DOI: http://dx.doi.org/10.7551/978-0-262-31709-2-ch

ECAL - General Track

Boolean Network Robotics as an Intermediate Step
in the Synthesis of Finite State Machines for Robot Control

Lorenzo Garattoni', Andrea Roli?, Matteo Amaducci?, Carlo Pinciroli' and Mauro Birattari!

L[RIDIA, Université Libre de Bruxelles, Belgium
2DISI-Cesena, Alma Mater Studiorum Universita di Bologna, Italy
lorenzo.garattoni @ulb.ac.be

Abstract

We propose an approach to the automatic synthesis of robot
control software based on the finite state machine (FSM)
formalism. In our previous research, we have introduced
Boolean network robotics as a novel approach to the auto-
matic design of robot control software. In this paper, we show
that it is possible to leverage automatically designed Boolean
networks to synthesize FSMs for robot control. Boolean net-
work robotics exhibits a number of interesting properties.
Firstly, notwithstanding the large size of the state space of
a Boolean network and its ability to display complex and rich
dynamics, the automatic design is able to produce networks
whose trajectories are confined in small volumes of the state
space. Secondly, the automatic design produces networks in
which one can identify clusters of states associated with func-
tional behavioral units of the robots. It is our contention that
the automatic design of a Boolean network controller can be a
convenient intermediate step in the synthesis of a FSM, which
offers the advantage of being a compact, readable, and mod-
ifiable representation. In this paper, we show that clusters
of states traversed by network trajectories can be mapped to
states of a FSM. We illustrate the viability of our proposal
in two notable robotic tasks, namely collision avoidance and
sequence recognition. The first task can be achieved by a
memoryless control program, whilst in the second the robots
need memory.

Introduction

The automated design of compact high-level representations
of control software for robots is a challenge in artificial in-
telligence. Through methods of automatic design, a robot
learns a behavior without the explicit intervention of the de-
veloper. Automatic design methods offer advantages with
respect to manual methods in terms of robustness and gen-
erality of the design process. Moreover, the space of so-
lutions explored by automatic techniques is larger and less
constrained than that explored by methods of manual de-
sign (Koza et al., 2003; Lipson, 2005). However, the ef-
fectiveness of automatic methods depends on a number of
aspects such as the definition of the search space and the ex-
istence of a predictive simulation of the system. Yet, such
methods do not provide guarantees on the solution optimal-
ity. Automatic design techniques act iteratively on the robot

783

control software in order to reach a configuration that ful-
fills the requirements. There exist several ways of represent-
ing control software of robots, but the finite state machine
(FSM) formalism is the oldest and is broadly used.

Our intention is to propose a new way to automatically
design FSMs representing control software for robots. The
new approach exploits the work carried out in our previ-
ous research in the field of Boolean network robotics (Roli
et al., 2011) as an intermediate step in the automatic design
of FSMs. In the following, we first give an overview of the
existing methods for the automatic design of robot control
software and then we introduce the original contribution of
our work.

Among the existing approaches to automatically obtain a
FSM of a control software, evolutionary programming is one
of the most notable (Fogel, 1962, 1993). EP is a paradigm
used for the generation of programs, code, algorithms and
structures in general, by means of variation and selection
mechanisms inspired by natural evolution. Although EP
was shown to produce interesting results in many important
applications, several issues are still open about its employ-
ment (O’Neill et al., 2010). One of the main issues is the
choice of the most appropriate representation for the pro-
grams to be evolved. In fact, the most suitable representation
and the appropriate encoding of the programs into individ-
uals in the evolution process are critical aspects for the per-
formance of EP (Petrovic, 2007). Moreover, EP normally
requires the definition of constraints to contain the size of
the FSM.

Besides the evolution of FSMs, most of the effort in the
field of automatic design of robot control systems has been
concentrated around artificial neural networks (NNs) (Nolfi
and Floreano, 2000). While NNs offer advantages such as
high plasticity and adaptability, they are black-boxes and it
is often very difficult to analyze their dynamics. The dynam-
ical behavior of a NN can be modeled by a system of differ-
ential equations. There exists a number of works that show
how the mathematical tools of dynamical systems theory can
be used to gain significant insight into the dynamics of small
continuous-time recurrent neural networks (Beer, 1995; Ya-

ECAL 2013

jfurbush
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-31709-2-ch112

ECAL - General Track

mauchi, 1993; Yamauchi and Beer, 1994). However, when
the number of neurons is greater than a few units, the anal-
ysis becomes too complex to handle and only qualitative or
approximate studies are possible.

In our previous work (Roli et al., 2011), we have in-
troduced Boolean network robotics as a novel approach to
the automatic design of robot control software. Boolean
networks (BNs) are a model of genetic regulatory net-
works (Kauffman, 1969). BNs are extremely interesting
from an engineering perspective because of their ability to
display complex and rich dynamics, despite the compact-
ness of their description and the simplicity of their imple-
mentation. BN dynamics can be studied through traditional
dynamical system methods (Bar-Yam, 1997; Serra and Za-
narini, 1990). The use of concepts such as state space, tra-
jectories and attractors, combined with the discrete nature of
BN, enables non-trivial analysis of the dynamical behavior.
Such ease of analysis is one of the strengths of BN systems.

In this paper, we continue the line of research in Boolean
network robotics showing that the automatic design of a
Boolean network controller can represent an intermediate
step in the synthesis of a FSM. The intuition stems from the
analysis we carried out on the trained Boolean networks and
two interesting properties it revealed. First, the automatic
design shapes the network dynamics in very limited volumes
of the state space. Second, such dynamics are structured in
sets of clusters of states associated with functional behav-
ioral units of the robots. On the basis of such properties,
we propose a heuristic to map those clusters into states of
a FSM, which offers a compact, readable, modifiable, and
formally verifiable representation.

In this work, we propose a proof of concept of our pro-
posal applying Boolean network robotics to two robotic
tasks, i.e., corridor navigation and sequence recognition.
The first task is a typical collision avoidance behavior and
consists in moving along a corridor avoiding walls and ob-
jects; this task can be attained by a robot equipped by a
memoryless control software. Conversely, the second tasks
presents a sequence-recognition scenario (Sun and Giles,
2001). The complexity of the target task lies in the fact that
it requires the robots to have memory of the past in order to
choose the next actions to perform.

The analysis of the trained networks confirms the two
properties mentioned and allows for simple mapping be-
tween clusters of states in the state space of a BN and states
of a FSM.

Despite the simplicity of the two tasks, this work repre-
sents a first crucial step towards the definition of an auto-
matic design method of FSMs that exploits Boolean network
robotics as a convenient intermediate step.

Boolean network robotics

In this section we first introduce BNs and then we describe
how they are employed and configured to let robots perform

ECAL 2013

784

the desired tasks.

Boolean networks

A Boolean network is a discrete-state and discrete-time dy-
namical system. Its structure is defined by an oriented
graph with NV nodes each associated to a Boolean value z;,
i =1,..., N,and aBoolean function f;(z;,, ..., Ti,,), where
K is the number of inputs of node 7. The arguments of func-
tion f; are the Boolean values of the nodes whose outgoing
arcs are connected to ¢. The state of the system at time ¢,
with t € N, is defined as the vector of the N Boolean val-
ues at t. The state space size is 2%V. Several update schemes
can be defined (Gershenson, 2004), but the most studied is
characterized by synchronous and deterministic operations.
BN dynamics can be studied by means of the usual dy-
namical system methods (Bar-Yam, 1997; Serra and Za-
narini, 1990), hence the usage of concepts such as state
space, trajectories, attractors and basins of attraction. Re-
cently, the attention of the scientific community has focused
on the employment of efficient mathematical and experi-
mental methods for analyzing network dynamics and thus
have insight into the behavior of a BN system (Fretter and
Drossel, 2008; Ribeiro et al., 2008; Serra et al., 2007).

BN-Robot coupling

To design a BN-based robot control system, we first need
to couple the BN to the robot so as to let the BN dynam-
ics guide the robot behavior. For this purpose, some nodes
of the network are given special roles. More precisely, we
define a set of input nodes and a set of output nodes. This
choice characterizes our approach with respect to most of
the work performed about BNs, in which they are consid-
ered as isolated systems, even though some notable excep-
tions exist (Ansaloni et al., 2009; Dorigo, 1994; Kauffman,
1991; Patarnello and Carnevali, 1986). The Boolean values
of the input nodes are not determined by the network dy-
namics, but they are imposed according to the robot sensor
readings. Similarly, the values of the network’s output are
used to encode the signals for maneuvering the robot’s ac-
tuators. Several ways to define the mapping between sensor
readings and network’s input, and between network’s output
and actuators are possible. However, the most natural way is
to define the mapping via a direct encoding. Figure 1 shows
the coupling between BN and robot.

Automatic design methodology

Once a mapping between the BN and the robot is defined,
the BN must be designed in order to control the robot’s be-
havior. Our approach consists in treating BN design as a
search problem. In fact, the design of a BN that satisfies
given criteria can be modeled as a constrained combinato-
rial optimization problem by properly defining the set of de-
cision variables, constraints and the objective function.

input

nodes

input

encoding

output
encoding

output nodep

Boolean network

Figure 1: The coupling between BN and robot.

target

requirements

Boolean simulation

evaluator

network

objective function

value
network model

search algorithm

(structure and
Boolean functions)

Figure 2: BN design process.

The search algorithm manipulates the decision variables
which encode structure and Boolean functions of a BN. A
complete assignment of these variables defines an instance
of a BN. Then, we couple this network to the robot through
the input-output mapping, and subsequently we execute the
network. The evaluation of the network at each iteration of
the search process is performed in a batch of simulated ex-
periments. The performance of the robot in each experiment
is assessed according to a user-defined objective function,
which associates the robot behavior to a numeric evaluation.
Finally, the search algorithm exploits this value of perfor-
mance to proceed with the design process. In particular,
the algorithm changes the configuration of the decision vari-
ables so as to find networks with better performances. This
process is depicted in Figure 2.

Robot tasks

We addressed two test cases with different characteristics:
the first, corridor navigation, is a memoryless task while the
second, sequence recognition, requires memory. It is inter-
esting to analyze how the nature of the task influences the
organization of the state space in the trained networks. In
particular, our analysis aims to determine whether the state
space of the trained networks exhibit the same properties
independently of the nature of the task. These properties,
which are (i) the compression of the dynamics in limited re-
gions of state space, and (ii) the organization in clusters of

785

ECAL - General Track

Figure 3: Corridor navigation environment.

states associated with behavioral units of the robots, enable
the exploitation of the trained networks as intermediate step
in the synthesis of FSMs.

In the remainder of this section we present the working
environment and describe the two test cases.

Robot and Simulator

For both test cases, the robots are trained in simulation. The
simulation framework we employed is the open source sim-
ulator ARGoS (Pinciroli et al., 2012). ARGoS is a discrete-
time, physics-based simulation environment that provides a
faithful simulation of the behavior of different robotics plat-
forms.

The robot simulated in our test cases is the e-puck (Mon-
dada et al., 2009). The e-puck is a small wheeled robot, de-
signed for research and educational purposes. It has a cylin-
drical body of 7 cm of diameter, equipped with a variety of
sensors. For our test cases, we use the 8 infra-red proxim-
ity sensors placed along the circular perimeter of the robot
and the 3 infra-red sensors pointed directly at the ground in
front of the robot. The 3 latter sensors can be used to detect
the color of the ground, in greyscale. The actuators utilized,
besides the motors of the two wheels, are the 8 red LEDs.

Corridor navigation

The first test case is designed to explore the features of net-
works able to perform a memoryless task. It consists of a
robot that must navigate along a corridor avoiding any colli-
sion with the walls and finally reach the exit.

Environment: it consists of a straight corridor of 6.5 m in
length and 1 m in width.

Task: at the beginning, the robot is placed within the corri-
dor 6 m far from the exit. During the experiment, the robot
must advance along the corridor, avoiding collisions and fi-
nally, within the given total execution time 7' = 120s, reach
the exit. See Figure 3 for a representation of the environment
at the beginning of the experiment.

During the execution, if a collision between the robot and
the walls of the corridor occurs, the experiment is immedi-
ately stopped.

Performance measure: the performance assigned to the
robot is simply its final distance from the exit (normalized).
The smaller is this distance, the better is the performance of
the robot.

BN-robot setup: for successful navigation, the robot needs
the 8 proximity sensors to detect the walls and avoid them.

ECAL 2013

ECAL - General Track

At each time step, the readings of the 8 sensors are encoded
into the values of the BN input nodes. We use 4 input nodes
to encode the readings of the proximity sensors. Thus, the
8 proximity readings are gathered in pairs. If at least one
of the two sensors of the pair exceeds a chosen threshold,
the corresponding input node value is set to 1. The pairs
are formed to allow the robots to detect walls in the four
directions north-east, south-east, south-west and north-west.

Once the readings of the sensors are encoded in the input
nodes, the network’s state is updated and finally the values
of the output nodes are read, decoded and utilized to set the
actuators. We use two output nodes to set the wheel speeds
either to zero or to a predefined, constant value.

For this test case, we set the network size to 20 nodes. We
leave the analysis on how this value affects performance for
future investigation.

BN design: the initial topology of the networks, i.e., the
connections among the nodes, is randomly generated with
K = 3 (i.e., each node has 3 incoming arcs) and no self-
connections, and it is kept constant during the training. The
initial Boolean functions are generated by setting the 0/1
values in the f; uniformly at random. Our search process,
which is a stochastic descent, works only on the Boolean
functions. In particular, at each iteration, the search algo-
rithm changes the configuration of the network by flipping
one bit of the Boolean functions. The flip is performed by
changing a random entry in the f;, where ¢ is a randomly
chosen node. The new configuration is accepted if the corre-
sponding BN-robot system has a performance at least equal
to the current one. The evaluation of each network is per-
formed on a set of initial conditions, that form the training
set. For this test case, the training set is composed of six
different initial orientations of the robot. The six angles are
chosen so as to have six equally spaced orientations in the
range between % and —% (with O that is the straight direc-
tion of the robot towards the exit). In this manner, the robot
must be able to cope with a wide range of different situa-
tions and avoid the walls it detects in any direction. The
final evaluation assigned to the robot is computed as the av-
erage of the performance across the 6 trials. We executed
100 independent experiments, each corresponding to a dif-
ferent initial network. In each experiment, we run the local
search for 1000 iterations.

Sequence recognition

The second test case aims to explore the properties of net-
works able to perform a task that requires memory. The task
is sequence recognition (Sun and Giles, 2001). In particular,
the robot must learn to recognize a sequence of colors by
performing certain actions. This kind of task is more com-
plex than the previous one, because the robot needs a form
of memory to be able to choose the next action depending
on the past.

Environment: it consists of a straight corridor of 7m in

ECAL 2013

786

Figure 4: Sequence recognition corridor environment.

length and 1 m in width. Along the corridor, the ground is
painted to form a striped pattern with three different colors:
white (W) represents the background, while black (B) and
gray (G) are the symbols of a sequence to be recognized.

Task: at the beginning of the experiment, the robot is placed
within the corridor 6.5 m far from the exit. During the exper-
iment, the robot must move along the corridor and reach the
exit. Every time the robot encounters a black or gray area in
the right sequence, it must turn its LEDs on. Conversely,
when the robot encounters the background color or other
colors in the wrong order, it must keep its LEDs off. The
sequence to be recognized is a cyclic repetition of black fol-
lowed by gray. By performing the right sequence of actions
while moving along the corridor, the robot must be able to
reach the exit within the given total execution time, fixed in
T=130s. Figure 4 represents an example of the environment
at the beginning of the experiment.

In the environment depicted in Figure 4, the robot must
perform the following sequence of actions to achieve the
goal (omitting the background color (W) whose correspond-
ing LED correct status is always OFF):

Colors along the corridor

B B G G G B
ON OFF ON OFF OFF ON
Robot’s LEDs correct status

If the robot, at any instant in time during the execution,
performs the wrong action, the experiment is immediately
stopped.

Performance measure: The performance assigned to the
robot is the final distance from the exit of the corridor (nor-
malized between 0 and 6.5). The value must be minimized.

BN-robot setup: for this task, the robot needs the ground
sensor to detect the color of the ground. For our simple ap-
plication we use only the central sensor. Since we encode
three values (W, B, G), at each time step, the reading of the
sensor is encoded into the values of two BN input nodes. We
use four nodes to encode the proximity sensors that, even
though not strictly needed for the task, can be still useful for
the navigation along the corridor.

After the network’s state update, we decode and use the
values of the output nodes to set the actuators. Besides the
two nodes used to control the wheel speeds, an additional
output node is utilized to set the state of the LEDs either to
ON or OFF.

For this test case we increased the network size to 30
nodes.

BN design: initial topology and Boolean functions are ran-
domly generated with K = 3. In our experiments, the
search strategy is a stochastic descent and works only on the
Boolean functions, leaving the topology unchanged. The
evaluation of each network is performed on a set of initial
conditions. More precisely, the training set is composed of
10 different randomly generated sequences of colors on the
ground. Differently from the corridor-navigation case, the
robot starts always pointing towards the exit. In this way,
the navigation task is simplified so as to focus the complex-
ity on the sequence recognition. The final evaluation of a
robot is the average value of the performance across the 10
trials. Due to the high computational cost required by each
experiment, we executed only 30 independent experiments
with 30 different initial networks for 100000 iterations of
the search algorithm.

Analysis of the results

The analysis of the results obtained in both test cases reveals
two properties. First, the dynamics of the automatically de-
signed networks spans across a very limited region of the
whole potential state space. This means that the search al-
gorithm moves towards networks whose dynamics are com-
pact. This relationship between the design process and the
dynamical features of the networks is notable: the search al-
gorithm acts directly only on the network structures, search-
ing for a good behavior of the BN-robot systems while ig-
noring the dynamics property of the networks. Nevertheless,
the analysis shows that the algorithm shapes and compresses
indirectly the dynamics of the networks.

The second property observed is the organization of the
state space traversed by the final networks in a set of clusters
of states, each devoted to perform a specific series of actions.

In the remainder of this section we present the analysis
and the results obtained for both test cases.

Corridor navigation analysis

Once the design process is completed, the focus of the study
is on the dynamical features of the resulting networks. The
first aspect we analyzed is the measure of the fraction of
state space utilized by the trained networks. In order to carry
out this analysis, we collected a large number of trajectories,
corresponding to different initial conditions, for each BN ob-
tained. Then, we counted the number of different states that
each network traversed across all the trajectories and we re-
ported the empirical cumulative distribution of the result-
ing values. Figure 5 shows the distribution for the corridor-
navigation test case.

The plot shows that the final network dynamics traverse
limited volumes of the state space. In fact, the median usage
of state space in the 100 trained networks is located around
150 states. This is a very tiny fraction of the whole potential
space, whose dimension is 2%V (220 in this case). This first
property enables an analysis of the network dynamics that

787

ECAL - General Track

1.00
|

0.50 0.75
| |

Empirical cumulative distribution function
0.25
L

0.00
|

T T T T
400 600 800 1000

Number of states visited

T
0 200

Figure 5: Empirical cumulative distribution function of
the number of visited states in final networks. Corridor-
navigation test case.

allows to gain significant insight into the behavior of the BN-
robot systems.

To analyze the organization of the dynamics of a BN con-
trolling a robot, we collected its trajectories by simulating
the experiment. Then, we gathered the trajectories and we
generated the graph of the observed state transitions. For
lack of space, the graphs can be found as on-line supple-
mentary material (Garattoni et al., 2013).

The state space of the robot performing corridor naviga-
tion can be decomposed in three macro areas. One is re-
sponsible of the behavioral units that react to walls detected
on the east side of the robot. Likewise, another cluster of
states is devoted to avoid the obstacles on the west side of
the robot. Besides, the two areas are both connected to a
third cluster, responsible of moving the robot straight ahead
as long as no obstacle is detected. Furthermore, it is possi-
ble to observe that each cluster of states contains few topical
states, visited many times, and a series of other nodes gradu-
ally increasing in number and decreasing in visits. To verify
this property, we performed the analysis of the graph for all
the final networks of the corridor-navigation test case. We
report in a plot the cumulative distribution of the fraction
of states visited at least v times, where v is the number of
visits on the x-axis. The results, showed in Figure 6 for a
typical case, suggest that the dynamical behavior of a BN
is built around few, prominent states that correspond to the
main traits of the robot behavior.

The observations and the analysis presented so far suggest
a procedure for deriving a representation of the robot’s dy-
namics in the form of a FSM. We determine the states of the
FSM by starting the observation from the topical states and
gradually moving to the less important ones. The result is
that a state in the FSM takes the place of a clusters of con-
nected states in the state space in which the BN remains until

ECAL 2013

ECAL - General Track

0.50 0.75 1.00
| | |

Fraction of states sisited at least vtimes
0.25
L

0.00

T T T T
1e+02 1e+03 1e+04 1e+05

Number of visits v [log]

T T
1e+00 1e+01

Figure 6: Distribution of the fraction of states visited at least
v times. The fraction is computed with respect to the total
number of states visited in 200 runs of 120000 time steps
each. Corridor-navigation test case.

T Start

Go straight / Wheels ON

No OR
South-East OR
South-West

North-East
South-East

n left / Right wheel ON

North-East

South-West

Turn right / Left wheel 0

North-West

Figure 7: Finite state machine of the state space graph. Cor-
ridor navigation.

a specific input is received. By following this simple heuris-
tic for a typical case of corridor navigation, we derived the
FSM in Figure 7. We can observe that the automaton cor-
responds to a very simple yet effective behavior: the robot
goes straight until an obstacle is detected on one side; in that
case, the robot turns to the other side.

Sequence recognition analysis

The analysis carried out for the second test case is similar to
that presented for the corridor-navigation test case. Due to
the higher complexity of the sequence-recognition task with
respect to the corridor navigation and the important compu-
tational cost required by each run, the number of successful
networks to analyze is much lower than in the first test case.
However, the analysis confirms the same properties.

The number of states visited by the trained networks is
very low: the state space usage is on average 200 states
out of 230 potential states. By collecting the trajectories
of the successful networks and generating the correspond-

ECAL 2013

788

0.50 0.75 1.00
| | |

Fraction of states sisited at least vtimes
0.25
L

0.00

T T T T
1e+02 1e+03 1e+04 1e+05

Number of visits v [log]

T T
1e+00 1e+01

Figure 8: Distribution of the fraction of states visited at least
v times. The fraction is computed with respect to the total
number of states visited in 200 runs of 130000 timesteps
each. Sequence-recognition test case.

ing graphs of the observed state transitions, we observe that
the limited region of state space utilized is again organized
in sets of clusters of states. The graph derived in a typical
case of sequence recognition can be found as supplementary
material (Garattoni et al., 2013). At the top of the graph, a
set of nodes allows the robot to navigate on the background
with its LEDs off until the first colored stripe is found. Then,
two clusters of nodes are responsible of the next action, de-
pending on the detected color (turn LEDs on if black, turn
LEDs off if gray). Once the first color has been recognized,
the BN goes into a new region, dual to the first. Here, we
find another area for the background color and two clusters
of nodes for the black and gray with actions swapped with
respect to the first region. When also the second color is rec-
ognized, the dynamics return back to the first area, reusing
the same states to recognize a sequence of any length. This
analysis shows that the memory, in our case the last color
recognized, is stored in the state space in which the BN op-
erates.

Similarly to the corridor-navigation test case, each cluster
of states is devoted to the execution of a particular functional
behavioral unit of the robot. To support the observation and
show that each cluster unfolds around few topical states and
a series of other nodes gradually less important, we report in
a plot the distribution of the fraction of states visited at least
v times. The results for a typical case of sequence recogni-
tion are depicted in Figure 8.

The properties discussed so far allow the employment of
the same heuristic used for the first test case to obtain a com-
pact FSM representation of networks performing sequence
recognition. From the graph described, we derived the FSM
shown in Figure 9.

From the comparison of the FSM in Figure 9 and the one

’ Start
!

White
White1 / LEDs OFF

White

Black
Gray

(Gray1 / LEDs OFF)
L o)

e

Black1 / LEDs ON)

Black

White

White2 / LEDs OFF

White

White

Gray

Black

White

Black2 / LEDs OFF Gray2 / LEDs ON

Figure 9: Finite state machine of the state space graph. Se-
quence recognition.

in Figure 7, it is possible to notice the influence of the differ-
ent nature of the two tasks. The interesting aspect to high-
light is the representation of the memory required by the
sequence-recognition test case. In the corridor-navigation
FSM, the action executed by the robot at each instant in time
is determined only by the current observation of the world.
This is due to the fact that corridor navigation is a memory-
less task in which the robot is not required to keep memory
of the past but it can simply react to the current stimuli of
the environment. On the contrary, the FSM performing se-
quence recognition can activate different actions, e.g. LEDs
on or LEDs off, for the same observation, e.g. the detection
of the black color, depending on the previous state. There-
fore, the memory that the robot needs to keep track of the
last recognized color is stored in the phase space in which
the BN operates. More precisely, the memory of the past
is represented by the area of state space utilized by the net-
work at a certain time, which is function of all the previous
robot-environment interactions.

Conclusion

In this paper, we have exploited the properties of the au-
tomatic design of BN-robot control software to synthesize
FSM representations of the robot program. This result has
been made possible by an analysis performed on the state
space of the best networks obtained at the end of the de-
sign process. In particular, the exploration revealed two cru-
cial properties: (i) the trajectories of the BNs controlling the
robots are confined in very small areas of the state space and
(ii) the dynamics are organized in clusters of states occupy-

789

ECAL - General Track

ing different areas of the state space, each corresponding to a
different set of actions to perform. These results allowed us
to outline a procedure to derive a compact view of the best
performing network behaviors in terms of FSMs.

A major advantage of this method over current automatic
design of FSM controllers for robots is that it does not re-
quire any assumption on the number of states nor condi-
tions on the transitions between states. This implies that the
behavior of the robot is automatically segmented, i.e., the
actions composing the robot’s behavior do not need to be
specified a priori. We would like to emphasize that the use
of BNs makes it possible to exploit the properties of both
NNs and high level representations like FSMs. In fact, most
NN-based robot programs define a mapping between sen-
sor readings and actions on the actuators and thus operate
as low-level, fine grained programs which are particularly
effective in reactive systems. Conversely, FSM control soft-
ware is usually based on high-level actions and it is suitable
for modular control programs which can be also formally
verified. With BN robot programs we can combine both
characteristics, as BNs can indeed operate low-level and, at
the same time, enable the designer to manipulate a FSM de-
scription of the robot control software.

The work carried out for this paper is only a first neces-
sary step towards the application of the proposed approach
to more complex and demanding tasks. Future work will fo-
cus on improving the performance of the design process and
defining an automatic method for synthesizing FSMs start-
ing from Boolean networks. These steps are required for a
fair comparison of the proposed approach with existing and
well refined design methods.

Of course, the approach has also some limitations. First
of all, it requires to deal with Boolean inputs and outputs,
which could be sometimes problematic. In addition, the
FSM is derived by collecting samples of BN trajectories and
a trade-off between precision and computational complexity
has to be found.

Acknowledgements

This work was partially supported by the EU project AS-
CENS (grant 257414). Mauro Birattari acknowledges sup-
port from the Belgian F.R.S.-FNRS, of which he is a Re-
search Associate.

References

Ansaloni, L., Villani, M., and Serra, R. (2009). Dynamical
critical systems for information processing: a prelim-
inary study. In Villani, M. and Cagnoni, S., editors,
Proceedings of the Satellite Workshops of the Interna-
tional Conference of the Italian Association for Arti-
ficial Intelligence (AIIA09), pages 210-218. Reggio-
Emilia, Italy.

ECAL 2013

ECAL - General Track

Bar-Yam, Y. (1997). Dynamics of complex systems. Studies
in nonlinearity. Addison-Wesley, Reading, MA.

Beer, R. D. (1995). On the dynamics of small continuous-
time recurrent neural networks. Adaptive Behavior,
3(4):471-511.

Dorigo, M. (1994). Learning by probabilistic boolean net-
works. In Ruck, D., Wada, M., and Bounds, D., ed-
itors, 1994 IEEE International Conference on Neural
Networks: IEEE World Congress on Computational In-
telligence, pages 887—891. IEEE Press, Piscataway, NJ.

Fogel, D. B. (1993). Evolving behaviors in the iterated pris-
oner’s dilemma. Evolutionary Computation, 1(1):77-
97.

Fogel, L. J. (1962). Autonomous automata. Industrial Re-
search Magazine, 4(2):14-19.

Fretter, C. and Drossel, B. (2008). Response of boolean
networks to perturbations. The European Physical
Journal B - Condensed Matter and Complex Systems,
62(3):365-371.

Garattoni, L., Roli, A., Amaducci, M., Pinciroli, C., and
Birattari, M. (2013). Additional material to the pa-
per “Boolean network robotics as an intermediate step
in the synthesis of finite state machines for robot con-
trol”. Available as http://iridia.ulb.ac.be/
supp/IridiaSupp2013-004/.

Gershenson, C. (2004). Introduction to random boolean net-
works. In Bedau, M., Husbands, P., Hutton, T., Kumar,
S., and Suzuki, H., editors, Workshop and Tutorial Pro-
ceedings, Ninth International Conference on the Simu-
lation and Synthesis of Living Systems (ALife IX), pages
160-173. MIT Press, Boston, MA.

Kauffman, S. A. (1969). Metabolic stability and epigenesis
in randomly constructed genetic nets. Journal of Theo-
retical Biology, 22(3):437-467.

Kauffman, S. A. (1991). Antichaos and Adaptation. Scien-
tific American, 265:78-84.

Koza, J., Keane, M., and Streeter, M. (2003). Genetic pro-
gramming’s human-competitive results. IEEE Intelli-
gent Systems, pages 25-31.

Lipson, H. (2005). Evolutionary robotics and open-ended
design automation. In Cohen, B., editor, Biomimetics,
pages 129-155. CRC Press.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci,
C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Flo-
reano, D., and Martinoli, A. (2009). The e-puck, a
robot designed for education in engineering. In Gon

ECAL 2013

790

calves, P., Torres, P., and Alves, C., editors, Proceed-
ings of the 9th conference on autonomous robot sys-
tems and competitions, volume 1, pages 59-65. IPCB,
Castelo Branco, Portugal.

Nolfi, S. and Floreano, D. (2000). Evolutionary robotics.
The MIT Press.

O’Neill, M., Vanneschi, L., Gustafson, S., and Banzhaf, W.
(2010). Open issues in genetic programming. Genetic
Programming and Evolvable Machines, 11(3-4):339-
363.

Patarnello, S. and Carnevali, P. (1986). Learning networks
of neurons with boolean logic. Europhysics Letters,
4(4):503-508.

Petrovic, P. (2007). Strengths and weaknesses of FSA repre-
sentation. In Proceedings of the 9th annual conference

on Genetic and evolutionary computation, GECCO
’07, pages 723-725. ACM, New York, NY, USA.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy,
A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro,
G., Ducatelle, F., Birattari, M., Gambardella, L. M.,
and Dorigo, M. (2012). ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems. Swarm
Intelligence, 6(4):271-295.

Ribeiro, A. S., Kauffman, S. A., Lloyd-Price, J., Samuels-
son, B., and Socolar, J. E. S. (2008). Mutual informa-
tion in random boolean models of regulatory networks.
Physical Review E, 77(1):011901.

Roli, A., Manfroni, M., Pinciroli, C., and Birattari, M.
(2011). On the design of boolean network robots. In
Proceedings of EVOApplications 2011, Lecture Notes
in Computer Science, pages 43-52. Springer, Berlin,
Germany.

Serra, R., Villani, M., Graudenzi, A., and Kauffman, S. A.
(2007). Why a simple model of genetic regulatory
networks describes the distribution of avalanches in

gene expression data. Journal of Theoretical Biology,
246(3):449-460.

Serra, R. and Zanarini, G. (1990). Complex Systems and
Cognitive Processes. Springer-Verlag, Secaucus, NJ.

Sun, R. and Giles, L. C. (2001). Sequence learning: From
recognition and prediction to sequential decision mak-
ing. IEEE Intelligent Systems, 16(4):67-70.

Yamauchi, B. (1993). Dynamical neural networks for mo-
bile robot control. Technical report, NRL Memoran-
dum Report AIC-033-93 (Naval Research Laboratory).

Yamauchi, B. and Beer, R. D. (1994). Sequential behav-
ior and learning in evolved dynamical neural networks.
Adaptive Behavior, 2(3):219-246.

