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Abstract- Lazy learning is a memory-
based technique which query-by-query se-
lects a local model representation by assess-
ing and comparing different alternatives in
cross-validation. The paper investigates the
effectiveness of a lazy learning method for
time series prediction. The paper contribu-
tion is a formulation of the PRESS statistic
for iterated prediction in time series forecast-
ing. Lazy learning is generally used for func-
tion estimation purposes which do not take
temporal behavior into account. Our tech-
nique extends the idea of local estimation to
the problem of long-horizon prediction. Ex-
perimental applications of the techniques to
the a time series prediction are presented.

I. Introduction

Modeling from data has been the object of
several disciplines from nonlinear regression
to machine learning and system identifica-
tion. In the literature dealing with this
problem, two main opposing paradigms have
emerged: local memory-based versus global
methods.

Global modeling builds a single functional
model of the dataset. This has traditionally
been the approach taken in neural network
modeling and other form of nonlinear sta-
tistical regression. The available dataset is
used by a learning algorithm to produce a
model of the mapping and then the dataset
is discarded and only the model is kept.

Local memory-based algorithms defer pro-
cessing of the dataset until they receive an
explicit request for information (e.g. pre-
diction or local modeling). A database of
observed input-output data is always kept
and the estimate for a new operating point
is derived from an interpolation based on
a neighborhood of the query point. Local
techniques are an old idea in classification,
regression and time series prediction. The
idea of local approximators as alternative to
global models originated in non-parametric
statistics to be later rediscovered and devel-
oped in the machine learning field. Recent
work on lazy learning [1] gave a new impe-
tus to the adoption of local techniques for
modeling and control problems [3].

Despite the differences in the learning pro-
cedure, global and local modeling share a
common issue: how to select the model
structure which will have the best gener-
alization performance given a set of noisy
data. This is the well-known bias/variance
dilemma [5] which although in different for-
mulations, reappears each time one esti-
mates a model from data. When no a pri-
ori assumptions can be made about the un-
known process underlying the data, a com-
mon approach is to assess the quality of an
estimated model using data which are in-
dependent from those used for training. In
many practical situations, however, the ex-
iguity of data discourages the method of
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keeping aside part of the data set for vali-
dation purposes. A valid alternative is the
adoption of cross-validation techniques [11].
These procedures allow to use an high pro-
portion of the available data to train the
model, while also making use of all data
points in evaluating the cross-validation er-
ror. Unfortunately, this approach has the
disadvantage that the training process has
to be repeated as many times as the num-
ber of partitions of the training set. In the
case of global nonlinear models, the conse-
quence is a relevant increase in the amount
of processing time. '

The local paradigm can represent a pos-
sible solution to this dilemma. Local mem-
ory based modeling adopts-a query-based ap-
proach where the linear identification pro-
cedure focuses only on a neighborhood of
the point where an estimation is required
(local weighted regression). This allows the
adoption of .enhanced linear statistical pro-
cedures to validate the local approximator.
One example is the PRESS statistic [7]: this
statistics returns the leave-one-out cross-
validation error 6f a linear model at the same
computational cost of the linear regression.
As a consequence, the performance of a local
linear model can be easily assessed with no
additional computational burden. It is wor-
thy noting how this also means that local
learning returns along with each predicted
value an estimation of its standard error.
This property is more relevant if compared
with the intrinsic difficulty of extracting the
same information from other nonlinear ap-
proximators (e.g. neural networks). In this
paper we will show how the combination of
the PRESS validation method with linear re-
gression techniques can be effective for time-
series prediction. .

We present a formulation of the PRESS
statistic for iterated prediction in time se-
ries estimation. In [4] we proposed a query-
based method to select the order of the

model and the number of neighbors for a sin-
gle step prediction. Here we extend the lazy
learning idea to iterated long-time horizon
prediction. We will show how the PRESS
formula can be easily extended to longer
horizon than a simple one-step prediction
preserving its property of computational ef-
ficiency. This technique makes of lazy learn-
ing an effective alternative to recurrent neu-
ral networks approaches [9] typically based
on time consuming tuning procedures (e.g.
back propagation through time).

II. Iterated PRESS for time series
prediction

A time series is a sequence of measurements
¢" of an observable ¢ at equal time inter-
vals. The Takens theorem [8] implies that for
a wide class of deterministic systems, there
exists a diffeomorphism (one-to-one differen-
tial mapping) between a finite window of the
time series ¢*~1,*=2, ..., ™ (lag vector)
and the state of the dynamic system under-
lying the series. This means that in theory
it exists a multi-input single-output mapping
(delay coordinate embedding) f: R™— > R

Pt = f(eh et (D)

where m (dimension) is the number of past
values taken into consideration. Let ® be a
matrix of dimensionality [N x m], and y a
vector of dimensionality [N x 1], where &(i)
is a generic lag vector and y(z) is the corre-
sponding next value of the series. A model
of the mapping ( 1) can be used for two ob-
jectives: single step prediction and iterated
prediction. In the first case, the m previ-
ous values of the series are assumed to be
available and the problem is equivalent to a
problem of function estimation. This model
returns a I-step ahead prediction.

In the case of iterated prediction, the pre-
dicted output is fed back as input for the
next prediction. Hence, the inputs consist
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of predicted values as opposed to actual ob-
servations of the original time series. A pre-
diction iterated for h times returns a h-step
ahead forecasting.

However, iterated prediction is not the
only way to make h-step ahead forecasting.
Weigend [2] classifies the models for h-step

_ ahead prediction, according to two features:
the horizon of the model prediction and the
horizon of the training criterion. He enumer-
ates three cases:

1. the model predicts one-step ahead
(Eq. 1) and the parameters of the
model are optimized to minimize the
error on one-step ahead forecast (one-
step ahead criterion)

- 2. the model predicts one step ahead but
the parameters of the model are op-
timized to minimize the error on the
iterated h-step ahead forecast (h-step
ahead criterion)

3. the model makes a direct forecast at
time t + h:

th= Rt et e

Methods of class 1 have a low perfor-
mance in long horizons task. This is due
to the fact that they are essentially mod-
els which are tuned on a one-step criterion
which is not capable of taking temporal be-
havior into account. Methods like recurrent
neural networks [6] are an example of class
2. Their recurrent architecture and the as-
sociated training algorithm (temporal back-
propagation) are more able to handle the
time-dependent nature of the data. Direct
methods of class 3 often require high func-
tional complexity in order to emulate the
system. An example of combination of lo-
cal techniques of type 1 and 3 is provided by
Sauer [10] who uses both the approaches to
improve the iterated prediction of his archi-
tecture.

=) (2)

In this section we present a lazy technique
of type 2 which extends the neighbor se-
lection method to iterated prediction tasks.
The lazy model still returns an one-step
ahead prediction but the choice of neighbors
is no more done on the basis of a one step
ahead cross-validation but on the basis of an
iterated formulation of the PRESS statistic
(h-step ahead criterion).

To explain the idea, let us limit to a sim-
ple case of a one step ahead lazy model with
an h-step ahead criterion for model selec-
tion where h = 2. We are at time ¢ and
we want to predict the value ¢;y; with an
iterated method. The standard lazy idea
consists in searching for the optimal number
of neighbors in order to approximate locally
the dynamics f with a linear model. A sin-
gle step criterion chooses the model which is
expected to be the best generalizer at time
t + 1. Here, instead, we choose the model
that, if iterated up to time ¢ + 2, would have
the best generalization.

Let us now compute an iterated formula-
tion of the PRESS statistic for A = 2. Note
that an iterated prediction from time ¢ to
time ¢ + 1 is the composition of two map-
pings: ¢! = f(gb, 'L, ., 0" ™) and
ot = f(EtH ot ¢t—m+2) Hence-
forth, we will refer to a configuration with
two mappings z = g(y) and y f(z), and a
set of N points {(:z,,y,, z,)}

We denote with efy (i) the cross validation
residual of the hnea.r model estimated on the
data set {(z;,1:)} and with €S} () the cross
validation residual of the hnea.r model esti-
mated on the data set {(y;, z,)} In a single
step task (e.g. the mapping X — Y) the
cross-validation residual for the 7 — th sam-
ple (egy (7)) is the difference between the real
value of the mapping (y;) and the prediction
of model estimated with the i-th point aside
(z;). In a iterated task (e.g. the mapping
X — Z) the cross-validation residual for the
i—th sample (denoted by eit, (7)) is the differ-
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ence between the real value of the mapping
(2;) and the the prediction obtained by cu-
mulating the predictions of the two models
estimated with the i-th points (z; and y;)
aside.

We illustrate the idea with Fig. 1. Here we
have 4 samples and we want to estimate the
iterated cross-validation residual in z; = z3.
Let RSy (y:) be the value in y; of the regres-

z

sion estimated on the training set {(ys, i)}
with the sample y; aside and R, (z:) the
analogous for the zy mapping. By defini-
tion egy (z3) is the difference between ys and
Ry (z3), and ef;(ys) is the difference be-
tween z3 and Ry} (ys). The figure shows how
the sequence of predictions with the points
z3 and y3; aside leads from A to C through
B. Then, the iterated cross-validation resid-
ual el (7) is the difference between 23 and
the regression value RY*(y; — eSy(z3)) com-
puted in the-data point ys shifted of the error
€S (z3) occurred at the previous step.

The analytical expression of the iterated
PRESS for the composition of the two map-
pings is computed in Appendix VI. Here we
report the value for our simplified case:

it ) = 22

N esy (1) [(1 — his)B — (YTY)ysey, (1))
1-hs
@)

where ey (i) is the residual, hy is the di-
agonal element of the HAT matrix and 8
denotes the least squares parameters of the
model fitted on the dataset {(yi,zi)}.

In the case of time series prediction we
have not a single-input single-output case
but a more complex mapping. In this
case the analytical expression of the iterated
. PRESS (see Appendix VI.for an horizon of

h steps is

e(i) + 8;[(1 - his)B — (37@) " 1p,e(d)]

i) = e
(@

where e(7) is the residual, h;; is the diagonal
element of the HAT matrix and 8 denotes
the least squares parameters of the regres-
sion of y on @. The symbol §; denotes the
i—th row of the matrix § of dimension [N, m]
having as generic element §(3, 7) the iterated
cross validation error of the i-th point at the
j-th previous time step. For instance, in the
case of an horizon h = 2 only the first col-
umn of § differs from zero. The formula (4)
was obtained for a non weighted regression.
The extension to a weighted regression re-
quires some slight modifications.

We remark that the vector of iterated
cross-validation errors in Eq. 4 returns at
time ¢ the expected generalization of the it-
eration of a local model from time ¢ up to
time ¢ + h. At each time ¢ this statistic re-
turns a richer information than the simple
one-step PRESS statistics and/or the direct
h-step PRESS. This allows a more reliable
local model selection for iterated prediction.

III. Predicting a chaotic time series

The iterated PRESS approach has been ap-
plied to the prediction of a “real-world” data
set, recorded from a far-infrared laser in
chaotic state. This series was used in the
Santa Fe Time Series Prediction and Analy-
sis Competition [13] as data set A. The train-
ing set is a series of 1000 values, the test set is
made of 10000 samples: the task is to predict
the continuation for 100 steps, starting from
different points. We adopt a lazy learning
method where the selection of neighbors is
made according to the iterated PRESS with
horizon A = 2. The number of neighbors is
limited to range from 4 to 8. Table 1 sum-
marizes our results compared with those of
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" Figure 1: Iterated Press

Table 1:
NMSE Non iterated PRESS | Iterated PRESS | Sauer | Wan |
1001-1100 0.350 0.029 0.077 | 0.055
2180-2280 0.035 0.028 0.174 | 0.065
3870-3970 0.003 0.003 0.183 | 0.487
4000-4100 0.022 0.030 0.006 | 0.023
5180-5280 0.001 0.001 0.111 | 0.160

Sauer [10] and Wan [12] with different start-
ing points.

Sauer used a combination of iterated and
direct local linear models with a fixed num-
ber of neighbors (4) on a data set obtained
by interpolating the original one. Wan used
a recurrent network (FIR-network) with one
input unit, two layers of 12 hidden units
each, and one output unit. The results show
how our lazy iterated approach outperforms
non lazy methods and it is largely better
than the non iterated lazy in the interval
1000 — 1100 which was the object of the com-
petition.

IV. Predicting for the time series
competition

The iterated PRESS approach has been ap-
plied also to the prediction of a time series in
the comnpetition of the International Work-
shop on Advanced Black-boz techniques for

nonlinear modeling. The available data set
consists of 2000 values and the task is to
predict the next 200 samples. We .adopt a
lazy learning method where the selection of
neighbors is made according to the iterated
PRESS with horizon A = 2. The number
of neighbors is limited to range from 4 to
8. The authors submitted to the competi-
tion two continuations obtained by consid-
ering two delay embeddings having differ-
ent orders (m = 20 and m = 24 in the
Eq. (1)). These orders were selected as they
resulted the most promising ones according
to a training and test procedure on the avail-
able 2000 points. ' :

V. Conclusions

A large amount of literature in nonlinear
modeling focuses on the definition of com-
plex architectures having nice properties of
nonlinear approximation.  Unfortunately,
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tuning these models with a limited amount
of data requires a large amount of time and
often leads to poor generalization. This pa-
per aims to demonstrate how the definition
of effective validation procedures can largely
compensate the simplicity of the approxima-
tor structure. We showed how local models
whose parameters have been designed by op-
timizing the generalization performance can
outperform complex neural architectures.

VI. Appendix

The PRESS residual [7] is given by

eV (i).=yi — ‘P?ﬁ-i =

‘ Py, P
=vi— o} [P+ %—‘Pz”]q’zw—i =
1- hu
_ _e(@)
=1ho (5)

where P = (87®)"!, @, is a vector of dimen-
sionality [m, 1], e(7) is the residual and B_; de-
notes the vector [m,1] of least-squares coeffi-
cients computed with the i-th data point aside.
The iterated PRESS residual is the value of the
regression B_; in the i-th point ¢; shifted of
the vector [m, 1] of errors (67 ) cumulated in the
previous steps. Then we have:

') = yi = (p; = 67)7B_; =

Py, P
=Yi— (PiT [P + T‘P_:_S—;;_—.—]iny—i +
L 117

T
o+ o; [P + -P—I(P—i‘Phi—_.P]@Ziy-i =
_ e(z) + 6; [(1 —hi) + PLP,-(,Q?]P@Z,;y-i _
= T =

_ () +8:[(1 — his) + P, o |P(87y — 1) -

1—hy

e(i) + 8: [(1 — hi)P3Ty — (1 — hiy)Pop,i]
= +
1—hi;
;[P0 P& Ty — P, o] P,y
+ =
_ 1—hii
_e()) +8:[(1 - hi)PBTy — P,y + Pop,ii]
- 1—hs
_e()) +8:[(1 = hii)B — Pyse(i)]
- 1—hi

(7

where the following equivalences hold: ®%;y_;+
pyi = €7y (in Eq 6), ¢]P2Ty = g,
@I Pp,y; = hi; and B = P37y (in Eq. 7).
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