPSOTVAC 20 R - -
AHPSO 60 T - -

Frankenstein’s PSO 20 A 4n 3n2

106

Canonical 60 S - -
Decreasing-IW 40 R - 105

Increasing-IW 60 S - 106

Stochastic-IW 60 S - -
FIPS 40 R - -

HPSOTVAC 40 S - -
AHPSO 60 T - -

Frankenstein’s PSO 60 A 2n 4n2

1 F, S, R, T and A stand for fully connected, square, ring, tree-like and
adaptive, respectively.

2
6

IR
ID

IA
–

T
ech

n
ica

l
R

ep
o
rt

S
eries:

T
R

/
IR

ID
IA

/
2
0
0
7
-0

0
6

Table 10: Best overall configurations of different PSO variants for different termination criteria. Each group is sorted by the average
standard solution quality in ascending order, so the best overall configuration is listed first.

FES Algorithm Ackley Griewank Rastrigin Salomon Schwefel Step Rosenbrock Sphere Average

103

Frankenstein’s PSO -2.024 -0.955 -0.975 -0.517 1.378 -1.315 -0.302 -1.108 -0.727
Increasing-IW -0.013 -0.393 -0.950 -0.323 -1.229 -0.645 -0.367 -0.371 -0.536
Decreasing-IW -0.002 -0.386 -1.067 -0.316 -1.199 -0.359 -0.474 -0.425 -0.528

FIPS -0.765 -0.430 -0.080 -0.457 1.432 -0.932 0.206 -0.538 -0.195
Canonical 0.476 -0.156 0.287 -0.276 -0.213 0.406 -0.491 -0.057 -0.003

Stochastic-IW 0.656 0.124 0.652 -0.237 -0.046 0.693 -0.488 0.304 0.207
AHPSO 0.476 -0.156 0.287 2.464 -0.213 0.406 -0.491 -0.057 0.340

HPSOTVAC 1.198 2.353 1.847 -0.338 0.090 1.745 2.406 2.251 1.444

104

Increasing-IW -0.129 -0.564 -0.593 -0.349 -0.797 -0.539 -0.348 -0.359 -0.460
Canonical -0.212 -0.616 -0.591 -0.373 -0.459 -0.539 -0.376 -0.359 -0.441

Decreasing-IW -0.065 -0.518 -0.962 -0.341 -0.754 -0.085 -0.370 -0.358 -0.431
Frankenstein’s PSO -1.061 -0.761 0.056 -0.386 1.332 -0.993 -0.414 -0.361 -0.324

Stochastic-IW -0.131 0.443 -0.512 -0.361 -0.541 -0.085 -0.290 -0.359 -0.230
FIPS -1.056 -0.718 1.567 -0.378 1.760 -0.539 -0.364 -0.361 -0.011

AHPSO 0.569 0.656 -0.512 2.474 -0.641 0.596 -0.312 -0.316 0.314
HPSOTVAC 2.086 2.077 1.546 -0.287 0.101 2.185 2.473 2.475 1.582

105

Frankenstein’s PSO -0.354 -0.883 -1.192 -0.359 -1.548 -0.487 0.782 -0.354 -0.549
Decreasing-IW -0.354 0.631 -0.709 -0.355 -0.311 -0.787 -0.983 -0.354 -0.402
Increasing-IW -0.354 0.631 0.108 -0.355 -0.271 -0.787 -0.441 -0.354 -0.228

Canonical -0.354 -0.883 0.313 -0.359 0.729 -0.487 0.216 -0.354 -0.147
Stochastic-IW -0.354 0.631 1.130 -0.359 0.649 -0.787 -1.013 -0.354 -0.057

FIPS -0.354 -0.883 1.060 -0.355 1.372 0.712 1.008 -0.354 0.276
AHPSO -0.354 1.639 0.721 2.475 0.529 0.712 -1.019 -0.354 0.544

HPSOTVAC 2.475 -0.883 -1.431 -0.334 -1.149 1.911 1.449 2.475 0.564

106

Frankenstein’s PSO -0.354 -0.354 -0.787 -0.358 -1.257 -0.661 -0.058 -0.504 -0.542
Increasing-IW -0.354 -0.354 0.002 -0.354 0.019 -0.661 0.039 -0.504 -0.271
Decreasing-IW -0.354 -0.354 0.472 -0.354 0.367 -0.661 -0.778 -0.504 -0.271

FIPS -0.354 -0.354 -0.546 -0.354 -1.349 0.661 0.685 -0.504 -0.264
Stochastic-IW -0.354 -0.354 0.415 -0.358 0.705 -0.661 -0.529 -0.504 -0.205

Canonical -0.354 -0.354 0.815 -0.358 1.072 -0.661 -0.717 -0.504 -0.132
HPSOTVAC 2.475 -0.354 -1.760 -0.341 -0.705 0.661 2.129 2.184 0.536

AHPSO -0.354 2.475 1.388 2.475 1.149 1.984 -0.771 0.840 1.148

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 27

For runs of 103, 105 and 106 function evaluations, the best overall configu-
ration is the one of Frankenstein’s PSO. For runs of 104 function evaluations,
the configuration of Frankenstein’s PSO is ranked in the fourth place. However,
with this same number of function evaluations, the configuration of Franken-
stein’s PSO is the best configuration in 6 of the 8 benchmark problems. The
average rank of Frankenstein’s PSO after 104 function evaluations can be ex-
plained with the results on Schwefel’s function: FIPS (whose particles’ velocity-
and position-update mechanism is the same of Frankenstein’s PSO) is the worst
algorithm for this termination criterion (and also for the one of 103 function
evaluations) on Schwefel’s function.

Overall, we conclude that Frankenstein’s PSO algorithm is a high-performing
PSO variant that, if properly parameterized, is faster and more reliable than
the most commonly used PSO algorithms. The good performance of Franken-
stein’s PSO algorithm is the result of the synergistic effects of its algorithmic
components.

7 Conclusions and Future Work

There is a large number of PSO variants proposed in current literature. This
is a sign of the great interest that PSO has received since its introduction, and
to some extent, its success. However, it is also a sign of the generalized lack of
knowledge about which algorithmic components provide good performance on
particular types of problems and under different operating conditions.

In an attempt to gain insight into the performance advantages of different
algorithmic components, we compared the most influential and some of the most
promising PSO variants. The results of the comparison itself revealed that no
variant dominates all the others on all benchmark problems and under all tested
circumstances. This means that some variants are able to find a solution of a
certain quality faster than others, or given the possibility of using the same
number of function evaluations, they are able to find solutions of better quality.
Since variants differ only on some specific algorithmic components, differences
in performance must come from these components and/or the way they interact
with others. The question then becomes: Is it possible to combine different
algorithmic components that seem to provide good performance into a single
PSO variant capable of performing better than the variants from which these
components were taken?

In this paper, we provide an answer to that question. The algorithm is called
Frankenstein’s PSO. It is an algorithm with three main algorithmic components:
(i) an adaptive population topology that decreases its connectivity as the opti-
mization process evolves; (ii) a particles’ velocity- and position-update mecha-
nism that exploits every stage of the topology adaptation process. The choice
was to include the mechanism used in FIPS; and (iii) a time-decreasing iner-
tia weight that allows the user to tune the algorithm’s exploration/exploitation
capabilities.

The results of our performance validation show that Frankenstein’s PSO
typically finds high quality solutions using fewer function evaluations and often
also with a higher frequency than the most commonly used PSO algorithms.
Some parameter tuning guidelines that take into account the requirements of
the optimization task were provided.

28 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

One algorithmic component that could further improve Frankenstein’s PSO
performance, is the use of restarts. In our empirical evaluation, we showed that
even simple independent restarts can dramatically improve the performance
of many PSO variants. Unfortunately, there is no fixed restart policy that
would work equally well for all problems. A restarting mechanism that uses
information of the development of the optimization run is then one promising
research direction that deserves further investigation.

Acknowledgment

This work was supported by the ANTS project, an Action de Recherche Con-
certée funded by the Scientific Research Directorate of the French Community
of Belgium. Marco A. Montes de Oca acknowledges support from Programme
Alβan, the European Union Programme of High Level Scholarships for Latin
America, scholarship No. E05D054889MX. Thomas Stützle and Marco Dorigo
acknowledge support from the Belgian National Fund for Scientific Research
(FNRS), of which they are a Research Associate and a Research Director, re-
spectively.

References

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings
of IEEE International Conference on Neural Networks. Piscataway, NJ,
USA: IEEE Press, 1995, pp. 1942–1948.

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm the-
ory,” in Proceedings of the 6th International Symposium on Micro Machine
and Human Science. Piscataway, NJ, USA: IEEE Press, 1995, pp. 39–43.

[3] J. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence. San Francisco,
CA, USA: Morgan Kaufmann, 2001.

[4] M. Clerc and J. Kennedy, “The particle swarm–explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[5] R. Poli, C. D. Chio, and W. B. Langdon, “Exploring extended particle
swarms: A genetic programming approach,” in Proceedings of the 2005
conference on Genetic and Evolutionary Computation. New York, NY,
USA: ACM Press, 2005, pp. 169–176.

[6] R. Poli, W. B. Langdon, and O. Holland, “Extending particle swarm opti-
misation via genetic programming,” in LNCS 3447. Genetic Programming:
8th European Conference, EuroGP 2005, M. Keijzer, A. Tettamanzi, P. Col-
let, J. van Hemert, and M. Tomassini, Eds. Berlin, Germany: Springer-
Verlag, 2005, pp. 291–300.

[7] Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimiza-
tion,” in LNCS 1447. Evolutionary Programming VII: 7th International
Conference, Ep98. Berlin, Germany: Springer-Verlag, 1998, pp. 591–600.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 29

[8] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction fac-
tors in particle swarm optimization,” in Proceedings of the 2000 IEEE
Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE
Press, 2000, pp. 84–88.

[9] I. C. Trelea, “The particle swarm optimization algorithm: Convergence
analysis and parameter selection,” Information Processing Letters, vol. 85,
no. 6, pp. 317–325, 2003.

[10] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceed-
ings of the IEEE International Conference on Evolutionary Computation.
Piscataway, NJ, USA: IEEE Press, 1998, pp. 69–73.

[11] ——, “Empirical study of particle swarm optimization,” in Proceedings of
the 1999 IEEE Congress on Evolutionary Computation. Piscataway, NJ,
USA: IEEE Press, 1999, pp. 1945–1950.

[12] Y.-L. Zheng, L.-H. Ma, L.-Y. Zhang, and J.-X. Qian, “On the convergence
analysis and parameter selection in particle swarm optimization,” in Pro-
ceedings of the 2003 IEEE International Conference on Machine Learning
and Cybernetics. Piscataway, NJ, USA: IEEE Press, 2003, pp. 1802–1807.

[13] ——, “Empirical study of particle swarm optimizer with an increasing in-
ertia weight,” in Proceedings of the 2003 IEEE Congress on Evolutionary
Computation. Piscataway, NJ, USA: IEEE Press, 2003, pp. 221–226.

[14] R. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with
particle swarms,” in Proceedings of the 2001 IEEE Congress on Evolution-
ary Computation. Piscataway, NJ, USA: IEEE Press, 2001, pp. 94–100.

[15] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm:
Simpler, maybe better,” IEEE Transactions on Evolutionary Computation,
vol. 8, no. 3, pp. 204–210, 2004.

[16] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hi-
erarchical particle swarm optimizer with time-varying acceleration coeffi-
cients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
240–255, 2004.

[17] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer
and its adaptive variant,” IEEE Transactions on Systems, Man and
Cybernetics–Part B, vol. 35, no. 6, pp. 1272–1282, 2005.

[18] C. K. Monson and K. D. Seppi, “Exposing origin-seeking bias in PSO,”
in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), H. G. Beyer et al., Eds. New York, NY, USA: ACM Press,
2005, pp. 241–248.

[19] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” Nanyang Technologi-
cal University, Singapore and IIT Kanpur, India, Tech. Rep. 2005005, 2005.

30 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

[20] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo, “Franken-
stein’s PSO: Complete data,” 2007, Supplementary information page at
http://iridia.ulb.ac.be/supp/IridiaSupp2007-002/.

[21] R. Mendes, “Population topologies and their influence in particle swarm
performance,” Ph.D. dissertation, Escola de Engenharia, Universidade do
Minho, 2004.

[22] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Ap-
plications. San Francisco, CA, USA: Morgan Kaufmann, 2004.

[23] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
Chichester, West Sussex, England: John Wiley & Sons, 2005.

[24] J. Niehaus and W. Banzhaf, “More on computational effort statistics for
genetic programming,” in LNCS 2610. Genetic Programming: 6th Euro-
pean Conference, EuroGP 2003, C. Ryan, T. Soule, M. Keijzer, E. Tsang,
R. Poli, and E. Costa, Eds. Berlin, Germany: Springer-Verlag, 2003, pp.
164–172.

[25] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo, “A compar-
ison of particle swarm optimization algorithms based on run-length distri-
butions,” in LNCS 4150. Ant Colony Optimization and Swarm Intelligence.
5th International Workshop, ANTS 2006, M. Dorigo, L. M. Gambardella,
M. Birattari, A. Martinoli, R. Poli, and T. Stützle, Eds. Berlin, Germany:
Springer-Verlag, 2006, pp. 1–12.

[26] P. N. Suganthan, “Particle swarm optimiser with neighbourhood operator,”
in Proceedings of the 1999 IEEE Congress on Evolutionary Computation.
Piscataway, NJ, USA: IEEE Press, 1999, pp. 1958–1962.

