Predicting stock markets in boundary conditions with local models
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1 Introduction

Financial time series present many distinctive fea-
tures. An important one is the fact that large positive
and large negative observations (outliers) occur more
frequently that in other economic time series and tend
to appear in clusters. This fact is well-known in finan-
cial literature that devoted a wide amount of work to
this issue. In particular, two are the main research di-
rections which addressed this problem in the past: the
modeling of the volatility and the theory of extreme
values.

The first approach, modeling of the volatility, ex-
ploits the fact that outliers emerge in clusters in or-
der to construct a model for the outliers themselves.
However, since in empirical finance it is assumed that
the evolution of the asset prices is better described by
random walks, the aim of this approach is to model
the variance rather than the level of the variable to
predicted. It is also said that these models are used
to forecast volatility, that is the condition of the mar-
ket when the level changes rapidly. An example of
these models are the so-called Autoregressive Condi-
tional Heteroskedasticity (ARCH), initially proposed
in Engle [8]. ARCH model had a large number of
applications in forecasting problems concerning ex-
change rates, stock markets, interest rates, aggregate
and individual indices, and so on.

The second approach, extreme value theory [7], fo-
cuses on the prediction of models for extreme values
of variables. The idea is that traditional parametric
statistical and econometric models are ill-suited to the
treatment of extreme events. Parametric models aim
to return a good fit in regions where most of the data
fall, at the expense of good fit in the tails where, by
definition, few observations fall. The idea of extreme
value theory is to fit models using only the extreme
event data rather than all the data, thereby fitting
the tail distributions, and only the tail distributions.

The two approaches share the common idea that a
certain amount of regularity exists in the boundary
regions and that this regularity can be exploited in
order to build accurate models. However, while the
first approach deals mainly with a prediction of the
variance, the second addresses the problem of density
estimation.

This paper adopts the idea of regularity in the
boundaries of financial time series in order to fit fore-
casting models which are able to outperform random
walk predictions. In particular we propose the adop-
tion of a local learning technique, called Lazy Learn-
ing, in order to perform model estimation and predic-
tion in extreme conditions.

The Lazy Learning technique has been tested on a
series of difficult modeling and control problem, in-
cluding the participation to the International Com-
petition on Time Series in Leuven [11], where the
Lazy technique ranked second and the participation
to the Third International Erudit competition! where
the Lazy technique was awarded as a runner-up.

In this paper the Lazy Learning method is pro-
posed to return predictions in extreme conditions of
the trend of the Italian stock market index. The ex-
periments show that in boundary conditions the tech-
nique is able to outperform a random predictor and
to return a significant rate of accuracy.

2 Prediction in boundary con-
ditions

Given the time series s?, consider the series rt, ob-

tained by taking the difference between the logarithms

of adjacent values of st:
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! http:/ /www.erudit.de/erudit/activities/ic-99/index.htm



Most approaches merely try to predict the next value
of the time series rf. Such point prediction is ap-
propriate only if the signal-noise ratio is favorable.
Unfortunately, this is not the case for financial time
series where the noise is often larger than the signal
itself.

An alternative could be the prediction of the trend
y!t = sign(stTh —st), of the time series s* over the next
h steps. Given the monotonicity of the logarithm, y}
can be expressed in terms of the series rt:

t

yp, = sign(logs™" —logs’)

sign(ir(t + i)) (2)

i=1

This task however remains a formidable prediction
problem and there is little evidence in literature that
a predictor of the quantity 2 could improve the per-
formance of the simplest random predictor.

This paper addresses the problem of predicting the
quantity 2 in boundary conditions. The idea orig-
inates from that area of probability and statistics
known as extreme value theory [7] and consists in fit-
ting a model to observed data focusing only on the
extreme event data rather than on all data.

We start to describe our method by briefly intro-
ducing some notation. Let express the trend as

y}, = sign(A}) 3)

where Al =logs!*h —log st.
Suppose that the trend can be described by a prob-
abilistic model

P(y;|z") (4)

where ot = {rt,rt=2, ... r!="=1} is given by the pre-
vious n values of the series rt.

The prediction of the trend y} on the basis of the
past n values of rt, can be obtained from an estima-
tion of the quantity

E[A}]a] = F(a") (5)

where E denotes the expectation operator and F' is a
generic nonlinear function of the regressor z.

An extreme value version of the prediction problem
5 consists in performing the prediction only at those
values of ¢t for which a given boundary condition is
met. This condition is expressed in the form v(t) >
Th, where v(t) is the normalized rate

r(t)
Y 7(0)?

and Th represents a threshold value.

u(t) = (6)

For the values of ¢t for which the boundary condi-
tion is satisfied the problem 5 can be expressed as the
estimation of the quantity

E[AL |z, v(t) > Th] (7)

This paper is concerned with the estimation of the
quantity 7 on the basis of historical observations.
Based on the extreme value theory, we propose an
approach to the problem of forecasting the trend of
a financial time series on the basis of historical data.
So far, we have discussed only the definition of the
prediction task, without referring to any particular
technique for the approximation of the function F' of
equation 5. The next section will introduce our local
learning technique for prediction in boundary condi-
tions.

3 Local modeling approximator

Lazy learning [1] is a local learning technique which
postpones all the computation until an explicit re-
quest for a prediction is received. The request is
fulfilled interpolating locally the examples considered
relevant according to a distance measure. Each pre-
diction requires therefore a local modeling procedure
that can be seen as composed of a structural and of a
parametric identification. The parametric identifica-
tion consists in the optimization of the parameters of
the local approximator. The structural identification
involves, among other things, the selection of a fam-
ily of local approximators, the selection of a metric to
evaluate which examples are more relevant, and the
selection of the bandwidth which indicates the size of
the region in which the data are correctly modeled by
members of the chosen family of approximators. For
a comprehensive tutorial on local learning and for fur-
ther references see Atkeson et al. [2].

In previous published works [5, 6, 4], the authors
proposed a method in which the family of local ap-
proximators and the bandwidth are selected locally
and tailored for each query point by means of a local
leave-one-out cross-validation [10]. The problem of
bandwidth selection is then reduced to the selection of
the number k of neighboring examples which are given
a non-zero weight in the local modeling procedure.
The Lazy Learning Toolbox for use with Matlab® [3]
implements a Lazy Learning technique, which consid-
ers polynomials of different degrees and allows a local
model selection, as well as a local combination of ap-
proximators of different degrees. In particular, each
time a prediction is required for a specific query point,
a set of local models is identified, each with a differ-
ent polynomial degree and each including a different



number of neighbors. The generalization ability of
each model is then assessed through a local leave-one-
out. Finally, a prediction is obtained either combining
or selecting the different models on the basis of some
statistic of their cross-validation errors.

The major feature of this toolbox consists in the
adoption of the recursive least squares algorithm for
the identification of the local models [4]. This is an
appealing and efficient solution to the intrinsically in-
cremental problem of identifying and validating a se-
quence of local linear models centered in the query
point, each including a growing number of neigh-
bors. It is worth noticing here that a leave-one-out
cross-validation of each model considered does not
involve any significant computational overload, since
it is obtained though the PRESS statistic [9] which
simply uses partial results returned by the recursive
least squares algorithm. This technique is now im-
plemented in the Lazy Learning Toolbox for use with
Matlab® publicly available on the Web?2.

4 Experimental results

To assess the reliability of the predictive model pro-
posed in the previous section, we conducted a series of
experiments on real financial series. Results are pre-
sented for the Italian stock market index (MIBTEL).
We used the data from 10 Jan 1994 to 14 Mar 1997
as the training set and the data from 15 Mar 1997 to
3 Dec 1999 as the out-of-sample test set.

This section reports as series of experiments where
the Lazy Learning technique was adopted to predict
the trend y} = sign(Al) for different regressor orders
n, different horizons h, and different thresholds Th.
The figures illustrate the percentage of correct predic-
tions as a function of the different parameters. Note
that a value greater then 50% indicates that our pre-
diction method outperforms a generic random predic-
tor. While the predictive accuracy of the model with
low threshold does not improve the simplest random
model, the prediction in boundary conditions (thus
with sufficiently large thresholds) shows a clear im-
provement. Figure 1 depicts the accuracy as a func-
tion of the order n of the regressors for a fixed horizon
h = 5 and a fixed threshold Th = 1.3. It is possible to
see that the accuracy of the prediction changes with
the order. In particular the best results, which are
close to a 7T0% accuracy, are obtained when the order
of the regressor is chosen equal to 13. Regressor orders
equal to 9 and 17 produce as well good results. Once
the order has been identified, the influence of the value
of the threshold Th on the quality of the predictions

2http://iridia.ulb.ac.be/~lazy/
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Figure 1: Accuracy on prediction as a function of the
order of the regressor using Th = 1.3.

is analyzed in figure 2. The top three graphs show
the accuracy on prediction as a function of Th, while
the bottom graph indicates the number of predictions
performed, i.e. the number of times the boundary
condition is met. For Th = 0, the prediction is always
performed. The number of the prediction performed
decreases as the threshold increases. It is possible to
see in all the graphs that the prediction accuracy is
larger for values of the threshold between 1 and 2.
This shows that the accuracy of the prediction is in-
creased if the prediction is performed only when the
boundary condition is met. In particular, for n = 13
it is always possible to achieve a prediction accuracy
higher the 67% for Th between 1.2 and 1.9. Figure 3
shows the accuracy on prediction as a function of the
horizon, for n = 13 and Th = 1.5. In this case it is
possible to see that the best accuracy on prediction
is achieved for an horizon equal to 5 days, i.e. for
one trading week. Figure 4 shows a three dimensional
plot of the accuracy on prediction as a function of the
horizon h and the threshold Th using an order of the
regressors n = 13. This plot shows a ridge in cor-
respondence of h = 5, which highlights that the one
trading week horizon yields the best accuracy for the
values of Th inside the range of interest. Moreover,
figure 4 allows a comparison between the uncondi-
tional prediction and the approach we propose in this
paper for extreme value prediction. The accuracy of
the former is represented by the values assumed on the
line Th = 0, while a higher accuracy can be obtained
by the extreme value prediction method for values of
the threshold in the range 1 < Th < 2.

The approach proposed in the paper attains an ac-
curacy larger than 65% on the prediction of the trend
and therefore can be considered as a valid alternative
to random walk prediction.
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Figure 2: Accuracy on prediction as a function of the
threshold, for regressor order of 9, 13 and 17. The bot-

tom

graph indicated the number of predictions per-

formed.

References

[1]

2]

[5]

D. W. Aha. Editorial. Artificial Intelligence Review,
11(1-5):1-6, 1997.

C. G. Atkeson, A. W. Moore, and S. Schaal. Lo-
cally weighted learning. Artificial Intelligence Re-
view, 11(1-5):11-73, 1997.

M. Birattari and G. Bontempi. The lazy learn-
ing toolbox, for use with matlab. Technical Report
TR/IRIDIA/99-7, IRIDIA-ULB, Brussels, Belgium,
1999.

M. Birattari, G. Bontempi, and H. Bersini. Lazy
learning meets the recursive least-squares algorithm.
In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,
Advances in Neural Information Processing Systems
11, pages 375-381, Cambridge, 1999. MIT Press.

G. Bontempi, M. Birattari, and H. Bersini. Recursive
lazy learning for modeling and control. In Machine
Learning: ECML-98 (10th European Conference on
Machine Learning), pages 292-303, 1998.

Accuracy on prediction

2 3 4 5 6 7 8 9 10
horizon

Figure 3: Accuracy on prediction as a function of the
horizon. For Th = 1.5, and n = 13.
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Figure 4: Accuracy on prediction as a function of the
horizon and the threshold. Regressor order n = 13.
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