TOOLBOX FOR NEURO-FUZZY
IDENTIFICATION AND DATA ANALYSIS
For use with Matlab®

Gianluca Bontempi
Mauro Birattari

Iridia - CP 194/6
Université Libre de Bruxelles
50, av. Franklin Roosevelt
1050 Bruxelles - Belgium
email: {gbonte, mbiro }@ulb.ac.be

http://iridia.ulb.ac.be

Apr 19, 1999

Chapter 1

Release notes

This document is a preliminary user guide of the Toolbox for neuro-fuzzy identi-
fication and data analysis for use with Matlab.
The software makes part of a larger IRIDIA project, whose goal is the imple-
mentation of set of local modeling approaches for data analysis and regression.
The toolbox has been implemented and tested in Matlab language 4.2 but it
work under Matlab 5 as well.

1.1 Conditions/Disclaimer

By using the toolbox the user agrees to all of the following:

e If one is going to publish any work where this toolbox has been used, please
remember it was obtained free of charge and include a reference to [3, 5].

e The toolbox is copyrighted freeware by Gianluca Bontempi, Mauro Birat-
tari, Iridia, Universite’ Libre de Bruxelles ULB. It is not permitted to utilize
any part of this software in commercial and/or military applications.

e The toolbox is provided “as-is” without warranty of any kind, either express
or implied, including but not limited to the implied warranties or conditions
of merchantability or fitness for a particular purpose. In no event shall
Gianluca Bontempi, Mauro Birattari and/or the IRIDTA-ULB laboratory
be liable for any special, incidental, indirect, or consequential damages of
any kind, or damages whatsoever resulting from loss of use, data, or profits,
whether or not the authors have been advised of the possibility of such
damages, and/or on any theory of liability arising out of or in connection
with the use or performance of this software.

Chapter 2

The fuzzy inference system

The toolbox performs the identification of a Takagi-Sugeno fuzzy architecture
starting from a set of N input-output samples. The Takagi-Sugeno fuzzy model
(also known as the TS fuzzy model) was proposed by Takagi, Sugeno and Kang |9,
8] in an effort to develop a systematic approach to generating fuzzy rules from a
given input-output data set. A TS fuzzy inference system is a set of r rules

If z; is A} and x5 is A} ... and =z, is A} then y' = f1(x1, 32, ..., Ty)
(2.1)

If z1 is AT and x5 is AY ... and z, is A} then y" = f"(z1, 29, ..., Tp
1 2 n

The first part (antecedent) of each rule is defined as a fuzzy AND proposition
where Aj- is a fuzzy set on the jth premise variable defined by the membership
function g% : R" — [0,1]. The second part (consequent) is a crisp function f*
i =1,...,r of the input vector [z1, X, ..., Ty

By means of the fuzzy sets Aé the input domain of the function f is softly
partitioned in smaller regions where the mapping is locally approximated by
the models f’. The TS inference system uses the weighted mean criterion to
recombine all the local representations in a global approximator:

_ i MY

y = izt Y (2.2
DT

where yi¢ is the degree of fulfillment of the ith rule.

An interesting special case is provided by the linear TS fuzzy inference system
where the consequents are linear models f* =37 afx; +* [8]. In this case the
TS system can be used to return a local linear approximation about a generic
point of the input domain. Consider for example an input & = [£1, %o, - . ., T
The TS rule combination (Eq. 2.2) returns a linear approximation f;,(+) to the
function f(-) about Z:

> i1 (X251 PiTy + pio)
>ou

fiin(2) = (2.3)

2.1 From fuzzy to neuro-fuzzy

In a conventional fuzzy approach the membership functions and the consequent
models are fixed by the model designer according to a priori knowledge. If this
knowledge is not available but a set of input-output data is observed from the pro-
cess f, the components of the fuzzy system (membership and consequent models)
can be represented in a parametric form and the parameters tuned by a learning
procedure. In this case the fuzzy system turns into a neuro fuzzy approxima-
tor [3]. Neuro-fuzzy systems are a powerful trade off in terms of readability and
efficiency between a human-like representation of the model and a fast learning
method. However, what mainly distinguishes neuro-fuzzy estimators from other
kinds of non linear approximators is their potentiality for combining available a
priori first principle models with data driven modeling techniques [4]. In fact,
while learning methods provide the adaptation of the inference system to the
observed data, the fuzzy architecture allows an easy integration into the system
of available knowledge about the process to be modeled.
Let us see now in detail our neuro-fuzzy learning procedure.

2.2 Structural and parametric learning in neuro-
fuzzy inference systems

In a neuro-fuzzy system, two types of tuning are required, namely structural and
parametric tuning.

Structural tuning aims to find a suitable number of rules and a proper parti-
tion of the input space. Once available a satisfactory structure, the parametric
tuning searches for the optimal membership functions together with the optimal
parameters of the consequent models. There may be a lot of structure/parameter
combinations which make the fuzzy model behave in a satisfactory way. The
problem can be formulated as that of finding the structure complexity which
will give the best performance in generalization [10]. In our approach we choose
the number of rules as the measure of complexity to be properly tuned on the
basis of available data. We adopt an incremental approach where different archi-
tectures having different complexity (i.e. number of rules) are first assessed in
cross-validation and then compared in order to select the best one. The whole
learning procedure is represented in the flow chart in Fig. 2.1.

The initialization of the architecture is provided by a hyper-ellipsoidal fuzzy
clustering procedure inspired by Babuska & Verbruggen [2]. This procedure clus-
ters the data in the input-output domain obtaining a set of hyper-ellipsoids which
are a preliminary rough representation of the input/output mapping. Methods
for initializing the parameters of a fuzzy inference system from the outcome of
the fuzzy clustering procedure are described in [1]. Here, we use the axes of
the ellipsoids (eigenvectors of the scatter matrix) to initialize the parameters of

4

‘ STRUCTURE INITIALIZATION ‘

‘ PARAMETER INITIALIZATION ‘
|

vV PARAMETRIC

| LINEAR OPTIMIZATION STEP | TUNING

‘ NON-LINEAR OPTIMIZATION STEP ‘

| ;

INCREASE
MODEL
STRUCTURE ‘

COMPUTATION OF J, ‘

{

NO

BEST STRUCTURE ?

ESTIMATION BEST STRUCTURE
PARAMETERS

Figure 2.1: Flow-chart of the neuro-fuzzy learning procedure.

the consequent functions f*, we project the cluster centers on the input domain
to initialize the centers of the antecedents and we adopt the scatter matrix to
compute the width of the membership functions. An example of fuzzy clustering
in the case of a single-input-single-output function modeled by a fuzzy inference
system with Gaussian antecedents is represented in Fig. 2.2.

Once the initialization is done, the learning procedure begins. Two optimiza-
tion loops are nested: the parametric and the structural one. The parametric
loop (the inner one) searches for the best set of parameters by minimizing a
sum-of-squares cost function J,; which depends exclusively on the training set.
In the case of linear T'S models this minimization procedure can be decomposed
in a least-squares problem to estimate the linear parameters of the consequent
models f? [6] and a nonlinear minimization (Levemberg-Marquardt) to find the
parameters of the membership functions A% [3].

The structural identification loop (the outer one) searches for the best struc-
ture, in terms of optimal number of rules, by increasing gradually the number
of local models. The different structures are assessed and compared according
to their performance Joy in K-fold cross-validation [7]. This procedure uses a
high proportion of the available data to train the current model structure and

5

Figure 2.2: The hyper-ellipsoidal clustering initialization procedure.

gives a reliable estimate of the performance in generalization. Unfortunately, the
training process has to be repeated as many times as the number K of partitions
of the training set, making the whole learning process computationally expensive.

The model with the best cross-validation performance is then selected to rep-
resent the input-output mapping and consequently trained on the whole dataset.

Chapter 3

The toolbox

The toolbox has two versions

Command line It is called by
>> fuzzy b;
The different options are set by uncommenting the respective lines in the
m-file fuzzy_b
Graphical It is called by
>> fuzzy_g;

The options are set through a graphical interface called by the command
fuzzy_ b (see Fig. 3.1)

3.1 The fuzzy inference system in Matlab
The fuzzy inference system (2.1) is represented in the toolbox by 3 matrices:

1. The matrix [r,n| centers which contains the location of the centers of the
membership functions of the antecedents.

2. The matrix [r, n] bases which contains the bases (standard deviation) of the
triangular(Gaussian) membership functions of the antecedents.

3. The matrix par, which contain the parameters of the consequent model of
the rules. It is a matrix [r, 1] in the case of constant models and [r,n + 1]
in the case of linear models.

4. The matrix [1, 1] bias which contains the bias term. It is the bias term used
the linear step of the nonlinear parametric optimization.

Figure 3.1: The graphical interface

3.2 Structural parameters

The program provides a set of structural alternatives in the definition of the fuzzy
model. In particular the user may choose

Shape of the membership functions of the antecedents It can be Gaus-
sian
(2—i)’

n
pie)=]le " (3.1)
j=1
or triangular

pi(z) = | [max (0, 1- %) : (3.2)

where the Matlab matrix centers(i,j) represents the value of ¢} and the
Matlab matrix bases(i,j) represents the value of bf.

Parametric form of the consequent model It can be constant
y' = p; (3.3)

where the Matlab vector par(i) represents the value of p; or linear (Eq. 2.3)

n

Yi = Zpijxj + Pio (3.4)

j=1

where the Matlab matrix par is so that par(i,j) contains p;; and par(i,n+1)
contains p;q’

Combination method of the rules It can be a weighted combination (Eq. (2.2))
or a non weighted combination.

Bias term It can be used or not in the linear step of the nonlinear parametric
optimization.

Clustering initialization policy It can be k-mean or Hyperplane Fuzzy Clus-
tering and serve to provide the identification algorithm with good initial
values of the centers and bases of the membership functions.

3.3 Program features
The toolbox runs in three features:

Training of a model with fixed complexity The user chooses the architec-
ture of the fuzzy inference system, fixes the number of rules, chooses the ini-
tialization method and provides the program with a dataset of input-output
samples. The program returns the trained model in the form of member-
ship function parameters and consequent parameters. See Section 3.4.1 for
the format of the file.

Model selection The user chooses the architecture of the fuzzy inference sys-
tem, the initialization method and a range of number of rules, which will
be explored by the model selection feature. The program searches also for
the ’right’ complexity (number of rules) of the architecture by adopting a
procedure of cross-validation on the available data set. It starts with a
minimal number of rules and at each step increase the number of rules by
restarting the global procedure, until a maximum number of rules is reached
(the user is free to set properly what is the desired range of complexity to
range over). The program will plot the cross-validation error against the
number of rules in order to help the designer with the choice of the best
structure.

Prediction The user provides the program with a model, either trained by the
program or fixed by the designer, and set of input samples. The program
will return the set of predictions.

3.3.1 The command line environment

The desired feature must be selected before running the program 'uncomment-
ing’ the corresponding line in the module fuzzy_b.m. Three options (mutually
exclusive) are available and correspond to the above cited features:

9

0.2 -

01 T B

0 2 4 6 8 10 12

Figure 3.2: Cross-validation error vs. complexity diagram.

. pr="one_mod’. By setting this option the program performs the training
with fixed complexity (number of rules set in the variable comp). The user
has to provide a training set with the format specified in Section 3.4.1 and
set the path in the proper line in the module fuzzy_b.m.

. pr="comp_err’. By setting this option the program performs the model
selection feature. It searches for the best structure (in terms of number
of rules) by ranging the models over the set [comp_min comp-maz]. The
numbers comp_min and comp_maz represent the bounds of the complexity
range (minimum and maximum number of rules, respectively).

. pr="evaluate’. By setting this option the program performs the prediction
feature. The user has to provide an input test set with the format specified
in Section 3.4.2.

For the first two modes, the user can choice the desired model configuration
in terms of membership shape (Gaussian or triangular), local model structure
(constant or linear), rule of model composition (weighted or not), initialization
procedure (k-means or fuzzy clustering).

3.4 Data files

3.4.1 Training and model selection

The training set must be a .mat file containing a rectangular matrix [V, n + 1]
named data. The number N represents the number of training samples, n is the

10

number of regressors (or inputs) and the last column of the matrix data contains
the training output. Note that the number of outputs is always restricted to one.
All the inputs and the output should be scaled between -1 and 1. Automatic
scaling will be a feature of the next version.

3.4.2 Prediction

The input samples for which a prediction is required must be formatted in a
matrix [N, n] named in.

The number N, is the number of samples for which a prediction is required
while n is the number of inputs which has to be the same as the number used in
the training set. This matrix must be save in a file .mat.

11

Chapter 4

Example

4.1 The problem

Consider the problem of modeling the input-output relation
y = 4sin(mxy) + 2 cos(mzz) + N(0,0.05) (4.1)

where the variables x; and x5 range over the domain [—1,1] and N(0,0.05) rep-
resents a Gaussian random noise signal with zero mean and standard deviation
equal to 0.05.

4.2 Data generation

Assume that only a training set of N = 100 points is available. First we generate

the training set:

>> N=100;

>> inputs=[2*rand(N,1)-1 2*rand(N,1)-1];

>> output=4 *sin(pi*inputs(:,1))+2*cos(pi*inputs(:,2))+0.05*randn(N,1); >> data=[inputs
output];

then we save it:

>> save data_example data;

4.3 Model selection

Now, we search for the optimal structure configuration by running the toolbox
in the model selection mode. We call the graphical interface

>> fuzzy-g

We select the following options:

Functioning mode : Search for the best complexity

12

Figure 4.1: The graphical interface in the model selection mode

Membership function : Triangular
Format of the consequences : Linear
Architecture : Weighted

Output of the model : Bias

Min. no. rules : 3

Max. no. rules : 9

No. cross validation sets : 10
Initialization : HF'C

The window will appear as in Fig. 4.1 We click on the button Get data from..
and we select the file data_example.mat. This is the only mandatory operation.
The memo, history and errors informations will be saved in default files.

Now click on OK and wait.
>> FIS is working
Note that this a quite time consuming operation but it makes easier the task
of model selection which must be performed by a model designer each time he
deals with nonlinear approximator. To make shorter the waiting time, you could
choose a smaller number of cross-validation folds.

After 12 minutes of computation in my machine the following message will
appear in the Matlab shell
...Done.
FUZZY INFERENCE SYSTEM memo:

13

15 - ,

0.5 -

05 L L L L I I I
2

Figure 4.2: Cross-validation error vs. complexity diagram.

Number of rules vs Mean Square Error
Number of cross validation sets: 10
Shape of the membership functions: triangular
Qutput of each local model: linear
Architecture of the fuzzy model: weighted
Instialization: HFC
Bias vs No-Bias: bias
Minimum Number of Rules: 3
Mazximum Number of Rules: 9
The matriz errors vs complexity has been saved in the file:
... /errors.mat
The diary of the computation has been saved in the file:
... /ehist.txt
and the diagram in Fig. 4.2 will be plotted.
We choose 6 as the optimal complexity of the fuzzy inference architecture.

4.4 Model training

Now we can train a fuzzy inference model with 6 rules and having the same op-
tions as specified before. We type again

>> fuzzy g

we select the option Train one model... and we retype the options (Fig. 4.3). We
reload the training set and we push OK.

>> FIS is working...

14

Figure 4.3: The graphical interface

This time the waiting time will be shorter. After 1 minute in my machine the
following message appears.

Done.

FUZZY INFERENCE SYSTEM memo:

Shape of the membership functions: triangular

Output of each local model: linear

Architecture of the fuzzy model: weighted

Initialization: HFC

Bias vs No-Bias: bias

Number of Rules: 6 The trained model has been saved in the file: ... /model.mat
The diary of the computation has been saved in the file: ... /mhist.tzt

The model for prediction has been saved in the default file model.mat.

Let us see the content of the file. It contains the matrices described in Sec-
tion 3.1
centers =
-0.5496 0.1093
0.5547 0.2757
-0.5687 -0.3290
-0.0458 -0.1863
0.8531 -1.1947
0.3764 0.7919
and
bases =
5.3562 4.8935
0.8293 3.1366

15

5.3806 4.8379

2.5144 3.7915

5.5808 4.4605

2.5245 3.0970

which describe the membership functions of the antecedents (Eq. 3.2) and the
matrix

par =

10.0758 -67.0159 -0.1751
-29.1802 5.0977 19.2551
-30.9558 71.9611 2.7797
71.6720 12.4489 11.8340
0.4000 -17.0518 -17.2704
9.4213 -2.0301 -14.1028

which return the parameters of the consequent linear models (Eq. 3.4).

4.5 Model prediction

We generate now a test set of N;; = 50 points.

>> N_ts=50;

>> inputs_ts=[2*rand(N_ts,1)-1 2*rand(N_ts,1)-1];

>> output_ts=4*sin(pi*inputs_ts(:,1))+2*cos(pi*inputs_ts(:,2));
>> in=1nputs_ts;

>> save test_example in

Type for the last time

>> fuzzy_g

and select the Evaluate an existing model mode. Load the input test set test_ezample.mat,
load the model model.mat and push OK.

>> FIS is working...Done.

FUZZY INFERENCE SYSTEM memo:

Shape of the membership functions:triangular

Output of each local model:linear

Architecture of the fuzzy model:weigthed

Bias vs No-Bias:bias

Number of Rules:6

The predicted output has been saved in the file:

... /out_hat.mat

Finally, the last step is to compare the fuzzy prediction saved in out_hat.mat and
the target output (see Fig. 4.4).

16

0S8

14 ov SE o€ 14 (74 ST 0T

Figure 4.4: Fuzzy prediction (dotted) vs. target values (solid).

17

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

R. Babuska. Fuzzy Modeling and Identification. PhD thesis, Technische
Universiteit Delft, 1996.

R. Babuska and H. B. Verbruggen. Fuzzy set methods for local modelling
and identification. In R. Murray-Smith and T. A. Johansen, editors, Mul-
tiple Model Approaches to Modeling and Control, pages 75-100. Taylor and
Francis, 1997.

H. Bersini and G. Bontempi. Now comes the time to defuzzify the neuro-
fuzzy models. Fuzzy Sets and Sytems, 90(2):161-170, 1997.

G. Bontempi and H. Bersini. Identification of a sensor model with hybrid
neuro-fuzzy methods. In A. B. Bulsari and S. Kallio, editors, Neural Net-
works in Engineering systems (Proceedings of the 1997 International Con-
ference on Engineering Applications of Neural Networks (EANN °97), Stock-
olm, Sweden), pages 325-328, 1997.

G. Bontempi, H. Bersini, and M. Birattari. The local paradigm for modeling
and control: From neuro-fuzzy to lazy learning. Fuzzy Sets and Systems,
1999. in press.

J.S. R. Jang, C. T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing.
Matlab Curriculum Series. Prentice Hall, 1997.

M. Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society B, 36(1):111-147, 1974.

M. Sugeno and G. T. Kang. Structure identification of fuzzy model. Fuzzy
Sets and Systems, 28:15-33, 1988.

T. Takagi and M. Sugeno. Fuzzy identification of systems and its applica-
tions to modeling and control. IEEE Transactions on Systems, Man, and
Cybernetics, 15(1):116-132, 1985.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, NY, 1995.

18

