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Abstract: This paper presents a local method for modeling and control of nonlinear
dynamical systems, when only a limited amount of input-output data is available.
The proposed methodology couples a local model identification inspired by the lazy
learning technique, with a control strategy based on linear optimal control theory.
The local modeling procedure uses a query-based approach to select the best model
configuration by assessing and comparing different alternatives.

The control method combines the linearization provided by the local learning
techniques with optimal linear control theory, to control nonlinear systems in far from
equilibrium configurations. Simulation results of the control of a complex nonlinear

system (the bioreactor) are presented.

Keywords: Discrete-time nonlinear control systems, Optimal control of nonlinear

systems

1. INTRODUCTION

In this paper we present a local method to model
and control an unknown dynamical system start-
ing from a’ limited amount of input-output data.
Local. techniques are an old idea in time series
prediction (Farmer and Sidorowich, 1987), clas-
sification (Cover and Hart, 1967) and regres-

sion (Cleveland, 1979). The idea of local ap-
proximators as alternative to global models origi-
nated in non-parametric statistics (Epanechnikov,
1969), (Benedetti, 1977) to be later rediscovered
and developed in the machine learning field (Aha,
1989), (Bottou and Vapnik, 1992). Recent work
on lazy learning (a.k.a memory-based or instance-
based learning) gave a new impetus to the adop-
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tion of local techniques for modeling (Atkeson
et al., 1997a) and control problem (Atkeson et

al., 1997b).

Here, we propose a model identification method-
ology based on the use of an iterative optimization
procedure to select the best local model among a
set of different candidates. Modeling a nonlinear
mapping using a limited number of observations
requires the data analyst to make several choices
involving the set of relevant variables and observa-
tions, the model structure, the learning algorithm,
and the validation protocol. Our method defers
all of these decisions until a prediction or a local
description is requested (query-based approach).
In classical methods the several options of a local
model are designed according to heuristic criteria
and a priori assumptions. Here we propose an
automatic tuning procedure which searches for
the optimal model configuration, by returning for
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each candidate model its parameters and a statis-
tical description of its generalization properties.

The second contribution of the paper is a non-
linear control design technique, which uses ex-
tensively analysis and design tools imported from
linear control. The idea of employing linear tech-
niques in a nonlinear setting is not new in con-

trol literature but had recently a new popular-

ity thanks to methods for combining multiple
estimators and controllers in different operating
regimes of the system (Murray-Smith and Jo-
hansen, 1997). Gain scheduling (Shamma and
Athans, 1992), fuzzy inference systems (Takagi
and Sugeno, 1985), local model networks (Johansen
and Foss, 1993) are well-known examples of con-
trol techniques for nonlinear systems inspired to
linear control. However, two strong assumptions
underlie linearization control methods: an ana-
lytical description of the equilibrium points lo-
cus is available and the system is supposed to
evolve in a sufficiently restricted neighborhood of
the desired regime. Here we propose an indirect
control method for performing finite-time horizon
control which requires only a limited amount of
input-output data from the observed system be-
havior.  The controller is designed with optimal
control techniques parameterized with the values
returned by the linear local estimator. The idea
is that a combination of a local estimator with

a time varying optimal control can take into ac- -

count the nonlinearity of a system over a wider
range than conventional linearized quadratic reg-
ulators (LQR).

The remainder of the paper is organized as follows.
In section 2 we will introduce our modeling tech-
nique based on an iterative selection procedure.
Details on the algorithm for local optimal control
can be found in section 3. Finally, in section 4
an example of control of a simulated nonlinear
systems is given.

2. LOCAL MODELING AS AN
OPTIMIZATION PROBLEM

Modeling from data involves integrating human
insight with learning techniques. In many real
cases, the analyst faces a situation where a limited
set of data is available and an accurate prediction
is required. Often, information about the order,
the structure or the set of relevant variable is miss-
ing or not reliable. The process of learning consists
of a trial and error procedure during which the
model is properly tuned on the available data. In
the lazy learning approach, the estimation of the
value of the unknown function is solved giving
the whole attention to the region surrounding
the point where the estimation is required. The
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classical non-adaptive memory-based procedure
essentially consists of these steps:

o for each query point z,, defining a set of
neighbors, each weighted according to some
relevance criterion (e.g. the distance)

e choosing a regression function f in a re-
stricted family of parametric functions esti-
mating the local weighted regression

¢ computing the regression value f(z,).

The data analyst who adopts a local regression
approach, has to take a set of decisions related
to the model (e.g. the number of neighbors, the
weight function, the parametric family, the fit-
ting criterion to estimate the parameters). We
extend the classical approach with a method that
automatically selects the adequate configuration.
To this aim, we simply import tools and tech-
niques from the field of linear statistical anal-
ysis. The most important of these tools is the
PRESS statistic (Myers, 1990), which is a sim-
ple, well-founded and economical way to perform
leave-one-out cross validation (Efron and Tibshi-
rani, 1993) and therefore to assess the perfor-
mance in generalization of local linear models.
Due to its short computation time which allows its
intensive use, it is the key element of our approach
to modeling data. In fact, if PRESS can assign
a quantitative performance to each linear model,
alternative models with different configurations
can be tested and compared in order to select the
best one. This same selection strategy is indeed
exploited to select the training subset among the
neighbors, as well as various structural aspects
like the features to treat and the degree of the
polynomial used as a local approximator. The
general ideas of the approach can be summarized
in the following way.

(1) The task of learning an input output map-
ping is decomposed in a series of linear esti-
mation problems

(2) Each single estimation is treated as an opti-
mization problem in the space of alternative
model configurations

(3) The estimation ability of each alternative
model is assessed by the cross-validation per-
formance computed using the PRESS statis-
tic. '

3. LAZY LEARNING OPTIMAL CONTROL

Although nonlinearity characterizes most real
control problems, methods for analysis and con-
trol design are considerably more powerful and
theoretically founded for linear systems than for
nonlinear ones. Here we propose a hybrid architec-
ture for the indirect control of nonlinear discrete
time plants from their observed input-output be-
havior. This approach combines the local learning



identification procedure described in the previous
section with control techniques borrowed from
conventional linear optimal control

Consider a class of discrete time dynamic systems
whose equations of motion can be expressed in the
form

y(k) = f(y(k - 1)’ .. ay(k - ny)a .
u(k—4d),...,u(k—d—nu),
e(k—1),...,e(k—ne)) +ek) , (1)

where y(k) is the system output, u(k) the in-
put, e(k) is a zero-mean disturbance term, d is
the relative degree and f(-) is some nonlinear
function. This model is known as the NARMAX
model (Leontaritis and Billings, 1985). Let us as-
sume we have no physical description of the func-
tion f but a limited amount of pairs [u(k),y(k)]
from the observed input-output behavior. Defin-
ing the information vector

QD(k—l) = [y(k— l)a---sy(k_ny);
u(k=d),...,u(k —d-nu),
e(k=1),...,e(k—ne)] , (2)

the system (1) can be written in the input-output
form y(k) = f(p(k = 1)) + e(k).

Consider the optimal control problem of a non-

linear system over a finite horizon time. Using a

quadratic cost function, the solution to an optimal

control problem is the control sequence U that
nimizes

J= -;-y(tf)TP(tf)y(tf) +
3 [ u(k)” |
k

with Qk,Mk,Rg,Pf weighting terms designed a
priori. While analytic results are not available for
a generic nonlinear configuration, optimal control
theory (Stengel, 1986) provides the solution for
the linear case. Hence, we will now present the
nonlinear problem in a linear time varying setting.

M,
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Consider the trajectory of the dynamical sys-
temr once forced by an input sequence U =
[u(1),u(2),...,u(ts)]. Assume that the system
can be linearized about each state of the trajec-
tory. Neglecting the residual errors due to the first
order Taylor series approximation, the behavior of
the linear system along a generic trajectory is the
behavior of a linear time varying system whose
state equations can be written in the form

y(k+1) = A(p(k))y(k) + B(p(k))u(k)
+ K (p(k))
= Aky(k).+ Bru(k) + Ky,
with Ay, By, K parameters of the system lin-

earized about the query point @(k). Kj is an
offset term that equals zero in equilibrium points.

4)
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This term requires a slight modification in the
linear controller formulation. However, in order
to simplify the notation, in the following we will
neglect the constant term.

Optimal control theory provides the solution for
the linear time varying system (4). At each time
step the optimal control action is

u(k) = —(Bg + Bf Pty Bi) ™
(MT + BT P Ar)y(k)  (5)
where Pk is the solution to the backward Riccati
equation.

Pr = Qi+ Al Pes1 A
— (My, + AF Pis1 By) (Ry, + BF Pry1 Bi) ™t
(MF + BF Pi1 Ar)
having as final condition
P(ts) = Py (M
The piecewise-constant optimal solution is ob-
tained by solving the Euler-Lagrange equations,

the three necessary and sufficient conditions for
optimality when the final time is fixed.

(6)

0H,

0= Ef = ngk -+ ’U,LQ:R}, + AZ+1Bk (8)
OH,

AT = TP (10

with Ay = Pryx adjoint term in the augmented
cost function (Hamiltonian)

Hy=J+ Mo (4(k) + Beu(®)  (11)

The Euler-Lagrange equations do not hold for
nonlinear systems. Anyway, if the system can
be represented in the form’ (4), formula (8) can
be used to compute the derivative of the cost
function (3) with respect to a control sequence U.
This requires at each time k the matrices Ay, By
that can be obtained by linearizing the system
dynamics along the trajectory forced by the input
sequence.

As discussed in section 2, our modeling procedure
performs system linearization with minimum ef-
fort, no a priori knowledge and only a reduced
amount of data. Hence, we propose an algorithm
for nonlinear optimal control, formulated as a
gradient based optimization problem and based
on the local system linearization.

The algorithm searches for the sequence of input
actions

U°Pt = qryg I%ln J(U? (12)
that minimizes the finite-horizon cost function (3)
along the future t; steps. The cost function .J(U?)
for a generic sequence U* is computed simulating
forward for t; steps the model identified by the



local learning method. The gradient of J(U*) with
respect to U? is returned by (8).

These are the basic operations of the optimization
procedure (described in detail in Fig. 1) executed
each time a control action is required:

o forward simulation of the lazy model forced
by a finite control sequence U? of dimension
tf

e linearization of the simulated system about
the resulting trajectory

e computation of the resulting finite cost func-
tion J(U?) :

e computation of the gradient of the cost func-
tion with respect to simulated sequence

¢ updating of the sequence with a gradient
based algorithm.

Once the séarch algorithm returns U°P%, the first
action of the sequence is applied to the real system
(receding horizon control strategy (Clarke, 1994)).
Let us remark how the lazy learning model has a
twofold role in the algorithm in Fig. 1: (i) at step 2
it behaves as an approximator which predicts the
behavior of the system once forced with a generic
input sequence (ii) at step 3 it returns a linear
approximation to the system dynamics.

Atkeson et al. (Atkeson et al., 1997b) and Tanaka
(Tanaka, 1995) applied infinite-time LQR. regu-
lator to nonlinear systems linearized with lazy
learning and neuro-fuzzy models. The drawback
of these approaches is that an equilibrium point
or a reference trajectory is required. Also, they
make the strong assumption that the state of the
system will remain indefinitely in a neighborhood
of the linearization point. As discussed above, the
advantage of the proposed approach is that these
requirements do not need to be satisfied. First,
lazy learning is able to linearize a system in points
far from equilibrium. Secondly, the time varying
approach makes possible the use of a linear control
strategy even though the system operates within
different linear regimes.

Remark: we make the assumption that the pa-
rameters returned by the local models are a real
description of the local behavior (certainty equiv-
alence principle). This is a restricting assumption
which requires a sufficient degree of accuracy in
the approximation. However, we see in the op-
timal control theory a possible solution to this
limitation. In fact, stochastic optimal control the-
ory provides a formal solution to the problem of
parameter uncertainty in control systems (dual
control (Fel’dbaum, 1965)). Further, our model-
ing procedure can return at no additional cost a
statistical description of the estimated parameters
. Hence, future work will focus on the extension
of the technique to the stochastic control case.
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4. THE CONTROL OF THE BIOREACTOR

Consider the bioreactor system, a well-known
benchmark in nonlinear control (MillerIIl et al.,
1990). The bioreactor is a tank containing water,
nutrients, and biological cells. Nutrients and cells
are introduced into the tank where the cells mix
with the nutrients. The state of this process is
characterized by the number of cells (c1) and the
amount of nutrients (¢2). Bioreactor equations of
motion are the following:

% = —c1u+c1(1—c2)e£$
dez cou+c1(1 c)e'c:/2 1+5
a2 ! 2 1+8-¢

(13)

with 8 = 0.02 and v = 0.48. In our experiment
the goal was to stabilize the multi-variable system
about the unstable state (¢}, ¢3) = (0.2107,0.726)
by performing a discrete control action each 0.5
seconds.

‘We use the control algorithm described in section
3. The system is modeled in the input-output
form (1) having the orders ny = 2,nu = 1,ne =
0,d = 1. The horizon of the control algorithm
is fixed to ty = 5. The initial state conditions
are set by to the random initialization procedure
defined in (MillerIII et al., 1990). We initialize the
lazy learning database with a set of 1000 points
collected by preliminarly exciting the system with
a random uniform input. The database is then up-
dated on-line each time a new input-output pairs
is returned by the simulated system. The plot in
Fig. 2a) shows the output of the two controlled
state variables, while the plot in Fig. 2b)below
the control action.

The bioreactor is considered as a challenging prob-
lem for its nonlinearity and because small changes
in parameters value can cause the bioreactor to
become unstable. These results show how using
local techniques it is possible to control complex
systems on a wide nonlinear range, with only a
limited amount of points and no a priori knowl-
edge about the underlying dynamics.

5. CONCLUSIONS AND FUTURE
DEVELOPMENTS

In control literature local controllers have gen-
erally a restricted range of operating conditions.
Here, we proposed a controller, which although
making extensive use of local techniques, works
on an extended range of operating conditions.
These characteristics makes of it a promising tool
for intelligent control systems, inspired to tra-
ditional engineering methods but able to deal
with complex nonlinear systems. An application



(1) Initialization of the algorithm with a random sequence of actions U?.

(2) Forward simulation of the system forced by the sequence U? = [ul(k),ul(k +1),...,u}(k +
tf)] where ui(j) denotes the action applied to the simulated system at time j. The system
behavior is predicted using the model identified by the local learning method.

(8) Formulation of the nonlinear system in the time varying form. The parameters A;, Bj, K
with )
j=k,...,k+t; are returned by the local model identification.

(4) Backward resolution of the discrete-time Riccati equation (6) for the resulting time varying

system.

(5) Computation of the cost function (3).

(6) Computation of the gradient vector aa—[‘,”; = [Bua;{k)’ au:‘?;;’ e s au?(Jt,)] by using for-
mula (8).

(7) Updating of the control sequence U: — Uitl. The optimization step is performed by a
constrained gradient based algorithm implemented in the Matlab function constr (Grace,
1994).

' (8) If the minimum has been reached (U = Uit?) goto 9 else goto 2.
(9) Control action execution. The first action uS?*(k) of the sequence USP* is applied to the real

system.

Fig. 1. The lazy learning optimal control algorithm

K " with other certainty equivalence controllers (e.g.
minimum variance controller, pole placement) and
the extension of the method to stochastic dual

control.
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