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Abstract

We introduce and discuss a local method
to learn one-step-ahead predictors for iter-
ated time series forecasting. For each sin-
gle one-step-ahead prediction, our method
selects among different alternatives a local
model representation on the basis of a lo-
cal cross-validation procedure. In the lit-
erature, local learning is generally used for
function estimation tasks which do not take
temporal behaviors into account. Our tech-
nique extends this approach to the problem of
long-horizon prediction by proposing a local
model selection based on an iterated version
of the PRESS leave-one-out statistic. In or-
der to show the effectiveness of our method,
we present the results obtained on two time
series from the Santa Fe competition and on a
time series proposed in a recent international
contest.

1 INTRODUCTION

The use of local memory-based approximators for
time series analysis has been the focus of numerous
studies in the literature (Farmer & Sidorowich, 1987;
Yakowitz, 1987). Memory-based approaches do not es-
timate a global model of the dynamic process under-
lying the time series but defer the processing of data
until a prediction is explicitly requested. A database of
observed values is stored in memory and the prediction
is derived from an interpolation based on a neighbor-
hood of the current state (locally weighted regression).
These methods have been recently grouped under the
denomination of lazy learning methods (Aha, 1997). A
key issue in local learning is the selection of the local
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model structure which will have the best generaliza-
tion performance given a set of sparse and noisy data
(bias/variance dilemma). Under the assumption that
data is described locally by a linear model, enhanced
linear statistical procedures can be used to validate
the local approximator. One example is the PRESS
(Predicted Sum of Squares) statistic (Myers, 1994):
this statistic returns the leave-one-out cross-validation
error of a linear model as a by-product of the least-
squares regression. As a consequence, the performance
of a local linear model can be assessed with no addi-
tional computational burden, making easier the task of
selecting the best local approximator. Once the most
promising structure in cross-validation is selected, the
local model returns the prediction.

The goal of the paper is to present a method for long
term prediction based on the iteration of a one-step-
ahead local learning predictor. Forecasting the value
of a time series multiple steps ahead requires either a
direct prediction of the desired value or the iteration
of a one-step-ahead estimator. In order to emulate the
system, a direct predictor often requires higher func-
tional complexity than a one-step-ahead predictor. On
the other hand it is more difficult for a one-step-ahead
model to deal with the problem of accumulation of er-
rors due to the iteration (Farmer & Sidorowich, 1987).
The novelty of our approach consists in defining an it-
erated formulation of the PRESS leave-one-out statis-
tic as a criterion for local model selection in multiple-
step-ahead forecasting. We will show how the iterated
PRESS outperforms a non iterated criterion, by as-
sessing the generalization performance of a one-step
predictor on a horizon longer than a single step, yet
preserving nice properties of computational efficiency.
To our knowledge there are no methods in local model-
ing literature which adopt cross-validation methods for
iterated time series prediction. This technique makes
local learning an effective alternative to state-of-the-



art iterated techniques like recurrent neural networks
approaches which are typically based on time consum-
ing tuning procedures (e.g. back propagation through
time (Rumelhart et al., 1986) or real-time recurrent
learning (Williams & Zipser, 1989)).

2 ITERATED AND DIRECT
METHODS FOR PREDICTION

A time series is a sequence of measurements ¢! of an
observable ¢ at equal time intervals. The Takens the-
orem (Packard et al., 1980) implies that for a wide
class of deterministic systems, there exists a diffeomor-
phism (one-to-one differential mapping) between a fi-
nite window of the time series {o!1, ! "2 ... p!~™}
(lag vector) and the state of the dynamic system un-
derlying the series. This means that in theory it exists
a multi-input single-output mapping (delay coordinate
embedding) f : R™ — R so that:

Pt = ettt (1)

where m (dimension) is the number of past values
taken into consideration. This formulation returns a
state space description, where in the m dimensional
space the time series evolution is a trajectory, and each
point represents a temporal pattern of length m.

A model of the mapping (1) can be used for two objec-
tives: ome-step prediction and iterated prediction. In
the first case, the m previous values of the series are
assumed to be available and the problem is equivalent
to a problem of function estimation. In the case of
iterated prediction, the predicted output is fed back
as an input to the following prediction. Hence, the in-
puts consist of predicted values as opposed to actual
observations of the original time series. A prediction
iterated for k times returns a k-step-ahead forecasting.
However, iterated prediction is not the only way to
perform k-step-ahead forecasting. Weigend (Weigend,
1996) classifies the methods for k-step-ahead predic-
tion, according to two features: the horizon of the
predictor and the horizon of the training criterion. He
enumerates three cases:

1. the model predicts k steps ahead by iterating a
one-step-ahead predictor (Eq. 1) whose parame-
ters are optimized to minimize the error on one-
step-ahead forecast (one-step-ahead training cri-
terion)

2. the model predicts k steps ahead by iterating a
one-step-ahead predictor whose parameters are

Local Learning for Iterated Time-Series Prediction 33

optimized to minimize the error on the iterated
k-step-ahead forecast (k-step ahead training cri-
terion)

3. the model performs a direct forecast at time t+ k:
A N PN

Methods of class 1 have low performance in long hori-
zon task. This is due to the fact that they are es-
sentially models tuned with a one-step-ahead criterion
and therefore they are not able to take temporal be-
havior into account. Methods like recurrent neural
networks (Williams & Zipser, 1989) are an example
of class 2. Their recurrent architecture and the asso-
ciated training algorithm (temporal backpropagation)
are more able to handle the time-dependent nature of
the data. Direct methods of class 3 often require high
functional complexity in order to emulate the system.
An example of combination of local techniques of type
1 and 3 is provided by Sauer (Sauer, 1994). In the
next section we will present our local technique as a
member of the second class of predictors.

3 A LOCAL METHOD FOR
ITERATED PREDICTION

We propose a locally weighted regression method to es-
timate a one-step-ahead predictor trained and selected
according to a k-step-ahead criterion. Typically, the
data analyst who adopts a local regression approach,
has to take a set of decisions related to the model (e.g.
the number of neighbors, the kernel function, the para-
metric family, the distance metric). However, in local
learning literature different methods exist which auto-
matically select the adequate configuration (Atkeson
et al., 1997; Birattari et al., 1999) by adopting tools
and techniques from the field of linear statistical anal-
ysis. The most important of these tools is the PRESS
statistic which is a simple, well-founded and economi-
cal way to perform leave-one-out cross-validation and
to assess the performance in generalization of local lin-
ear models. By assessing the performance of each lin-
ear model, alternative configurations can be tested and
compared in order to select the best one in terms of
expected prediction.

Our method adopts the local learning procedure by
replacing the one-step-ahead criterion for model se-
lection, represented by the conventional PRESS, with
a k-step-ahead criterion, defined as iterated PRESS.
This criterion is used to select the best structure of
a one-step-ahead estimator with the aim of capturing
the long term dynamics underlying the available set
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Figure 1: Local modeling in the embedding space

of observations. In this paper we will present exper-
iments where the method is used to select query-by-
query (i.e. at each time step) the best number of neigh-
bors by keeping fixed the shape of the regression kernel
(tricube) and the distance metric (euclidean). How-
ever, this approach can be extended to the selection of
any desired model features, such as the set of regres-
sors or the degree of the local approximator (Bersini
et al., 1998). Our local learning procedure can be sum-
marized as follows:

1. The available realization of the time series is de-
scribed in terms of a dataset Dy of N ordered
pairs (x;,y;), where x; is a temporal pattern of
length m, and the concatenation of z; and the
scalar y; is a temporal pattern of length m + 1.
Following this formulation, the current state is it-
self described by a pattern Z of length m.

2. The one-step-ahead predictor is a local estimate
of the mapping f : R™ — R from the dataset Dy .
The estimate is performed by a locally weighted
regression which selects the neighbors of Z in the
input space R™.

3. The k-step-ahead prediction is performed by iter-
ating a one-step-ahead estimator.

4. The local model is selected in a space of alterna-
tive model configurations, each characterized by
a different number of neighbors.

5. The prediction ability of each alternative model is
assessed by an iterated formulation of the cross-
validation PRESS statistic (k-step-ahead crite-
rion).

The basic idea of cross-validation for local modeling is
represented in Fig. 1 which plots a time series in the
embedding space. The open circles denote the cur-
rent state ¢! and its unknown future values p!*! and

p!*t* while the dashed lines are a set of n observed
trajectories in the neighborhood of the current state.
Conventional cross-validation consists in assessing the
accuracy of the local predictor by repeating n times
the following procedure: the i*" trajectory is removed,
a one-step-ahead prediction of the removed trajectory
is computed with the observations of the it" trajectory
set aside and finally the leave-one-out error is obtained
by comparing the prediction with the real value. The
iterated PRESS generalizes this procedure by return-
ing the leave-one-out error along the i*" trajectory in
the case of a prediction iterated for £ > 1 steps. In
the next section we will show how the analytic expres-
sion of the iterated statistic can be derived from the
one-step-ahead leave-one-out PRESS formula.

3.1 THE CONVENTIONAL AND
ITERATED PRESS STATISTIC

For a more concise formulation and a simpler graphical
illustration, some simplifications are required. First,
we present the case of a local model where the neigh-
bors are weighted according to a rectangular kernel.
Second, we discuss only the one-dimensional case (i.e.
model in Eq. (1) with m = 1: ¢!t = f(p!)), leaving
the general case in the appendix. Furthermore, given
a generic regressor 7, the notation in bold characters
r stands for a vector where a constant value 1 is ap-
pended to the value r in order to consider the offset
term in the regression. Denote the values of the se-
ries at time ¢ and ¢ + 1 with the variables z = ¢ and
y = ¢!t respectively. Suppose that the value of the
series at time t is ¢! = %, that a set of n neighbors
{z:}-, of the current state is selected and that a lin-
ear regression is used to model locally the data. Let
€zy(i) ¢ = 1...n be the residual of the linear model
and e} (i) the leave-one-out residual

g (i) = yi — §—i = yi — @, By, (2)
that is the difference between the real value of the
mapping and the prediction §_; in z; of the linear
model estimated with the i*® point aside (see Fig. 2).

Results in linear statistical analysis say that a simple
relation (PRESS statistic) exists between e, (i) and
eqy (i) that is

esyi) = £24) ®

where h;; is the itP diagonal element of the Hat matrix
(see Appendix). Once the vector e} (i) is available,
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Figure 2: Conventional Press in the input-output

space X =» Y;

it is possible to compute a leave-one-out measure (e.g.
the mean squared error) of the performance of the local
model for a single step prediction. Unfortunately, this
index gives no hints about the expected performance
of this model when used for iterated prediction. In
fact, it is based on the representation of the time series
as an input-output static mapping and it cannot take
into account the behavior of the model as a dynamic
process. To this aim it is necessary to compute a k-
step-ahead criterion in order to measure the quality of
the prediction on a longer horizon.

Here, we present an iterated formulation of the PRESS
statistic for the horizon £k = 2. Notice that an it-
erated prediction from time ¢ to time ¢ + 2 is the
composition of two predictions: ¢t = fi(¢?) and
SH2 = £, (¢t with f; local model of the embed-
ding (1) at time .

Denote the values of the series at time ¢, t+1 and ¢+ 2
with the variables z = ¢!, y = ¢**! and 2z = ¢!*2 re-
spectively. Hence, the prediction problem is analogous
to the estimation of a composed mapping z = g(h(z))
whose components are z = g(y) and y = h(x) (see Fig.
3). Let ﬁy_j be the vector of the regression parameters
estimated on the set {(y;, zi)};’zl with the i-th sample
aside and let eg? (i) be the leave-one-out residual of the
mapping g. We will define the iterated cross-validation
residual for k = 2 as

ey, (i) =z — (9_)" 8,7 (4)
that is, the difference between the k = 2 steps ahead
real value and the iteration of two one-step leave-one-
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out predictions.

We illustrate the idea in Fig. 3. Here we have n = 5
triples {(:c,-,y,-,zi)}f:l and we want to estimate the
iterated cross-validation residual in z; = x3.

According to Eq. (2), eg; (3) is the difference between
ys and x3 0,7, and e (y3) is the difference between
z3 and (§_3)" 43, 2. From (2) and (4), the iterated
cross-validation residual ei,(3) is the difference be-
tween z3 and the regression value (@_3)Tﬁy_z3 where
§-3 = y3 — egy(x3) obtained by shifting y3 by the er-
ror €Y (3) incurred at the previous step. The formula
of the iterated PRESS for a generic dimension m and

a generic horizon k is derived in the Appendix.

The iterated cross-validation error returns an estimate
of the performance of an iterated one-step estimator
from time ¢ to time t + k. As far as long horizon pre-
dictions are required, this statistic returns richer infor-
mation than the simple one-step PRESS statistic and
allows more reliable local model selection for iterated
prediction.

4 EXPERIMENTS AND FINAL
CONSIDERATIONS

The iterated PRESS approach has been applied both
to the prediction of a real-world data set (A) and to
a computer generated time series (D) from the Santa
Fe Time Series Prediction and Analysis Competition.
The A time series has a training set of 1000 values
and a test set of 10000 samples: the task is to predict
the continuation for 100 steps, starting from different
points. The D time series has a training set of 100000
values and a test set of 500 samples: the task is to
predict the continuation for 25 steps, starting from
different points.

We adopt a local learning iterated prediction method
where the selection of neighbors is made according to
the iterated PRESS. The horizon of the iterated crite-
rion is h = 5 for the series A and h = 25 for the series
D. The number of neighbors is limited to range from
4 to 12 for both series. We adopt for the series A an
embedding model having the same dimension m = 16
proposed in (Sauer, 1994) and for the series D an em-
bedding model with m = 20 as reported in (Zhang &
Hutchinson, 1994). Each prediction of the local model,
inclusive of the modeling phase, takes about one sec-
ond of computation on a Pentium machine.

Table 1 compares the NMS (Normalized Mean
Squared) prediction errors on the A test set of the local
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Figure 3: Iterated Press in the composed space X - Y — Z

Table 1: NMSE of the predictions for time series A

Test data | Non iter. PRESS | Iter. PRESS | Sauer | Wan
1-100 0.350 0.029 0.077 | 0.055
1180-1280 0.379 0.131 0.174 | 0.065
2870-2970 0.793 0.055 0.183 | 0.487
3000-3100 0.003 0.003 0.006 | 0.023
4180-4280 1.134 0.051 0.111 | 0.160

Table 2: RMSE of the predictions for time series D

Test data | Non iter. PRESS | Iter. PRESS | Zhang Hutchinson
0-24 0.1255 0.0492 0.0665
100-124 0.0460 0.0363 0.0616
200-224 0.2635 0.1692 0.1475
300-324 0.0461 0.0405 0.0541
400-424 0.1610 0.0644 0.0720

predictor (iterated and non iterated) with the perfor-
mance statistics reported by Sauer (Sauer, 1994) and
Wan (Wan, 1994). Sauer used a combination of iter-
ated and direct local linear models with a fixed number
of four neighbors on a data set obtained by interpo-
lating the original one. Wan used a recurrent network
(FIR-network) with one input unit, two layers of 12
hidden units each, and one output unit. The architec-
ture was trained with temporal backpropagation, and
according to Wan, a training run typically took over
night on a Sun Sparc2.

Table 2 compares the local RMS (root mean squared)
errors on the series D with the results obtained
by (Zhang & Hutchinson, 1994). Zhang and Hutchin-
son adopted a combination of multilayer perceptrons

for iterated and direct predictions which were trained
on a Connection Machine for a total period of about
100 hours.

The iterated approach has been applied also to the pre-
diction of a time series proposed in the competition
of the International Workshop on Advanced Black-
box techniques for nonlinear modeling (Leuven, Bel-
gium; 1998). The data set! consists of 2000 values
and the task is to predict the continuation for the
next 200 steps (see Fig. 4). Two predictions submit-
ted by the authors with different embedding orders
(m = 20 and m = 24) ranked second and fourth, re-
spectively (Suykens & Vandewalle, 1998).

see http://www.esat.kuleuven.ac.be/sista/workshop/
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Figure 4: Predictions performed by the iterated PRESS predictor for the Leuven time series competition (full line:
to be predicted, dotted: prediction): a) embedding order m=20 (NMSE = 0.0475) b) m =24 (NMSE = 0.0667)

The experiments show that for long horizons the iter-
ated PRESS can improve the performance of the lo-
cal approach based on the conventional leave-one-out
cross-validation. At the same time it emerges that in
iterated tasks the local approach is able to outperform
complex nonlinear architectures at a reduced compu-
tational cost.

Appendix

The PRESS leave-one-out formula for a linear regres-
sion model with X input matrix [n, m+1] and y output
vector [n, 1] is derived in (Myers, 1994) as

€)= yi—xi oy =
Px;xI' P
hixI PXT.y_;
= y— foXTiy—i - ”1_7}“;1 =
_ (A= hi)yi - x{ PXZiy _ (5)
1—hi
_ (A —hi)yi— xi P(XTy — xiyi) _
1—hi
_ (L —ha)yi — i +hiyi _ ewy(d)
1— hi 1—hy

where P = (XTX)™1, h;; is the diagonal element of
the Hat matrix H = XPXT x7 is the i-t row of X,
i = xI PX Ty is the prediction of the linear regression,
ezy(i) = ¥; — y; is the residual and ﬂ;,j denotes the
vector [m + 1, 1] of least-squares coefficients computed
with the i*? data point aside. Note that the derivation
of the PRESS formula in (5) makes use of the following
equivalence XT,y_; + x;y; = X Ty.

We derive now the iterated PRESS formula for a prob-
lem of prediction from time ¢ to time ¢+ k having m as
embedding order . Let X be the embedding vector at
time ¢t and x; a neighbor of X. Consider the trajectory
in the m dimensional state space passing through x;:
let y; the embedding vector k& — 1 steps ahead with
respect to x; and z; the value of the series k steps
later than x;. The k-iterated leave-one-out residual at
time ¢ in the 4" point is defined as the value of the
leave-one-out regression f3,, i computed in the point y;
previously shifted of the vector §; of errors cumulated
in the k — 1 previous steps. Then the iterated PRESS
formula is derived as follows:

e (i) =2z — (yi —8:) B2 =
Py,yI'pP
1—hii
Pyiy! P

_ey2(i) + 0] [(1— his) + Pyiy! |[PY 2 i
1—hii
hii) + Pyiy! |P(Y" 2 —yizi)
1—hi
_ey2(i) + 07 [(1— hii) PY" 2] N
1—hi
4 0} [— (1 — hii)Pyizi + Pyiy; PY"z — Py.y] Pyizi]
1—hi;
hii)PY" z — Py;z; + Pyi3i]
1—hy -
€yz (@) + 51‘T [(1 - hii)ﬂyz — Pyiey. (@)]
1 —hi

=z —yiT[P—}- ]Y_Tizfi-i-

+67 [P+ JYTei =

_eys(0) +07[(1 -

ey:(6) + 87 [(1—

where we used the following equivalences: P =
YW, Yoz i +yizi = YTz, yIPYT2 = 3,
eyz(i) =Zi— 2,’, yl-TPyz-zi = hn and ﬂyz = PYTZ.



38 Gianluca Bontempi, Mauro Birattari, and Hugues Bersini

Acknowledgements

The work of Gianluca Bontempi was supported by the
European Union TMR, Grant FMBICT960692. The
work of Mauro Birattari was supported by the FIRST
program of the Région Wallonne, Belgium.

References

Aha D. W. 1997. Editorial. Artificial Intelligence
Review, 11(1-5), 1-6.

Atkeson C. G., Moore A. W. & Schaal S. 1997.
Locally weighted learning. Artificial Intelligence
Review, 11(1-5), 11-73.

Bersini H. , Birattari M. & Bontempi G. .
1998. Adaptive memory-based regression meth-
ods. Pages 2102-2106 of: Proceedings of the 1998
IEEE International Joint Conference on Neural
Networks.

Birattari M. , Bontempi G. & Bersini H. 1999.
Lazy learning meets the recursive least-squares al-
gorithm. In: Kearns M. S., Solla S. A. & Cohn
D. A. (eds), Advances in Neural Information Pro-
cessing Systems 11. Cambridge: MIT Press.

Farmer J. D. & Sidorowich J. J. 1987. Predict-
ing chaotic time series. Physical Review Letters,
8(59), 845-848.

Myers R. H. 1994. Classical and Modern Regression
with Applications. second edition edn. Boston,
MA: PWS-KENT Publishing Company.

Packard N. H. , Crutchfeld J. P. , Farmer J. D. &
Shaw R. S. 1980. Geometry from a time series.
Physical Review Letters, 45(9), 712-716.

Rumelhart D. E. ; Hinton G. E. & Williams R. K.
1986. Learning representations by backpropagat-
ing errors. Nature, 323(9), 533-536.

Sauer T. 1994. Time series prediction by using de-
lay coordinate embedding. Pages 175-193 of:
Weigend A. S. & Gershenfeld N. A. (eds), Time
Series Prediction: forecasting the future and un-
derstanding the past. Harlow, UK: Addison Wes-
ley.

Suykens J. A. K. & Vandewalle J. (eds) 1998.
Nonlinear Modeling: Advanced Black-Box Tech-
niques. Kluwer Academic Publishers. Chap. The
K. U. Leuven Time Series Prediction Competi-
tion, pages 241-251.

Wan E. A. 1994. Time series prediction using a con-
nectionist network with internal delay lines. Pages
195-217 of: Weigend A. S. & Gershenfeld N. A.
(eds), Time Series Prediction: forecasting the fu-
ture and understanding the past. Harlow, UK: Ad-
dison Wesley.

Weigend A. S. 1996. Time Series Analysis and Pre-
diction. Chap. 12, pages 395-449 of: P. Smolen-
sky M. C. Mozer & Rumelhart D. E. (eds),
Mathematical Perspectives on Neural Networks.
Lawrence Erlbaum Associates.

Williams R. & Zipser D. 1989. A learning algorithm
for continually running fully recurrent neural net-
works. Neural Computation, 1, 270-280.

Yakowitz S. 1987. Nearest-neighbour methods for
time series analysis. Journal of Time Series Anal-
ysis, 8(2).

Zhang X. & Hutchinson J. 1994. Simple architec-
tures on fast machines: practical issues in non-
linear time series prediction. Pages 219-241 of:
Weigend A. S. & Gershenfeld N. A. (eds), Time
Series Prediction: forecasting the future and un-
derstanding the past. Addison Wesley.



