
Designing control software for robot swarms
Software engineering for the development of automatic design methods

Darko Bozhinoski
IRIDIA, Université Libre de Bruxelles

Bruxelles, Belgium

darko.bozhinoski@ulb.ac.be

Mauro Birattari
IRIDIA, Université Libre de Bruxelles

Bruxelles, Belgium

mbiro@ulb.ac.be

ABSTRACT

Over the past decade, swarm robotics has emerged as a promising

engineering discipline. In this paper, we discuss the current re-

search challenges and state-of-the-art in automatic design methods

for swarm control software. This subject has recently received in-

creasing attention from the swarm robotics community. We make a

contribution towards the debate by proposing two lines of research

from a software engineering point of view.

KEYWORDS

swarm robotics, software engineering, design by optimization

ACM Reference Format:

Darko Bozhinoski and Mauro Birattari. 2018. Designing control software

for robot swarms: Software engineering for the development of automatic

design methods. In RoSE’18: RoSE’18:IEEE/ACM 1st International Workshop

on Robotics Software Engineering , May 28-June 28, 2018, Gothenburg, Sweden.

ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3196558.3196564

Swarm robotics is a direction in collective robotics that takes in-

spiration from the self-organized behaviors of social animals. In

swarm robotics, a large number of robots are deployed to accom-

plish a mission that is beyond the capabilities of a single robot

[1, 2, 8]. Because a single robot is not able to accomplish the mis-

sion on its own, the robots must cooperate. The collective behavior

of the swarm is the result of the local interactions that each robot

has with its neighboring peers and with the environment. A robot

swarm operates in a self-organized and distributed manner: there

is no leader and coordination is obtained via interaction between

the individual robots. Moreover, a robot swarm does not rely on

any external infrastructure: each individual robot acts on the ba-

sis of local information obtained through its sensors or provided

by neighboring robots via local communication. The research in

swarm robotics is motivated by the fact that the self-organized

and distributed nature of a robot swarm is deemed to yield three

important and sought-after properties: reliability, scalability, and

flexibility [3]. Due to these properties, swarm robotics is an appeal-

ing approach for operating a large number of autonomous robots in

environments in which (i) the risk that individual robots fail or are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5760-9/18/05. . . $15.00
https://doi.org/10.1145/3196558.3196564

lost is high, (ii) supporting infrastructures are hard or impossible

to set up, and (iii) communication has limited bandwidth or short

range.

Although the literature describes a number of robot swarms

that have been developed and demonstrated, a reliable engineering

approach to the design of control software for robot swarms is

still at dawn [2]. Typically, designers proceed by trial and error: an

individual-level behavior is iteratively improved and tested until the

desired collective behavior is obtained. This approach is closer to

craftsmanship than to engineering: the quality of the result strongly

depends on the experience and intuition of the designer. Moreover,

this trial-and-error process is time consuming, costly, and lacks

repeatability and consistency.

The main reason why robot swarms are challenging to design is

their the self-organized and distributed nature. The core issue in

swarm robotics is the individual/swarm dichotomy. The relation

between individual robots and the swarm that they constitute is

a complex one: a swarm is definitely much more than the sum of

its parts. The requirements are typically expressed at the swarm

level by specifying the mission that the swarm, as a whole, has to

perform. However, the swarm is a collective entity and, as such,

the swarm itself cannot be pre-programmed, only the individual

robots can. The designer's task is therefore indirect: they have to

design the individual-level behaviors of the robots that, through

a complex set of robot-robot and robot-environment interactions,

result in the desired collective behavior of the swarm. Bridging

the gap between swarm-level requirements and individual-level

behavior is currently the main open issue in swarm robotics. To

date, no comprehensive, reliable, and satisfactory solution has been

given to this problem [2].

Automatic design is a promising approach for designing control

software for robot swarms. In this approach, the design problem

is cast into an optimization problem and the solution is obtained

using optimization algorithms. In other terms, an automatic de-

sign method uses an optimization algorithm to search the design

space. This space comprises all the instances of control software of

the individual robot. The goal of the optimization algorithm is to

find an instance of control software that maximizes an appropriate

performance measure. To date, the automatic design of control soft-

ware for robot swarms has been mostly studied in the framework

of evolutionary swarm robotics [9], which is the application of evo-

lutionary robotics [6] to robot swarms. In the classical evolutionary

swarm robotics, the control software of each individual robot is a

neural network that takes sensor readings as an input and returns

actuation commands as an output. The parameters of the neural

network are obtained via an evolutionary algorithm that optimizes

33

2018 ACM/IEEE 1st International Workshop on Robotics Software Engineering



RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden Darko Bozhinoski and Mauro Birattari

a mission-specific objective function. The optimization process re-

lies on computer-based simulation. Once simulation shows that the

swarm is able to perform the given mission, the neural network

is uploaded to the robots and the actual real-world performance

of the swarm is assessed. Since the introduction of evolutionary

swarm robotics, most of the research effort aimed at showing the

feasibility of the approach and investigating whether a particular

collective behavior can be obtained via artificial evolution. [7] were

the first to adopt the evolutionary approach in the context of swarm

robotics. The authors obtained a coordinated motion behavior by

using an evolutionary algorithm to optimize control software based

on a neural network. Recently, the research in evolutionary swarm

robotics has been influenced by the current trends in evolutionary

computation. The studies on novelty search and multi-objective

optimization are worthy of mention. Novelty search [5] is an ap-

proach to evolutionary computation that promotes diversity instead

of performance, while multi-objective optimization focuses on prob-

lems in which multiple, possibly conflicting objectives are to be

optimized. However, the vast majority of these works in which

automatic design methods have been introduced are tailored to a

specific application scenario, without the possibility to make a gen-

eralization of the solution in a particular application domain. That

means they were focused on answering scientific questions that do

not directly belong in automatic design. For example, an important

share of works devoted to evolutionary robotics were tailored to

answer scientific questions related to the plausibility of biologi-

cal models or the justification of animal behaviors in evolutionary

terms [10]. These questions are extremely fascinating and relevant

in absolute terms. Nonetheless, in many cases, these questions have

unfortunately shadowed the core questions of the research on the

automatic design of control software for robot swarms.

We consider two lines of research that should be conducted in

the software engineering community to help researchers in swarm

robotics to conceive and develop effective automatic design meth-

ods. These lines of research are based on ideas that have already

appeared in the swarm robotics literature and have been delineated

in [4].

Defining formal abstractions. Software engineers need to pro-

vide tools, methodologies and frameworks for designers to be able

to model automatic design methods for swarm control software.

We argue that precise formal abstractions are needed to specify

the environment and the elements of which the system consists.

The range of information defined with these formal abstractions

need to include elements like the definition of the sensors and the

actuators that the control software can access along with the rel-

ative value ranges and, possibly, noise models. In particular, an

automatic design method should be defined in all its parts, and

should properly pinpoint the swarm model(s) to which it can be

applied. Furthermore, there is a need for a definition of a formal

language for specifying the requirements and constraints in swarm

robotics. The language should provide ways to specify both func-

tional and non-functional requirements. A designer should be able

to specify the attributes of the set of robots participating in the

mission (e.g. battery level, types of sensors and actuators included,

the different models of the sensors/actuators etc.), the goals of the

mission that should be executed by the swarm and its constraints.

Software engineers should provide tools and methods that are able

to transform all these constraints and parameters and synthesize

an objective function that should be optimized by an optimization

process.

Defining benchmarks for evaluation. The development of a

solid, well-established, and consistently applied empirical practice

to assess and compare methods is of paramount importance in the

field. It is essential for swarm designers to be able to share bench-

mark problems, datasets, implementations, and results. One of the

biggest challenges that should be addressed here is to compare

different automatic design methods under the same conditions. It

appears obvious that different methods under analysis must be

given the same resources: computation time, memory, simulator

and simulationmodels, number and kind of CPUs, operating system,

hardware infrastructure, etc. Ideally, the control software produced

by the automatic design methods under analysis should interact

with the platform hardware via a common API. This prevents that

the experimenter introduces a bias by allowing a method to access

resources or information that is not available to other methods or

to use them in a more creative and profitable way. We consider

that a future research line should be addressing the following key

questions that are hardly addressed in the current literature: Which

automatic method is the best under which conditions? How gen-

eral is method X? How well does method X perform on different

missions? This means that an automatic design method should be

defined in a way to enable the reproducibility of its results. By

studying the state of the art [2], we realized that, excluding very

few cases, automatic design methods proposed so far have been

tested in a single study by authors who introduced them. The fact

that a method is typically tested on a single mission, it makes it

impossible to apprise whether the method is an ad hoc solution for

the single mission considered or it is general enough and able to

address a class of missions without undergoing any ad hoc, man-

ual, per-mission modification. To serve the purpose of the research

on the automatic design of control software for robot swarm, its

experimental practice should prescribe that an automatic design

method is tested on multiple missions without undergoing any

ad hoc, manual, per-mission modification. Moreover, each newly

proposed method should be compared with those that have been

previously proposed so that a clear picture of the state of the art is

available to the community. A convincing and informative experi-

mental analysis should ideally be based on a large set of different

missions which are representative subset of the domain. It should

eventually allow the experimenter to make conclusions on the abil-

ity of the automatic design methods to produce control software

for a generic mission of interest. Defining benchmark missions for

the evaluation of different automatic design methods for swarm

control software should be the main aspect in developing new soft-

ware engineering methodologies, principles and tools for swarm

missions. Software engineers should develop principles and tools

that automatically generate benchmark missions within a class of

missions. For example, consider a tool that generates instances of a

search and retrieve mission by randomly sampling, according to

appropriately defined probability distributions: (i) size and shape

of the environment, (ii) number and position of the obstacles, (iii)

34



Designing control software for robot swarms RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden

number and the positions of the targets, (iv) initial placement of

the robots, and (v) position of the safe area to which retrieved

targets should be carried. Such a tool could be used to generate

multiple sets of missions, all sharing the same statistical properties.

The experimenter could obtain two disjoint sets: one to be used to

automatically design control software, and one to be used to test it.

We are firmly convinced that in order to make progress in the

field of automatic design methods for swarm control software, soft-

ware engineering must play a crucial role in the development pro-

cess. A well-established software engineering discipline can make

a contribution to the development of automatic design methods in

the following directions: (i) defining formal abstractions that could

be reused in different missions and projects and (ii) identifying and

defining benchmarks that are important to be considered when

designing and evaluating swarm control software. We envision

that the results of the proposed research will make a contribu-

tion in three directions: (i) development of a classification frame-

work that will allow designers to categorize and reuse methods for

their experiments; (ii) isolation of components in automatic design

methods that will allow designers to perform cross-fertilization

between ideas and will contribute towards a coherent development

of methods and (iii) tighter integration between research activities

of different research groups.

Acknowledgements. The project has received funding from the

European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agreement

No 681872). Mauro Birattari acknowledges support from the Belgian

Fonds de la Recherche Scientifique – FNRS.

REFERENCES

[1] Gerardo Beni. 2004. From swarm intelligence to swarm robotics. In International
Workshop on Swarm Robotics. Springer, 1–9.

[2] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. 2013.
Swarm robotics: a review from the swarm engineering perspective. Swarm
Intelligence 7, 1 (2013), 1–41.

[3] Tom De Wolf and Tom Holvoet. 2006. Design patterns for decentralised co-
ordination in self-organising emergent systems. In International Workshop on
Engineering Self-Organising Applications. Springer, 28–49.

[4] Gianpiero Francesca and Mauro Birattari. 2016. Automatic design of robot
swarms: achievements and challenges. Frontiers in Robotics and AI 3 (2016), 29.

[5] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary computation 19, 2 (2011),
189–223.

[6] Stefano Nolfi and Dario Floreano. 2000. Evolutionary robotics: The biology, intelli-
gence, and technology of self-organizing machines. MIT press.

[7] Matt Quinn, Lincoln Smith, Giles Mayley, and Phil Husbands. 2003. Evolving
controllers for a homogeneous system of physical robots: Structured cooperation
with minimal sensors. Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences 361, 1811 (2003), 2321–2343.

[8] Erol Şahin. 2004. Swarm robotics: From sources of inspiration to domains of
application. In International workshop on swarm robotics. Springer, 10–20.

[9] Vito Trianni. 2008. Evolutionary swarm robotics: evolving self-organising be-
haviours in groups of autonomous robots. Vol. 108. Springer.

[10] Vito Trianni. 2014. Evolutionary robotics: model or design? Frontiers in Robotics
and AI 1 (2014), 13.

35


