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Abstract

Cross-validation methods are commonly used as an effective way to esti-
mate from a finite data set the generalization properties of a function approx-
imator. It is common belief that cross-validation, at the cost of an increased
computational expense, returns an estimate of the real generalization error
that is more reliable than the simplest resubstitution estimate. However, few
results providing bounds on the accuracy of the cross-validated estimate are
reported in literature. This paper suggests that the lack of significant result-
s could be related to a misunderstanding of the quantity which is targeted
by a cross-validation estimator. The paper thus distinguishes two different
ways of assessing a learning procedure: the hypothesis-based approach and
the algorithm-based approach. We show that while the well-known results of
Vapnik’s learning theory can be considered as an example of the hypothesis-
based approach, cross-validation can be more profitably interpreted in the
algorithm-based framework. Adopting the algorithm-based interpretation for
cross-validation, we derive a new bound on its accuracy. Unlike previous re-
sults, the bound is independent of the Vapnik-Chervonenkis dimension of the
hypothesis class, and provides insight into the behavior of cross-validation
for large data sets.

1 Introduction

A supervised learning procedure consists in a learning algorithm L which takes
as an input a training set Dy made of N input-output pairs, and returns one
hypothesis h(-, an) chosen in a class A. A vast amount of literature focused on the
problem of assessing the learning procedure by estimating the generalization ability
of the hypothesis h(-,an) returned by L. Many estimates of the generalization
ability have been proposed and examined in the literature, as the training error, the
cross-validation estimates [8] and the hold-out estimate [1]. While a large amount
of results have been found in the case of the training error, there are still few
results concerning the reliability of the cross-validation estimates. This happens
in spite of the common attitude in the learning community which considers cross-
validation as more reliable than the training error in measuring the generalization
power of a learning machine .
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Goal of previous works on cross-validation was to bound the deviation between
the cross-validation estimate and the generalization error R(ay) of the selected
hypothesis. To our knowledge, some results are reported in the work of Rogers
and Wagner [6], and Devroye and Wagner [2] who proved that for several local
algorithms, the leave-one-out estimate can be as close as O(1/v/N) to R(ax). A
good description of this work can be found also in [1]. These results suggest the
leave-one-out as preferable to the training error, yielding an estimate of the true
error whose accuracy is independent of any notion of hypothesis complexity.

So far, however, for a large class of learning algorithms, no theoretical proof
of the expected supremacy of the cross-validation over the resubstitution estimate
has been found. Kearns and Ron [5] proved that, for training error minimization
algorithms, the error of the leave-one-out estimate is not much worse than the
worst case behavior of the training error estimate (sanity-check bound). Other
results on accuracy of the cross-validation estimate were proposed by Holden [4],
but, as referred by the author, they did not obtain an improvement over the bound
for the resubstitution estimate as desired.

Our paper explores the idea that the lack of definitive results might be a con-
sequence of the particular interpretation of cross-validation adopted by these au-
thors. In fact, these results are based on the idea that cross-validation is an es-
timate of the true generalization error R(ay) of the hypothesis function h(-, ay)
chosen by the learning algorithm L. Cross-validation is then viewed essentially
as a measure of the performance of a single hypothesis h(-,an). This approach
requires some form of stability of the learning algorithm. If the removal of even
a single example from the training sample causes the learning algorithm to jump
to a different hypothesis h(-,anx_1) with much larger error than the full-sample
hypothesis h(-, an), it seems hard to expect the leave-one-out estimate to be ac-
curate. A similar concern was raised by Holden [4], who stated the difficulty of
studying the deviation between the true error of some hypothesis h(-, axn) and an
estimate derived from a different hypothesis A(-, any_1). In this context, it appears
problematic to justify why cross-validation estimates are currently deemed more
reliable than simple resubstitution estimates.

Here, adopting a different interpretation of the cross-validation procedure, we
derive a general upper bound on the cross-validation accuracy. The idea is found-
ed on the definition of two different ways of assessing a learning procedure: the
hypothesis-based approach and the algorithm-based approach. These two approach-
es measure the performance of the learning procedure referring to two different in-
dices of performance: the hypothesis-based approach addresses the generalization
error of the hypothesis ay while the algorithm-based approach measures the av-
erage performance of the algorithm L on training sets of size N. We state that an
interpretation of cross-validation in the algorithm-based framework may be more
convenient and more related to its current use among the machine learning prac-
titioners. We show that when cross-validation is intended as an estimator of the
algorithm performance, rather than an assessment of the selected hypothesis, a
general upper bound can be derived, independently of the complexity of the hy-
pothesis class and of any notion of stability. In fact, while a notion of stability
is mandatory if the cross-validation is seen as an estimate of the generalization of
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the hypothesis h(cdot, an), it is no more relevant for measuring the sensitivity of
the learning algorithm to different realizations of the training set. However, the
aim of the paper is not to demonstrate the superiority of an approach over the
other but simply to illustrate how an alternative interpretation of the assessment
process of a learning machine can open the way to interesting new developments.

In order to make an analysis of the learning problem, we first need to introduce
some terminology and to define a number of mathematical objects.

These are the main actors of the learning problem:

e A data generator of casual input vectors z € X C R" independent and iden-
tically distributed according to some unknown (but fixed) input probability
distribution II(z).

e A target operator, which transforms the vectors z into the output values
y € Y C R according to some unknown (but fixed) conditional distribution
Pyr(y|x) (this includes the simplest case where the target implements some
function y = f(z)). By definition the input distribution II(z) is independent
of Py(y|z).

e A training set Dy = {(z1,vy1),(z2,¥2),---,(zn,yn)} made of N pairs
(zi,y;) € Z = X x Y independent and identically distributed according
to the joint distribution P(z) = P((z,y)) = P¢(y|z)II(z). Then, Dy €
ZN = (X x V)N

e A learning machine having two components:

1. A class of hypothesis functions h(z,a) with o € A. We consider only
the case where the functions h(-, @) are single valued mappings.

2. An algorithm L which takes as input the training set Dy and returns
as output one hypothesis function h(-,a) with @ € A. Throughout the
paper, we will consider only the case of deterministic and symmetric
algorithms. This means that they always give the same h(-, an) for the
same data set Dy and that they are insensitive to the ordering of the
examples in Dy, respectively.

The hypothesis selection is done according to Empirical Risk Minimiza-
tion (ERM) principle where

any = arg Lnelf\l Remp (@) (1)

is the hypothesis which minimizes the empirical risk
1 XN
Remp(@) = + > C (yi, hlzi, @) (2)
i=1

constructed on the basis of the data set D . The empirical risk is often
referred to as the training error or as the resubstitution estimate.
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e A cost C associated with a particular f(z) and a particular h(z,a), given
by a loss function C(f(z),h(z,a)) which measures, given an input z, the
discrepancy between the output of the supervisor and the output of the
selected hypothesis.

o A functional risk which averages over the XY-domain the cost C for a given
hypothesis h(-, an):

R(an) = By ,[C|Dy] = /X Cluh(e.an)dP ) a@) (3

e The average of the cost C for a given input x over the ensemble of training
sets with IV samples:

R@,N) = Bpy,[Cle] = [ Clu.h@,an))aPyula)aPY (D) (4

In the case of a quadratic cost function, this quantity is usually referred to
as the mean squared error (MSE).

2 The assessment of a learning machine

The generalization error of the learning machine can be evaluated at three different
levels.

Class of hypotheses: Let ag = argmingea R(a) be the vector of parameters
of the hypothesis which best approximates the target in the class A according to
the criterion (3). Here, we assume for simplicity that there exists a minimum
value of R(«a) achievable by a function in the class A. We define with R(ay) the
generalization error of the class of hypotheses.

The algorithm: Using Eq. (4) we define the quantity

R(N) = /X R(z, N)dIl(z) (5)

that represents the generalization error of the algorithm L. In the case of a
quadratic cost function this quantity is referred to as the mean integrated squared
error (MISE).

The single hypothesis. Let ay be the vector of parameters of the hypothesis
generated by the algorithm for a training set Dy according to Eq. (1). By using
Eq. (3) we define with R(ay) the generalization error of the hypothesis h(-,an).

The three criteria correspond to three different ways to assess the learning ma-
chine: the first quantifies the generalization error of the best approximation in the
class A, the second assesses the average performance of the algorithm over training
sets with IV samples, the third is a measure to assess the specific hypothesis chosen
by the learning machine. All these quantities should be compared to the minimal
risk that can be attained by a single valued mapping. To this aim let us define
with A* the set of all possible single valued mappings f : X — Y and consider the
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quantity o* = argmingea+ R(a). Thus R(a*) represents the absolute minimum
rate of error obtainable by a single valued approximation for the unknown target.

This allows us to decompose the problem of learning into two subproblems.
First, define with R(N) — R(a*) the learning error of the algorithm L where
R(N) is an estimate of (5) and with R(an) — R(a*) the learning error of the
hypothesis h(-, an), with R(ay) an estimate of R(an ).

Consider the two equalities for the algorithm L and the hypothesis h(-, an),
respectively:

R(N) — R(a*) = (R(N) — R(N)) + (R(N) — R(a™)) (6)

R(an) — R(a*) = (R(an) — R(eo)) + (R(ao) — R(a*)) (7)

It is common practice to define the first right-hand term as estimation error and
the second term as approzimation error [1]. The decomposition of the learning
errors leads to a decomposition of the learning procedure into two steps:

1. The error estimation where the set of available data is used to estimate
either the algorithm-based criterion or the hypothesis-based criterion for a
fixed class A.

2. The model selection where different classes of hypotheses are evaluated and
compared in order to select the one which will minimize the learning error.

These procedures are strongly characterized by which criterion is used for as-
sessing the learning machine from a finite set of data. We will distinguish two
different ways of assessing a learning procedure: the hypothesis-based and the
algorithm-based approach. The distinction is made in relation to which measure
of generalization error is adopted.

Hypothesis-based approaches aim to minimize the learning error (7). As a
consequence, the error estimation problem focuses on the difference R(an)— R(ag)
while the model selection procedure aims to minimize the quantity R(ag)— R(a*).
The statistical learning theory proposed by Vapnik [9, 10] is a major example of
a hypothesis-based approach. As far as the estimation error is concerned, Vapnik
first defines R(a ~N) = Remp(an), then bounds the accuracy of Remp(an) as an
estimator of R(ag) with a term depending on the number of points and a parameter
(VC dimension) describing some general properties of the hypothesis class. In
terms of model selection, Vapnik proposes the Structural Risk Minimization (SRM)
procedure where the bound on the empirical error provides a constructive tool to
select the desired model complexity.

Algorithm-based approaches address the learning error (6). In these approaches
the error estimation procedure evaluates the quantity R(N) — R(N) while model
selection targets the quantity R(N) — R(a*). In this category we will include
all the resampling statistics techniques which can be used to assess the average
performance of an algorithm L. These techniques include well-known and largely
used procedures in data analysis and statistics, like cross-validation and bootstrap
methods.

Henceforth, for reasons of space we will focus exclusively on the error estimation

problem in an algorithm-based approach. o



3 A bound on the cross-validation estimate

Consider the problem of estimating the quantity R(N) from the training set. The
empirical risk Remp(an) is seen as the most obvious estimate of R(IN). However,
it is well known that the empirical risk is a biased estimate of R(N) and that
tends to be smaller than R(IV), because the same data have been used both to
construct and to evaluate h(-,an). The study of error estimates other than the
resubstitution is of significant importance if we wish to obtain results applicable
to practical learning scenarios.

Cross-validation [8] is a well-known method in sampling statistics to circumvent
the limits of the resubstitution estimate. The basic idea is to build a model from
one part of the data and then use that model to predict the rest of the data. The
dataset Dy is split [ times in a training and a test part, the first containing Ny,
samples, the second containing Ny; = N — N, samples. Each time Ny, examples
are used by L to select a hypothesis h(-,a’;, )i=1,...,lfrom A and the remaining
Nis samples are used to estimate the error of h(-,af, )

Nis

Ris(aly,) =Y Clyj; hlz;,aly,)) (8)

j=1

The resulting average of the [ errors is the cross-validation estimate

1
(W) = 73 Risla, ) (9)
=1

A common form of cross-validation is the “leave-one-out”. In this case [ equals the
number of training samples and Ny, = 1. It is well-known in literature [1] that R,
returns an unbiased estimate of R(Ny,) for any symmetric learning algorithm; thus
R.y(N) should be viewed more as an estimator of R(Ny,) than of R(N). In the
following we will provide a bound on the discrepancy between the cross-validation
estimate R, (N) and R(Ny.).

Previous results in the literature focused on the hypothesis-based problem of de-
riving bounds on the quantity |R(an) — Ry (N)|. In particular, [5] and [4] studied
the probability that the cross-validation estimate differs from the true generaliza-
tion error by more than a specific constant ¢, under quite general conditions.

Here, instead, we study the consistency of the cross-validation as an estimate
of the algorithm-based cost R(Ny.). To this aim we intend to bound the quantity:

|R(Nir) = R(Nir)| = |R(Nir) = Reo(NV)] (10)

Let C(f,h) be a real-valued bounded function where A < C(f,h) < B. By
applying to Eq. (8) the Hoeflding inequality for sums of independent identically

distributed bounded variables [3] we have for i =1,...,1:
P{|R(ak,,) = Riu(aky,)| > £} < e = (1)
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Consider now the quantity (9). The following relation holds:
1

| % Z R(al,,) - Z s(@,,)
i=1

N||—\

l
Z (aly,,) = Res(an, )| (12)

Then from (11) we have

l

l !
P{|%ZR(Q3V”)_% ZRtS(a’Jinr” > 6} S P{% Z |R(a§\l'w)_Rts(Oé}.\{”)| > E} S
=1 =1 =1
< P{ max |R aly, ) — Rts(afvh)| > 6} < e??;i% (13)

i=1,...,1

Further, from the Hoeffding inequality for U-statistics [3]

P{uuNﬁ._%éi R(aly,) }=

= P{|Ep,, [R(ak, )] l}:zzamg

25 leff
>s}<ewAﬂ (14)

where leg = [N/Ny,.] is the largest integer contained in N/Ny,. and denotes the
effective number of independent samples that can be extracted from Dy to esti-
mate R(Ny,). Notice that the application of the Hoeffding theorem for U-statistics
in (14) allows us to avoid any unrealistic assumption of independence among the
cross-validated training sets. Since

R(Ni) — Rey(N) = R(Ny,.) —

Nl'—\

l l
1 )
Z (aly,,) + 7 > R(ak,,) — Reo(N)
=1 =1

it follows from (13) and (14) that
—2621 4 —2e2N;,
P{|R(Nyz) = Reo(N)| > £} < eB-2% 4 ¢ ®-4) (15)
This bound is independent of any definition of complexity of the hypothesis class,
and allows the definition of sufficient conditions for consistency. If we assume that
the two conditions

lim Ny =00 (16)
N—oo

N N
lim = lim ———— = (17)

N —oo Ntr N —oo N_Nts

are satisfied then the cross-validation returns a consistent estimate of R(N). For
instance, the relation Ny, = v/N satisfies the conditions.

Leave-one-out (N;s = 1) and the resubstitution estimate (N;s = 0) can be
analyzed under this framework. These quantities do not satisfy the sufficient
conditions for consistency: the leave-one-out does not satisfy the condition (16),
while both the conditions (16) and (17) do not hold in the case of the resubstitution
estimate. It is interesting to remark how similar conclusions for linear models were

obtained in statistical literature by Shao [7]. 1



4 Concluding remarks

The principles underlying the hypothesis-based and the algorithm-based approaches
to learning are substantially different. The goal of the hypothesis-based approach
is to estimate the performance of the selected hypothesis. The main assumption is
that averaging over all possible training sets would be unnatural given the single
realization available. Since the distribution of the data is not known, hypothesis-
based methods search for distribution-free bounds. As a drawback, the results
might be too conservative for a specific learning problem.

In the algorithm-based approach, a learned hypothesis is seen as a function
of the data Dy. Since Dy is a random variable, the hypothesis is random as
well and must be assessed averaging different realizations. It would be desirable
to repeat several times the data generation and to run each time the learning
algorithm. Unfortunately, the use of repeated realizations is not viable in a real
learning problem. As an alternative, resampling methods are employed to simulate
the stochastic process underlying the data.

In this paper, the definition of the categories hypothesis-based and algorithm-
based did not aim to demonstrate the superiority of one approach over the other,
but it had, in fact, the intention of providing new insight into cross-validation.
We believe that this distinction is potentially fruitful and can lead to further
developments.
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