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Synonyms
ACO

Definition
Ant colony optimization (ACO) is a population-based
metaheuristic for the solution of difficult combinatorial
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optimization problems. In ACO, each individual of the
population is an artificial agent that builds incremen-
tally and stochastically a solution to the considered
problem. Agents build solutions by moving on a graph-
based representation of the problem. At each step their
moves define which solution components are added to
the solution under construction. A probabilistic model
is associated with the graph and is used to bias the
agents’ choices. The probabilistic model is updated on-
line by the agents so as to increase the probability that
future agents will build good solutions.

Motivation and Background

Ant colony optimization is so called because of its
original inspiration: the foraging behavior of some ant
species. In particular, in Beckers, Deneubourg, and
Goss (1992) it was demonstrated experimentally that
ants are able to find the shortest path between their
nest and a food source by collectively exploiting the
pheromone they deposit on the ground while walk-
ing. Similar to real ants, ACO’s artificial agents, also
called artificial ants, deposit artificial pheromone on the
graph of the problem they are solving. The amount of
pheromone each artificial ant deposits is proportional
to the quality of the solution the artificial ant has built.
These artificial pheromones are used to implement a
probabilistic model that is exploited by the artificial ants
to make decisions during their solution construction
activity.

Structure of the Optimization System
Let us consider a minimization problem (S, f ), where S
is the set of feasible solutions, and f is the objective func-
tion, which assigns to each solution s € S a cost value
f(s). The goal is to find an optimal solution s*, that is, a
feasible solution of minimum cost. The set of all optimal
solutions is denoted by S*.

Ant colony optimization attempts to solve this
minimization problem by repeating the following two
steps:

o Candidate solutions are constructed using a param-
eterized probabilistic model, that is, a parameterized
probability distribution over the solution space.

e The candidate solutions are used to modify the
model in a way that is intended to bias future sam-
pling toward low cost solutions.

We assume that the combinatorial optimization prob-
lem (S,f) is mapped on a problem that can be charac-
terized by the following list of items:

e AfinitesetC={cy,ca,...,cn, } of components, where
N is the number of components.

o Afinite set X' of states of the problem, where a state is
a sequence X = (Ci,Cj,...,Ck, . .. ) over the elements
of C. The length of a sequence x, that is, the number
of components in the sequence, is expressed by |x|.
The maximum length of a sequence is bounded by a
positive constant n < +oco.

e A set of (candidate) solutions S, which is a subset of
X (ie,ScX).

o A set of feasible states X', with X ¢ X, defined via a
set of constraints Q).

e A nonempty set S* of optimal solutions, with
S*cXand S*cS.

Given the above formulation (Note that, because
this formulation is always possible, ACO can in prin-
ciple be applied to any combinatorial optimization
problem.) artificial ants build candidate solutions by
performing randomized walks on the completely con-
nected, weighted graph G = (C,L£,T), where the
vertices are the components C, the set £ fully con-
nects the components C, and 7T is a vector of so-called
pheromone trails T. Pheromone trails can be associ-
ated with components, connections, or both. Here we
assume that the pheromone trails are associated with
connections, so that 7(i,j) is the pheromone associ-
ated with the connection between components i and
j. It is straightforward to extend the algorithm to the
other cases. The graph G is called the construction
graph.

To construct candidate solutions, each artificial ant
is first put on a randomly chosen vertex of the graph.
It then performs a randomized walk by moving at each
step from vertex to vertex on the graph in such a way
that the next vertex is chosen stochastically according
to the strength of the pheromone currently on the arcs.
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While moving from one node to another of the graph G,
constraints ) may be used to prevent ants from building
infeasible solutions. Formally, the solution construction
behavior of a generic ant can be described as follows:

ANT_SOLUTION_CONSTRUCTION

e For each ant:
- Select a start node ¢; according to some problem
dependent criterion.
- Setk=1and x; = {c).
,cx) € X,xi ¢ S, and the set Jy,
of components that can be appended to x; is not

e Whilex; = {c1,¢2,...

empty, select the next node (component) ¢ ran-
domly according to:

Pr(cxs1 = clxx)
F(Ck,f) (T(Ck’ C))
Z(w)ehk Fieyy (t(cwy))

if (cx>c)€lx;»

0 otherwise,

©)

where a connection (ck, y) belongs to Jy, if and only
(C], (%2 >
constraints Q (that is, x¢,1 € X) and F; j)(2) is
some monotonic function — a common choice being
2°5(i,j)P, where &, f > 0, and #(i,)’s are heuristic
values measuring the desirability of adding compo-
nent j after i. If at some stage xx ¢ S and J,, = @, that
is, the construction process has reached a dead-end,
the current state x; is discarded. However, this sit-
uation may be prevented by allowing artificial ants
to build infeasible solutions as well. In such a case,
an infeasibility penalty term is usually added to the
cost function. Nevertheless, in most of the settings in
which ACO has been applied, the dead-end situation
does not occur.

if the sequence x4 = ,Ck, y) satisfies the

For certain problems, one may find it useful to use
a more general scheme, where F depends on the
pheromone values of several “related” connections
rather than just a single one. Moreover, instead of
the random-proportional rule above, different selection
schemes, such as the pseudo-random-proportional rule
(Dorigo & Gambardella, 1997), may be used.

Many different schemes for pheromone update have
been proposed within the ACO framework. For an
extensive overview, see Dorigo and Stiitzle (2004). Most
pheromone updates can be described using the follow-
ing generic scheme:

GENERIC_ACO_UPDATE

o VseS,V(ij)es: 7(i,j) « (i) +Qr(sSi,- .., St)s
o V(ij): 7(ij) « (1= p)-7(isf)s

where S; is the sample in the ith iteration, p, 0<p <1,
is the evaporation rate, and Q¢(s[S,...,S;) is some
“quality function,” which is typically required to be non-
increasing with respect to f and is defined over the
“reference set” §;.

Different ACO algorithms may use different quality
functions and reference sets. For example, in the very
first ACO algorithm - Ant System (Dorigo, Maniezzo, &
Colorni, 1991, 1996) - the quality function is simply
1/f(s) and the reference set §; = S,. In a subsequently
proposed scheme, called iteration best update (Dorigo
& Gambardella, 1997), the reference set is a singleton
containing the best solution within S, (if there are sev-
eral iteration-best solutions, one of them is chosen ran-
domly). For the global-best update (Dorigo et al., 1996;
Stiitzle & Hoos, 1997), the reference set contains the best
among all the iteration-best solutions (and if there are
more than one global-best solution, the earliest one is
chosen). In Dorigo et al. (1996) an elitist strategy was
introduced, in which the update is a combination of the
previous two.

In case a good lower bound on the optimal solu-
tion cost is available, one may use the following quality
function (Maniezzo, 1999):

~ _f(s)-1B . f-1(s)
Qf(ssl""’st)_%(l f-1B )_  F-1B’
()

where f is the average of the costs of the last k solutions
and LB is the lower bound on the optimal solution cost.
With this quality function, the solutions are evaluated
by comparing their cost to the average cost of the other
recent solutions, rather than by using the absolute cost
values. In addition, the quality function is automatically
scaled based on the proximity of the average cost to the
lower bound.
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Anytime Algorithm

A pheromone update that slightly differs from the
generic update described above was used in ant colony
system (ACS) (Dorigo & Gambardella, 1997). There the
pheromone is evaporated by the ants online during
the solution construction, hence only the pheromone
involved in the construction evaporates.

Another modification of the generic update was
introduced in MAX-MIN Ant System (Stiitzle &
Hoos, 1997, 2000), which uses maximum and mini-
mum pheromone trail limits. With this modification,
the probability of generating any particular solution is
kept above some positive threshold. This helps to pre-
vent search stagnation and premature convergence to
suboptimal solutions.
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»Swarm Intelligence
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