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Università Ca’ Foscari, Venezia, Italy

(e-mail: mbiro@ulb.ac.be; paolap@pellegrini.it; mdorigo@ulb.ac.be)

September 21, 2006

Abstract

Ant colony optimization (ACO) is nowadays one of the most promising metaheuristics, and an

increasing amount of research has been devoted to its empirical and theoretical analysis. Some

authors believe that the performance of ant colony optimization depends somehow on the scale

of the problem instance under analysis. The issue has been recently raised explicitly [1] and

the hyper-cube framework has been proposed to handle this supposed dependency of ACO on

the scale of the instances.

This paper shows that the ACO internal state—commonly referred to as the pheromone in

the literature—indeed depends on the scale of the problem at hand. Nonetheless, we formally

prove that this does not affect the external behavior of the algorithm. In other words, the

sequence of solutions produced by ACO does not depend on the scale of the problem instance

under analysis.

Moreover, the paper introduces three variations of the three most widely adopted algo-

rithms belonging to the ant colony optimization family. We formally show that the algorithms

we propose are functionally equivalent to the original ones, that is, for any given instance,

these algorithms produce the same sequence of solutions as the original ones. Nonetheless,

in these new algorithms, also the internal state is independent of the scale of the problem

instance at hand.

1 Introduction

Ant colony optimization (ACO) [2] is a successful metaheuristics inspired by the foraging behavior

of ants [3]: In order to find the shortest path from a nest to a food source, ant colonies exploit

a positive feedback mechanism by using a form of indirect communication called stigmergy [4],

based on the laying and detection of pheromone trails. In ant colony optimization, a generic

combinatorial optimization problem at hand is encoded into a constrained shortest path problem.

The search is an iterative process: A number of paths are generated in a Monte Carlo fashion

on the basis of a probabilistic model whose parameters are called artificial pheromone—or more

simply pheromone. The cost of these paths is used to modify the pheromone and therefore to bias

the generation of further paths towards promising regions of the search space [5].

The ant colony optimization framework has been explicitly defined by Dorigo et al. in 1999 [6],

and comprises a number of algorithms including the original ant system [7, 8, 9], ant colony system

[10], and MAX–MIN ant system [11, 12]. A vast literature exists on ant colony optimization and

1
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on its application to a large number of problems. We refer the reader to Dorigo and Stützle [2]

for a comprehensive account.

Recently, the hyper-cube framework [1] has been introduced with the aim of implementing ant

colony optimization algorithms that are invariant with respect to a linear rescaling of problem in-

stances. The need for the introduction of the hyper-cube framework has been explicitly motivated

by the observation that

in standard ACO algorithms the pheromone values and therefore the performance of

the algorithms, strongly depend on the scale of the problem. [1]

In this paper, we formally show that this statement is only partially correct: Indeed, in standard

ant colony optimization algorithms the pheromone values (and the heuristic information) depend

on the scale of the problem. Nonetheless, the sequence of solutions they find is independent of the

scaling.

For definiteness, the paper focuses on ant system, MAX–MIN ant system, and ant colony

system, which are the three most representative algorithms in the ant colony optimization family.

Further, we focus on the traveling salesman problem, which is the problem to which ant colony

optimization was first applied. Moreover, the traveling salesman problem is widely known and,

given its simplicity, is particularly suitable for this kind of analysis. The theorems we enunciate

are proved for this specific problem and then the conditions under which these results extend to

other problems are briefly discussed.

As a second main contribution, the paper proposes variants of ant system, MAX–MIN ant

system, and ant colony system. These new algorithms, called strongly-invariant ant system (siAS),

strongly-invariant MAX–MIN ant system (siMMAS), and strongly-invariant ant colony system

(siACS), are equivalent to their original counterparts but, beside being able to find the same

solutions irrespectively of the scaling, also have the property that the pheromone and the heuristic

values do not depend on the scaling itself. This property is desirable for at least two reasons: On

the one hand, it reduces numerical problems and makes the algorithm more robust; on the other

hand, it improves the readability of the solution process and makes the analysis of ACO algorithms

easier.

The rest of the paper is organized as follows. Section 2 introduces some preliminary concepts.

Sections 3, 4, and 5 deal with ant system, MAX–MIN ant system, and ant colony system,

respectively. In these sections the three algorithms are formally defined and then it is formally

proved that the sequence of solutions they produce does not depend on the scale of the problem

instance under analysis. Moreover, these sections propose the strongly-invariant versions of the

three algorithms and formally study their properties. As we will detail in the following, in order

to be invariant to the scale of the problem, siAS, siMMAS, and siACS need to perform some

extra processing and this could, in principle, slow down significantly the computation. Section 6

proposes an empirical analysis that shows that the difference in speed between the strongly-

invariant versions and the corresponding classical ones is negligible. Section 7 concludes the

paper.

2 Preliminary definitions

This section introduces a number of fundamental concepts that will be needed in the following.

Definition 1 (Linear transformation of a traveling salesman instance). With Ī = fI, f > 0, we

indicate that the instance Ī is a linear transformation of the instance I : The two instances have

the same number of cities and the cost c̄ij of traveling from city i to city j in Ī is f times the
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corresponding cost cij in instance I. Formally:

c̄ij = fcij , for all 〈i, j〉. (1)

Remark 1. The cost C̄ of a solution T̄ of instance Ī is f times the cost C of the corresponding

solution T of instance I. Formally:

(Ī = fI) ∧ (T̄ = T ) =⇒ C̄ = fC. (2)

Remark 2. In the following, if x is a generic quantity that refers to an instance I, then x̄ is the

corresponding quantity for what concerns instance Ī, when Ī is a linear transformation of I.

Ant colony optimization algorithms are stochastic: Solutions are constructed incrementally on the

basis of stochastic decisions that are biased by the pheromone and by some heuristic information.

The following hypothesis will be used in the paper.

Hypothesis 1 (Pseudo-random number generator). When solving two instances I and Ī, the

stochastic decisions taken while constructing solutions are made on the basis of random experi-

ments based on pseudo-random numbers produced by the same pseudo-random number generator.

We assume that this generator is initialized in the same way (for example, with the same seed)

when solving the two instances so that the two sequences of pseudo-random numbers that are

generated are the same in the two cases.

Similarly, when two algorithms A and Ã solve a same instance I, we assume that the pseudo-

random number generators adopted by the two algorithms are the same and are initialized in the

same way.

Definition 2 (Invariance). An algorithm A is invariant to linear transformations if the sequence

of solutions SI generated when solving an instance I and the sequence of solutions SĪ generated

when solving an instance Ī are the same, whenever Ī is a linear transformation of I.

If A is a stochastic algorithm, it is said to be invariant if it is so under Hypothesis 1.

Definition 3 (Strong and weak invariance). An algorithm A is said to be strongly-invariant if,

beside generating the same solutions on any two linearly related instances I and Ī, it also enjoys

the property that the heuristic information and the pheromone at each iteration are the same

when solving I and Ī. Conversely, the algorithm A is weakly-invariant if it obtains the same

solutions on linearly related instances but the heuristic information and the pheromone assume

different values.

If A is stochastic, it is said to be strongly-invariant (or weakly-invariant) if it is so under

Hypothesis 1.

Definition 4 (Functional equivalence). Two algorithms A and Ã are functionally equivalent, or

simply equivalent, if for any instance I, the sequence of solutions SI generated by A and the

sequence of solutions S̃I generated by Ã are the same.

If A and Ã are stochastic, they are said to be equivalent if they are so under Hypothesis 1.

3 Ant system

Ant system is the original ant colony optimization algorithm proposed by Dorigo et al. [7, 8, 9].

Definition 5 (Random proportional rule). At the generic iteration h, suppose that ant k is in

node i. Let N k
i be the set of feasible nodes. The node j ∈ N k

i , to which ant k moves, is selected

with probability:

pk
ij,h =

[τij,h]α[ηij ]
β

∑

l∈Nk
i

[τil,h]α[ηil]β
,
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where α and β are parameters, τij,h is the pheromone value associated with arc 〈i, j〉 at iteration

h, and ηij represents heuristic information on the desirability of visiting node j after node i.

Definition 6 (Heuristic information). When solving the traveling salesman problem, the heuristic

information ηij is the inverse of the cost of traveling from city i to city j:

ηij =
1

cij

, for all 〈i, j〉.

Definition 7 (Pheromone update rule). At the generic iteration h, suppose that m ants have

generated the solutions T 1

h
, T 2

h
, . . . , T m

h
of cost C1

h
, C2

h
, . . . , Cm

h
, respectively. The pheromone on

each arc 〈i, j〉 is updated according to the following rule:

τij,h+1 = (1 − ρ)τij,h +

m
∑

k=1

∆k
ij,h,

where ρ is a parameter called evaporation rate and

∆k
ij,h =

{

1/Ck
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise.
(3)

Definition 8 (Ant system). Ant system is an ant colony optimization algorithm in which solutions

are constructed according to the random proportional rule given in Definition 5, and the pheromone

is updated according to the rule given in Definition 7. The evaporation rate ρ, the number of ants

m, and the exponents α and β are parameters of the algorithm.

When ant system is used for solving the traveling salesman problem, it is customary to initialize

the pheromone as follows.

Definition 9 (Nearest-neighbor pheromone initialization). At the first iteration h = 1, the

pheromone on all arcs is initialized to the value:

τij,1 = τinit =
m

Cnn
, for all 〈i, j〉,

where m is the number of ants considered at each iteration, and Cnn is the cost of the solution

T nn obtained by the nearest-neighbor heuristic.

The following theorem holds true.

Lemma 1. The random proportional rule is invariant to concurrent linear transformations of the

pheromone and of the heuristic information. Formally, for any two positive constants g1 and g2,

(τ̄ij,h = g1τij,h) ∧ (η̄ij = g2ηij), for all 〈i, j〉 =⇒ p̄k
ij,h = pk

ij,h, for all 〈i, j〉,

where p̄k
ij,h is obtained on the basis of τ̄ij,h and η̄ij , according to Definition 5.

Proof. According to Definition 5:

p̄k
ij,h =

[τ̄ij,h]α[η̄ij ]
β

∑

l∈Nk
i

[τ̄il,h]α[η̄il]β
=

[g1τij,h]α[g2ηij ]
β

∑

l∈Nk
i

[g1τil,h]α[g2ηil]β
=

[g1]
α[g2]

β [τij,h]α[ηij ]
β

∑

l∈Nk
i

[g1]α[g2]β [τil,h]α[ηil]β

=
[g1]

α[g2]
β [τij,h]α[ηij ]

β

[g1]α[g2]β
∑

l∈Nk
i

[τil,h]α[ηil]β
=

[τij,h]α[ηij ]
β

∑

l∈Nk
i

[τil,h]α[ηil]β
= pk

ij,h.
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Theorem 1. Ant system is weakly-invariant.1

Proof. Let us consider two generic instances I and Ī such that

Ī = fI, with f > 0.

The theorem is proved by induction: We show that if at the generic iteration h some set of

conditions C holds, then the solutions generated for the two instances I and Ī are the same and

the set of conditions C also holds for the following iteration h + 1. The proof is concluded by

showing that C holds for the very first iteration. With few minor modifications, this technique is

adopted in the following for proving all theorems enunciated in the paper.

According to Definition 6, and taking into account Equation 1, it results:

η̄ij =
1

f
ηij , for all 〈i, j〉.

According to Lemma 1, if at the generic iteration h, τ̄ij,h = 1

f
τij,h, for all 〈i, j〉, then p̄k

ij,h = pk
ij,h,

for all 〈i, j〉. Under Hypothesis 1,

T̄ k
h

= T k
h
, for all k = 1, . . . , m,

and therefore, according to Equation 2,

C̄k
h

= fCk
h
, for all k = 1, . . . , m.

According to Equation 3:

∆̄k
ij,h =

{

1/C̄k
h
, if 〈i, j〉 ∈ T̄ k

h
;

0, otherwise;
=

{

1/fCk
h
, if 〈i, j〉 ∈ T̄ k

h
= T k

h
;

0/f, otherwise;

=
1

f

{

1/Ck
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;
=

1

f
∆k

ij,h,

and therefore, for any arc 〈i, j〉 :

τ̄ij,h+1 = (1 − ρ)τ̄ij,h +
m
∑

k=1

∆̄k
ij,h = (1 − ρ)

1

f
τij,h +

m
∑

k=1

1

f
∆k

ij,h

= (1 − ρ)
1

f
τij,h +

1

f

m
∑

k=1

∆k
ij,h =

1

f

(

(1 − ρ)τij,h +

m
∑

k=1

∆k
ij,h

)

=
1

f
τij,h+1.

In order to provide a basis for the above defined induction and therefore to conclude the proof, it

is sufficient to observe that at the first iteration h = 1, the pheromone is initialized as:

τ̄ij,1 =
m

C̄nn
=

m

fCnn
=

1

f
τij,1, for all 〈i, j〉.

Remark 3. Theorem 1 holds true for any way of initializing the pheromone, provided that for any

two instances Ī and I such that Ī = fI, τ̄ij,1 = 1

f
τij,1, for all 〈i, j〉.

Remark 4. Theorem 1 extends to the application of ant system to problems other than the traveling

salesman problem, provided that the initialization of the pheromone is performed as prescribed

in Remark 3 and for any two instances Ī and I such that Ī = fI, with f > 0, there exists a

coefficient g > 0 such that η̄ij = gηij , for all 〈i, j〉. In particular, it is worth pointing out here that

one notable case in which this last condition is satisfied is when η̄ij = ηij = 0, for all 〈i, j〉, that

is, when no heuristic information is used.

1As already made clear, we refer here to the application of ant system to the traveling salesman problem and

we consider the case in which the pheromone is initialized as prescribed by Definition 9.
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Strongly-invariant ant system

A strongly-invariant version of ant system (siAS) can be defined. For definiteness, we present here

a version of siAS for the traveling salesman problem.

Definition 10 (Strongly-invariant heuristic information). When solving the traveling salesman

problem, the heuristic information ηij is

ηij =
Cnn

ncij

, for all 〈i, j〉. (4)

where cij is the cost of traveling from city i to city j, n is the number of cities, and Cnn is the

cost of the solution T nn obtained by the nearest-neighbor heuristic.

Definition 11 (Strongly-invariant pheromone update rule). The pheromone is updated using the

same rule given in Definition 7, with the only difference that ∆k
ij,h is given by:

∆k
ij,h =

{

Cnn/mCk
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;

where Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuristic and m is the

number of ants generated at each iteration.

Definition 12 (Strongly-invariant pheromone initialization). At the first iteration h = 1, the

pheromone on all arcs is initialized to the value: τij,1 = τinit = 1, for all 〈i, j〉.

Definition 13 (Strongly-invariant ant system). The strongly-invariant ant system (siAS) is a

variation of ant system. It shares with ant system the random proportional rule for the construction

of solutions, but in siAS the heuristic values are set as in Definition 10, the pheromone is initialized

according to Definition 12, and the update is performed according to Definition 11.

Theorem 2. Ant system and siAS are functionally equivalent.

Proof. In this proof, a tilde placed above a symbol indicates that it refers to siAS : For example, if

τij,h is the amount of pheromone on arc 〈i, j〉 at iteration h in ant system, then τ̃ij,h is the amount

of pheromone on arc 〈i, j〉 at iteration h in siAS.

Let us consider a generic instance I. According to Definitions 6 and 10, η̃ij = g2ηij , with

g2 = Cnn/n. According to Lemma 1, if at the generic iteration h, τ̃ij,h = g1τij,h, for all 〈i, j〉,

then p̃k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1, T̃ k
h

= T k
h
, for all k = 1, . . . , m and therefore,

C̃k
h

= Ck
h
, for all k = 1, . . . , m.

Obviously, for what concerns the solution returned by the nearest-neighbor heuristic: T̃ nn =

T nn and C̃nn = Cnn . Now, let g1 = Cnn/m. According to Definitions 7 and 11,

∆̃k
ij,h =

{

C̃nn/mC̃k
h
, if 〈i, j〉 ∈ T̃ k

h
;

0, otherwise;
=

Cnn

m

{

1/Ck
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;
= g1∆

k
ij,h.

Therefore, for any arc 〈i, j〉 :

τ̃ij,h+1 = (1 − ρ)τ̃ij,h +

m
∑

k=1

∆̃k
ij,h = (1 − ρ)g1τij,h +

m
∑

k=1

g1∆
k
ij,h = g1τij,h+1.

The proof is completed by observing that, according to Definitions 9 and 12, at the first iteration

h = 1:

τ̃ij,1 = 1 =
Cnn

m

m

Cnn
= g1τij,1, for all 〈i, j〉.
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Theorem 3. siAS is strongly-invariant.

Proof. The weak invariance of siAS follows trivially from Theorems 1 and 2: Since siAS is func-

tionally equivalent to ant system and the latter is weakly-invariant, also siAS is weakly-invariant.

To prove strong invariance, we need to show that the heuristic information and the pheromone

are invariant on all arcs.

Let us consider two instances I and Ī such that Ī = fI. According to Definition 10, and taking

into account Equation 1, it results: η̄ij = C̄nn/nc̄ij = fCnn/nfcij = Cnn/ncij = ηij , for all 〈i, j〉.

Under Hypothesis 1, if τ̄ij,h = τij,h, for all 〈i, j〉 at a generic iteration h, then τ̄ij,h+1 = τij,h+1, for

all 〈i, j〉. The proof is completed by observing that at the first iteration h = 1, τ̄ij,1 = τij,1 = 1,

for all 〈i, j〉.

Remark 5. In the above definition of siAS, the nearest-neighbor heuristic has been adopted for

generating a reference solution, the cost of which is then used for normalizing the cost of the

solutions found by siAS. Any other algorithm could be used instead, provided that the solution

it returns does not depend on the scale of the problem.

Remark 6. It is worth noting here that the presence of the term n in the denominator of the left

hand side of Equation 4 is not needed for obtaining an invariant heuristic information. It has been

included for achieving another property. Indeed, ηij as defined in Equation 4 assumes values that

do not depend on the size of the instance under analysis—that is, on the number n of cities. If

this term were not present, since the numerator Cnn grows with n, ηij would have been relatively

larger in large instances and smaller in small ones.

Remark 7. Similarly, it should be noticed that by initializing the pheromone to τij,1 = τinit = 1/m,

for all 〈i, j〉, and by defining ∆k
ij,h as:

∆k
ij,h =

{

Cnn/Ck
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;

one would have obtained nonetheless an invariant algorithm. The advantage of the formulation

given in Definitions 11 and 12 is that the magnitude of the pheromone deposited on the arcs does

not depend on the number m of ants considered.

4 MAX–MIN ant system

The results given for ant system can be extended to MAX–MIN ant system [11, 12]. The charac-

terizing element of MAX–MIN ant system is the fact that the pheromone values are constrained

between a minimum and a maximum, which possibly change iteration by iteration.

Definition 14 (Pheromone trail limits). At iteration h + 1, the pheromone value τij,h+1 on a

generic arc 〈i, j〉 is constrained:

τmin

h
≤ τij,h+1 ≤ τmax

h
,

with τmax
h

= 1/ρCbs
h

and τmin
h

= aτmax
h

, where Cbs
h

is the best solution found up to and including

iteration h, and a is a parameter.

Remark 8. The following notation will be adopted:

[

x
]max

min
=















min, if x < min;

x, if min ≤ x ≤ max ;

max , if x > max .
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It can be easily shown that, if g > 0,

[

g · x
]g·max

g·min
= g
[

x
]max

min
.

This property will be used in the following.

Definition 15 (Pheromone update rule). If τij,h is the value of the pheromone on arc 〈i, j〉 at the

current iteration h, the value of the pheromone at iteration h + 1 is given by:

τij,h+1 =
[

(1 − ρ)τij,h + ∆best

ij,h

]τmax

h

τmin

h

, (5)

where ρ is the evaporation rate. The quantity ∆best

ij,h might be given by two different equations

depending on which update mode is performed: either best-so-far update or iteration-best update.

In the best-so-far update:

∆best

ij,h =

{

1/Cbs
h

, if 〈i, j〉 ∈ T bs
h

;

0, otherwise;
(6)

where T bs
h

is the best solution found up to and including iteration h, and Cbs
h

is its cost. In the

iteration-best update:

∆best

ij,h =

{

1/Cib
h

, if 〈i, j〉 ∈ T ib
h

;

0, otherwise;
(7)

where T ib
h

is the best solution found in iteration h, and Cib
h

is its cost.

Remark 9. Whether a best-so-far or an iteration-best update is to be performed at a given iteration

h is a design choice. In the typical implementation of MAX–MIN ant system, mostly the iteration-

best update is adopted in the initial iterations and the frequency with which the best-so-far update

is employed increases iteration after iteration.

Definition 16 (MAX–MIN ant system). MAX–MIN ant system is an ACO algorithm in which

solutions are constructed according to the random proportional rule given in Definition 5, and the

pheromone is updated according to Definition 15. The evaporation rate ρ, the number of ants m,

the exponents α and β, and the factor a are parameters of the algorithm.

Definition 17 (Nearest-neighbor pheromone initialization). At the first iteration h = 1, the

pheromone on all arcs is initialized to the value:

τij,1 = τinit =
1

ρCnn
, for all 〈i, j〉,

where Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuristic.

Theorem 4. MAX–MIN ant system is weakly-invariant.2

Proof. The proof follows the one given for Theorem 1. Let us consider two generic instances I

and Ī such that Ī = fI, with f > 0. It results that η̄ij = 1

f
ηij , for all 〈i, j〉. Let us assume that,

at the beginning of the generic iteration h, T̄ bs
h−1

= T bs
h−1

and τ̄ij,h = 1

f
τij,h, for all 〈i, j〉. According

to Lemma 1, p̄k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1, T̄ k
h

= T k
h
, for all k = 1, . . . , m, and

therefore, C̄k
h

= fCk
h
, for all k = 1, . . . , m. In particular, T̄ ib

h
= T ib

h
, and C̄ib

h
= fCib

h
. Moreover,

whether or not an improvement is made on the best-so-far solution, T̄ bs
h

= T bs
h

. Indeed, since

T̄ bs
h−1

= T bs
h−1

, then C̄bs
h−1

= fCbs
h−1

. If Cib
h

< Cbs
h−1

, then also C̄ib
h

< C̄bs
h−1

, and T̄ bs
h

= T̄ ib
h

= T ib
h

=

T bs
h

. On the other hand, if Cib
h

≥ Cbs
h−1

, then also C̄ib
h

≥ C̄bs
h−1

, and T̄ bs
h

= T̄ bs
h−1

= T bs
h−1

= T bs
h

.

2Also in this case, for definiteness, we refer to the application of MAX–MIN ant system to the traveling salesman

problem and we consider the case in which the pheromone is initialized as prescribed by Definition 17.
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If at step h a best-so-far update is applied, according to Equation 6:

∆̄best

ij,h =

{

1/C̄bs
h

, if 〈i, j〉 ∈ T̄ bs
h

;

0, otherwise;
=

{

1/fCbs
h

, if 〈i, j〉 ∈ T̄ bs
h

= T bs
h

;

0/f, otherwise;

=
1

f

{

1/Cbs
h

, if 〈i, j〉 ∈ T bs
h

;

0, otherwise;
=

1

f
∆best

ij,h .

Similarly, if an iteration-best update is applied, according to Equation 7:

∆̄best

ij,h =

{

1/C̄ib
h

, if 〈i, j〉 ∈ T̄ ib
h

;

0, otherwise;
=

{

1/fCib
h

, if 〈i, j〉 ∈ T̄ ib
h

= T ib
h

;

0/f, otherwise;

=
1

f

{

1/Cib
h

, if 〈i, j〉 ∈ T ib
h

;

0, otherwise;
=

1

f
∆best

ij,h .

In both cases,

τ̄max

h
=

1

ρC̄bs
h

=
1

fρCbs
h

=
1

f
τmax

h
,

and therefore,

τ̄min

h
= aτ̄max

h
=

a

f
τmax

h
=

1

f
τmin

h
.

It follows that,

τ̄ij,h+1 =
[

(1 − ρ)τ̄ij,h + ∆̄best

ij,h

]τ̄max

h

τ̄min

h

=

[

(1 − ρ)
1

f
τij,h +

1

f
∆best

ij,h

]
1
f

τmax

h

1
f

τmin

h

=

[

1

f

(

(1 − ρ)τij,h + ∆best

ij,h

)

]
1
f

τmax

h

1
f

τmin

h

=
1

f

[

(1 − ρ)τij,h + ∆best

ij,h

]τmax

h

τmin

h

=
1

f
τij,h+1.

The proof is completed by observing that at the first iteration h = 1, the pheromone is initialized

as:

τ̄ij,1 =
1

ρC̄nn
=

1

fρCnn
=

1

f
τij,1,

and the initial best-so-far solutions are T̄ bs
0 = T̄ nn = T nn = T bs

0 .

Strongly-invariant MAX–MIN ant system

A strongly-invariant version of MAX–MIN ant system (siMMAS) can be defined. For definite-

ness, we present here a version of siMMAS for the traveling salesman problem.

Definition 18 (Strongly-invariant pheromone update rule). The pheromone is updated as in

Definition 15, with the difference that in the best-so-far update:

∆best

ij,h =

{

ρCnn/Cbs
h

, if 〈i, j〉 ∈ T bs
h

;

0, otherwise;
(8)

and in the iteration-best update:

∆best

ij,h =

{

ρCnn/Cib
h

, if 〈i, j〉 ∈ T ib
h

;

0, otherwise;
(9)

where Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuristic and ρ is the

evaporation rate.
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Definition 19 (Strongly-invariant pheromone initialization). At the first iteration h = 1, the

pheromone on all arcs is initialized to the value: τij,1 = τinit = 1, for all 〈i, j〉.

Definition 20 (Strongly-invariant pheromone trail limits). At iteration h + 1, the value τij,h+1 of

the pheromone on a generic arc 〈i, j〉 is constrained: τmin
h

≤ τij,h+1 ≤ τmax
h

, with τmax
h

= Cnn/Cbs
h

and τmin
h

= aτmax
h

, where Cnn is the cost of the solution T nn found by the nearest-neighbor

algorithm, Cbs
h

is the best solution found up to and including iteration h, and a is a parameter.

Definition 21 (Strongly-invariant MAX–MIN ant system). The strongly-invariant MAX–MIN

ant system (siMMAS) is a minor variation of MAX–MIN ant system. It shares with MAX–

MIN ant system the random proportional rule given in Definition 5, the heuristic values are set

as in Definition 10, the pheromone is initialized according to Definition 19 and limited according

to Definition 20, and the update is performed according to Definition 18.

Theorem 5. MAX–MIN ant system and siMMAS are functionally equivalent.

Proof. As in the proof of Theorem 2, a tilde placed above a symbol indicates that the latter refers

to siMMAS. Let us consider a generic instance I. According to Definitions 6 and 10, η̃ij = g2ηij ,

with g2 = Cnn/n. According to Lemma 1, if at the generic iteration h, τ̃ij,h = g1τij,h, for all 〈i, j〉,

then p̃k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1, T̃ k
h

= T k
h
, for all k = 1, . . . , m and therefore,

C̃k
h

= Ck
h
, for all k = 1, . . . , m. In particular, T̃ ib

h
= T ib

h
, and C̃ib

h
= Cib

h
. Moreover, whether or

not an improvement is made on the best-so-far solution, T̃ bs
h

= T bs
h

—see the proof of Theorem 4.

For what concerns the solution returned by the nearest-neighbor heuristic: T̃ nn = T nn and

C̃nn = Cnn . Now, let g1 = ρCnn . If at step h a best-so-far update is applied, according to

Equation 8:

∆̃best

ij,h =

{

ρC̃nn/C̃bs
h

, if 〈i, j〉 ∈ T̃ bs
h

;

0, otherwise;
= ρCnn

{

1/Cbs
h

, if 〈i, j〉 ∈ T bs
h

;

0, otherwise;
= g1∆

best

ij,h .

Similarly, if an iteration-best update is applied, according to Equation 9:

∆̃best

ij,h =

{

ρC̃nn/C̃ib
h

, if 〈i, j〉 ∈ T̃ ib
h

;

0, otherwise;
= ρCnn

{

1/Cib
h

, if 〈i, j〉 ∈ T ib
h

;

0, otherwise;
= g1∆

best

ij,h .

In both cases, according to Definitions 14 and 20, τ̄max
h

= Cnn/Cbs
h

= ρCnn/ρCbs
h

= g1τ
max
h

and

τ̄min
h

= aτ̄max
h

= ag1τ
max
h

= g1τ
min
h

. It follows that, for all 〈i, j〉 :

τ̃ij,h+1 =
[

(1 − ρ)τ̃ij,h + ∆̃best

ij,h

]τ̄max

h

τ̄min

h

=

[

(1 − ρ)g1τij,h + g1∆
best

ij,h

]g1τmax

h

g1τmin

h

= g1τij,h+1.

The proof is completed by observing that at the first iteration h = 1, the pheromone is initialized

as τ̃ij,1 = 1 = ρCnn/ρCnn = g1τij,1, and the initial best-so-far solutions are T̃ bs
0

= T̃ nn = T nn =

T bs
0 .

Theorem 6. siMMAS is strongly-invariant.

Proof. The weak invariance of siMMAS follows trivially from Theorems 4 and 5. In order to

show that the heuristic information and the pheromone are invariant on all arcs, let us consider

two instances I and Ī such that Ī = fI. According to Definition 10, and taking into account

Equation 1, it results: η̄ij = C̄nn/nc̄ij = fCnn/nfcij = Cnn/ncij = ηij . Under Hypothesis 1, if

τ̄ij,h = τij,h, for all 〈i, j〉 at a generic iteration h, and if T̄ bs
h−1

= T bs
h−1

, then τ̄ij,h+1 = τij,h+1, for all

〈i, j〉. The proof is completed by observing that at the first iteration h = 1, τ̄ij,1 = τij,1 = 1, for

all 〈i, j〉, and the initial best-so-far solutions are T̄ bs
0 = T̄ nn = T nn = T bs

0 .
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Remark 10. Also in the case of siMMAS, the nearest-neighbor heuristic has been adopted for

generating a reference solution. Any other algorithm could be used instead, provided that the

solution it returns does not depend on the scale of the problem.

5 Ant colony system

The weak invariance property holds also for ant colony system [10]. In ant colony system, the

concept of local pheromone update is introduced: When an ant traverses an arc while constructing

a solution, the pheromone on that arc is reduced. In order to describe this feature, a slightly

modified notation is needed.

Definition 22 (Local pheromone update rule). At the generic iteration h, after ant k has built

the solution T k
h
, the pheromone is modified according to:

τ (k)

ij,h =







(1 − ξ)τ (k−1)

ij,h + ξτinit , if 〈i, j〉 ∈ T k
h
;

τ (k−1)

ij,h , otherwise;

where ξ is a parameter and τinit is the initial value of the pheromone—see Definition 26. Moreover,

τ (k−1)

ij,h is the value of the pheromone on arc 〈i, j〉 at iteration h after the first k − 1 ants have

constructed their respective solution and before the transit of ant k. On the other hand, τ (k)

ij,h is

the value after ant k has transited.

Definition 23 (Global pheromone update rule). At each iteration h, after all m ants have built

their solution and performed the local pheromone update, the pheromone on the arcs belonging

to the best solution T bs
h

found up to and including iteration h, are reinforced:

τ (0)

ij,h+1
=







(1 − ρ)τ (m)

ij,h + ρ∆best

ij,h , if 〈i, j〉 ∈ T bs
h

;

τ (m)

ij,h, otherwise;

where ∆best

ij,h = 1/Cbs
h

, being Cbs
h

the cost of T bs
h

. The quantity τ (m)

ij,h is the value of the pheromone

on arc 〈i, j〉 after all m ants have constructed their respective solution at iteration h, while τ (0)

ij,h+1
is

the quantity of pheromone on arc 〈i, j〉 right before any ant starts building its solution at iteration

h + 1.

Definition 24 (Pseudorandom proportional rule). At the generic iteration h, ant k which is in

node i and has N k
i as set of feasible nodes, selects the node to be visited next according to the

following rule: With a probability given by the parameter q0, the ant moves to the feasible node

that maximizes τ (k−1)

il,h [ηil]
β , where l ∈ N k

i ; with probability 1 − q0 a node is selected according to

the random proportional rule given in Definition 5 (with α = 1). In the framework of this paper,

the following equivalent statement is more convenient:

pk
ij,h =



























q0 + (1 − q0)
τ (k−1)

ij,h [ηij ]
β

∑

l∈Nk
i

τ (k−1)

il,h [ηil]β
, if j = arg maxl∈Nk

i
τil,h[ηil]

β ;

(1 − q0)
τ (k−1)

ij,h [ηij ]
β

∑

l∈Nk
i

τ (k−1)

il,h [ηil]β
, otherwise;

where β and q0 are parameters, with 0 ≤ q0 ≤ 1.
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Lemma 2. The pseudorandom proportional rule is invariant to concurrent linear transformations

of the pheromone and of the heuristic information. Formally, for any two positive constants g1

and g2,

τ̄ (k−1)

ij,h = g1τ
(k−1)

ij,h ∧ η̄ij = g2ηij , for all 〈i, j〉 =⇒ p̄k
ij,h = pk

ij,h, for all 〈i, j〉.

where p̄k
ij,h is obtained on the basis of τ̄ (k−1)

ij,h and η̄ij, according to Definition 24.

Proof. Indeed:

p̄k
ij,h =























q0 + (1 − q0)
τ̄ (k−1)

ij,h [η̄ij ]
β

∑

l∈Nk
i

τ̄ (k−1)

il,h [η̄il]β
, if j = argmaxl∈Nk

i
τ̄il,h[η̄il]

β;

(1 − q0)
τ̄ (k−1)

ij,h [η̄ij ]
β

∑

l∈Nk
i

τ̄ (k−1)

il,h [η̄il]β
, otherwise;

=























q0 + (1 − q0)
g1τ

(k−1)

ij,h [g2ηij ]
β

∑

l∈Nk
i

g1τ
(k−1)

il,h [g2ηil]β
, if j = arg maxl∈Nk

i
g1τil,h[g2ηil]

β ;

(1 − q0)
g1τ

(k−1)

ij,h [g2ηij ]
β

∑

l∈Nk
i

g1τ
(k−1)

il,h [g2ηil]β
, otherwise;

=























q0 + (1 − q0)
g1[g2]

βτ (k−1)

ij,h [ηij ]
β

g1[g2]β
∑

l∈Nk
i

τ (k−1)

il,h [ηil]β
, if j = argmaxl∈Nk

i
g1[g2]

βτil,h[ηil]
β;

(1 − q0)
g1[g2]

βτ (k−1)

ij,h [ηij ]
β

g1[g2]β
∑

l∈Nk
i

τ (k−1)

il,h [ηil]β
, otherwise;

=























q0 + (1 − q0)
τ (k−1)

ij,h [ηij ]
β

∑

l∈Nk
i

τ (k−1)

il,h [ηil]β
, if j = argmaxl∈Nk

i
τil,h[ηil]

β;

(1 − q0)
τ (k−1)

ij,h [ηij ]
β

∑

l∈Nk
i

τ (k−1)

il,h [ηil]β
, otherwise;

= pk
ij,h.

Definition 25 (Ant colony system). Ant colony system is an ACO algorithm in which solutions

are constructed according to the pseudorandom proportional rule given in Definition 24, and the

pheromone is updated according to Definitions 22 and 23. The local and global evaporation rates

ξ and ρ, the number of ants m, the exponent β, and the probability q0 are parameters of the

algorithm.

Definition 26 (Nearest-neighbor pheromone initialization). At the first iteration h = 1, the

pheromone on all 〈i, j〉 is initialized to the value:

τ (0)

ij,1 = τinit =
1

nCnn
,

where n is the number of nodes in the traveling salesman instance and Cnn is the cost of the

solution T nn obtained by the nearest-neighbor heuristic.

Theorem 7. Ant colony system is weakly-invariant.3

3Also in this case, for definiteness, we refer to the application of ant colony system to the traveling salesman

problem and we consider the case in which the pheromone is initialized as prescribed by Definition 26.
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Proof. The proof follows those given for Theorems 1 and 4. Let us consider two generic instances

I and Ī such that Ī = fI, with f > 0. It results that η̄ij = 1

f
ηij , for all 〈i, j〉. Moreover, from

Definition 26:

τ̄init =
1

nC̄nn
=

1

nfCnn
=

1

f
τinit .

Let us assume that, at the beginning of the generic iteration h, T̄ bs
h−1

= T bs
h−1

and τ̄ (0)

ij,h = 1

f
τ (0)

ij,h, for

all 〈i, j〉. Let us consider the first ant that builds a solution at iteration h. According to Lemma 2,

p̄1

ij,h = p1

ij,h, for all 〈i, j〉. Under Hypothesis 1, T̄ 1

h
= T 1

h
. On the basis of Definition 22:

τ̄ (1)

ij,h =







(1 − ξ)τ̄ (0)

ij,h + ξτ̄init , if 〈i, j〉 ∈ T̄ 1
h
;

τ̄ (0)

ij,h, otherwise;

=







(1 − ξ) 1

f
τ (0)

ij,h + ξ 1

f
τinit , if 〈i, j〉 ∈ T 1

h
;

1

f
τ (0)

ij,h, otherwise;

=
1

f







(1 − ξ)τ (0)

ij,h + ξτinit , if 〈i, j〉 ∈ T 1

h
;

τ (0)

ij,h, otherwise;

=
1

f
τ (1)

ij,h

Under this condition, Lemma 2 applies also to the second ant of iteration h: It results p̄2

ij,h = p2

ij,h,

for all 〈i, j〉. Therefore, T̄ 2
h

= T 2
h

and finally τ̄ (2)

ij,h = 1

f
τ (2)

ij,h, for all 〈i, j〉. This procedure can be

repeated for all m ants acting at generation h with the net result that τ̄ (m)

ij,h = 1

f
τ (m)

ij,h for all 〈i, j〉,

T̄ k
h

= T k
h
, for all k = 1, . . . , m, and therefore, C̄k

h
= fCk

h
, for all k = 1, . . . , m. In particular,

C̄ib
h

= fCib
h

. Moreover, whether or not an improvement is made on the best-so-far solution,

T̄ bs
h

= T bs
h

and therefore C̄bs
h

= fCbs
h

—see the proof of Theorem 4.

The global pheromone update takes place on the basis of:

∆̄best

ij,h =
1

C̄bs
h

=
1

fCbs
h

=
1

f
∆best

ij,h , if 〈i, j〉 ∈ T bs

h
.

It results:

τ̄ (0)

ij,h+1
=







(1 − ρ)τ̄ (m)

ij,h + ρ∆̄best

ij,h , if 〈i, j〉 ∈ T̄ bs
h

;

τ̄ (m)

ij,h, otherwise;

=







(1 − ρ) 1

f
τ (m)

ij,h + ρ 1

f
∆best

ij,h , if 〈i, j〉 ∈ T bs
h

;

1

f
τ (m)

ij,h, otherwise;

=
1

f







(1 − ρ)τ (m)

ij,h + ρ∆best

ij,h , if 〈i, j〉 ∈ T bs
h

;

τ (m)

ij,h, otherwise;

=
1

f
τ (0)

ij,h+1
.

The proof is completed by the fact that at the first iteration h = 1, the pheromone is initialized

as:

τ̄ (0)

ij,1 =
1

nC̄nn
=

1

nfCnn
=

1

f
τ (0)

ij,1, for all 〈i, j〉.

and the initial best-so-far solutions are T̄ bs
0 = T̄ nn = T nn = T bs

0 .



14 IRIDIA – Technical Report Series: TR/IRIDIA/2006-004

Strongly-invariant ant colony system

A strongly-invariant version of ant colony system (siACS) can be defined. For definiteness, we

present here a version of siACS for the traveling salesman problem.

Definition 27 (Strongly-invariant global pheromone update rule). The global pheromone update

is performed as in Definition 23, with the difference that

∆best

ij,h = n
Cnn

Cbs
h

,

where Cnn and Cbs
h

are the costs of the nearest-neighbor solution T nn and of the best-so-far

solution T bs
h

, respectively, and n is the number of cities.

Definition 28 (Strongly-invariant pheromone initialization). At the first iteration h = 1, the

pheromone on all arcs is initialized to the value τij,1 = τinit = 1, for all 〈i, j〉.

Definition 29 (Strongly-invariant ant colony system). The strongly-invariant ant colony system

(siACS) is a minor variation of ant colony system. It shares with ant colony system the pseu-

dorandom proportional rule for the construction of solutions, the heuristic values are set as in

Definition 10, the pheromone is initialized according to Definition 28 and the local and global

pheromone update are performed according to Definitions 22 and 27, respectively.

Theorem 8. Ant colony system and siACS are functionally equivalent.

Proof. As in the proof of Theorems 2 and 5, a tilde placed above a symbol indicates that the

latter refers to siACS. Let us consider a generic instance I. According to Definitions 6 and 10,

η̃ij = g2ηij , with g2 = Cnn/n. According to Lemma 2 and under Hypothesis 1, if at the beginning

of the generic iteration h, τ̃ (0)

ij,h = g1τ
(0)

ij,h, for all 〈i, j〉, then, p̃k
ij,h = pk

ij,h, for all 〈i, j〉 and for all

k = 1, . . . , m. Further, for all k = 1, . . . , m, τ̃ (k)

ij,h = g1τ
(k)

ij,h, T̃ k
h

= T k
h
, and therefore C̃k

h
= Ck

h
—see

also the proof of Theorem 7. In particular, τ̃ (m)

ij,h = g1τ
(m)

ij,h. Moreover, T̃ ib
h

= T ib
h

and C̃ib
h

= Cib
h

.

Finally, whether or not an improvement is made on the best-so-far solution, T̃ bs
h

= T bs
h

—see the

proof of Theorem 4.

For what concerns the solution returned by the nearest-neighbor heuristic: T̃ nn = T nn and

C̃nn = Cnn . Now, let g1 = nCnn . The global pheromone update takes place on the basis of the

quantities:

∆̃best

ij,h =
nC̃nn

C̃bs
h

= nCnn
1

Cbs
h

= g1∆̃
best

ij,h , if 〈i, j〉 ∈ T bs

h
.

It results:

τ̃ (0)

ij,h+1
=







(1 − ρ)τ̃ (m)

ij,h + ρ∆̃best
ij,h , if 〈i, j〉 ∈ T̃ bs

h
;

τ̃ (m)

ij,h, otherwise;
=







(1 − ρ)g1τ
(m)

ij,h + ρg1∆
best
ij,h , if 〈i, j〉 ∈ T bs

h
;

g1τ
(m)

ij,h, otherwise;

= g1







(1 − ρ)τ (m)

ij,h + ρ∆best

ij,h , if 〈i, j〉 ∈ T bs
h

;

τ (m)

ij,h, otherwise;
= g1τ

(0)

ij,h+1
.

The proof is completed by the fact that at the first iteration h = 1, the pheromone is initialized

as:

τ̃ (0)

ij,1 = 1 =
nCnn

nCnn
= g1τ

(0)

ij,1, for all 〈i, j〉.

and the initial best-so-far solutions are T̃ bs
0

= T̃ nn = T nn = T bs
0

.

Theorem 9. siACS is strongly-invariant.
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Proof. The weak invariance of siACS follows trivially from Theorems 7 and 8. In order to show that

the heuristic information and the pheromone are invariant on all arcs, let us consider two instances

I and Ī such that Ī = fI. According to Definition 10, and taking into account Equation 1, it

results: η̄ij = C̄nn/nc̄ij = fCnn/nfcij = Cnn/ncij = ηij . Under Hypothesis 1, if τ̄ (0)

ij,h = τ (0)

ij,h, for

all 〈i, j〉 at a generic iteration h, and if T̄ bs
h−1 = T bs

h−1, then τ̄ (0)

ij,h+1
= τ (0)

ij,h+1
, for all 〈i, j〉. The proof

is completed by observing that at the first iteration h = 1, τ̄ (0)

ij,1 = τ (0)

ij,1 = 1, for all 〈i, j〉, and the

initial best-so-far solutions are T̄ bs
0 = T̄ nn = T nn = T bs

0 .

Remark 11. Also in the case of siACS, the nearest-neighbor heuristic has been adopted for gener-

ating a reference solution. Any other algorithm could be used instead, provided that the solution

this algorithm returns does not depend on the scale of the problem.

6 Empirical analysis

An analysis of the performance of the three strongly-invariant algorithms proposed in the paper—

namely siAS, siMMAS, and siACS—would be neither particularly novel nor interesting. Indeed,

we have formally proved in Sections 3, 4, and 5 that siAS, siMMAS, and siACS are functionally

equivalent, in the sense of Definition 4, to ant system, MAX–MIN ant system, and ant colony

system, respectively. Since the performance of the latter algorithms on the traveling salesman

problem (as well as on many other problems) has been thoroughly studied in a number of previously

published works, we refer the reader to the relevant literature such as, for example, Dorigo et al.

[9], Dorigo and Gambardella [10], and Stützle and Hoos [11].

Nonetheless, another important issue needs to be addressed. The strong invariance is achieved

in siAS, siMMAS, and siACS by normalizing the cost of each solution to be used for updating

the pheromone. This normalization is obtained by dividing the cost of each solution by the cost

of a reference solution. In this paper, we have adopted as a reference solution the one obtained by

the nearest-neighbor heuristic. In principle, the normalization of solutions might have an impact

on the speed of the algorithm and could therefore raise questions on the opportunity of adopting

the strongly-invariant version of an ant colony optimization algorithm rather than the classical

one.

The goal of this section is to show that the normalization has a negligible impact on the speed

of the ant colony optimization algorithms considered in this paper. To this aim, we consider the

ACOTSP program implemented by Thomas Stützle as a companion software for Dorigo and Stützle

[2]. ACOTSP comprises the most widely adopted algorithms belonging to the ant colony optimization

family, including ant system, MAX–MIN ant system, and ant colony system. ACOTSP has been

released in the public domain and it is available for free download.4 Starting from the ACOTSP code,

we obtained a straightforward implementation of siAS, siMMAS, and siACS, by modifying the

heuristic information, the pheromone update rules, and the initialization, as defined in Sections 3,

4, and 5. Apart from these elements, the implementations of siAS, siMMAS, and siACS that we

consider here are identical to the original implementations of ant system, MAX–MIN ant system,

and ant colony system, respectively. Since the difference between the strongly-invariant versions

and their classical counterpart concerns only the heuristic information and the pheromone trail,

no local search is considered in our experiments. The parameters of the algorithms are fixed as

reported in Dorigo and Stützle [2]. See Table 1 for the details.

In our analysis, we consider 1000 instances of the traveling salesman problem generated through

portgen, the instance generator adopted in the DIMACS TSP Challenge. More specifically, the

instances we consider here consist each of 1000 integer-coordinate cities grouped in clusters and

distributed in a square of size 10e+06.

4http://aco-metaheuristic.org/downloads/ACOTSP.V1.0.tar.gz
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Table 1: Values of the parameters adopted for the algorithms under analysis.

siAS & AS siMMAS & MMAS siACS & ACS

m 100 100 100

ρ 0.5 0.02 0.1

α 1 1 —

β 3 3 3

q0 — — 0.9

We measure the speed of the above implementations in terms of number of iterations per second.

In order to obtain an accurate measurement of the speed, we run the implementations under

analysis for 500 iterations, we discount the initialization time to obtain the number t of seconds

needed for performing 500 iterations, and then we compute the speed by dividing 500 by t. The

index we consider in our analysis is the percent deviation of the speed of the strongly-invariant

version from the one of the corresponding original version. Formally, the percent deviation is

defined as:

%DX =
VsiX − VX

VX

× 100, (10)

where V is the speed expressed in iterations per second, and X is the acronym of the specific

algorithm under analysis, that is, AS for ant system, MMAS for MAX–MIN ant system, and

ACS for ant colony system. For the sake of completeness, we mention here that all experiments

have been run on a cluster of 33 units, each featuring two processors AMD OpteronTM 244, 2GB

of memory, and running the Debian Sarge distribution of the Linux operating system.

The histograms in Figure 1(a) provide a representation of the observed percent deviation. For

the three algorithms considered, the histograms are bell-shaped and reasonably symmetric. At a

first visual analysis, the central tendency in the three histogram seems to be slightly to the left

hand side of the origin which suggests, as a priori expected, that the strongly-invariant versions

of the three algorithms are slightly slower than their corresponding original versions. Moreover,

it can be observed that the three histogram are visibly leptokurtic. It can be therefore concluded

that the distributions of the percent deviation depart from the normal one. This is confirmed by

the graphs given in Figure 1(b) in which the quantiles of the percent deviation are plotted against

those of the normal distribution.

After this preliminary visual analysis of the data, let us move to a quantitative analysis. In

the following, we will present a number of statistical tests on the available data. All the tests are

performed with a confidence level of 98%. We consider first a t-test [13] on the percent deviations

for what concerns the three comparisons siAS vs. AS, siMMAS vs. MMAS, and siACS vs.

ACS. In particular, we consider here a one-sided version since it can be a priori expected that

the strongly-invariant implementation of each algorithm is slower than the corresponding original

one. The results are reported in Table 2(a). As it can be observed, the mean values are very

small in absolute value and, in the case of the comparison siMMAS vs. MMAS, the mean value

is even in the positive. In none of the three cases the difference is significant. The last row of

Table 2(a) reports a one-sided 98% confidence bound on the mean percent deviation: It can be

stated with 98% confidence that siAS is not more than 0.29% slower than ant system. Similarly,

at a confidence level of 98%, we can state that the speed of siMMAS and siACS are within 0.09%

and 0.27% of the speed of MMAS and ACS, respectively.

As we have observed in our visual inspection of the data, and as it is confirmed by the results

of the Shapiro-Wilk normality test [14] reported in Table 2(b), the observations appear to depart

from the normal distribution. Indeed, this departure does not appear to be dramatic since the
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Figure 1: Percent deviation of the speed of the strongly-invariant version from the one of the

original version of ant system, MAX–MIN ant system, and ant colony system. On the left hand

side, in Figure 1(a), the histograms of the percent deviation are reported. On the right hand

side, in Figure 1(b), the quantile-quantile plots against the normal distribution show that the

distributions of the percent deviation significantly depart from the normal distribution itself.
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Table 2: Statistical analysis of the percent deviation in speed of the strongly-invariant version

from the original version of ant system, MAX–MIN ant system, and ant colony system. Both

the t-test and the Wilcoxon test are one-sided with the alternative hypothesis that the percent

deviation given in Equation 10 is negative, that is, the strongly-invariant version of the algorithm

is slower than the classical one. The confidence level is 98%. The p-values typeset in bold are

those that fall below the threshold of 2.00e−02, under which the null hypothesis is rejected. In

the tables, all figures concerning percent deviations are reported with two digits after the decimal

point while all p-values are reported in scientific notation with 3 significant digits.

(a) Results of the t-test.

t-test siAS vs. AS siMMAS vs. MMAS siACS vs. ACS

mean −0.12 0.07 −0.03

p-value 7.37e−02 8.18e−01 4.00e−01

98% conf. bound −0.29 −0.09 −0.27

(b) Results of the Shapiro-Wilk normality test.

Shapiro-Wilk test siAS vs. AS siMMAS vs. MMAS siACS vs. ACS

p-value 9.42e−11 1.52e−11 5.19e−12

(c) Results of the Wilcoxon signed rank test.

Wilcoxon test siAS vs. AS siMMAS vs. MMAS siACS vs. ACS

median −0.14 −0.00 −0.18

p-value 1.35e−02 4.98e−01 2.33e−02

98% conf. bound −0.28 −0.12 −0.35

histograms reported in Figure 1(a) are nonetheless symmetric and unimodal. It is generally agreed

that the t-test is robust against mild violations of the normality assumption and that, in case, it

just loses power and fails gracefully. In any case, in order to avoid the risk that our analysis is

invalidated by the non normality of the data and in order to fully convince our reader of the validity

of the conclusions we draw, we resort to the Wilcoxon signed rank test [14]. This latter test does not

rely on any hypothesis of normality of the data. Also in this case, we consider a one-sided version

of the test and we work at a confidence level of 98%. The results of the Wilcoxon test are given in

Table 2(c). They substantially confirm what already pointed out by the t-test with the only notable

exception that in this case the difference between siAS and AS is statistically significant, albeit

extremely tiny in absolute value, that is, 0.14%. It should also be observed that the p-value of the

comparison siACS vs. ACS is very small but still above the threshold of significance. Moreover,

in this case, the median of the percent deviation in the comparison siMMAS vs. MMAS is zero

and is not anymore in the positive as in Table 2(a).5 The 98% confidence bound are basically

unchanged with respect to those obtained through the t-test. Anyway, the fact that the Wilcoxon

test proved to be more powerful than the t-test being able to detect significance where the latter

failed—that is, in the comparison siAS vs. AS—somehow indicates that the distributions of the

percent deviation significantly departs from normality and that the t-test is possibly not the best

choice. For drawing some conclusions on the experimental analysis proposed in this section, we

will therefore refer to the results obtained through the Wilcoxon test.

We can conclude that for what concerns ant system, the strongly-invariant version is indeed

slightly slower than its classical counterpart. Nonetheless, with a confidence of 98%, we can state

5The number that we actually observed is negative but very small. Since in Table 2 all percent difference and

the relative bounds are reported up to the second digits after the decimal point, this number appear as −0.00.
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that the difference in speed is less than 0.28%. On the contrary, in our experimental setting

we were not able to gather sufficient evidence that siMMAS and siACS are slower than the

original MAX–MIN ant system and ant colony system, respectively: Although the medians of

the percent deviations are slightly in the negative, we are not able to reject the null hypothesis

with the confidence of 98% that we had fixed prior to running the experiments. In any case,

should siMMAS be actually slower than MAX–MIN ant system, we could nonetheless state,

with a confidence of 98%, that the difference in speed is less than 0.12%. Similarly, should siACS

be slower than ant colony system, we could state, with a confidence of 98%, that the difference in

speed is less than 0.35%.

Definitely, for ant system, MAX–MIN ant system, and ant colony system, the tiny difference

in speed between the original version and the strongly-invariant version cannot be adopted as an

argument against the latter.

7 Conclusions

Contrary to what previously believed [1], ant colony optimization appears to be invariant to

the rescaling of problem instances. In this paper, we have formally proved that the three most

successful and most widely adopted algorithms belonging to the ant colony optimization family—

namely, ant system, MAX–MIN ant system, and ant colony system—are indeed weekly-invariant.

In other words, the sequence of solutions they produce does not depend on the scale of the problem

instance at hand. The proofs are provided with reference to the traveling salesman problem and

are then extended to a generic problem. The technique adopted for proving the theorems is

basically the same for the three algorithms. In the three cases, the proof is of inductive nature:

We prove that if some conditions are fulfilled at the beginning of iteration h, then the solutions

produced at iteration h, while solving any two linearly-related instances, are the same. Moreover,

the same above conditions hold also at the following iteration h + 1. The prove is concluded by

showing that the conditions are fulfilled at the beginning of the first iteration. This same proving

technique can be adopted for formally showing the invariance of other algorithms belonging to the

ant colony optimization family.

Moreover, the paper introduces three algorithms: siAS, siMMAS, and siACS. These algo-

rithms are functionally equivalent to ant system, MAX–MIN ant system, and ant colony system,

respectively, but they enjoy the further property of being strongly invariant. In other words, be-

side producing the same sequence of solutions irrespectively of any linear rescaling of the problem

instance, they are such that the pheromone and the heuristic information do not change with the

scale of the problem instance.

The attention on what in this paper we call strong invariance has been explicitly brought for

the first time by Blum and Dorigo [1]. This property is definitely desirable for at least two main

reasons: First, it reduces possible numerical problems in the implementations and contributes

therefore to enhance the stability of the algorithm. Second, it greatly improves the readability of

the solution process and provides the researcher, as well as the practitioner, with an important

tool for analyzing the behavior of the algorithm. In order to achieve the strong invariance, Blum

and Dorigo [1] have defined a new framework they named hyper-cube. An hyper-cube version of

ant system, MAX–MIN ant system, or ant colony system is effectively a new algorithm which

shares with its originating (non-hyper-cube) version much of the underlying ideas but that is not

functionally equivalent to the latter. The main advantage of the strongly-invariant algorithms we

have proposed in the paper is indeed that they are proved to be functionally equivalent to their

respective original counterpart. The properties of these algorithms do not need therefore to be

studied from scratch: The results reported in the whole existing literature on ant colony optimiza-

tion, which starts nowadays to be rather substantial, directly apply to these new algorithms. In
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particular, ant system, MAX–MIN ant system, and ant colony system have been successfully ap-

plied to a variety of problems which means that we have for free an assessment of the performance

of siAS, siMMAS, and siACS under a large number of experimental conditions.

By itself, the theorems proposed in Sections 3, 4, and 5, would not be sufficient for justifying the

extension to the strongly-invariant algorithms of the results previously obtained on their classical

counterparts. The full justification comes only from the combination of the above theorems with

the empirical analysis given in Section 6. Indeed, one could suspect that, although the original

and the strong-invariant versions obtain the same solutions, the strong-invariant could be slower

since some extra computation is needed for normalizing the solutions to be used for pheromone

update. The empirical analysis proposed in Section 6 shows that this is not the case: With 98%

confidence, we can state that the difference in speed of siAS vs. AS, siMMAS vs. MMAS, and

siACS vs. ACS, is less than 0.28%, 0.12%, and 0.35%, respectively. The differences are so tiny that

they do not justify any concern about the relative performance of the strongly-invariant versions

of the algorithms under analysis with respect to the classical versions.
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