Combining Lazy Learning, Racing and Subsampling
for Effective Feature Selection

Gianluca Bontempi, Mauro Birattari and Patrick E. Meyer
ULB, Université Libre de Bruxelles, Bruxelles - Belgium

Abstract

This paper presents a wrapper method for feature se-
lection that combines Lazy Learning, racing and sub-
sampling techniques. Lazy Learning (LL) is a local
learning technique that, once a query is received, ex-
tracts a prediction by locally interpolating the neighbor-
ing examples of the query which are considered relevant
according to a distance measure. Local learning tech-
niques are often criticized for their limitations in dealing
with problems with high number of features and large
samples. Similarly wrapper methods are considered pro-
hibitive for large number of features, due to the high cost
of the evaluation step. The paper aims to show that a
wrapper feature selection method based on LL can take
advantage of two effective strategies: racing and sub-
sampling. While the idea of racing was already proposed
by Maron and Moore, this paper goes a step further by
(i) proposing a multiple testing technique for less con-
servative racing (ii) combining racing with sub-sampling
techniques.

1 Introduction

Lazy Learning (LL) is a local modeling technique
which is query-based in the sense that the whole learn-
ing procedure (i.e. structural and parametric identifica-
tion) is deferred until a prediction is required. In pre-
vious works we presented an original Lazy Learning al-
gorithm [3, 1] that selects automatically on a query-by-
query basis the optimal number of neighbors, and its ap-
plication to data analysis, time series prediction, system
identification and nonlinear control. Despite the large
amount of applications to real tasks, local methods are
often a target of criticism as far as computational require-
ments for dealing with large datasets (i.e. many variables
and/or large samples) are taken into consideration.

This paper discusses how to effectively employ the L
algorithm for feature selection (for an up-to-date state of
the art on feature selection see [7]). In particular, we
will focus here on a wrapper method based on LL. In the
wrapper approach [9] the feature subset selection algo-
rithm exists as a wrapper around the learning algorithm,
which is often considered as a black box able to return

(e.g. via cross-validation) an evaluation of the quality of
a feature subset. While most of the wrapper algorithms
are defined independently of the learning machine, we
propose here a method which takes advantage of the
unique aspects of a local learning algorithm.

The usefulness of a local modeling approach for re-
ducing the cost of feature selection was first presented
in [10]. The idea consists in assessing a large number
of feature subsets by performing cross-validation only
on a reduced test set. On the basis of well-known sta-
tistical results, it is possible to show that families of
good feature subsets can be rapidly found by quickly
discarding the bad subsets and concentrating the com-
putational effort on the better ones. This model selec-
tion technique was called the Hoeffding race by Maron
and Moore [10], with reference to Hoeffding’s formula
which puts a bound on the accuracy of a sampled mean
of N observations as an estimator of the expected value.
Local modeling techniques fit well in this paradigm
thanks to the property that modeling is performed only
when a prediction is required. Then, by reducing the
size of the test set, the computational cost required for
assessment is reduced, too.

The aim of this work is: 1) to speed up further the eval-
uation step of a wrapper method by reducing, together
with the number of test predictions, also the size of the
training set required for assessing the quality of a can-
didate feature set, ii) to improve the efficiency of the
wrapper search by discarding more rapidly those can-
didates which, on the basis of the tests made till that
moment, appear as significantly worse than others. In
particular, the main two contributions of the paper are:
the combination of racing and sub-sampling techniques
with the Lazy Learning algorithm previously proposed
by the authors and the use of a multiple testing criterion
(the Friedman test) for performing a more statistically
founded selection.

The use of sampling [8] enhances the performance of
the racing approach to feature selection by making pos-
sible the definition of a number of lightweight experi-
mental benchmarks to assess, compare and discriminate
between candidate subsets. Each experimental bench-

mark relies on small training and test sets, which are ob-
tained by randomly sub-sampling the available dataset.
The idea is that, in order to discriminate between a very
large number of candidates, the combination of multiple
small and fast benchmarks can be more effective than a
single big and time consuming validation procedure.

The second contribution of the paper lies in the use of
a nonparametric multiple test, the Friedman test [4], to
compare different configurations of input variables and
to select the ones to be eliminated from the race. The use
of the Friedman test for racing was proposed first by one
of the authors in the context of a technique for compar-
ing metaheuristics for combinatorial optimization prob-
lems [2]. This is the first time that the technique is used
in a feature selection setting. Note that in some sense this
method fills the gap between Hoeffding race [10] and
BRACE [11]: similarly to Hoeffding race it performs a
nonparametric test, and similarly to BRACE it considers
a blocking design.

2 The RACSAM (racing+sub-sampling) algorithm

The RACSAM wrapper algorithm is based on the idea
that once the evaluation is based on the LL algorithm,
this can be made faster by considering training and test
sets of limited size.

The main steps of the RACSAM algorithm are: (i) the
creation of a number of lightweight experimental bench-
marks, each characterized by a small training and test
set, (ii) the use of the experimental benchmarks to assess
in parallel a large family of candidates, (iii) the discard-
ing of those candidates resulting significantly worse than
others.

2.1 The F-race algorithm

The racing algorithm proposed in this paper, F-Race
in the following, takes as input a training set of size
N, a test set of size Ny, a set of M candidate feature
sets Sy, C {1,...,n} (also called configurations) and
a number W > 1 of expected winners. The expected
output is a set of at most W configurations which are
significantly better than the others.

Let ©Og = {Sm,m = 1,..., M} the set of configu-
rations at the start of the algorithm. A racing algorithm
proceeds by generating a sequence Qg DO ©1 D ©2 D
..., of nested sets of candidate configurations. The step
from a set ©,_; to ©, is obtained by possibly discard-
ing some configurations that appear to be suboptimal on
the basis of information available at step q. Let M,_; the
cardinality of ©,_1, that is the number of remaining con-
figurations and I;_; = {m : S;, € ©,4_1} the indices

'We refer the reader to [3, 1] and to the publicly available R pack-
age lazy (http://cran.r-project.org/src/contrib/Descriptions/lazy.html)
for a description of the main features of the LL algorithm.

of the configuration still competing before the execution
of the qth step.

At the gth step, 1 < g < Ny, the racing algorithm
computes for all S;;, € ©4_1

Z}q,m = LL(xq;DN;Sm) (1)

where LL(-) is the prediction returned by a LL algorithm
where the feature set is S, € ©4_1 and the training set
is made of N samples.

This value is used to fill an evaluation matrix E, sized
Nis x M, whose generic [g, m] term is
q:]-;"':Ntsa mEIq—l

@)
where y, is the observed output for the input z,. Step ¢
terminates defining set ©, by dropping from ©,_; the
configurations that appear to be suboptimal in the light
of the statistical test described in the following sec-
tion. Note that this test compares only the M,_; < M
columns of the evaluation matrix, whose indices are in
I,_1, which represent the feature configurations still in
the race.

The above described procedure is iterated and stops
either when all configurations but W are discarded (i.e.
My, < W for some g) or when ¢ = Ny¢,. The advantage
of racing is that in the first case, M — W configurations
are discarded by having recourse only to a subset of the
Ny, samples available for testing.

The statistical test: the racing algorithm we propose
in F-Race? is based on the Friedman test, a statistical
method for hypothesis testing also known as Friedman
two-way analysis of variance by ranks [4]. The null hy-
pothesis of the test assumes that all remaining configu-
rations in the race belong to the same error distribution.
If at the gth step the null of the aggregate comparison is
not rejected, all candidates in ©,_; pass to 4. On the
other hand, if the null is rejected, the configuration with
the largest estimated mean-square error is discarded and
the test repeated with M,_; — 1 configurations, until the
null hypothesis is not rejected.

The main merit of our nonparametric approach is that
it does not require to formulate hypotheses on the dis-
tribution of the observations. A second role played by
the Friedman test is to implement in a natural way a
blocking design [5]. Blocking is an effective way for
normalizing the costs observed on different conditions.
By focusing only on the ranking of the different config-
urations within each condition, blocking eliminates the
risks that the variation due to the difference among test
samples washes out the variation due to the difference
among configurations.

Elg,m] = |yg — 9g,ml>

Zavailable at
http://cran.r-project.org/src/contrib/Descriptions/race.html

2.2 The racing+sub-sampling combination

In spite of the improvement due to racing, evaluation
based on LL may still appear computationally expensive
if the training set is very large. It is sufficient to note that
the complexity of the LL prediction in (1) is proportional
to the number of samples in D .

The added value of sampling consists in using in (1)
training sets D g, composed of N<N samples, which
are a randomized subset of the original set D . The re-
duction of the training set size speeds up the LL predic-
tion and consequently each step of the F-race algorithm.

Let us notice however that the computational gain oc-
curs at the cost of the deterioration of the assessment
of the quality of each single configuration. In terms
of bias/variance trade-off sub-sampling implies variance
increase. In general terms, the rationale for the RAC-
SAM approach is that very bad models should be de-
tected rapidly and with small effort by exploiting only a
part of the information of the training set, reserving the
intensive use of the entire information only to the most
difficult cases. This is implemented in practice by in-
creasing gradually the size N of the sub-sampled train-
ing set once the race moves forward.

The resulting RACSAM algorithm consists then in a
modified version of the F-race algorithm, described in
Section 2.1, where at the gth step only a subsample of
the training set of size N is used for computing the ac-
curacy of all the M,_; configurations still in race. Equa-
tion (1) is then replaced by §4,m = LL(2¢, D50y, Sm)
where N9 is the size of the sub-sampled training set at
the gth step. In our preliminary experiments we used the
rule N(@+D) = N(@ 4 10 with N(© = 50 to update the
size of the sub-sampled training set.

3 The exploration strategy

The RACSAM algorithm takes as input a set of M
candidate feature sets and returns a set of W winners.
While this approach makes possible an exhaustive ex-
ploration of the feature subspace (i.e M = 2™) in the
case of very small n, it requires some modifications if
we intend to address problems with very large dimen-
sionality. Our search strategy is quite simple. An initial
set 6((]0) of candidates is created either randomly or by
adopting some filtering techniques (e.g. Pearson corre-
lation or Gram-Schmidt orthogonalization [7]). This ini-
tial set is passed through the RACSAM algorithm which
returns the W better candidates. Then an iterative pro-
cedure begins. The iterative search is composed of two
steps: (i) generation (e.g. by neighborhood exploration)
of a new set of M candidates @8’) starting from the out-
put ©(=1) of the RACSAM algorithm (ii) racing of O
by RACSAM. Alternative search strategies that could be

easily combined with the RACSAM approach are dis-
cussed in [10].

4 Experimental results

Two experiments were carried out: the first one stud-
ies the ability of the algorithm to detect the subset of
relevant variables in a very large set of irrelevant ones.
The second one assesses the improvement in prediction
accuracy that can be obtained by adopting the RACSAM
approach.

Selection of relevant variables: we consider a prob-
lem of feature selection where the dimensionality of the
input space is n >> 10 and the output is dependent only
on 10 inputs according to the relation

y = 10sin(mz122) + 20(x3 — 1/2)° 4 10z4 + Szs+
+ 10sin(rzexr) + 20(xs — 1/2)° + 10zg + Sz 10 + €.

We suppose that the input vector x takes value in the
hypercube [0, 1]™ and that ¢ is a standard Gaussian ran-
dom variable. Note that this feature selection problem
is a harder version of the problem proposed in [6]. We
conduct two main experiments: the first with n = 110
and the second with n = 210 inputs. Each experi-
ment has two variants: initialization by Gram Schmidt
(GS) and by random generation (RN). For each exper-
iment we generate 25 times a random training and test
set by sampling uniformly the input hypercube. In the
GS variant we first rank the variables according to the
Gram-Schmidt orthogonalization procedure and we cre-
ate an initial set of 5000 candidates 6(()0) by combining
the most relevant 50 variables according to the GS pro-
cedure. In the random variant the initial set (9(()0) of 5000
candidates is generated randomly.

The RACSAM procedure performs a F-race where the
p-value threshold is set to 0.01 and the number of win-
ners to W = 50. The algorithm is stopped when at least
10000 models have been assessed. For each run, we de-
fine successful the RACSAM algorithm if it is able to
discover and retain the best feature set (made of the first
ten variables only) among the W winners. The success
rate of the RACSAM algorithm is compared to that of a
forward selection (FS) procedure using a LL algorithm
with 270 training samples and 500 test samples.

Table 1 reports for each experiment (i) the RACSAM
percentage of successes, (ii) the rate of success of the
forward selection procedure, (iii) the average number of
models (plus the standard deviation) which were exam-
ined by the RACSAM algorithm before discovering the
correct set, (iv) the average number of training samples
(plus the standard deviation) required for the assessment,
(v) the average number of test samples (plus the standard
deviation) required for the assessment. Note that an ex-
haustive search would have required the assessment of

n/Init Racs | FS Assessed Train Test
110/GS 2% | 8% | 7342 £572 | 259 £31 | 601 + 307
110/RN || 88% | 8% | 7054 +£726 | 220 +21 | 213 +214
210/GS 88% | 4% | 7403 £ 595 | 265 + 52 | 660 £ 522
210/RN || 84% | 4% | 7017 +£901 | 223 +37 | 240 + 366

Dataset | AIL | POL | ELE | TRI | WIS | CEN

LL-RAC1 | 9.7e-5 | 3.12 | 1.6e-3 | 0.21 | 27.39 | 0.17
LL-RAC2 | 9.0e-5 | 3.13 | 1.5e-3 | 0.12 | 27.41 | 0.16
SVM 1.3e-4 | 26.5 | 1.9e-3 | 0.11 | 2991 | 0.21
RTREE 1.8e-4 | 8.80 | 3.1e-3 | 0.11 | 33.02 | 0.17

Table 1. Comparison RACSAM vs. Forward Selection.

2™ models. The experimental results show that the per-
formance of the algorithm is independent of the initial-
ization and quite robust to number of irrelevant variables.

Prediction accuracy: this experiment compares the
performance accuracy of the LL algorithm enhanced by
the RACSAM procedure to the the accuracy of two state-
of-art algorithms, a SVM for regression and a regression
tree (RTREE). These two algorithms are well-known
and powerful examples of embedded techniques for fea-
ture selection. We use the implementations available in
the e1071 and tree R packages, respectively. The
comparisons were carried out by performing a five-fold
cross-validation on six real datasets® of high dimension-
ality: Ailerons (N = 14308,n = 40), Pole (N =
15000,n = 48), Elevators (N = 16599,n = 18),
Triazines (N = 186,n = 60), Wisconsin (N =
194,n = 32) and Census (N = 22784, n = 137).

Two version of the RACSAM algorithm were tested:
the first (LL-RAC1) takes as feature set the best one (in
terms of estimate Mean absolute Error (MAE)) among
the W winning candidates : the second (LL-RAC1) av-
erages the predictions of W LL predictors, where each
LL model takes as inputs one of the W sets returned by
the RACSAM procedure. In both cases we set W = 5,
and the p-value to 0.01. The selection procedure stops
when at least 1000 different configurations have been
analysed.

In Table 2 we present, for each learning method,
the absolute prediction error averaged over the 5 cross-
validation groups. Since the methods are tested on
the same examples under the same conditions, we use
the paired test of significance to perform an exhaustive
paired comparison of all the methods for all the bench-
marks. In what follows, by “significantly better” we
mean better at least at a 5% significance level. As far as
the comparison LL-RACT1 to LL-RAC2 is concerned, we
obtained that LL-RAC?2 is significantly better than LL-
RACI 3 times out of 6 and it is never significantly worse
than LL-RACI. As far as the comparison of LL-RAC2
to the other state-of-the-art techniques is concerned we
obtain that the LL-RAC?2 approach is never significantly
worse than SVM and/or RTREE but that it performs 5
times out of 6 significantly better than SVM and 6 times
out of 6 significantly better than RTREE.

3available at http://www.liacc.up.pt/~Itorgo/Regression/DataSets.html

Table 2. Mean Absolute prediction errors.

5 Conclusions

Preliminary results show the effectiveness of the
RACSAM approach in selecting relevant features and in
improving the predictive accuracy, especially in the case
of a combination of the predictors based on the feature
sets returned by RACSAM. Future research will extend
these preliminary results by combining the RACSAM
assessment procedure with more sophisticate search
strategies (e.g. the schemata search proposed in [10])
and by applying the technique to massive datasets with
thousands of variables.

References

[1] M. Birattari, G. Bontempi, and H. Bersini. Lazy learn-
ing meets the recursive least-squares algorithm. In M. S.
Kearns, S. A. Solla, and D. A. Cohn, editors, NIPS 11,
pages 375-381, Cambridge, 1999. MIT Press.

[2] M. Birattari, T. Stiitzle, L. Paquete, and K. Varrentrapp. A
racing algorithm for configuring metaheuristics. In W. B.
Langdon, editor, GECCO 2002, pages 11-18. Morgan
Kaufmann, 2002.

[3] G.Bontempi, M. Birattari, and H. Bersini. Lazy learning
for modeling and control design. International Journal
of Control, 72(7/8):643-658, 1999.

[4] W. . Conover. Practical Nonparametric Statistics. John
Wiley & Sons, New York, NY, USA, third edition, 1999.

[5] A. Dean and D. Voss. Design and Analysis of Experi-
ments. Springer Verlag, New York, NY, USA, 1999.

[6] J. H. Friedamn. Multivariate adaptive regression splines.
The Annals of Statistics, 19(1):1-141, 1991.

[7]1 1. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157-1182, 2003.

[8] G. H. John and P. Langley. Static versus dynamic sam-
pling for data mining. In Proceedings of the Second
International Conference on Knowledge Discovery in
Databases and Data Mining. AAAI/MIT Press, 1996.

[9] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273-324, 1997.

[10] O. Maron and A. Moore. The racing algorithm: Model
selection for lazy learners. Artificial Intelligence Review,
11(1-5):193-225, 1997.

[11] Andrew W.Moore and Mary S. Lee. Efficient algorithms
for minimizing cross validation error. In International
Conference on Machine Learning, pages 190-198. Mor-
gan Kaufmann Publishers, Inc., 1994.

