Lazy Learning Vs. Speedy Gonzales:
A fast algorithm for recursive identification
and recursive validation of local constant models

Mauro Birattari and Gianluca Bontempi

IRIDIA
Université Libre de Bruxelles
Brussels, Belgium

{mbiro, gbonte} Qulb.ac.be

Abstract

In this paper we propose a recursive method for identifying and cross-
validating local constant models. The algorithm we derive here is intended
to be a part of a more general lazy learning method already presented by
the authors (Birattari et al., 1999). We take for granted aspects related
to the search of the nearest-neighbors, the definition of a metric and local
combination of estimators, and we focus our attention on the derivation of
an efficient way to obtain and assess a sequence of local constant models
centered on a given query point, and each including a growing number of
nearest-neighbors.

1 Introduction

In this paper we deal with the classical problem of supervised learning. A set of
examples {(x;,y;)} 7, is given, where Vi z; € R™ and y; € R. From this dataset,
we wish to learn the real mapping f: R™ — R which is implicitly supposed to
have somewhat informed the generation of the examples. In particular we want
to be able to generalize, i.e. to predict the value y, which would be associated
as an output to a given input vector z, € ™, even if the original dataset does
not explicitly include any example about z,.

A first possible way to tackle the above stated problem consists in fitting
a global parametric model to the available examples, and then evaluating this
model in z, in order to obtain a prediction g, of the scalar y,. For a generic
dataset, it is usually necessary to resort to a complex universal approximator as
for instance to a neural network, which happens to be nonlinear in its parameter
and therefore to be quite expensive to tune and to validate.

In this paper we refer to an alternative approach, known as lazy learn-
ing (Aha, 1997), which belongs to the family of local approaches (Bottou &

Vapnik, 1992). In order to obtain a prediction of y,, a lazy learning method
selects a local training set among the neighbors of the query point z,, and uses
this local information to extract the value g,.

On a local scale, the restriction to polynomial approximators is widely ac-
cepted and is not considered as a sensible limitation to the expressiveness of a
learning method. Furthermore, the adoption of a local polynomial approximator
yields major computational advantages deriving from the fact that a polynomial
model is linear in its parameters and can be thus tuned and assessed through ef-
ficient and well-understood methods from linear statistics. For a comprehensive
tutorial on local learning and for further references see Atkeson et al. (1997).

In a previous paper (Birattari et al., 1999), we have already proposed a
general lazy learning framework in which, for each query point, a prediction is
obtained by combining (Wolpert, 1992), on the basis of a local leave-one-out
cross-validation, a number of local approximators of different degree, and each
identified using a different number of neighbors. For each of the considered
polynomial degrees, a recursive least squares algorithm is used to identify a
sequence of local models centered in the query point, each including a growing
number of neighbors. The leave-one-out cross-validation of each of these models
does not involve a significant computational overload, since it is obtained though
the PRESS statistic (Myers, 1994) which, in our implementation, uses partial
results returned by the recursive identification algorithm. The method described
above, can be used to recursively identify and validate local models of any degree
and then, in principle, also for constant models i.e. for polynomials of degree
Z€ero.

Anyway a far more efficient implementation is possible which fully exploits
properties peculiar to constant models. In this paper we focus on the derivation
of such an algorithm for recursive identification and recursive leave-one-out val-
idation of local polynomial approximators of degree zero. We take for granted
that an appropriate metric has been defined in the input space R™, that a
rectangular weighting kernel has been adopted, and that an algorithm has been
chosen to (efficiently) retrieve from the original dataset the K-nearest-neighbors
of a given query point z,. We assume also that it is valuable to obtain a se-
quence of prediction yielded by constant models, each identified on the basis of a
growing number of nearest-neighbors of the query point, together with their re-
spective mean square error in cross-validation. In other words, we suppose that
a method has been defined in order to extract a final prediction starting from a
sequence of approximators of degree 0, and from their leave-one-out assessment,
and in case from equivalent sequences of higher degree approximators identified
and validated through an appropriate algorithm (Birattari et al., 1999).

2 Local constant models and local assessment
We suppose that a subset of K nearest-neighbors of the query point x4, at hand

has been selected. The sequence {(z;,y;) }X; will be, from here on, the sequence
of the K-nearest-neighbors ordered so that o(z;,z4) < o(zj,%,), Vi < j, where

o is an appropriate distance function in the space ™.

A generic local constant model identified on the first k nearest neighbors is
the classical sample average (Papoulis, 1991) of the outputs associated to the
nearest k examples:

36 = 3 3w = k).)
A leave-one-out mean square error of this model is obtain as follows:

mse®’ (k) =

N

k
> (57 2)

where £5Y(k) is the error in the prediction of the jt* neighbor, yielded by the
model identified on the k nearest-neighbors with the j** removed:

§f=1 Yi
sj”(k)=yj—ﬂ—j(k)=yj_ kE—1
Zf:l Yi
. Zf:lyi_) k k ~Yi
=Y - —F 1 =Y
k-1 k-1 3)
_ . k(k) —y; _ Ry — ki(k)
YT T k1
k . k .
= m(yj - N(k)) = m(yg - y(k))
k

Eq. 3 shows that the leave-one-out error for the j¢* neighbor is a linear function
of the re-substitution error and does not depend on z;. From Eq. 2 and 3, it
follows that:
k 2 k2 k ~ 2
msec (k) = Zj:l(k_flsj(k)) _ k-1 21 (y; — (k)
AR @
ko > (yi — k) ko,

k-1 E—1 17 ®);

where 62(k) is the sample variance (Papoulis, 1991) of the output associated to
the nearest k£ examples.

3 The recursive algorithm

In Sec. 2 we have defined the local prediction and the leave-one-out mean square
error obtained from the first k nearest-neighbors for a generic value of k.

In this section we will derive a recursive formulation of Eq. 1 and 4, i.e.
we will make explicit the equations that allow the computation of §(k) and
mse®? (k) starting from §j(k — 1), mse®’(k — 1), and the k** nearest-neighbor yj.

From the recursive formulation of the average fi(k) and of the variance 62 (k)
(see appendix):

k) = SRk = 1) + 1w)

and

N k-2, 1 . 2
o (k) = —=52(k = 1) + —(yr — Ak — 1)), (6)

k-1 k
and from the results of Eq. 1 and 4 we obtain the recursive formulation of the
prediction:

a0 = " Lg0 - 1)+ ("

and the recursive formulation of the leave-one-out mean square error:

k(k — 2)?

1) msecv(k—1)+L(yk—ﬂ(k—l))2. (8)

mse®’ (k) = P

The algorithm described by Eq. 7 and 8 computes, for a given query, the se-
quence of the predictions and the sequence of the mean square errors when a
growing number of nearest-neighbors is used as local training sub-set.

The recursion in Eq. 7 is initialized for £ = 1 with (1) = y1, i.e. with the
output associated with the nearest-neighbor. On the contrary, the recursion on
the mean square error is started for k¥ = 2 since a leave-one-out error cannot be
defined for less than two examples. Furthermore, it is worth notice here, that
mse®’ (1) does not need to be explicitly initialized since for k = 2 the first term
in Eq. 8 equals zero because of the numerator of its coefficient.

4 Discussion

In figure 1 we propose a comparison between the recursive algorithm described
by Eq. 7 and 8 and its non-recursive counterpart obtained from the direct im-
plementation of Eq. 1 and 2. For a given query and once the neighbors have
been retrieved, the plot shows the time! needed by the two methods in order to
fit and assess all the constant models which consider a number of neighbors in
the range between 2 and K, for values of K between 3 and 50. Figure 1 visually
confirms that the time needed by the recursive algorithm grows linearly with
K, as it could be expected from the nature of Eq. 7 and 8.

I The experiments were performed on a Pentium 400MHz CPU.

0.9

08k Non-Recursive Algorithm

Recursive Algorithm

Figure 1: Time of computation needed to fit and asses all the models which
consider a number of neighbors in the range between 2 and K.

A comparison between the algorithm developed in Sec. 3 and the lazy recur-
sive least square (Birattari et al., 1999) for the identification of linear models is
of interest here.

The recursive least square, as implemented by Birattari et al. (1999), does
not return for every value of k the “exact” model that would be obtained by solv-
ing off-line the corresponding least square problem on the first k£ neighbors. The
returned model is rather the model that would be obtained by solving off-line a
ridge regression (Draper & Smith, 1981). This implicit effect of regularization
is obtained through the conventional initialization of the variance/covariance
matrix (Bierman, 1977), and prevents problems due to a nearly singular local
data matrix.

Local constant models do not suffer from this kind of problems: the single
parameter that needs to be identified is, for a given query and for a given value
of k, a function only of the output y; and not of the input x; of the k-nearest-
neighbors. Therefore, the position of the nearest-neighbors in the input space is
not relevant, and it is not necessary to adopt any regularization method. From
this, it follows that the predictions return by Eq. 7 and the mean square errors
returned by Eq. 8 are “exact” i.e. are identical to the values that would be
obtained by their off-line counterparts.

Appendix

We derive here the results used in Sec. 3. The recursive formulation of the
sample average (5) can be obtained as follows:

k k—1
N _1 . Zizlyi+yk
Zf:_fyz 9
_B-DFET R k- Datk -1+ ©)
k k
k-1 1
:—Ak_]_ _
% i)+kyk

The basis of the recursive computation of the sample variance (6) can be ob-
tained as follows:

<
I
-

—

=3 (- Atk - 1) - u(k—1)>
=1
k))
:ﬁ; (yz—ﬂ(k—1))2+(yk—u]§k—1)>

2 (ye—alk—1)) [.
. A (;yj—ku(k—l))

k-2 —ak—1)" 1) 2
T k-1 k-2 oWk = D)

j=1

k—1
_ ﬁ(yk — (k- 1)) (Zy,- + yi, — kju(k — 1))

- Z: 3&2(19 1)+ %(yk — ik — 1))
_ ﬁ (s — Ak — 1)) ((k — Dtk — 1) + yi — kis(k — 1))
A %(yk — ik - 1))*
- ﬁ(yk — (k- 1))
= %&2(1@ —1)+ %(yk — ik = 1))”.
Acknowledgments

The work of Mauro Birattari was supported by the FIRST program of the
Région Wallonne, Belgium. The work of Gianluca Bontempi was supported by
the European Union TMR Grant FMBICT960692.

References

Aha D. W. 1997. Editorial. Artificial Intelligence Review, 11(1-5), 1-6.

Atkeson C. G., Moore A. W. & Schaal S. 1997. Locally weighted learning.
Artificial Intelligence Review, 11(1-5), 11-73.

Bierman G. J. 1977. Factorization Methods for Discrete Sequential Estimation.
New York, NY: Academic Press.

Birattari M. , Bontempi G. & Bersini H. 1999. Lazy learning meets the
recursive least-squares algorithm. In: Kearns M. S., Solla S. A. &
Cohn D. A. (eds), Advances in Neural Information Processing Systems 11.
Cambridge: MIT Press.

Bottou L. & Vapnik V. N. 1992. Local learning algorithms. Neural Compu-
tation, 4(6), 888-900.

Draper N. R. & Smith H. 1981. Applied Regression Analysis. New York: John
Wiley and Sons.

Myers R. H. 1994. Classical and Modern Regression with Applications. Second
edn. Boston, MA: PWS-KENT Publishing Company.

Papoulis A. 1991. Probability, Random Variables, and Stochastic Processes.
Third edn. Electrical & Electronic Engineering Series. New York, NY:
McGraw-Hill International Editions.

Wolpert D. 1992. Stacked Generalization. Neural Networks, 5, 241-259.

