
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

Towards a Theory of Practice

in Metaheuristics Design

A Machine Learning Perspective

Mauro Birattari, Mark Zlochin, and Marco Dorigo

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2005-030

December 2005

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:
IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle
Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2005-030

The information provided is the sole responsibility of the authors and
does not necessarily reflect the opinion of the members of IRIDIA. The
authors take full responsability for any copyright breaches that may
result from publication of this paper in the IRIDIA – Technical Report
Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Towards a Theory of Practice

in Metaheuristics Design

A Machine Learning Perspective

Mauro Birattari, Mark Zlochin, and Marco Dorigo

IRIDIA, Université Libre de Bruxelles
Brussels, Belgium

{mbiro,mzlochin,mdorigo}@ulb.ac.be
December 2005

Abstract

A number of methodological papers published during the last years testify
that a need for a thorough revision of the research methodology is felt by
the operations research community—see, for example, Barr et al. (1995),
Hooker (1995), Rardin and Uzsoy (2001), and Eiben and Jelasity (2002).
In particular, the performance evaluation of nondeterministic methods,
including widely studied metaheuristics such as evolutionary computation
and ant colony optimization, requires the definition of new experimental
protocols.

A careful and thorough analysis of the problem of evaluating meta-
heuristics reveals strong similarities between this problem and the prob-
lem of evaluating learning methods in the machine learning field. In this
paper, we show that several conceptual tools commonly used in machine
learning—such as, for example, the probabilistic notion of class of instances
and the separation between the training and the testing datasets—fit nat-
urally in the context of metaheuristics evaluation. Accordingly, we pro-
pose and discuss some principles inspired by the experimental practice in
machine learning for guiding the performance evaluation of optimization
algorithms. Among these principles, a clear separation between the in-
stances that are used for tuning algorithms and those that are used in the
actual evaluation is particularly important for a proper assessment.

1 Introduction

At the current stage of development of the fields of operations research and
combinatorial optimization, a thorough revision of the research methodology is
required. This need is apparently shared by many members of the research com-
munity as it is testified by the interest raised during the last years by a number
of methodological works such as those proposed by Barr et al. (1995), Hooker
(1995), Rardin and Uzsoy (2001), and Eiben and Jelasity (2002). With this
paper, we intend to complement the above mentioned works with a conceptual

1

2 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

analysis of some fundamental issues that have remained so far under-explored.
In particular, we propose an original point of view on the research methodology
in combinatorial optimization that is inspired by the machine learning field.

What is wrong with the currently employed methods? The problem is best
illustrated by an old physicists’ joke:

One chap, who was very fond of horses and horse races, decided
to be scientific about it and asked his physicist friend to make a
scientific prediction of the outcome of the next race. An hour before
the race he came to his friend, but the latter replied that he was
still working on the problem. The same thing happened half an hour
before the race. . . and then five minutes before. . .A week later the
physicist, looking very proud of himself, came back with a pile of
papers, featuring a lot of diagrams and equations.

Our race-fond chap glanced at the diagrams and the equations:
“What does all this mean?”—he asked. “Well, so far I have man-
aged to solve the problem for spherical horses in vacuum...”

It is our strong belief that a similar joke could spread throughout our own
community: a non negligible part of operations research in the last two decades
was concerned, at least in some sense, with spherical horses in vacuum. This
claim can, perhaps, be clarified by considering the largely overlooked issue of
modeling within operations research.

Obviously, the main source of interest in operations research stems (or, at
least, stemmed in the early days of the field) from the practical applications
of its methods. Moreover, it is apparent, but possibly under emphasized, that
the problems traditionally considered in operations research are abstractions of
problems actually encountered in practice. In other words, they are mathemat-
ical models of real-life problems. Indeed, traditional operations research models
are better understood as a hierarchy of abstractions:

1. At the lowest level of the hierarchy, we find straightforward mathematical
models of some well defined practical problems. This first level is the one
usually adopted by industrial researchers and practitioners: their goal is
to solve a specific problem instance rather than generalize their results
and understand the properties of a class of instances.

2. At a second level of the hierarchy, we encounter classical problems such as
the traveling salesman problem (TSP), the quadratic assignment problem
(QAP), and so on. Each of these problems is defined as a class of specific
problem instances (as introduced at the previous level) that share similar
characteristics, as for example the kind of constraints imposed on feasible
solutions.

3. Ascending further, we finally reach highly abstract problems, such as NK
landscapes (Kauffman, 1993) or deceptive problems (Goldberg, 1989).

These three levels should not be seen as an exhaustive description of the hi-
erarchy of abstraction but just as the three main steps of the ladder. Indeed,

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 3

a finer-grained analysis would reveal that other levels of the hierarchy should
be considered which lie in between. As an example, let us consider the case
of the dynamic routing problem, which is often cast into a simpler and better
understood static TSP. Such a model problem lies indeed between the first and
the second level of the hierarchy. In the rest of the paper, it will be sufficient
to restrict our attention to the three levels described above.

At this point, it seems beneficial to recall what were the reasons for this
simplification and for the introduction of the various levels of the above de-
scribed hierarchy of abstractions. The first reason is apparently the obvious
aspiration to reduce the implementation effort in scientific research. A more
scientifically sound reason is to try to isolate problem characteristics that have
a significant impact on the performance of algorithms. This, in fact, was the
main motivation for introducing the highly abstract problems mentioned above.
For a more general discussion of the role and of the importance of modeling
in optimization, we refer the reader to Luenberger (1973) and Michalewicz and
Fogel (2000).

Unfortunately, with time, the understanding that all these problems are
but models has receded. This in turn resulted in the shift of the research focus.
Research often became concentrated on the model per se, leading to the de-
velopment of complexity theory, NP-completeness theory in particular (Garey
and Johnson, 1979). Although complexity theory represented a major break-
through in the field of operations research, it should be emphasized that this
theory is concerned only with the worst-case difficulty of the whole class of
model problems, rather than the particular problem instances actually encoun-
tered in practice (or even simplified models thereof). For example, the fact that
the TSP is NP-hard only means that, unless NP = P , there is no polynomial
algorithm, which finds the optimal solution for all the possible TSPs. This,
however, does not imply anything about the difficulty of a particular class of
real-life routing problems, or even of the corresponding subclass of TSPs used
to model these routing problems.

There is however a positive side to this development. The NP-completeness
theory played an important role in making clear that, without restricting the
class of problems considered in the scientific research, it is impossible to predict
the performance of algorithms on real-life problems. This idea was further rein-
forced by the non-dominance result known as No Free Lunch Theorem (Wolpert
and Macready, 1997) that states that, under certain assumption, no optimiza-
tion algorithm is better than any other, if the performance is averaged over all
possible optimization problems. In particular, this means that no algorithm can
be uniformly better than any other one. As a consequence, the combinatorial
optimization field faced a significant increase in the amount of experimental
work. This concerned in particular the so called metaheuristics, including sim-
ulated annealing (Kirkpatrick et al., 1983), tabu search (Glover, 1989, 1990),
iterated local search (Lourenço et al., 2002), evolutionary algorithms (Goldberg,
1989; Rechenberg, 1973; Holland, 1975; Fogel et al., 1966), and ant colony opti-
mization (Dorigo et al., 1996, 1999; Dorigo and Stützle, 2004; Dorigo and Blum,
2005), for which the theoretical analysis seems particularly difficult. However,
partly because the research on the models per se became a dominant approach,

4 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

the experimental standards have little bearing to the actual design of algorithms
in practice. This is not to say that the experimental research using abstract
model problems has nothing to offer as far as practice is concerned. Insofar as
the model manages to capture the essential characteristics of the practical prob-
lem, the experimental results with this abstract model can be very illuminating,
provided that the experimental design is modeling the setting in which the al-
gorithms are used in practice. In fact, as we argument in the following, a major
problem with current research in metaheuristics is not the lack of adequate test
problems, but rather their inadequate use in empirical studies.

The remainder of this paper is dedicated to the development of a formal
framework for the design of metaheuristics and for their experimental analysis
that captures the essential characteristics of practical operations research: the
urgently needed theory of practice.

2 Motivations and Goals

The need for a formal framework for the design and empirical analysis of meta-
heuristics became evident to us during our involvement in the Metaheuristics
Network, a Research and Training Network funded by the Improving Human
Potential program of the Commission of the European Community. The activ-
ity of the network included a large-scale empirical analysis and comparison of a
number of metaheuristics, including evolutionary computation, ant colony opti-
mization, iterated local search, tabu search, and simulated annealing. This anal-
ysis necessitated an in-depth study of the existing methodological literature—
including articles discussing experiments with algorithms in general, such as
McGeogh (1996) and Johnson (2002), and articles specifically concerned with
metaheuristics, such as Barr et al. (1995) and Rardin and Uzsoy (2001). In the
process, it became clear that, while including many valuable observations and
recommendations regarding the experimental design and the statistical analysis
of the results, the existing works are often limited to general discussion and ref-
erences to general-purpose statistical methods. Moreover, most of the existing
works ignore the link between the combinatorial optimization research and the
real-life optimization and do not question some common, though problematic,
experimental practices.

Accordingly, this paper is orthogonal to the existing literature and our main
concerns are related to the following two issues:

• the definition of a meaningful class-dependent measure of performance for
the tested algorithms;

• the definition of an experimental methodology that guarantees obtaining
a meaningful estimate of the chosen measure of performance.

These issues are complementary to those already addressed in the existing
methodological literature. More specifically, we observe that the commonly
adopted experimental practice renders the results of the performance evalua-
tions both statistically and practically meaningless, partly because the perfor-

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 5

mance criteria are not well-defined, and partly because statistically unsound
tuning procedures are employed.

In the following, the required formal framework for the experimental evalua-
tion of metaheuristics is derived from first principles. We start with an analysis
of the real-life setting in which optimization algorithms are used. This analysis
reveals a considerable similarity between the formal structure of the evaluation
of metaheuristics and the typical machine learning problems. Accordingly, we
observe that several conceptual tools commonly used in the machine learning
field, such as the probabilistic notion of class of instances or the separation
between the training and the testing datasets, fit naturally in the context of
metaheuristics evaluation. We address some possible criticisms against our ap-
proach, present a critical analysis of several existing experimental techniques
commonly used in today’s metaheuristics research, and conclude with an outline
of future research directions.

3 The real-life setting

The main justification to the very existence of the combinatorial optimization
field comes from the (sometimes forgotten) fact that traditional combinatorial
optimization problems are abstract models of real-life problems encountered in
practice. Consequently, it is commonly believed that the performance of an
algorithm on these model problems is indicative of its performance on real-
life problems. However, what is typically ignored is that, in order for the
studies conducted on models to be of any practical relevance, it is absolutely
necessary to mimic not only the characteristics of problems, but also the whole
life-cycle that optimization algorithms follow in practice. We borrow here the
concept of product life-cycle commonly considered in manufacturing. Given
the immaterial nature of optimization algorithms, this concept assumes here
the same connotations it assumes in the field of software engineering. For
an organic presentation of this concept, we refer the reader to any manual of
software engineering, for example Sommerville (2001). In the real world, the
life-cycle of optimization algorithms might be quite diverse. Different life-cycle
models can be appropriate: linear (also known as cascade or waterfall), spiral,
and so on. In this paper, we will implicitly consider a simple linear life-cycle
model in which the algorithm undergoes a design/tuning phase and is then
employed in production. Beside being the simplest life-cycle model, the linear
model is also the building block composing more complex models such as the
spiral which, in this context, can be described as a sequence of interleaved
design/tuning phases and production phases: At the end of each production
phase, sufficient information is gathered which can be employed in the following
design/tuning phase for improving the algorithm. From this description of the
spiral model, it is apparent that the conclusion we draw referring to the linear
model immediately extend to the general case.

Obviously, there is no need to exactly mimic all the details of a life-cycle.
Similarly to the problem modeling, some sort of abstraction is needed, as sug-
gested in Figure 1. In the following, we examine the setting in which optimiza-

6 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

Model problems Experimental setting

� �

Real-life problems Real-life setting

Figure 1: Model problems are abstractions of real-life problems. Similarly, the
experimental setting should mimic the real-life situations in which optimization
algorithms are developed and practically used.

tion algorithms are employed in real-life applications and we extract several
high-level characteristics that we consider essential.

As a general rule, real-life optimization does not involve a single problem,
but rather a class thereof: consider for example a scheduling problem that needs
to be solved on a daily basis. It should be noted that the single-problem setting
is simply a degenerate case, where the problem class has only one member.
Even in this case, the results on a particular problem are interesting only as far
as they suggest some more general trend.

As already mentioned, when a linear life-cycle model is assumed, an al-
gorithm undergoes first a development phase and then the actual production
phase. In the latter, the problems to be solved can be considered to be roughly
homogeneous. An important observation is that the problems to be solved
during the production phase are not available during the development phase.
This implies the following rule that should be observed in any serious empirical
study:

• First experimental principle:
The problems used for assessing the performance of an algorithm cannot
be used in the development of the algorithm itself.

The need for introducing such a principle is best illustrated by the following
reductio ad absurdum argumentation, which apply to the vast and practically
relevant class of combinatorial optimization problems for which the solution
space is finite, such as, for example, traveling salesman, quadratic assignment,
timetabling, scheduling, etc.

Let us consider the following trivial algorithm that takes as a parameter a
natural number and, for any given problem instance, returns a fixed solution
indexed by the parameter. Let us further assume that a single problem instance
is used both for tuning the parameter of the algorithm and then for assessing
the performance of the tuned algorithm. In this case, since by hypothesis the
number of solutions of an instance is finite, provided we spend enough time in
tuning the parameter, that is, in actually solving the instance with an exact
algorithm, the tuned algorithm will be able to solve instantaneously and to the

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 7

optimum the instance under analysis. Clearly, this hardly suggests that our
trivial algorithm is of any practical value.

While these observations are obvious and might even be considered trivial
by our reader, still the first experimental principle is routinely violated in the
current literature, as we discuss in the following.

It should be emphasized that this principle does not imply that domain-
specific knowledge cannot be used in the development of algorithms. Such
knowledge can influence the development process in two ways. First, in case
explicit knowledge is available (either based on domain theory or on the pre-
vious experience of the algorithm designer), it can clearly affect the design of
the algorithm. Second, in many cases, problems similar to the ones used in
production are available and pilot runs on these problems can be used to fine-
tune the algorithm. These observations lead us to a second principle, which is
complementary to the first:

• Second experimental principle:
The designer can take into account any available domain-specific knowl-
edge as well as make use of pilot studies on similar problems.

Finally, in real-life applications, the time available for either the development
or the production phases is limited, hence the corresponding fairness princi-
ple, also advocated in Rardin and Uzsoy (2001), should be observed in any
comparative experiment:

• Third experimental principle:
When comparing several algorithms, all the algorithms should make use
of the available domain-specific knowledge, and equal computational effort
should be invested in all the pilot studies. Similarly, in the test phase, all
the algorithms should be compared on an equal computing time basis.

Now, given the three principles described above, we are in a position to present
a formal description of the experimental methodology.

4 The configuration problem

In this paper, we focus our attention on metaheuristics. Nonetheless, most
of the methodological recommendations apply also to experimental studies of
approximation or even exact algorithms.

As already pointed out in several methodologically-minded papers such as,
for example, McGeogh (1996) and Johnson (2002), any experimental study
can only assess the performance of a particular implementation rather than a
general abstract algorithm. It should be noted, however, that an implementation
is defined not only by structural decisions such as problem representation, data-
structures, and so on, but also by a particular configuration, that is, a certain set
of values of the parameters of the algorithm as, for example, the evaporation rate
and the sample size in ant colony optimization (Dorigo et al., 1999; Dorigo and
Di Caro, 1999), the tabu-list size in tabu search (Glover, 1989), or the mutation

8 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

rate and the cross-over operator in evolutionary computation (Goldberg, 1989).1

This leads to the following observation, which is often ignored in the current
research:

Whenever the free parameters of the algorithms to be compared are
fixed through some unspecified procedures, performance evaluation
and comparison are only meaningful with respect to the particular
configurations considered.

This means that a conclusion like:

1) Algorithm AlgA is better than algorithm AlgB,

cannot be drawn from experiments, unless specific reference is made to the
procedure used to select the configurations to be tested. In the general case,
the only claim that can be formulated on the basis of an empirical comparison
sounds like:

2) The tested configuration of AlgA performs better than the tested
configuration of AlgB.

In order to compare AlgA and AlgB without restricting oneself to particular
configurations, the appropriate statement to be tested should be

1’) The pair AlgA + Conf 1 performs better than AlgB + Conf 2.

Where Conf 1 and Conf 2 are two configuration procedures. If one wishes to
isolate the effects of the algorithmic ideas on the overall performance, one should
use the same configuration procedure for both algorithms and test the statement:

1”) The pair AlgA + Conf performs better than AlgB + Conf .

In this case, the superiority of one algorithm over the other can be assessed,
with respect to the selected configuration procedure.

Unfortunately, this is not a common practice in the current literature and, in
many papers involving comparisons of a newly proposed method against some
previously published approach, a better performance of the new algorithm is
often merely the result of a more careful tuning, that is, of a more sophisti-
cated configuration procedure, rather than an indication of the superiority of
the proposed algorithmic ideas. This has been recently shown, for example, in
a thorough study concerning the performance of several metaheuristics on the
MAX-SAT problem: when an equal tuning effort was invested in all the com-
pared algorithms, the performance was virtually identical (Zlochin and Dorigo,
2002).

1It should be emphasized at this point that, in this paper, we are only concerned with
static parameters, whose value is set by the algorithm designer. In case some parameters are
set on the fly by the program itself, they are not considered to be part of the configuration.
In the evolutionary computation literature, examples of such on-the-fly tuning can be found
already in Rechenberg (1973) and Schwefel (1981) and, more recently, in the work of Toussaint
(2001) and Liang et al. (2001).

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 9

In light of this observation, the configuration problem becomes one of the
central issues in the evaluation and comparison of metaheuristics. In fact, one
can go as far as claiming that, unless the experimenter is only interested in a
particular configuration, the configuration procedure becomes an inseparable
part of the algorithm.

In the following, we present a formal framework for the description of the
configuration problem. We observe that, when rigorously formulated, the con-
figuration problem is extremely similar to the parameter selection problem in
machine learning. Consequently, we show that several important conceptual
tools from the machine learning field, such as the probabilistic characterization
of a class of problems and the parameter setting methodology, can be naturally
translated into the optimization setting.

4.1 Notation

In order to give a formal definition of the general problem of configuring a
metaheuristic, the following notations will be used:

• Θ is the set of candidate configurations and θ ∈ Θ is a particular config-
uration.

• I is the set of possible instances and i ∈ I is a particular instance.

• t is the available computation time, in abstract units, for the algorithm.

• c(θ, i, t) is the cost of the best solution found by running configuration θ on
instance i for a time t. In the following, for the sake of a lighter notation,
the dependency of the cost c on the time t will be often omitted. Since
we wish to consider both deterministic and randomized algorithms, we
assume that the cost is a random variable distributed according to some
probability measure PC , where C is the range of values possibly assumed
by c. In the deterministic case, the probability measure PC is degenerate,
with the whole probability mass concentrated in a single point.

Now, in designing an optimization algorithm, one wishes to use a configuration,
which is, informally speaking, “the best” one for the particular class of problems
being solved. In order to be able to formally specify the configuration problem,
a precise definition of the best configuration is needed. Consequently, one needs
a formal definition of the concept of class of problems and some precisely defined
class-dependent performance measure C(θ). These two issues are addressed in
the following sections.

4.2 What is a problem subclass?

For some years now, the metaheuristic research community reached the un-
derstanding that uniform dominance of one algorithm over another is highly
unlikely, even for particular combinatorial problems. As a result, more and
more studies attempt to compare algorithms on problem subclasses. However,
up to now, the notion of problem subclass remained extremely vague, and the

10 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

term is often used simply to refer to particular sets of benchmark problems.
Clearly, this use of the term does not capture all of the properties that are intu-
itively expected from a problem subclass.2 For example, in order to be of any
practical interest, a problem subclass should be large—perhaps, even infinite.
Moreover, there is typically no well-defined boundary delimiting the subclass
in question. Finally, some sort of homogeneity is expected from the problems
belonging to a same subclass.

Following the machine learning field, where a similar notion of class is con-
sidered, a problem subclass in combinatorial optimization can be defined in
a probabilistic way (Birattari et al., 2002; Birattari, 2004). In the following,
we identify a subclass with a probability measure PI defined over the set of
possible instances. We will use the two concepts of problem subclass and of
probability measure PI interchangeably. For simplicity of presentation, in this
paper the instances to be solved will be assumed to be generated from PI in
an independent way, although it is straightforward to generalize the analysis
to a less restrictive setting such as, for example, a Markov chain generating
mechanism—see Birattari (2004) for a discussion of the issue.

A number of clarifications are needed here in order to prevent possible mis-
understandings:

• While the probabilistic definition of a subclass is not explicitly used in the
current research, it is nonetheless implicitly assumed in any experiment
in which results are averaged over a number of test problems or in which
some statistical test of significance is employed.

• The probabilistic definition of the problem subclass allows for the appli-
cation of a precise meaning to the common belief that the benchmark
problems are representative in some sense of the wider problem class.
The precise meaning of representative in this case is that the benchmark
problems are sampled from the probability distribution associated with
the class.

• One should not confuse the high-level notion of a definition in proba-
bilistic terms of a problem subclass with the practical implementation of
a specific probabilistic benchmark generator. In fact, adopting a proba-
bilistic definition of a problem subclass does not imply that the generating
distribution is known to the algorithm designer. The instance-generating
mechanism is only assumed to have a certain qualitative form—namely,
independent and identically distributed (IID) sampling—without assum-
ing anything about the particular quantitative form of this mechanism.
The assumption of IID sampling is clearly an abstraction of the real-life

2Eiben and Jelasity (2002) discuss the properties that a problem subclass should have
for serving the purpose of testing and comparing evolutionary computation algorithms. In
their discussion, Eiben and Jelasity do not need to provide a precise definition of the concept
of problem subclass and therefore they use this concept in a somehow informal way. The
definition of the concept that we propose in the following is motivated by their same concerns,
but it has the merit of being formal and fully rigorous. It remains nevertheless perfectly
consistent with the analysis proposed by Eiben and Jelasity.

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 11

instance generation, but it should be remembered that so are, for exam-
ple, the model-problem instances typically considered in combinatorial
optimization.

4.3 Performance evaluation

Having given a precise meaning to the notion of problem subclass, we are now in
the position to discuss the issues connected to the evaluation of the performance
of a configuration of an algorithm with respect to a certain problem subclass.

First, let us consider a single run of the algorithm on a fixed problem in-
stance. Let us assume that c is the cost of the best solution found within this
single run. The observed cost, by itself, does not typically provide a meaningful
evaluation of the quality of a solution. It is customary therefore to somehow
refer the observed cost to the cost of the optimal solution.3 Consequently, one
is typically interested in the value of the approximation error with respect to
the cost of the optimal solution copt (i). The absolute error |c − copt (i)| has
many obvious shortcomings. For example, it is not invariant under a simple
linear scaling of the cost function.

However, as noted in the seminal work by Zemel (1981), also the more
commonly used relative approximation error, |c−copt (i)|/copt (i), is not invariant
with respect to some trivial transformation of the problem. For example, in the
TSP, an affine transformation of the weights leaves the problem essentially the
same but changes the value of the relative error of all solutions. Accordingly,
several alternatives were considered in the literature. For example, in Zemel
(1981), it was shown that:

e(c, i) =
c − copt (i)

cworst (i) − copt (i)
, (1)

where cworst (i) is the cost of the worst solution for instance i, is invariant
under several trivial transformations of the problem. However, the problem
with this measure of performance, referred to in the literature as differential
approximation measure (Demenage et al., 1998) or z-approximation (Hassin and
Khuller, 2001), is that it requires calculation of the cost of the worst possible
solution, which is often as difficult as finding copt (i). To overcome this problem,
an alternative error measure was proposed in Zlochin and Dorigo (2002):

e(c, i) =
c − copt (i)

Eunif c(i) − copt (i)
, (2)

where Eunif denotes expectation with respect to the uniform distribution of the
solutions. While remaining invariant under trivial problem transformations, the
error measure (2) has two important advantages over (1). First, Eunif c(i) can
be computed efficiently for many problems. Second, under (2), the expected
error of a random solution is equal to 1, hence the proposed measure indicates

3In order to simplify the presentation, in this paper, we assume that the cost of the op-
timal solution is known. See Rardin and Uzsoy (2001) for an excellent overview of different
approaches for dealing with the situations in which the optimal solution is not known.

12 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

how well a considered algorithm performs in comparison to the most trivial
algorithm—a random generator of solutions. An additional useful consequence
is that the error is automatically normalized across different problems.

Having defined the error measure for a given solution of a particular in-
stance, we may now consider a more general case of evaluation of the per-
formance of a configuration with respect to a problem subclass. Recall that
we have two sources of variability: the randomness of the algorithm, as cap-
tured by the distribution PC , and the variability of the instances, described by
the measure PI . The question is how to define a single value of performance
C(θ) = C(θ|Θ, I, PI , PC , t) on the basis of these two distributions.4 One natural
definition of a class-dependent performance measure is the expected value of
the error e(c, i) (Birattari et al., 2002; Birattari, 2004):

C(θ) = EI,C

[
e
(
c(θ, i), i

)]
=

∫
I

∫
C
e
(
c(θ, i), i

)
dPC(c|θ, i) dPI(i). (3)

Instead of the expectation, one can also consider other functionals of the error
distribution, such as the median, the third inter-quartile or other quantiles, the
probability of having an error below some threshold, and so on. The value C(θ)
has a double role. On the one hand, by definition, C(θ) is used to measure the
performance of the algorithm during the test phase (production). On the other
hand, if C(θ) were known for each θ, it could also be used during the design
phase for selecting the best configuration. However, as a rule, the measures PI

and PC are not explicitly available and hence the analytical computation of
C(θ) is not possible.

For the performance evaluation, it is a common practice to measure the
performance of the algorithm by the average error over the test runs on the
test instances. This measure is, in fact, nothing else than an unbiased finite-
sample estimate of (3). It is tempting to apply the same approach also for the
second use of C(θ), namely the configuration problem. However, in light of the
first experimental principle discussed in Section 3, the test instances cannot be
used during the development phase. Still, according to the second experimental
principle, one may use during the development stage other instances from the
same problem class (when available). Consequently, one may approximate the
criterion (3) by an empirical mean over the set of these training instances.
Hence, similarly to machine learning, we propose an experimental methodology
in which the algorithm’s performance is measured using the test error and
during the design phase one strives to choose a configuration with as low a
training error as possible.5

Now, the most straightforward way to practically carry out the training
would be the brute-force approach, which tries every possible configuration and
chooses the best one, that is, the one with the smallest training error. However,
this approach can be infeasible in practice, due to the typically large size of the
configuration space. Moreover, in many cases, the parameters are continuous
and, accordingly, the configuration space is infinite. In order to deal with this

4One may also consider a multi-objective optimization setting, with several relevant mea-
sures. This extension is beyond the scope of this paper.

5This methodology is also advocated in Eiben and Jelasity (2002).

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 13

problem, one may use the variety of parameter selection methods employed in
machine learning. For example, in Birattari et al. (2002) and Birattari (2004) it
was shown that the so called racing algorithms (Maron and Moore, 1994; Moore
and Lee, 1994) can be successfully adapted to the metaheuristics configuration
task.

5 The proposed methodology and the alternatives

Let us summarize the general outline of the experimental design to be used in
metaheuristics evaluation and comparisons:

• For every algorithm specify the configuration space, that is, the space of
all the allowed combinations of parameters. If some domain knowledge is
used to narrow down the configuration space, it should be equally applied
to all the considered algorithms.

• Choose the configurations of the algorithms by using the same configu-
ration procedure, possibly based on training instances generated from
the same problem class, as the problems on which the algorithms are to
be tested.6

• Run the resulting configurations, with the same computational re-
sources (e.g., computation time,7 memory, etc.), on the available test
instances and calculate the empirical approximation of the measure of
performance defined by equation (3).

Hence, in the proposed methodology the training stage corresponds to the devel-
opment phase in the real-life setting, while the testing stage corresponds to the
production phase. Strictly speaking, the training stage is preceded by the actual
implementation, but since the tuning is typically much more time-consuming,
one may safely ignore the code-writing per se.

In the second step, the configuration procedure depends on the exact context
of the experiment. For example, one may use some (possibly, approximate)
training error minimization procedure, as discussed in the previous section. It
could be argued that in some cases the training instances required for such a
procedure are not available. In such cases, the alternatives implicitly considered
in the literature are either to use the test instances themselves for choosing the
tested configuration or to choose the configuration based solely on the prior
experience with the algorithm. Let us examine these two alternatives in more
details.

6In order to guarantee that one is evaluating metaheuristics rather than a particular con-
figuration method, one should use, for all the algorithms, the same configuration method,
with the same computational resources and the same training instances. However, it might
be also interesting to study the performance of different configuration methods on a same
metaheuristic.

7Whenever a comparison involves an algorithm with a well-defined stopping condition
(such as constructive algorithms or local search), an iterated version with the same overall
computation time should be studied (Rardin and Uzsoy, 2001).

14 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

The first approach, namely the use of the test instances, is commonly used
in the current literature. In its explicit form, some sort of average test error
minimization procedure, typically based on some pilot studies, is used to choose
the parameter values. In the second form, the configuration problem is not
addressed explicitly, but rather the results of the best performing configuration
are reported for every instance. However, both explicit and implicit forms of this
approach violate the first experimental principle from Section 3, which is based
on the observation that the problems to be solved during the production phase are
not available during the development phase. Consequently, the results obtained
with this approach do not produce any well-defined performance evaluation.

Another alternative is not to apply any configuration procedure, but rather
to use some configuration, which was previously used in the literature or which
is known to be “good” from the previous personal experience of the researcher.
This approach can be criticized on two grounds. First, typically the configura-
tions reported in the literature are chosen following some pilot experimentation,
that is, one is simply using some empirical error minimization procedure im-
plicitly. If the pilot studies were conducted using the same benchmark problem
set, then one uses (perhaps, without even being aware of it) the test-instances-
based approach, which we have just shown to be invalid. If, on the other hand,
a different problem set was used for these pilot studies (or the experimental
setting was different), then the employed configuration may be suboptimal for
the problem at hand. In particular, this approach may easily introduce a bias
towards one of the tested algorithms, due to uneven tuning effort. Clearly, the
more recent algorithms are often more carefully tuned in comparison to the
older ones, whose developers did not have access to today’s computing power.

To summarize, most of the configuration procedures used today are based,
either explicitly or implicitly, on the empirical error minimization. However,
unlike the systematic methodology advocated in this paper, the existing ap-
proaches either involve some sort of “cheating,” in the form of using the test
instances during the development phase, or, alternatively, do not guarantee that
all the algorithms are configured equally well.

In a recent paper, Zlochin and Dorigo (2002) adopted the proposed method-
ology for comparing, on standard MAX-SAT benchmark problems, the perfor-
mance of a number of modern metaheuristics belonging to the so-called Model
Based Search approach (Zlochin et al., 2004). Although the superiority of each
of the considered approaches over the others had been claimed in previously
published works, the results proposed in Zlochin and Dorigo (2002) have shown
that, by providing equal tuning resources to all the compared methods, their
performance became virtually identical.

6 Conclusions and future research

In this paper, we have presented a conceptual analysis of the real-life setting
in which metaheuristics are used. Following this analysis, we have presented
an experimental methodology based on a precisely defined notion of problem
class and a related class-dependent measure of performance. We observe that

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 15

the formal structure of the metaheuristic evaluation/comparison procedure is
extremely similar to the one of machine learning. Accordingly, we propose an
experimental methodology similar to the one used in machine learning. We have
also shown that existing alternative approaches all contain some fundamental
flaws.

Clearly, the proposed experimental principles still leave much freedom to
the researcher to specify an exact experimental design depending on the con-
text and questions one wishes to address in the experiment. In this sense,
as already mentioned earlier, this study is complementary to existing method-
ological literature. Even for the configuration problem, which was the main
focus of this paper, many possible realizations of the proposed methodology are
possible. For example, when studying the influence of some parameter on the
performance of an algorithm, one can either fix the remaining parameters or,
alternatively, one can optimize them for every considered value of the parame-
ter of interest. Also, when one wishes to study the robustness of the algorithm
with respect to the parameters’ setting, obvious changes need to be made to
the experimental design.

Naturally, in order to make the best use of the proposed methodology, ef-
ficient configuration procedures are needed. One approach, already mentioned
above, is to make use of the racing algorithms (Birattari et al., 2002; Birattari,
2004). Other alternatives include using related methods developed in the sim-
ulation field (such as Nelson et al. (2001) and references therein) or applying
general purpose stochastic optimization methods, such as ant colony optimiza-
tion or genetic algorithms. These issues are the subject of ongoing research.

Finally, performance is not the only criterion for choosing a particular al-
gorithm in practice. Clearly, the attractiveness of a particular algorithm is also
determined by subjective factors such as simplicity of the algorithmic ideas and
ease of implementation. Moreover, the human factor can, in principle, also
affect the efficiency of the algorithm’s implementation, hence influencing the
measured performance. Still, while not discarding these subjective factors, this
paper sheds some light on the objective problems plaguing the current research
in metaheuristics and suggests a systematic methodology for overcoming these
problems.

Acknowledgments

This research has been supported by the ANTS project, an Action de Recherche
Concertée funded by the Scientific Research Directorate of the French Commu-
nity of Belgium. Mauro Birattari acknowledges the support of a fellowship
granted by the Metaheuristics Network, a Research Training Network funded
by the Improving Human Potential programme of the Commission of the Eu-
ropean Community, grant HPRN-CT-1999-00106. Mark Zlochin acknowledges
the support of a Training Site fellowship funded by the Improving Human Po-
tential (IHP) programme of the Commission of the European Community, grant
HPMT-CT-2000-00032. Marco Dorigo acknowledges support from the Belgian
FNRS, of which he is a Research Director.

16 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

References

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., and Stewart, W. R.
(1995). Designing and reporting computational experiments with heuristic
methods. Journal of Heuristics, 1:9–32.

Birattari, M. (2004). The Problem of Tuning Metaheuristics, as Seen from a
Machine Learning Perspective. PhD thesis, Université Libre de Bruxelles,
Brussels, Belgium.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing
algorithm for configuring metaheuristics. In Langdon, W. B. et al., edi-
tor, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2002), pages 11–18. Morgan Kaufmann Publishers, San Francisco,
CA.

Demenage, M., Grisoni, P., and Paschos, V. T. (1998). Differential approxima-
tion algorithms for some combinatorial optimization problems. Theoretical
Computer Science, 209:107–122.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(2–3):243–278.

Dorigo, M. and Di Caro, G. (1999). The Ant Colony Optimization meta-
heuristic. In Corne, D., Dorigo, M., and Glover, F., editors, New Ideas in
Optimization, pages 11–32. McGraw Hill, London, UK.

Dorigo, M., Di Caro, G., and Gambardella, L. M. (1999). Ant algorithms for
discrete optimization. Artificial Life, 5(2):137–172.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant System: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics – Part B, 26(1):29–41.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press,
Cambridge, MA.

Eiben, A. and Jelasity, M. (2002). A Critical Note on Experimental Research
Methodology in EC. In Proceedings of the 2002 Congress on Evolutionary
Computation (CEC’2002), pages 582–587, Piscataway, NJ. IEEE Press.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence
Through Simulated Evolution. John Wiley & Sons, New York, NY.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco, CA.

Glover, F. (1989). Tabu search – part I. ORSA Journal on Computing, 1(3):190–
206.

Glover, F. (1990). Tabu search – part II. ORSA Journal on Computing, 2(1):4–
32.

IRIDIA – Technical Report Series: TR/IRIDIA/2005-030 17

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, Reading, MA.

Hassin, R. and Khuller, S. (2001). Z-approximations. Journal of Algorithms,
41(2):429–442.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Hooker, J. N. (1995). Testing heuristics: we have it all wrong. Journal of
Heuristics, 1(1):33–42.

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of
algorithms. In Data structures, near neighbor searches, and methodology:
5th and 6th DIMACS implementation challenges, pages 215–250. American
Mathematical Society, Providence, RI.

Kauffman, S. A. (1993). The Origins of Order. Self-Organization and Selection
in Evolution. Oxford University Press, Oxford, UK.

Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220:671–680.

Liang, K., Yao, X., and Newton, C. (2001). Adapting self-adaptive parameters
in evolutionary algorithms. Applied Intelligence, 15(3):171–180.

Lourenço, H. R., Martin, O., and Stützle, T. (2002). Iterated local search.
In Glover, F. and Kochenberger, G., editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations Research & Management
Science, pages 321–353. Kluwer Academic Publishers, Norwell, MA.

Luenberger, D. G. (1973). Introduction to Linear and Nonlinear Programming.
Addison-Wesley Publishing Company, Reading, MA.

Maron, O. and Moore, A. W. (1994). Hoeffding races: Accelerating model
selection search for classification and function approximation. In Cowan,
J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information
Processing Systems, volume 6, pages 59–66. Morgan Kaufmann Publishers,
San Francisco, CA.

McGeogh, C. C. (1996). Toward an experimental method for algorithm simu-
lation. INFORMS Journal on Computing, 2(1):1–15.

Michalewicz, Z. and Fogel, D. B. (2000). How to Solve it: Modern Heuristics.
Springer-Verlag, Berlin, Germany.

Moore, A. W. and Lee, M. S. (1994). Efficient algorithms for minimizing cross
validation error. In International Conference on Machine Learning, pages
190–198. Morgan Kaufmann Publishers, San Francisco, CA.

Nelson, B., Swann, J., Goldsman, D., and Song, W. (2001). Simple procedures
for selecting the best simulated system when the number of alternatives is
large. Operations Research, 49:950–963.

18 IRIDIA – Technical Report Series: TR/IRIDIA/2005-030

Rardin, R. R. and Uzsoy, R. (2001). Experimental evaluation of heuristic opti-
mization algorithms: A tutorial. Journal of Heuristics, 7:261–304.

Rechenberg, I. (1973). Evolutionsstrategie – Optimierung technischer Systeme
nach Prinzipien der biologischen Information. Fromman Verlag, Freiburg,
Germany.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John
Wiley & Sons, Chichester, UK.

Sommerville, I. (2001). Software Engineering. Addison Wesley, Harlow, UK,
sixth edition.

Toussaint, M. (2001). Self-adaptive exploration in evolutionary search. Tech-
nical Report IRINI-2001-05, Institut für Neuroinformatik, Ruhr-Universität
Bochum, Bochum, Germany.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82.

Zemel, E. (1981). Measuring the quality of approximate solutions to zero-one
programming problems. Mathematics of Operations Research, 6:319–332.

Zlochin, M., Birattari, M., Meuleau, N., and Dorigo, M. (2004). Model-based
search for combinatorial optimization: A critical survey. Annals of Operations
Research, 131(1-4):375–395.

Zlochin, M. and Dorigo, M. (2002). Model based search for combinatorial
optimization: A comparative study. In Merelo Guervós, J.J. et al., editor,
Parallel Problem Solving from Nature – PPSN VII, pages 651–661. Springer
Verlag, Berlin, Germany.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

