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Local learning techniques, for each query, extract a predic-
tion interpolating locally the neighboring examples which
are considered relevant according to a distance measure. As
other learning approaches, the local learning procedure can
be conveniently decomposed into a parametric identifica-
tion and a structural identification. While parametric identi-
fication is reduced to a linear regression, structural identifi-
cation requires that the designer perform a certain number
of choices. In this paper we focus on an automatic query-
by-query selection of the bandwidth, a structural parameter
which plays a major role in the final performance. We pro-
pose a local method where, for each query, different model
candidates are first generated, then assessed and finally se-
lected. We introduce in the context of local learning the re-
cursive least squares algorithm as an efficient way to gen-
erate local models. Moreover, local cross-validation is used
as an economic way to validate different alternatives. As far
as model selection is concerned, the winner-takes-all strat-
egy and a local combination of the most promising models
are explored. The method proposed is tested on six different
datasets and compared with state-of-the-art approaches.

1. Introduction

Supervised learning can be conveniently decom-
posed into a parametric identification and a structural
identification procedure. Once the model structure is
given, the parametric identification selects the parame-
ters which minimize on the training set the discrepancy
between the target values and the predictions. On the
other hand, structural identification aims to select in
the space of possible model structures, the one which
minimizes the generalization error. The search for the
best parameters and the search for the best structure
are instances of an optimization problem which is typ-
ically addressed in three stages: generation of differ-
ent solutions, assessment of each solution and selection
among the solutions assessed.
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This paper will focus on the particular case of lo-
cal methods for supervised learning. These methods
perform function approximation by interpolating lo-
cally the training samples considered relevant accord-
ing to a distance measure [1,3]. The parametric iden-
tification procedure is, therefore, quite simple and can
be done through consolidated statistical methods. On
the other side, it is commonly known that the per-
formance of the local approximator is quite sensitive
to the structural identification choices performed by
the designer. Structural identification involves, among
other things, the selection of a family of local approx-
imators, the selection of a metric to evaluate which
examples are more relevant, and the selection of the
bandwidth which indicates the size of the region in
which the data are correctly modeled by members of
the chosen family of approximators. Although the pre-
diction depends on the whole set of these structural pa-
rameters, it is common belief in local learning litera-
ture that the final performance is more sensitive to the
bandwidth and to the distance metric [3]. As far as the
problem of bandwidth selection is concerned, different
approaches exist in literature. The choice of the band-
width may be performed either based on some a priori
assumption or on the data themselves. A further sub-
classification of data-driven approaches is of interest
here. On the one hand, a constant bandwidth may be
used; in this case it is set by a global optimization that
minimizes an error criterion over the available dataset.
On the other hand, the bandwidth may be selected lo-
cally and tailored for each query point.

In the present work, we propose a method that be-
longs to the latter class of local data-driven approaches
and that, given a global distance metric, selects the
bandwidth on a query-by-query basis. The main rea-
son to favor a query-by-query bandwidth selection is
that it allows better adaptation to the local characteris-
tics of the problem at hand. Moreover, this approach is
able to handle directly the case in which the database
is updated on-line [7,8]. On the other hand, a globally
optimized bandwidth approach would, in principle, re-
quire the global optimization to be repeated each time
the distribution of the examples changes.
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The method we propose is a local and query-based
instance of the general structural identification proce-
dure.

The model generation is based on the recursive least
squares algorithm. This is an appealing and efficient
solution to the intrinsically incremental problem of
identifying and validating a sequence of local linear
models centered in the query point, and each including
a growing number of neighbors. The problem of band-
width selection is reduced to the selection of the num-
ber k of neighboring examples which are given a non-
zero weight in the local modeling procedure. Each time
a prediction is required for a specific query point, a set
of local models is identified, each including a different
number of neighbors.

Once the candidate models have been generated,
the generalization ability of each of them is assessed
through a local cross-validation procedure. Here we
use the PRESS statistic [2] which is a simple, well-
founded and economical way to perform leave-one-
out cross validation [9] and to assess the generalization
performance of local linear models. It is worth noticing
here that leave-one-out does not involve any significant
computational overload, since the PRESS statistic uses
partial results returned by the recursive least squares
algorithm. :

Finally, the paper explores a competitive and a co-
operative approach to model selection on the basis of
some statistics of their cross-validation errors. In this
local learning setting, we propose a comparison be-
tween a winner-takes-all strategy and a strategy based
on the combination of estimators [17].

An experimental analysis of the recursive algorithm
for local identification and validation is presented. The
algorithm proposed is experimentally compared with
other local bandwidth selection approaches, and with
state-of-the-art methods as feedforward neural net-
works and Cubist, the rule-based tool developed by
Ross Quinlan for generating piecewise-linear models.

It is worth saying that this paper will not focus on
algorithmic computational issues. On this subject, the
reader is invited to refer to the literature dealing with
efficient implementations of local algorithms [11,12].

2. Local weighted regression

Given two variables x € 2R™ and y € R, let us con-
sider the mapping f: 8™ — R, known only through
a set of n examples {(x;, y;)}7_,; obtained as follows:

q X

Fig. 1. Local weighted regression in the neighborhood of a quer
point X4. A local linear model approximates the single-input sir
gle-output mapping in a neighborhood of x4 characterized by a ke
nel K(-).

Yi = f(x0) + &4, a

where Vi, €; is a random variable such that E[e;] = |
and E[e;e;] = 0, V4 # 4, and such that E[e*] =
UmX;), Ym > 2, where pp,(-) is the unknown mt
moment of the distribution of ¢; and is defined as
function of x;. In particular for m = 2, the last of th
above mentioned properties implies that no assumptios
of global homoscedasticity (equal variance of the nois:
over the input space) is made.

The problem of local regression can be stated a
the problem of estimating the value that the regressios
function f(x) = E[y|x] assumes for a specific quer:
point x, using information pertaining only to a neigh
borhood of x.

Given a query point X4, and under the hypothesis o
alocal homoscedasticity of €;, the parameter 3 of a lo
cal linear approximation of f(-) in a neighborhood o
X, can be obtained solving the local polynomial regres

sion (Fig. 1):

n

> {(yi - xiﬁ)zK(f(—"ih"‘—*‘)) } @

i=1

where, given a metric on the space R™, d(x;, X,) is th
distance from the query point to the ith example, K (-
is a weight function, h is the bandwidth, and where :
constant value 1 has been appended to each vector x
in order to consider a constant term in the regression.

In matrix notation, the solution of the above statec
weighted least squares problem is given by:

B = X'W'WX)™X'W'Wy
=(Z'Z2)"'Z'v =PZ'v, 3

where X is a matrix whose ith row is x;, y is a vecto:
whose ith element is y;, W is a diagonal matrix whost

ith diagonal element is w;; = /K (d(X;,Xq)/h), Z =
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TRAINING SET
PARAMETRIC IDENTIFICATION
ON N SAMPLES -PUT THE j+h SAMPLE ASIDE
- PARAMETRIC IDENTIFICATION
1 NTIMES ON N-1 SAMPLES
- TEST ON THE j-th SAMPLE
PRESS STATISTIC

~

LEAVE-ONE-OUT

Fig. 2. Leave-one-out for linear models. The leave-one-out error can
be computed in two equivalent ways: the slowest way (on the right)
which repeats /V times the training and the test procedure; the fastest
way (on the left) which performs only once the parametric identifi-
cation and the computation of the PRESS statistic.

WX, v = Wy, and the matrix X'W'WX = Z'Z is
assumed to be non-singular so that its inverse P =
(Z'Z)7! is defined.

Once obtained the local linear polynomial approx-
imation, a prediction of y; = f(x,), is finally given
by:

T = x,8. “
A reliable assessment of the mean-squared-error
MSE = E|[(yq — 9)°], )

is commonly provided by cross-validation [16].
A well-known disadvantage of a cross-validated ap-
proach is the large computational effort which is re-
quired to perform the series of training steps. How-
ever, in the case of linear models there exists a pow-
erful statistical procedure to compute the leave-one-
out cross-validation measure at a reduced computa-
tional cost (Fig. 2). It is the PRESS (Prediction Sum of
Squares) statistic [2], a simple formula which returns
the leave-one-out (1-0-0) error
e =y; — ;65 (6)

without explicitly identifying the parameters E_ j from
the examples available with the jth removed.

The formulation of the PRESS statistic for the case
at hand is the following:

o , = A_yj—x;-PZ’v
€ =V %P5 = 1 ——z;sz
y; — X0

1—hy;°

)

where z;- is the jth row of Z and therefore z; = WjjXy,
and where hj; is the jth diagonal element of the Hat
matrixH = ZPZ' = Z(Z'7)~'Z’.

3. Recursive model generation

In what follows, for the sake of simplicity, we will
focus on first-degree linear approximators. An exten-
sion to generic polynomial approximators of any de-
gree is straightforward. We will assume also that a met-
ric on the space R™ is given. All the attention will be
thus centered on the problem of bandwidth selection.

If as a weight function K'(-) the indicator function

d(Xi,Xq) _J1 if d(X—,;,Xq) < h,
K( h > - {O otherwise, ®)

is adopted, the optimization of the parameter h can
be conveniently reduced to the optimization of the
number k of neighbors to which a unitary weight is
assigned in the local regression evaluation. In other
words, we reduce the problem of bandwidth selection
to a search in the space of h(k) = d(x(k), x,), where
x(k) is the kth nearest neighbor of the query point.

The main advantage deriving from the adoption of
the weight function defined in Eq. (8), is that, simply
by updating the parameter B(k) of the model identi-
fied using the k nearest neighbors, it is straightforward
and inexpensive to obtain E(k + 1). In fact, perform-
ing a step of the standard recursive least squares algo-
rithm [4], we have:

(P(k + 1) = P(k)
P(k)x(k + DxX'(k + 1)P(k)
T1+x(k+ DPR)x(k+ 1)’
v(k + 1) = P(k + Dx(k + 1),
ek +1) =y(k+ 1) — x'(k + 1)B(k),
L B(k + 1) = B(k) + v(k + De(k + 1),

®

where P(k) = (Z'Z)~! when h = h(k), and where
x(k + 1) is the (k + 1)th nearest neighbor of the query
point. N

Once an initialization B(O) = f and P(0) = P is
given, Eq. (9) and Eq. (10) recursively evaluate for dif-
ferent values of k a local approximation of the regres-
sion function f(-), a prediction of the value of the re-
gression function in the query point, and the vector of
leave-one-out errors from which it is possible to ex-
tract an estimate of the variance of the prediction error.
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Notice that B is an a priori estimate of the parameter
and P is the covariance matrix that reflects the reliabil-
ity of 3 [4]. For non-reliable initialization, the follow-
ing is usually adopted: P = I with A large, and where
1 is the identity matrix.

4. Local model validation

In the previous section we introduced recursive
least-squares as an effective method for generating lo-
cal model candidates. These models have now to be
validated in order to proceed to the final model selec-
tion. Once the leave-one-out is adopted as validation
criterion, it follows that the model generation proce-
dure returns as a by-product all the elements necessary
for the PRESS computation.

Matrix P(k + 1) is returned by Eq. (9) and thus the
leave-one-out cross-validation errors can be directly
calculated without the need of any further model iden-
tification:

y; — x;B(k +1)
1 —x/Pk + Dx;’
Vi d(x;,%,) < h(k + 1). (10)

e'(k+1)=

It will be useful in the following to define for each
value of k the [k x 1] vector eV (k) that contains all the
leave-one-out errors associated to the model G(k).

5. Local model selection and combination

Once a set of candidate models have been gener-
ated through Eq. (9) and validated through Eq. (10), we
proceed to model selection. The recursive algorithm
described by Eq. (9) and Eq. (10) returns for a given
query point X, a set of predictions g, (k) = x; B(k), to-
gether with a set of associated leave-one-out error vec-
tors eV (k).

From the information available, a final prediction g,
of the value of the regression function can be obtained
in different ways. Two main paradigms deserve to be
considered: the first is based on the selection of the best
approximator according to a given criterion, while the
second returns a prediction as a combination of more
local models.

If the selection paradigm, frequently called winner-
takes-all, is adopted, the most natural way to extract a
final prediction §,, consists in comparing the predic-

tion obtained for each value of k on the basis of the
classical mean square error criterion:

9q = X, B(k), 1)
with
k=arg min MSE(k)

K wiled(k))
Ef:] Wi

where w; are weights than can be conveniently used
to discount each error according to the distance from
the query point to the point to which the error corre-
sponds [3].

As an alternative to the winner-takes-all paradigm,
we explored also the effectiveness of local combina-
tions of estimates [15,17]. Adopting also in this case
the mean square error criterion, the final prediction
of the value y, is obtained as a weighted average of
the best b models, where b is a parameter of the algo-
rithm. Suppose the predictions §4(k) and the error vec-
tors e*'(k) have been ordered creating a sequence of
integers {k;} so that MSE(k;) < MSE(k;), Vi < j.
The prediction of g, is given by

) 12)

= argmin
gk

b .
G0 = Zi:l Ciyq(ki)
9 b
Zizl Cz
where the weights are the inverse of the mean square

errors: {; = 1/MSE(k;). This is an example of the gen-
eralized ensemble method [13].

) (13)

6. Experiments and results

The experimental evaluation of the incremental lo-
cal identification and validation algorithm was per-
formed on six datasets. The first five, described by
Quinlan [14], were obtained from the UCI Repository
of machine learning databases [5], while the last one
was provided by Leo Breiman. A summary of the char-
acteristics of each dataset is presented in Table 1.

Table 1
A summary of the characteristics of the datasets considered

Dataset Housing Cpu Prices Mpg Servo Ozone
Number of examples 506 209 159 392 167 330
Number of regressors 13 6 16 7 8 8
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The methods compared adopt the recursive identifi-
cation and validation algorithm, combined with differ-
ent strategies for model selection or combination. We
considered also two approaches in which k is selected
globally:

Ib1: Local bandwidth selection for linear local mod-
els. The number of neighbors is selected on
a query-by-query basis and the prediction re-
turned is the one of the best model according to
the mean square error criterion.

1b0: Local bandwidth selection for constant local
models. The algorithm for constant models is
derived directly from the recursive method de-
scribed in Eq. (9) and Eq. (10). The best model
is selected according to the mean square error
criterion.

IbC: Local combination of estimators. This is an ex-
ample of the method described in Eq. (13). On
the datasets proposed, for each query the best
2 linear local models and the best 2 constant
models are combined.

gbl: Global bandwidth selection for linear local
models. The value of k is obtained minimizing
the prediction error in 20-fold cross-validation
on the dataset available. This value is then used
for all the query points.

gb0: Global bandwidth selection for constant local
models. As in gb1, the value of k is optimized
globally and kept constant for all the queries.

The distance between a generic query X, and an input
x; in the training set is computed by using a weighted
Euclidean distance

d(xi, Xq) = /(X — Xg) M'M(x; — Xg), (14)

where M is a global parameter and given by the relative
linear influence (relevance) of the regressors [10]. This
means that the metric M in (14) is a diagonal matrix
with

15)

where EJ is the jth term of the least-squares vector es-
timated on the whole training set. We are confident that
the adoption of a local metric could improve the per-
formance of our local learning method.

The local learning results are compared with those
we obtained, in the same experimental settings, both

using feedforward neural networks and Cubist, the
rule-based tool developed by Quinlan for generating
piecewise-linear models. While Cubist is an integrated
tool which performs automatically model selection and
returns the best expected prediction, a fair compari-
son with feedforward neural networks should require a
state-of-the-art neural selection procedure. In order to
avoid possible criticism on this subject, we decided to
perform no neural structural identification but to com-
pute the predictions for several different structures and
to return the best a posteriori result on the test set. This
quite optimistic result is by definition better than any
other result obtainable by any structural identification
method for neural networks. We focused in particular
on two-layer architectures with a first sigmoid layer
and a second linear layer, trained with the Levenberg-
Marquardt algorithm. We chose as structural parameter
the number of neurons in the first layer, and we made
it vary over a range between 2 and 12. In the table we
report only the result obtained by the best neural struc-
ture which is not necessarily the same among different
datasets.

Each approach was tested on each dataset using the
same 10-fold cross-validation strategy. Each dataset
was divided randomly into 10 groups of nearly equal
size. In turn, each of these groups was used as a test-
ing set while the remaining ones together were provid-
ing the examples. Thus all the methods performed a
prediction on the same unseen cases, using for each of
them the same set of examples. In Table 2 we present
the results obtained by all the methods, and averaged
on the 10 cross-validation groups. Since the methods
were compared on the same examples in exactly the
same conditions, the sensitive one-tailed paired test of
significance can be used. In what follows, by ‘signifi-
cantly better’ we mean better at least at a 5% signifi-
cance level.

The first consideration about the results concerns
the local combination of estimators. According to Ta-
ble 2, the method IbC performs in average always bet-
ter than the winner-takes-all linear and constant. On

Table 2
Mean absolute error on unseen cases

Method Housing Cpu Prices Mpg Servo Ozone

bl 221 28.38 1509 1.94 0.48 3.52
160 2.60 31.54 1627 1.97 0.32 3.33
1bC 2.12 26.79 1488 1.83 0.29 3.31
gbl 2.30 28.69 1492 1.92 0.52 3.46
gb0 2.59 32.19 1639 1.99 0.34 3.19
Cubist 217 28.37 1331 1.90 0.36 3.15
Nnet 2.33 31.18 2092 2.05 0.38 3.32
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Table 3
Relative error (%) on unseen cases

Method Housing Cpu Prices Mpg Servo Ozone

Ibl 12.63 9.20 15.87 12.65 28.66 35.25
10 18.06 20.37 22.19 12.64 22.04 3111
IbC 12.35 9.29 17.62 11.82 19.72 30.28
gbl 13.47 9.93 15.95 12.83 30.46 32.58
gb0 17.99 21.43 22.29 13.48 24.30 28.21
Cubist 16.02 12.71 11.67 12.57 18.53 26.59
Nnet 14.06 14.40 32.17 12.65 2247 30.06

two dataset IbC is significantly better than both Ib1 and
1b0; and on three dataset it is significantly better than
one of the two, and better in average than the other.

The second consideration is about the comparison
between our query-by-query bandwidth selection and
a global optimization of the number of neighbors: in
average Ib1 and 1b0 performs better than their counter-
parts gb1 and gb0. On two datasets Ib1 is significantly
better than gb1, while is about the same on the other
four. On one dataset 1b0 is significantly better than gb0.

As far as the comparison with Cubist is concerned,
the recursive local identification and validation pro-
posed obtains results comparable with those obtained
by the state-of-the-art method implemented in Cubist.
On the six datasets, IbC performs one time signifi-
cantly better than Cubist, and one time significantly
worse.

As far as the comparison with feedforward neural
networks is concerned, the proposed local method ob-
tains results significantly better. On the six datasets,
IbC performs five times significantly better than the
best neural network.

The second index of performance we investigated is
the relative error, defined as the mean square error on
unseen cases, normalized by the variance of the test set.
The relative errors are presented in Table 3 and show
a similar picture to Table 2, although the mean square
errors considered here penalize larger absolute errors.

We suggest the interested reader to refer to [6] for
a larger experimental setting (more datasets and more
referential approaches).

7. Conclusion and future work

The paper presented a bandwidth selection approach
for local learning method. Despite the trivial metric
adopted the experimental results confirm that the ap-
proach is able to compete with a state-of-the-art ap-
proaches and can be effectively used in a local context
for multivariate regression problems.

Future work will focus on the problem of local met-
ric selection. Moreover, we will explore more sophisti-
cated ways to combine local estimators and we will ex-
tend this work to polynomial approximators of higher
degree.
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