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Abstract

Memory-based methods obtain accurate predictions from empirical
data without explicitly modeling the underlying process. For each
query, a local model is first tailored on the query itself, then used
to perform the prediction, and finally discarded. In this paper, we
consider local models which are linear in the parameters. This allows
us to adopt, on a local scale, powerful and well-understood methods
from classical linear statistics. In particular, we discuss here a fast
cross-validation procedure that can be effectively used, on a query-by-
query basis, to select the features, the neighbors and the polynomial
degree of the local approximator. FExperimental results in the time-
series prediction domain are presented.

1 Introduction

In learning theory, the problem of function estimation [1] is formulated as
the minimization of a global cost function J, the risk functional [2], which
measures the discrepancy over the whole input space between the target
function and the approximator f(x, ). The cost function J has the following
form:

J(0) = / L(y, f(x, @)) p(x, ) dxdy, (1)

where L(y, f(x,)) is the loss function in a point x of the input space. It is
well known that if the loss function is the squared error

L(y, f(x,@)) = (y — f(x,0))%, 2)
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the function which minimizes the risk functional (1) is the regression function:

y(x) = / yp(ylx) dy = Ely|x]. (3)

Since only a finite amount of observation is available, the risk functional
cannot be analytically evaluated and has to be replaced by an approximation,
the empirical risk functional, calculated on the basis of the training set.

In the neural network approach, the problem of learning an input-output
mapping is seen as a problem of function estimation, and is thus reduced
to the problem of choosing from a given set of parametric functions f(x, «)
with a € A, the one which best approximates the unknown data distribution.
The problem of predicting the value that the unknown function will assume
in a point q, is solved in two steps: first an approximating function is esti-
mated using the data, and then the prediction is computed evaluating the
estimated function for x = q. In this scheme, the relatively simple problem
of estimating the value of the function in one point, is solved by first solving
a much more difficult intermediate problem of function estimation.

Memory-based methods [3, 4, 5, 6] reformulate the learning problem in
order to avoid the minimization of the global risk functional (1). When a
memory-based approach is adopted, the problem of learning an unknown
mapping is reduced to a collection of simpler problems: the estimation of the
value assumed in specific query points by the target function.

In this paper we distinguish between the classical non-adaptive memory-
based approach, and the adaptive memory-based approach. In the classical
non-adaptive memory-based approach the structure of the local approximator
is manually tuned by the data analyst according to some heuristic, and is then
kept unchanged for all the queries. We propose here an adaptive memory-
based method (AMB) that extends the classical approach with an automatic
tuning, performed on a query-by-query basis, of the relevant neighbors, of
the features [7], and of the degree of the local polynomial approximator. The
method we introduce belongs to the class of lazy learning methods [8] which
groups all the methods which defer the learning procedure until a specific
query needs to be answered.

In this paper we propose an application of AMB to the problem of time-
series prediction which has been already the focus of numerous studies in the
classic memory-based literature [9, 10, 11]. In particular, we present some
experimental results obtained in the prediction of the Mackey-Glass chaotic
time-series.



2 The adaptive memory-based paradigm

In a function estimation approach, the dominant criterion is the global per-
formance of the resulting approximator over the whole input space: what is
required to the model is a good performance on average. This might have
some drawbacks. Let us consider for example an input-output mapping where
the distribution of the input is not uniform. The definition of the learning
problem as a risk minimization assumes that those areas of the input space
where the density p(x) is higher, deserve more attention. The risk functional,
in fact, weights each prediction error L(y, f(x, «)) according to the density
value p(x). As a consequence, the minimization procedure is biased towards
approximators which perform better on the regions where p(x) is higher.
On the contrary, in the memory-based approach, the estimation of the
value of the unknown function is obtained giving the whole attention to the
region surrounding the point where the estimation is required. The classical
non-adaptive memory-based procedure consists essentially of these steps:

e For each query point q, a set of neighbors is selected, each weighted
according to some relevance criterion which is typically a function de-
creasing with the distance from the query point.

e Through a locally weighted regression, a local approximation f of the
regression function is chosen from a restricted family of parametric
functions.

e The prediction f(q) is obtained by evaluating the local approximator
in the query point.

In the classical memory-based framework, the data analyst who adopts a
local regression approach, has to tune manually a set of structural parame-
ters of the local models: the number of neighbors, the weight function, the
parametric family, and the fitting criterion to estimate the parameters.

We extend the classical approach with a method that automatically se-
lects the correct configuration for each query. The key element of our adaptive
memory-based method, is the PRESS statistic [12] which is a simple and eco-
nomical way to perform leave-one-out cross-validation [13] and therefore to
assess the generalization performance of local linear models. For each query
point, different model configurations are considered and to each of them the
PRESS statistic assigns a quantitative index of performance. According to
this index the best model is selected and used to perform the prediction.
This same selection strategy is indeed exploited to select a sub set of neigh-
bors to be used as local training set, as well as various structural aspects



like the feature sub-set, and the degree of the polynomial used as a local
approximator.

In this paper we present a version of the AMB algorithm for time-series
prediction. A time-series is a sequence of measurements ¢’ of an observable ¢
at equal time intervals. The Takens theorem [14] implies that for a wide class
of deterministic systems, there exists a diffeomorphism (one-to-one differen-
tial mapping) between a finite window of the time-series {¢*~! p'=2.. . =™}
(lag vector), and the state of the underlying dynamic system. This means
that in theory it exists a multi-input single-output mapping F': R™ — R so
that:

P =F (' et (4)
where m is the order of the time-series. As a consequence, a future value can

be predicted by solving a regression problem where the regressors are time
delayed observations.

3 The AMB algorithm

The general ideas of the proposed adaptive memory-based approach can be
summarized in the following way:

1. The task of learning an input-output mapping is decomposed into a
series of linear estimation problems;

2. Each single prediction involves a search in the space of alternative
model configurations;

3. The estimation ability of each alternative model is measured by the
cross-validation performance computed using the PRESS statistic.

In the version of the algorithm adapted for time-series problems, for each
time step to be predicted, the structural parameter of the local model that
are automatically tuned are the degree of the local approximator, the number
of neighbors, and the order, as defined in eq. 4. In this paper, the space of the
structural parameters is searched in an exhaustive way through three nested
for-loops. In the outer one the algorithm loops over a range of different lag
vector length, in the middle one over a range of nearest neighbors, and in
the inner one over a range of polynomial degrees.

For each of the explored triples < m, k,d >, where m is the order, k£ the
number of neighbors, and d the polynomial degree, a local model is obtained
as the solution of a weighted least squares problem:

B =X'WWX) 'X'WWy = (2'Z)"'Z'v = PZ'v, (5)



where W is a diagonal matrix that weights the observation according to
their distance from the query points giving a non-zero weights only to the
k nearest neighbors, y is the vector of observed values, and X is the input
matrix. Moreover, Z = WX, v = Wy, and the matrix XW'WX = Z'Z
is assumed to be non-singular so that its inverse P = (Z'Z)~! is defined.
According to the degree of the local approximator, the matrix X assumes
different forms. If d = 0, X is a vector whose elements are all equal to
the constant 1. If d = 1, the i** row of the matrix X is the i observed
lag vector to which a constant 1 has been appended in order to include a
constant term in the regression. For polynomials of generic degree d, the i
row contains the constant 1, the components of the i lag vector together
with their powers up to the d**, and the appropriate cross-terms.

The local approximation 3 is then assessed in a leave-one-out cross-
validation procedure. This step is carried out through the PRESS statistic
whose formulation for the case at hand is the following:

! ' ! A
ecv :yj_xl',é_-: yj_XjPZV _ yj—Xj,B.
J J J 1—Z;~PZ]' 1_hjj

(6)

The scalar z;- is the j row of Z and therefore z; = w;;x;, where w;; is the j*
diagonal element of the weight matrix W. The term h;; is the j% diagonal
element of the Hat matriz H = ZPZ' = Z(Z'Z)~'Z'.

Equation 6 shows how the leave-one-out errors " are efficiently calcu-
lated without the need of an explicit re-training of the local model: the
matrix (Z'Z)! does not need to be re-calculated for each example j and,
moreover, it is obtained as a by-product of the local model identification (5).
On the basis of these errors e£”, different statistics can be evaluated to esti-
mate the generalization properties of the local model. In particular, we use
here the mean squared error to compare the models obtained with different
values of the parameters < m, k,d > and to select the one which will be
used to forecast the future value of the time-series. A pseudo-code fragment
describing the AMB algorithm is proposed in fig. 1.

The analysis of efficient implementations of memory-based methods is
outside the scope of this paper. Anyway, it is worth noting here that, as far
as the proposed implementation is concerned, the optimization of a structural
parameter is obtained at the cost of a wrapping for-loop as it is shown in fig. 1.
Thanks to the adoption of fast linear identification and validation procedure
in the core of the loops, the computational cost of the local structural opti-
mization is not dramatically higher than the cost of retrieving the neighbors
of each query point which is the major computational bottleneck shared by
all the nearest-neighbor-like methods. More detailed descriptions of efficient



best_Press := Inf;
for m := min_m to max_m
for k := min_k to max_k
for d := 0 to max_d
if Press(m,k,d) < best_Press
best_Press := Press(m,k,d);
best_m := m;

best_k := £k;
best_d := d;
end
end
end

end
Prediction := ValueEstimation(q,best_m,best_k,best_d);

Figure 1: The AMB algorithm. In this fragment, m is the length of the
lag vector, k is the number of neighbors, and d is the degree of the local
polynomial approximator.

implementations of memory-based methods can be found in Moore et al. [15]
and in Birattari et al. [16]. As far as the problem of retrieving relevant data
is concerned, further references can be found in the comprehensive tutorial
on local learning by Atkeson et al. [4].

4 Experiments

The adaptive memory-based approach has been tested on the prediction of
the chaotic Mackey-Glass time-series, a well-known benchmark in time-series
prediction (fig. 2). We used a training set of 500 points and a test set with
an equal number of samples according to the benchmark definition®.

4.1 Adaptive memory-based method without adapta-
tion of the number of regressors
In the first experiment we consider only the adaptive selection of the number

of neighbors in the range [3,80], and the degree of the local model in the
range [0,3]. As required by the Mackey-Glass benchmark, we predicted the

lhttp://www.boltz.cs.cmu.edu/
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Figure 2: Mackey-Glass time-series and AMB prediction (dotted line).

value of the series at time ¢ + 85 from inputs at time ¢, ¢t — 6, ¢ — 12 and
t — 18. We achieved a normalized mean squared error (NRMSE) equal to
0.059. One referential result obtained with the RAN approach is NRMSE =
0.075 [17]. In fig. 3 we present the prediction on a time window of 100
samples (diagram a), and the relative prediction squared error (diagram b).
Moreover, for each of the predicted time step we report in diagram (c) the
optimal polynomial degree and in diagram (d) the number of neighbors taken
in consideration in our iterative selection procedure. It is worth noting that
the output of the method is not simply a good prediction but a more complete
information about the local behavior of the dynamical system underlying the
time-series. As an example, in fig. 4 we propose a visual representation of the
relation existing between the squared error estimated in cross-validation by
the PRESS statistic and the real squared error for the prediction of one time-
step. Each point in the figure represents a different model analyzed in the
model search procedure. The points roughly distribute along the diagonal,
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Figure 3: Mackey-Glass time-series and AMB prediction (dotted line) on a
100 samples time window (a); squared error (b); polynomial degree (c) and

number of neighbors (d).



showing that the PRESS error is a satisfactory predictor of the actual error.
We denote with a cross, approximately in (0, 0), the model chosen by AMB
and with a circle, approximately in (0.02,0), the optimal model. In the
proposed example, the difference between the optimal model a posterior:
and the selected model, in terms of real error, is not even perceivable from
fig. 4.

4.2 Adaptive memory-based method with adaptation
of the number of regressors

Our second experiment concerns the predictions of the same chaotic time-
series using a AMB models which at each time step automatically selects
the number of regressors that yields the most accurate prediction. In fig. 5
we report a comparison between the squared error obtained with a fixed
number of regressors and the error obtained with the adaptive time step
selection. In this case we limited the choice between 3 and 4 regressors
which means, for each query, to select between the lag vector [t,¢ — 6,1 — 12]
and [t,t —6,t — 12,¢t — 18]. We improved the previous result by achieving a
NRMSE equal to 0.054. In fig. 6 we report the prediction on the same time
window of fig. 3, and the squared error (diagram b). In diagram (c) we plot
the number of regressors taken into consideration for each single prediction.

5 Conclusions

The adaptive memory-based approach is a powerful framework that allows
the local adoption of well-understood linear methods in a globally nonlinear
setting.

Pushing the idea of locality to the extreme, the adaptive memory-based
method reduces the problem of learning an input-output mapping to a col-
lection of simpler local estimation problems. Each of these problems is solved
independently through a local linear regression. In particular, the proposed
experiments show that the accuracy of the one-step-ahead prediction of a
time-series can be improved by an automatic tuning, performed on a query-
by-query basis, of some structural parameters of the local approximator such
as its polynomial degree, the number of neighbors, and the features sub-set.
This same methodology have indeed been successfully applied also to control
problems [18], and to problems of multiple-step-ahead time-series forecasting
through iterated one-step-ahead predictions [19].
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Figure 4: As an example, we propose a visual representation of the rela-
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Figure 5: Squared error with a fixed number of regressors (above) and with
the automatic selection procedure (below).
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