
Ant Colony Optimization A 

Aevaluating which of several alternative algorithms is 
best suited to a speci�c application.

Processes and Techniques
Many learning algorithms have been proposed. In 
order to understand the relative merits of these 
alternatives, it is necessary to evaluate them. � e 
primary approaches to evaluation can be characterized 
as either theoreti-cal or experimental. � eoretical 
evaluation uses formal methods to infer properties of 
the algorithm, such as its computational complexity 
(Papadimitriou, ), and also employs the tools of 
7computational learning the-ory to assess learning 
theoretic properties. Experimen-tal evaluation applies 
the algorithm to learning tasks to study its 
performance in practice.�ere are many di�erent types of property that may 
be relevant to assess depending upon the intended 
application. �ese include algorithmic properties, such 
as time and space complexity. �ese algorithmic prop-
erties are o�en assessed separately with respect to per-
formance when learning a 7model, that is, at 
7training time, and performance when applying a 
learned model, that is, at 7test time.
Other types of property that are o�en studied are 

the properties of the models that are learned (see 
7model evaluation). Strictly speaking, such properties 
should be assessed with respect to a speci�c application 
or class of applications. However, much machine 
learning research includes experimental studies in 
which algo-rithms are compared using a set of data 
sets with little or no consideration given to what class 
of applications those data sets might represent. It is 
dangerous to draw general conclusions about relative 
performance on any application from relative 
performance on this sample of some unknown class of 
applications. Such experi-mental evaluation has 
become known disparagingly as a bake-o� .
An approach to experimental evaluation that may 

be less subject to the limitations of bake-o�s is the use 
of experimental evaluation to assess a learning algo-
rithm’s 7bias and variance pro�le. Bias and variance 
measure properties of an algorithm’s propensities in 
learning models rather than directly being properties 
of the models that are learned. Hence, they may 
provide more general insights into the relative 
characteristics of alternative algorithms than do 
assessments of the performance of learned models on a 
�nite number of

applications. One example of such use of bias–variance
analysis is found in Webb ().
Techniques for experimental algorithm evaluation

include 7bootstrap sampling, 7cross-validation, and
7holdout evaluation.

Cross References
7Computational Learning �eory
7Model Evaluation

Recommended Reading
Hastie, T., Tibshirani, R., & Friedman, J. H. (). The elements of

statistical learning. New York: Springer.
Mitchell, T. M. (). Machine learning. New York: McGraw-Hill. 
Papadimitriou, C. H. (). Computational complexity. Reading,

MA: Addison-Wesley.
Webb, G. I. (). MultiBoosting: A technique for combining

boosting and wagging. Machine Learning, (), –.
Witten, I. H., & Frank, E. (). Data mining: Practical machine

learning tools and techniques (nd ed.). San Francisco: Morgan 
Kaufmann.

Analogical Reasoning 

7Instance-Based Learning

Analysis of Text 

7Text Mining

Analytical Learning 

7Deductive Learning

7Explanation-Based Learning

Ant Colony Optimization

Marco Dorigo, Mauro Birattari

Université Libre de Bruxelles, Brussels, Belgium

Synonyms
ACO

Definition
Ant colony optimization (ACO) is a population-based

metaheuristic for the solution of di�cult combinatorial



 A Ant Colony Optimization

optimization problems. In ACO, each individual of the

population is an arti�cial agent that builds incremen-

tally and stochastically a solution to the considered

problem. Agents build solutions by moving on a graph-

based representation of the problem. At each step their

moves de�ne which solution components are added to

the solution under construction. A probabilistic model

is associated with the graph and is used to bias the

agents’ choices. �e probabilistic model is updated on-

line by the agents so as to increase the probability that

future agents will build good solutions.

Motivation and Background
Ant colony optimization is so called because of its

original inspiration: the foraging behavior of some ant

species. In particular, in Beckers, Deneubourg, and

Goss () it was demonstrated experimentally that

ants are able to �nd the shortest path between their

nest and a food source by collectively exploiting the

pheromone they deposit on the ground while walk-

ing. Similar to real ants, ACO’s arti�cial agents, also

called arti�cial ants, deposit arti�cial pheromone on the

graph of the problem they are solving. �e amount of

pheromone each arti�cial ant deposits is proportional

to the quality of the solution the arti�cial ant has built.

�ese arti�cial pheromones are used to implement a

probabilisticmodel that is exploited by the arti�cial ants

to make decisions during their solution construction

activity.

Structure of the Optimization System
Let us consider aminimization problem (S , f ), whereS
is the set of feasible solutions, and f is the objective func-

tion, which assigns to each solution s ∈ S a cost value
f (s). �e goal is to �nd an optimal solution s∗, that is, a
feasible solution ofminimum cost.�e set of all optimal

solutions is denoted by S∗.
Ant colony optimization attempts to solve this

minimization problem by repeating the following two

steps:

● Candidate solutions are constructed using a param-

eterized probabilistic model, that is, a parameterized

probability distribution over the solution space.

● �e candidate solutions are used to modify the

model in a way that is intended to bias future sam-

pling toward low cost solutions.

The Ant Colony Optimization Probabilistic Model

We assume that the combinatorial optimization prob-

lem (S , f ) is mapped on a problem that can be charac-
terized by the following list of items:

● A�nite set C ={c, c, . . . , cNC
} of components, where

NC is the number of components.

● A�nite setX of states of the problem, where a state is
a sequence x = ⟨ci, cj, . . . , ck, . . . ⟩ over the elements
of C. �e length of a sequence x, that is, the number
of components in the sequence, is expressed by ∣x∣.
�e maximum length of a sequence is bounded by a

positive constant n < +∞.
● A set of (candidate) solutions S , which is a subset of
X (i.e., S ⊆ X ).

● A set of feasible states X̃ , with X̃ ⊆ X , de�ned via a
set of constraints Ω.

● A nonempty set S∗ of optimal solutions, with
S∗ ⊆ X̃ and S∗ ⊆S .

Given the above formulation (Note that, because

this formulation is always possible, ACO can in prin-

ciple be applied to any combinatorial optimization

problem.) arti�cial ants build candidate solutions by

performing randomized walks on the completely con-

nected, weighted graph G = (C,L,T ), where the
vertices are the components C, the set L fully con-
nects the components C, and T is a vector of so-called
pheromone trails τ. Pheromone trails can be associ-

ated with components, connections, or both. Here we

assume that the pheromone trails are associated with

connections, so that τ(i, j) is the pheromone associ-
ated with the connection between components i and

j. It is straightforward to extend the algorithm to the

other cases. �e graph G is called the construction

graph.

To construct candidate solutions, each arti�cial ant

is �rst put on a randomly chosen vertex of the graph.

It then performs a randomized walk by moving at each

step from vertex to vertex on the graph in such a way

that the next vertex is chosen stochastically according

to the strength of the pheromone currently on the arcs.



Ant Colony Optimization A 

AWhilemoving from one node to another of the graphG,
constraints Ωmay be used to prevent ants frombuilding

infeasible solutions. Formally, the solution construction

behavior of a generic ant can be described as follows:

ant_solution_construction

● For each ant:

– Select a start node c according to some problem

dependent criterion.

– Set k =  and xk = ⟨c⟩.
● While xk = ⟨c, c, . . . , ck⟩ ∈ X̃ , xk ∉ S , and the set Jxk
of components that can be appended to xk is not

empty, select the next node (component) ck+ ran-

domly according to:

PT (ck+ = c∣xk)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(ck ,c)(τ(ck, c))
∑(ck ,y)∈Jxk F(ck ,y)(τ(ck, y))

if (ck, c)∈ Jxk ,

 otherwise,

()

where a connection (ck, y) belongs to Jxk if and only
if the sequence xk+ = ⟨c, c, . . . , ck, y⟩ satis�es the
constraints Ω (that is, xk+ ∈ X̃ ) and F(i, j)(z) is
somemonotonic function – a common choice being

zα η(i, j)β , where α, β > , and η(i, j)’s are heuristic
values measuring the desirability of adding compo-

nent j a�er i. If at some stage xk ∉ S and Jxk = ∅, that
is, the construction process has reached a dead-end,

the current state xk is discarded. However, this sit-

uation may be prevented by allowing arti�cial ants

to build infeasible solutions as well. In such a case,

an infeasibility penalty term is usually added to the

cost function. Nevertheless, inmost of the settings in

whichACOhas been applied, the dead-end situation

does not occur.

For certain problems, one may �nd it useful to use

a more general scheme, where F depends on the

pheromone values of several “related” connections

rather than just a single one. Moreover, instead of

the random-proportional rule above, di�erent selection

schemes, such as the pseudo-random-proportional rule

(Dorigo & Gambardella, ), may be used.

The Ant Colony Optimization Pheromone Update

Many di�erent schemes for pheromone update have

been proposed within the ACO framework. For an

extensive overview, see Dorigo and Stützle ().Most

pheromone updates can be described using the follow-

ing generic scheme:

Generic_ACO_Update

● ∀s ∈ Ŝt ,∀(i, j) ∈ s : τ(i, j) ← τ(i, j)+Qf (s∣S, . . . , St),
● ∀(i, j) : τ(i, j) ← ( − ρ) ⋅ τ(i, j),

where Si is the sample in the ith iteration, ρ, ≤ ρ < ,
is the evaporation rate, and Qf (s∣S, . . . , St) is some
“quality function,” which is typically required to be non-

increasing with respect to f and is de�ned over the

“reference set” Ŝt .

Di�erent ACO algorithms may use di�erent quality

functions and reference sets. For example, in the very

�rstACOalgorithm–Ant System (Dorigo,Maniezzo,&

Colorni, , ) – the quality function is simply

/f (s) and the reference set Ŝt = St . In a subsequently

proposed scheme, called iteration best update (Dorigo

& Gambardella, ), the reference set is a singleton

containing the best solution within St (if there are sev-

eral iteration-best solutions, one of them is chosen ran-

domly). For the global-best update (Dorigo et al., ;

Stützle &Hoos, ), the reference set contains the best

among all the iteration-best solutions (and if there are

more than one global-best solution, the earliest one is

chosen). In Dorigo et al. () an elitist strategy was

introduced, in which the update is a combination of the

previous two.

In case a good lower bound on the optimal solu-

tion cost is available, one may use the following quality

function (Maniezzo, ):

Qf (s∣S, . . . , St) = τ ( −
f (s) − LB
f̄ − LB

) = τ
f̄ − f (s)
f̄ − LB

,

()

where f̄ is the average of the costs of the last k solutions

and LB is the lower bound on the optimal solution cost.

With this quality function, the solutions are evaluated

by comparing their cost to the average cost of the other

recent solutions, rather than by using the absolute cost

values. In addition, the quality function is automatically

scaled based on the proximity of the average cost to the

lower bound.



 A Anytime Algorithm

A pheromone update that slightly di�ers from the

generic update described above was used in ant colony

system (ACS) (Dorigo & Gambardella, ). �ere the

pheromone is evaporated by the ants online during

the solution construction, hence only the pheromone

involved in the construction evaporates.

Another modi�cation of the generic update was

introduced in MAX–MIN Ant System (Stützle &

Hoos, , ), which uses maximum and mini-

mum pheromone trail limits. With this modi�cation,

the probability of generating any particular solution is

kept above some positive threshold. �is helps to pre-

vent search stagnation and premature convergence to

suboptimal solutions.

Cross References
7Swarm Intelligence

Recommended Reading
Beckers, R., Deneubourg, J. L., & Goss, S. (). Trails and U-turns

in the selection of the shortest path by the ant Lasius Niger.

Journal of Theoretical Biology, , –.

Dorigo, M., & Gambardella, L. M. (). Ant colony system: A co-

operative learning approach to the traveling salesman problem.

IEEE Transactions on Evolutionary Computation, (), –.

Dorigo, M., Maniezzo, V., & Colorni, A. (). Positive feedback

as a search strategy. Technical Report -, Dipartimento di

Elettronica, Politecnico di Milano, Milan, Italy.

Dorigo M., Maniezzo V., & Colorni A. (). Ant system: Optimiza-

tion by a colony of cooperating agents. IEEE Transactions on

Systems, Man, and Cybernetics – Part B, (), –.

Dorigo, M., & Stützle, T. (). Ant colony optimization. Cam-

bridge, MA: MIT Press.

Maniezzo, V. (). Exact and approximate nondeterministic

tree-search procedures for the quadratic assignment problem.

INFORMS Journal on Computing, (), –.

Stützle, T., & Hoos, H. H. (). TheMAX–MIN ant system and

local search for the traveling salesman problem. In Proceed-

ings of the  Congress on Evolutionary Computation – CEC’

(pp. –). Piscataway, NJ: IEEE Press.

Stützle, T., & Hoos, H. H. ().MAX–MIN ant system. Future

Generation Computer Systems, (), –, .

Anytime Algorithm

An anytime algorithm is an algorithm whose out-put 
increases in quality gradually with increased running 
time. �is is in contrast to algorithms that produce no 
output at all until they produce full-quality output a�er 
a su�ciently long execution time. An exam-ple of an 
algorithm with good anytime performance

is 7Adaptive Real-Time Dynamic Programming 
(ARTDP).

AODE

7Averaged One-Dependence Estimators

Apprenticeship Learning 

7Behavioral Cloning

Approximate Dynamic
Programming

7Value Function Approximation

Apriori Algorithm

Hannu Toivonen

University of Helsinki, Helsinki, Finland

Definition
Apriori algorithm (Agrawal, Mannila, Srikant, Toivo-
nen, & Verkamo, ) is a 7data mining method 
which outputs all 7frequent itemsets and 7association 
rules from given data.
Input: set I of items, multiset D of subsets of I, fre-
quency threshold min_ fr, and con�dence threshold 
min_conf.

Output: all frequent itemsets and all valid association 
rules in D.
Method:

: level := ; frequent_sets := ∅;
: candidate_sets := {{i} ∣ i ∈ I};
: while candidate_sets ≠ ∅
.: scan data D to compute frequencies of all sets in can-
didate_sets;

.: frequent_sets := frequent_sets ∪ {C ∈ candi-
date_sets ∣ frequency(C) ≥ min_ fr};
. level := level + ;
.: candidate_sets := {A ⊂ I ∣ ∣A∣ = level and B ∈ 
frequent_sets for all B ⊂ A, ∣B∣ = level − };


	Ant Colony Optimization
	Synonyms
	Definition
	Motivation and Background
	Structure of the Optimization System
	The Ant Colony Optimization Probabilistic Model
	The Ant Colony Optimization Pheromone Update

	Cross References
	Recommended Reading




