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Abstract. In this paper, we study a model-free approach to fault detection for autonomous
robots. Our hypothesis is that hardware faults will change the flow of sensory information
and the actions performed by the control program. By detecting these changes, the presence
of faults can be inferred. In order to test our hypothesis, we collect data from three different
tasks performed by real robots. During each experiment, we record all sensory inputs from
the robots while they are operating normally and when in a simulated fault state. Given
that faults are simulated and controlled, we can correlate the flow of sensory inputs with
the state of the robot. We use a basic machine learning technique, that is, back-propagation
neural networks, to synthesize fault detection components for robots performing specific
tasks. We show that based on the flow of sensory inputs alone, we achieve good, model-free
fault detection for real robots.

1 Introduction

As more and more robots are introduced in space, industry, and private homes, fault detection is
becoming an increasingly important issue to address. When a robot stops exhibiting its intended
behavior, either due to an internal fault or external factors, it can become a costly and/or a
dangerous affair (Isermann, 1997). The problem is often exacerbated if the fault is not detected
in a timely manner. In a recent paper (Carlson and Murphy, 2003), the reliability of seven mobile
robots from three different manufacturers was tracked over a period of two years and the average
mean time between failures (MTBF) was found to be 8 hours. The result suggests that faults
in mobile robots are quite frequent. Fault detection can be achieved by adding special-purpose
hardware such as torque and position sensors (Terra and Tinos, 2001). Adding additional hardware
increases cost and complexity, and it is, therefore, something that we would like to avoid in many
cases. The National Aeronautics and Space Administration (NASA) is, for instance, studying
deployment of cooperating swarms of hundred to thousands of small-scale autonomous robots to
explore the solar system (Hinchey et al., 2004). Given the high number of robots, simplicity and
small size are high priorities. Similarly, for domestic adoption of service and leisure robots, the
number and complexity of components have to be kept low in order to reach a price point that
allows for high market penetration (Kochan, 2005).

In this study, we propose a general method for performing fault detection for autonomous
robots. Our method requires no special fault detection hardware and relatively few computational
resources to run the fault detection software. It relies on recording sensory data, firstly over a
period of time when a robot is operating as intended, and secondly over a period of time when
various types of simulated hardware and mechanical faults have been injected. Using knowledge
of how the flow of information changes after a fault has occurred, we are able to detect faults.

Technically, a fault is an unexpected change in system function which hampers or disturbs
normal operation, causing unacceptable deterioration in performance (Isermann and Ballé, 1997).
A fault tolerant system is capable of continued operation, possibly at a degraded performance, in
the event of faults in some of its parts. Fault tolerance is a sought-after property for critical systems
due to economic and/or safety concerns. What we study in this paper is the activity known as fault
detection in autonomous robots. Fault detection is a binary decision process confirming whether



or not a fault has occurred in a system. Other aspects of achieving fault tolerance for a system
might include fault diagnosis, namely determining the type and location of faults, and protection
which comprises any steps necessary to ensure continued safe operation of the system (Isermann
and Ballé, 1997).

2 Related Work

Fault detection is based on observations of a system’s behavior. Deviations from normal behavior
can, for instance, be interpreted as symptoms resulting from a fault in the system. A fault detection
approach is a concrete method for observation processing. A large body of research in model-
based fault detection approaches exists (Gertler, 1988, Isermann and Ballé, 1997). In model-based
fault detection some model of the system or of how it is supposed to behave is constructed. The
actual behavior is then compared to the predicted behavior and deviations can be interpreted as
symptoms of faults. A deviation is called a residual, that is, the difference between the estimated
and the observed value. In the domain of mobile autonomous robots, accurate mathematical models
are not feasible due to uncertainties in the environments, noisy sensors, and imperfect actuators. A
number of methods have been studied to deal with these uncertainties. Artificial neural networks
and radial basis function networks have been used for fault detection and identification based on
residuals (Vemuri and Polycarpou, 1997, Terra and Tinos, 2001, Patton et al., 2000).

Another popular approach to fault detection is to operate with multiple models concurrently.
Each model corresponds to a fault state, for example a broken motor, a flat tire, and so on. The fault
corresponding to a particular model is considered to be detected when that model’s predictions
are a sufficiently close match to the currently observed behavior. Banks of Kalman filters have
been used for such state estimation (Roumeliotis et al., 1998, Goel et al., 2000). Kalman filters are
based on the assumption that the modelled system can be approximated as a Markov chain built
on linear operators perturbed by Gaussian noise (Kalman, 1960). Robotics systems are, like many
other real-world systems, inherently nonlinear. Furthermore, discrete fault state changes can result
in discontinuities in behavior. Thus, the underlying assumptions do not hold well in the robotics
domain and many of these models are, therefore, not generally applicable.

As a potential solution to this issue, dynamic Bayesian networks have been proposed and
studied since assumptions about linearity are not required by this technique (Lerner et al., 2000).
Recently, computationally efficient approaches for approximating Bayesian belief using particle
filters have been studied as a means for fault detection and identification (Dearden et al., 2004,
Verma et al., 2004, Li and Kadirkamanathan, 2001). Particle filters are Monte Carlo methods
capable of tracking hybrid state spaces of continuous noisy sensor data and discrete operation
states. The key idea is to approximate the probability density function over fault states given the
observed data by a swarm of points or particles. One of the main issues related to particle filters is
tracking multiple low-probability events (faults) simultaneously. A scalable solution to this issue
has recently been proposed (Verma and Simmons, 2006).

Artificial immune-systems (AIS) represent a biologically inspired approach to fault detection.
An AIS is a classifier that distinguishes between self and non-self (Forrest et al., 1994). In fault
detection, “self” corresponds to fault-free operation while “non-self” refers to observations result-
ing from a faulty behavior. AIS have been applied to robotics, see for example (Canham et al.,
2003) in which fault detectors are obtained for a Khepera robot and for a control module of a
BAE Systems Rascal robot. The two systems are first trained during fault-free operation and their
capacity to detect faults is then tested.

3 Methodology

Several methods for fault detection base classification on the most recent observations only. The
approach presented in this study allows classification based on both current and past observations,
since many faults can only be detected if a system is observed over some time. This is especially
true for mechanical faults in mobile robots; a fault causing a wheel to block, for instance, can
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Fig. 1: The fault detection module monitors the sensory data read by the control program and
the consequent control signals sent to the actuators. The fault detection module is passive
and does not interact with the robot hardware or the control program.

only be detected once the robot has tried to move the wheel for a period of time long enough
for the absence of movement to be detectable. This period of time could be anywhere from a few
milliseconds if, e.g., dedicated torque sensors in the wheels are used, to seconds if the presence of
a fault has to be inferred based on information from non-dedicated and imprecise sensors.

The approach that we suggest in this study shares features with AIS based fault detection in the
sense that a classifier discriminates between normal and incorrect behavior without the use of any
explicit model. The aim is to detect the difference between normal and abnormal behaviors caused
by the occurrence of one or more faults, based on the flow of information from a robot’s sensors
and the subsequent flow of control signals from the control program to the robot’s actuators. The
method is independent of the underlying system and learning is based on observations collected
when the system operates normally and after faults have been injected.

We focus on detecting faults in a system with a predefined behavior. We assume that the correct
behavior has been specified in the form of a control program that steers a robot to perform the
task it is intended to perform. The fault detection problem is to determine if the robot performs
this task correctly, or if some fault in the hardware or in a software sub-system (but not in the
control program itself) is deteriorating the performance. If a fault is detected, a signal can be sent
to the control program itself, another robot, or a human operator. In our design, the fault detector
is an isolated software component that passively monitors the performance of the robot through
the information that flows in and out of the control program. A conceptual illustration of the
relationship between the control program, the robotic platform, and the fault detection module
can be seen in Fig. 1.

We take a black-box approach and consider only the inputs and the outputs of the control
program, that is, the robot’s flow of sensory information into the control program and the resulting
flow of control signals sent to the actuators. Our hypothesis is that this information alone is
sufficient to discriminate between situations in which the robot operates as intended and situations
in which the presence of one or more faults hampers its performance. In order to learn to detect
the relevant changes in the flow of information caused by a fault, we simulate faults in the on-
board software. We apply a well-establish technique known as software implemented fault injection
(SWIFI) used in dependable systems research. The technique is usually applied to measure the
robustness and fault tolerance of software systems (Hsueh et al., 1997, Arlat et al., 1990). In our
case, we inject faults to discover how sensory readings and the control signals sent to the actuators
by the control program change when the fault occurs. The idea is that by controlling the exact
point in time, the location, and the type of the fault, and by recording the resulting flow of data in
and out of the control program, we can use supervised learning techniques and obtain a classifier
that, based on the data flow, can determine the state of the system.

We use time-delay neural networks (TDNNs) as classifiers (Waibel et al., 1989, Clouse et al.,
1997). TDNNs are feed-forward networks that allow reasoning based on time-varying inputs with-
out the use of recurrent connections. In a TDNN, the values for a group of neurons are assigned
based on a set of observations from a fixed distance into the past. The TDNNSs used in this study are



normal multilayer perceptrons for which the inputs are taken from multiple, equally spaced points
in a delay-line of past observations. TDNNs have been extensively used for time-series prediction
due to their ability to make predictions based on data distributed in time. Unlike more elabo-
rate, recurrent network architectures, the properties of multilayer TDNNs are well-understood
and supervised learning through back-propagation can be applied.

3.1 Formal Definitions

Our aim is to obtain a function that maps from a set of current and past sensory inputs, S, and
control signals, A, to either 0 or 1 corresponding to no-fault and fault, respectively:

g:S,A—{0,1}. 1)

We assume that such a function exists and we approximate it with a feed-forward neural network.
We let I C (SUA) be the inputs to the network, and we choose a network that has a single output
neuron and whose output is in the interval (0,1). The output is interpreted in a task-dependent
way. For instance, a threshold-based classification scheme can be applied where an output value
above a given threshold is interpreted as 1 (fault), whereas an output value below the threshold
is interpreted as 0 (no-fault).

Sensory Inputs, Control Signals and Fault State: We perform a number of runs each
consisting of a number of control cycles (sense-compute-act loops). For each control cycle, c,
we record the sensory inputs and control signals to and from the control program. We let
i" denote a single set of control program inputs and outputs (CPIO), that is, the CPIO for
control cycle ¢ in run r. We let s denote the number of values in a single CPIO set. We let
I" be the ordered set of all CPIO sets for r. Similarly, for each control cycle we let fI denote
the fault state for control cycle ¢ in run r, where fI = 1 if a fault has been injected and 0
otherwise. Hence, fI = 0 when the robot is operating normally and f = 1 otherwise.

Tapped Delay-Line and Input Group Distance: The CPIO sets are stored in a tapped
delay-line, where each tap has a size s. The input layer of a TDNN is logically organized in a
number of input groups go, g1, - - -, gn—1 and each group consists of precisely s neurons, that is,
one neuron for each value in a CPIO set. The activation of the input neurons in group g; are
then set according to g; = i!_,.;, where c is the current control cycle and d is the input group
distance. See Fig. 2 for an example. If we choose an input group distance d = 1, for example,
the TDNN has access to the current and the n — 1 most recent CPIOs, whereas if d = 2, the
TDNN has access to the current and every other CPIO set up to 2(n — 1) control cycles into
the past, and so on. In this way, the input group distance specifies the relative distance in
time between the individual groups and (along with the number of groups) how far into the
past a TDNN ’sees’.

TDNN Structure and Activation Function: The input layer of the TDNN is fully connected
to a hidden layer, which is again fully connected to the output layer. The output layer consists
of a single neuron whose value reflects the network’s classification of the current inputs. The
activations of the neurons are computed layer-by-layer in a feed-forward manner and the
following sigmoid activation function is used to compute the neurons’ outputs in the hidden
and the output layers:

1

f(a)zm;

where a is the activation of the neuron.

(2)

Classification and Learning: The output of the TDNN has a value between 0 and 1. The error
factor used in the back-propagation algorithm is computed as the difference between the fault
state fI and the output o,:

Eczfg_oc- (3)
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Fig. 2: An illustration of a fault detection module based on a TDNN. The current control program
input and output (CPIO) is stored in the tapped delay-line and the activations of the
neurons in the logical input groups are set according to the current and past CPIOs. In
the example illustrated, there are 3 input groups and the input group distance d is 4.

The neural networks are all trained by a batch learning back-propagation algorithm that aims
at minimizing the absolute value of the error factor E. in (3).

In summary, sensor and actuator data is collected from a number of runs on real robots and
different types of faults are injected. A TDNN is trained to discriminate between normal and
faulty operation. By storing past observations in a tapped delay-line, classification based on how
the flow of information changes over time is performed.

3.2 Robot Hardware

We use a number of real robots known as s-bots (Mondada et al., 2005). The s-bot platform has
been used for several studies, mainly in swarm intelligence and collective robotics (Dorigo et al.,
2004, Trianni and Dorigo, 2006, Nouyan and Dorigo, 2006). Overcoming steep hills and transport
of heavy objects are notable examples of tasks which a single robot could not solve individually, but
which has been solved successfully by teams of collaborating robots (Grof et al., 2006, O’Grady
et al., 2005, Nouyan et al., 2006).

Each s-bot is equipped with an Xscale CPU running at 400 MHz, a number of sensors including
an omni-directional camera, light and proximity sensor, as well as a number of actuators including
a ring of 8x3 (RGB) colored leds, and a gripper that allows robots to attach to each other. The
sensors and actuators are indicated in Fig. 3.

4 Fault Model

In this study, we focus on faults in the mechanical system that propels the s-bots. This system
consists of a set of differential treels (combined tracks and wheels). Given that the treels contain



S-bot: Light sensors RGB LEDs

- Body diameter: 116mm
- Body height: 100mm

- Weight: ~700g

- Autonomy: 2h+

- Rotation of the main
body with respect to
the motion base

- 400 MHz XScale CPU
- 15x 20 MHz PICs

- WiFi communication
- Linux OS

- All-terrain mobility

IR ground sensors

Gripper Proximity sensors

Differential treels

Fig. 3: The s-bot platform, sensors, and actuators.

moving parts and that they are used continuously in most experiments, they are the components
in which the majority of faults occur. We analyze two types of faults. Both types can either be
isolated to the left or the right treel or they can affect both treels simultaneously. The first type
of fault causes one or both treels to stop moving. This usually happens if the strap that transfers
power from the electrical motors to the treels breaks or jumps out of place. Whenever this happens,
the treels stop moving. We denote this type of fault as stuck-at-zero.

The second type of fault occurs when an s-bot’s software sub-system crashes leaving one (or
both) motor(s) driving the treels running at some undefined speed. The result is that a treel
no longer can be controlled by the on-board software. We refer to this type of fault as stuck-at-
constant.

When data is collected, a number of runs are performed and in each run the s-bot starts in
perfect condition. During the run, a fault is injected. The fault is simulated by ignoring the control
program’s commands to the failed part and by substituting them according to the type of fault
injected. If, for instance, a stuck-at-constant fault is simulated in the left treel, the speed of that
treel is set to a random value, and all future changes in speed requested by the control program
are ignored.

5 The Three Tasks

We have chosen three tasks to study fault detection based on fault injection and learning. The
tasks are called find perimeter, follow the leader, and connect to s-bot, respectively, and they are
described in Fig. 5. For all tasks, we use a 180x180 cm arena surrounded by walls.

In the find perimeter task an s-bot follows the perimeter of a dark square drawn on the arena
surface. In this task, the four infra-red ground sensors are used to discriminate between the normal
light-colored arena surface and the dark square.



Find perimeter: An s-bot is situated in an arena with a square drawn with a dark
color on an otherwise light floor. A light source is placed in the center of the square
and the task for the s-bot is to follow the perimeter of the square.

@) o
(@3 L Cp L C) L L L
1) (2) ®3) (4) (5)
Sensors: IR ground (4 inputs), light (8 inputs)

Control period: 100 ms

Follow the leader: Two s-bots are placed in a square environment bounded by walls.
One of the s-bots has been preassigned the leader role, while the other has been
preassigned the follower role. The leader moves around in the environment. The
follower tails the leader and tries to stay at a distance of 35 cm. If the follower falls
behind, the leader waits. Faults are injected in the follower only.

@) 6 e
o> o o o o &
1) (2) ®3) (4) (5)
Sensors: Camera (16 inputs), IR proximity (15 inputs)

Control period: 150 ms

Connect to robot: One s-bot attempts to physically connect to a stationary s-bot
using its gripper. When a successful connection has been made, the s-bot waits for 10
seconds, disconnects, moves back, and tries to connect again. Faults are injected in

the active s-bot only.

o O (020 ©;92 (020 o O
(1) (2) 3) (4) (5)
Sensors: Camera (16 inputs), optical sensors in gripper (4 inputs)

Control period: 150 ms

Fig. 4: Description of the three task: find perimeter, follow the leader, and connect to s-bot. For
each task a list of sensors used and the control cycle period for the controllers are shown.
The number in brackets after each sensor listed corresponds to the number of input values

the sensor provides to the fault detector at each control cycle.



In the follow the leader task, an s-bot (the leader) performs a random walk in the environment
and another s-bot (the follower) follows. The two robots perceive one another using the omni-
directional camera. The infra-red proximity sensors are used to detect and avoid walls. Objects
up to 50 cm away can be seen reliably through the camera. Infra-red proximity sensors have a
range from a few centimeters up to 20 cm depending on the reflective properties of the obstacle
or object. Faults are injected in the follower only.

In the connect to s-bot task, one s-bot tries to connect to another, stationary s-bot. The con-
nection is made using the gripper. The connecting s-bot uses the camera to perceive the location
of the other robot. Faults are only injected in the active s-bot.

Readings from sensors like an infra-red ground sensor are straight-forward to normalize and feed
to the input neurons of a neural network. The camera sensor, in contrast, captures 640x480 color
images. For these more complex sensor readings to serve as input to a neural network, relevant
information must be extracted and processed beforehand. The s-bots have sufficient on-board
processing power to scan the entire image and identify objects based on color information. The
image processor is configured to detect the location of colored leds of the s-bot’s only, and discard
any other information. Since the robots operate on flat terrain and the images are reflections of
a semi-spherical mirror, the distance in pixels from the center of the image corresponds to the
physical distance between the robot and the perceived object. In order to make this information
available to a neural network, we divide the image into 16 non-overlapping slices of equal size in
terms of the field of view they cover. Each slice corresponds to a single input value. The value is
set depending on distance to the closest object perceived in the slice. If no object is perceived, the
value for a slice is 0. In this way, the camera sensor is effectively a range sensor for colored leds.

6 Experimental Setup

6.1 Data Collection

A total of 60 runs on real s-bots are performed for each of the three tasks. In each run, the robot(s)
start in perfect condition, and at some point during the run a fault is injected. The fault is injected
at a random point in time after the first 5 seconds of the run and before the last 5 seconds of
the run according to a uniform distribution. There is a 50% probability that a fault affects both
treels instead of only one of the treels, and faults of the type stuck-at-zero and stuck-at-constant
are equally likely to occur. Each run consists of 1000 control cycles and for each control cycle the
sensory inputs, control signals, and the current fault state are recorded. For the find perimeter
task 1000 cycles correspond to 100 seconds, while for the follow the leader and the connect to s-bot
tasks 1000 cycles correspond to 150 seconds, due to the longer control cycle period.

6.2 Training and Evaluation Data

The data sets for each task are partitioned into two subsets, one consisting of data from 40 runs,
which is used for training; and one consisting of the data from the remaining 20 runs, which is
used for a final performance evaluation. The TDNNs all have a hidden layer of 5 neurons and an
input layer consisting of 10 input groups.

6.3 Performance Evaluation

The performance of the trained neural networks is computed based on the 20 runs reserved for
evaluation for each task. A network is evaluated on data from one run at a time, and the output
of the network is recorded and compared to the fault state.

Fault detection for autonomous robots involves reasoning based on partial and imperfect in-
formation due to limited and noisy sensors and actuators. Furthermore, there is often a delay
between the occurrence of a fault and observable symptoms. Since the classification is binary (is
there a fault or not?), the scheme for approximating the fault state must be chosen according to



T T
Fault state
Fault detector output ——

Fault is injected

0.75 |- -
False positive for threshold 0.5

N

Fault detected for threshold 0.75

05—

Output neuron activation

0 100 200 300 400 500 600 700 800 900 1000

Control step

Fig. 5: An example of the output of a trained TDNN during a run. The dotted line shows the opti-
mal output. At control cycle 529 a fault is injected. Five different thresholds are indicated,
0.10, 0.25, 0.50, 0.75, and 0.90, and a false positive for threshold 0.50 is shown at control
cycle 304 (the output has a value greater than 0.50 before the fault was injected at control
cycle 529). The latency for a threshold is the number of control cycles from the moment the
fault is injected till the moment the output value of the TDNN becomes greater than the
threshold. In the example above, the latency for threshold 0.75 is 43 control cycles because
the output of the TDNN reaches 0.75 only at control cycle 562, that is, 43 control cycles
after the fault was injected.

the desired properties of the fault detector. For instance, the output of a trained TDNN could be
interpreted such that any value above a given threshold triggers the fault recovery mechanism. We
present results for five different thresholds: 0.10, 0.25, 0.50, 0.75, and 0.90.

A graphical representation of an evaluation run is shown in Fig. 5. In the run shown, a fault was
injected at control cycle 529. Choosing a threshold of 0.50 would result in a false positive at control
cycle 304, since the output of the network is higher than 0.50 before a fault has been injected. If
we choose a higher threshold, either 0.75 or 0.90, false positives are avoided. However, choosing a
higher threshold has a negative impact on another aspect of a fault detector’s performance, namely
its latency. The latency is the number of cycles between fault injection and fault detection. In the
example in Fig. 5 the fault is detected at control cycle 553, 561, 570, 572, and 574 for the thresholds
0.10, 0.25, 0.50, 0.75, and 0.90, yielding latencies of 24, 32, 41, 43, 45 control cycles, respectively.!

For some tasks, the recovery procedure is costly, and fewer false positives might be desirable
even at the cost of a higher latency. For other tasks undetected fault can have serious consequences
and a low latency is more important than reducing the number of false positives. The trade-off
between latency and false positives can be controlled by the way in which we choose to interpret
the output of the fault detector, and a simple way of doing so is by choosing a threshold.
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Fig. 6: Latency results for different input group distances for the find perimeter task.
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Fig. 7: False positive results for different input group distances for the find perimeter task.

7 Results

Fig. 6 and Fig. 7 show respectively the latency and the false positive results for the find perimeter
task for input group distances ranging from 1 to 10 control cycles. Results are shown for the five

! It is important to note that a latency of 24 control cycles may seem long, but the faults that we are
trying to detect do not necessarily have an immediate impact on the performance of a robot. If, for
instance, the fault injected is a blocked treel (a fault of the type stuck-at-zero), the fault can only be
detected if the control program tries to set the treel to a non-zero speed. Furthermore, if the control
program only sets low speeds (values close to zero) it might take long before a fault can be detected.
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Table 1: Number of undetected faults (out of a maximum of 20) for the find perimeter task, for
different thresholds and input group distances d.

Threshold

0.10 0.25 0.50 0.75 0.90

1 0 1 1 2 2

ol 2 1 1 1 3 3
% 3 0 0 0 1 3
Z[ 4 0 0 1 1 2
I 0 0 0 1 1
5| 6 0 0 0 0 0
sl 7 0 0 0 0 0
sl 8 0 0 0 0 0
2 9 0 0 0 0 0
~ 10 0 0 0 0 0

chosen thresholds. The general trend is that latency is not significantly affected by the chosen
input group distances, whereas the number of false positives is comparatively high for low input
group distances.

An input groups distance of 1 means that the TDNN is provided data from the past 10 control
cycles (because there are 10 input groups). 10 control cycles are equal to 1 second in the find
perimeter task. Similarly, an input group distance of 2 means that the TDNN is provided data
from the past 2 seconds, but only from every other control cycle. The false positive results indicate
that data from a period longer than 2 seconds is needed for a more accurate classification.

In some cases, a fault is never detected. This can either be because a fault is injected at the
end of an experiment and the fault detector does not have a sufficient amount of time to detect
it, or because the behavior after fault injection closely resembles correct behavior. The number
of undetected faults for different thresholds and input group distances is shown in Tab. 1. All
undetected faults were observed when low input group distances were used.

The false positive and the latency results for the follow the leader and connect to s-bot tasks
are shown in Fig. 8 and Fig. 9, respectively. In both cases, an input group distance of 5 was used.
The number of undetected faults for the two tasks is shown in Tab. 2. Two interesting tendencies
should be noticed: The number of false positives for the follow the leader task are comparatively
high, while for the connect to s-bot the latencies are high when compared to the results for the other
tasks. In the follow the leader task there are two robots moving around and the fault detector
for the follower, in which faults were injected, has to infer the presence of faults based on the
interaction between itself and the leader. The misclassification of the current state can occur in
situations where, for instance, the leader and the follower are moving at constant speeds in the
same direction. In those cases the follower will essentially receive sensory inputs similar to those
in situation where both its treels are stuck-at-zero: The leader waits for the follower, but due
to the fault, the follower does not move. The fact that the control program (and therefore the
fault detector) depends on a dynamic feature of the environment (the leader) seems to complicate
accurate classification of the fault state. However, fault detection is still quite good, especially
considering that the leader often is the only object perceivable by the follower unless it is close
enough to a wall for the proximity sensors to detect it.

The comparative high latency results for the connect to s-bot task are likewise due to a task-
dependent feature: After a successful connection has been made, the connecting robot waits for
10 seconds before disconnecting, moving back, and attempting to make a new connection. During
the waiting period it is not possible to detect if a fault has occurred in the treels or not. Even
if a stuck-at-constant fault is injected, causing one or both treels to be assigned a random and
non-changeable speed, the outcome is the same: The robot does not move because it is physically
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connected to the other robot. Thus, it can take longer to detect a fault given the existence of these
particular situations in which a fault does not have an effect on the performance of the robot.
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Fig. 8: Results for the follow the leader task, for different thresholds and an input group distance
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Fig. 9: Results for the connect to s-bot task, for different thresholds and an input group distance
of 5.

We experimented with a different interpretation mechanism for the output of the fault detecting
neural network. Given that the majority of the false positives occur for a single or few consecutive
control cycles only (like in the example in Fig. 5), we have tried to reduce the number of false
positives by filtering out spikes. This is done by computing a moving average of the output value of
the fault detector and setting a threshold of 0.75. The corresponding results for latencies and false
positives are shown in Fig. 10 and Fig. 11, respectively, using a moving average over 25 control
cycles.

By computing the moving average and smoothing the output of the TDNN, we almost com-
pletely eliminate false positives. As the results in Fig. 10 show, however, this is at the cost of
a higher latency. Since the moving average increases latency, it can result in more undetected
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Table 2: Number of undetected faults (out of a maximum of 20) for the follow the leader and
connect to s-bot tasks, for different thresholds and an input group distance of 5.

Threshold
0.10 0.25 0.50 0.75 0.90
Follow the leader 0 0 0 0 0
Connect to s-bot 1 2 2 2 3
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Fig. 10: Latency results for a fault detector in which the output of the TDNNs is used directly and
one in which the output is smoothed by computing the moving average over 25 control
cycles.

faults as more runs finish before faults are detected. For the find perimeter task, 2 faults were not
detected when averaging the output over 25 control cycles, compared to only 1 when averaging
was not used. Similarly, for the connect to s-bot task 5 faults were not detected when a moving
average was used, compared to 2 when the output of the TDNN was used directly. For the follow
the leader task all faults were detected in both cases.

8 Discussion

The results presented in this study suggest that fault detection through fault injection and learning
is a viable method for obtaining a fault detector for autonomous mobile robots. All results are
based on experiments with real robots. The robots were not equipped with dedicated or redundant
sensors to improve fault detection. In order to detect faults, only the information flowing between
the control program and the robots’ sensors and actuators was used.

Although the latency and the number of false positives detected could likely be reduced using
more data from (possibly dedicated) sensors, the results show that a fairly small amount of key
information is sufficient to obtain a good fault detector. It was shown that when we averaged the
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Fig. 11: False positives results for a fault detector in which the output of the TDNNs is used
directly and one in which the output is smoothed by computing the moving average over
25 control cycles. Only one run for the follow the leader task resulted in false positives
when the TDNN output was smoothed. The run is not shown in the figure since it is out
of scale (164 false positives were detected during this run).

output of the fault detectors over several control cycles, we obtained a correct detection rate of
75% - 100%, without any false positives except in a single case.

Our fault detector distinguished between normal and faulty behavior based on what it learned
during normal operation and after faults occurred. An obvious extension would be to include
fault diagnosis, that is, not only to detect the presence of the fault, but also its location. This
could be useful when, for instance, a gripper breaks during transport of a heavy object. If the
control program is made aware of this fault, it could steer the robot to push the object instead
of unsuccessfully trying to connect to and pull the object. One way of extending the proposed
methodology to include fault identification is to add more output neurons to the classifying neural
network. Different output neurons would then correspond to different types of faults. Another
approach is to use multiple neural networks, one for each fault type. In addition, in this study we
have focused on mechanical faults, since they frequently occur in mobile robots. A future activity
will be to determine how well other types of faults, such as faults in sensors and other actuators,
can be detected.

In contrast with the majority of existing approaches to fault detection, the method proposed
in this study is model-free. An interesting consequence of relying on our model-free approach is
that the scheme is straightforward to extend beyond self-diagnosis. For instance, in the follow
the leader task, we injected faults in the follower robot and a fault detector for that robot was
trained. However, a fault occurring in the follower has, in most cases, influence on what the leader
robot perceives and its subsequent actions. A fault detector in the leader should, therefore, be able
to detect faults in the follower. We are currently verifying whether this is the case and studying
methods for scaling the proposed approach to whole colonies of robots.
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