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Abstract

Lazy learning is a memory-based technique that, once a query is re-
ceived, extracts a prediction interpolating locally the neighboring exam-
ples of the query which are considered relevant according to a distance
measure. In this paper we propose a data-driven method to select on a
query-by-query basis the optimal number of neighbors to be considered
for each prediction. As an efficient way to identify and validate local
models, the recursive least squares algorithm is introduced in the con-
text of local approximation and lazy learning. Furthermore, beside the
winner-takes-all strategy for model selection, a local combination of the
most promising models is explored. The method proposed is tested on
six different datasets and compared with a state-of-the-art approach.

1 Introduction

Lazy learning (Aha, 1997) postpones all the computation until an explicit request for a
prediction is received. The request is fulfilled interpolating locally the examples consid-
ered relevant according to a distance measure. Each prediction requires therefore a local
modeling procedure that can be seen as composed of a structural and of a parametric iden-
tification. The parametric identification consists in the optimization of the parameters of
the local approximator. On the other hand, structural identification involves, among other
things, the selection of a family of local approximators, the selection of a metric to evaluate
which examples are more relevant, and the selection of the bandwidth which indicates the
size of the region in which the data are correctly modeled by members of the chosen family
of approximators. For a comprehensive tutorial on local learning and for further references
see Atkeson et al. (1997).

As far as the problem of bandwidth selection is concerned, different approaches exist. The
choice of the bandwidth may be performed either based on some a priori assumption or
on the data themselves. A further sub-classification of data-driven approaches is of interest
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here. On the one hand, a constant bandwidth may be used; in this case it is set by a global
optimization that minimizes an error criterion over the available dataset. On the other hand,
the bandwidth may be selected locally and tailored for each query point.

In the present work, we propose a method that belongs to the latter class of local data-driven
approaches. Assuming a given fixed metric and local linear approximators, the method we
introduce selects the bandwidth on a query-by-query basis by means of a local leave-one-
out cross-validation. The problem of bandwidth selection is reduced to the selection of the
number k of neighboring examples which are given a non-zero weight in the local modeling
procedure. Each time a prediction is required for a specific query point, a set of local
models is identified, each including a different number of neighbors. The generalization
ability of each model is then assessed through a local cross-validation procedure. Finally,
a prediction is obtained either combining or selecting the different models on the basis of
some statistic of their cross-validation errors.

The main reason to favor a query-by-query bandwidth selection is that it allows better
adaptation to the local characteristics of the problem at hand. Moreover, this approach is
able to handle directly the case in which the database is updated on-line (Bontempi et al.,
1997). On the other hand, a globally optimized bandwidth approach would, in principle,
require the global optimization to be repeated each time the distribution of the examples
changes.

The major contribution of the paper consists in the adoption of the recursive least squares
algorithm in the context of lazy learning. This is an appealing and efficient solution to the
intrinsically incremental problem of identifying and validating a sequence of local linear
models centered in the query point, each including a growing number of neighbors. It is
worth noticing here that a leave-one-out cross-validation of each model considered does
not involve any significant computational overload, since it is obtained though the PRESS
statistic (Myers, 1990) which simply uses partial results returned by the recursive least
squares algorithm. Schaal and Atkeson (1998) used already the recursive least squares
algorithm for the incremental update of a set of local models. In the present paper, we
use for the first time this algorithm in a query-by-query perspective as an effective way to
explore the neighborhood of each query point.

As a second contribution, we propose a comparison, on a local scale, between a competitive
and a cooperative approach to model selection. On the problem of extracting a final pre-
diction from a set of alternatives, we compared a winner-takes-all strategy with a strategy
based on the combination of estimators (Wolpert, 1992).

In Section 5 an experimental analysis of the recursive algorithm for local identification
and validation is presented. The algorithm proposed, used in conjunction with different
strategies for model selection or combination, is compared experimentally with Cubist, the
rule-based tool developed by Ross Quinlan for generating piecewise-linear models.

2 Local Weighted Regression

Given two variables x ∈ <m and y ∈ <, let us consider the mapping f: <m → <, known
only through a set of n examples {(xi, yi)}

n

i=1
obtained as follows:

yi = f(xi) + εi, (1)

where ∀i, εi is a random variable such that E[εi] = 0 and E[εiεj ] = 0, ∀j 6= i, and
such that E[εm

i ] = µm(xi), ∀m ≥ 2, where µm(·) is the unknown mth moment of the
distribution of εi and is defined as a function of xi. In particular for m = 2, the last of
the above mentioned properties implies that no assumption of global homoscedasticity is
made.
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The problem of local regression can be stated as the problem of estimating the value that the
regression function f(x) = E[y|x] assumes for a specific query point x, using information
pertaining only to a neighborhood of x.

Given a query point xq , and under the hypothesis of a local homoscedasticity of εi, the
parameter β of a local linear approximation of f(·) in a neighborhood of xq can be obtained
solving the local polynomial regression:

n
∑

i=1

{

(yi − x′

iβ)
2
K

(

d(xi,xq)

h

)}

, (2)

where, given a metric on the space <m, d(xi,xq) is the distance from the query point to the
ith example, K(·) is a weight function, h is the bandwidth, and where a constant value 1
has been appended to each vector xi in order to consider a constant term in the regression.

In matrix notation, the solution of the above stated weighted least squares problem is given
by:

β̂ = (X′W′WX)−1X′W′Wy = (Z′Z)−1Z′v = PZ′v, (3)

where X is a matrix whose ith row is x′

i, y is a vector whose ith element is yi, W is
a diagonal matrix whose ith diagonal element is wii =

√

K (d(xi,xq)/h), Z = WX,
v = Wy, and the matrix X′W′WX = Z′Z is assumed to be non-singular so that its
inverse P = (Z′Z)−1 is defined.

Once obtained the local linear polynomial approximation, a prediction of yq = f(xq), is
finally given by:

ŷq = x′

qβ̂. (4)

Moreover, exploiting the linearity of the local approximator, a leave-one-out cross-
validation estimation of the error variance E[(yq − ŷq)

2] can be obtained without any
significant overload. In fact, using the PRESS statistic (Myers, 1990), it is possible to
calculate the error ecv

j = yj − x′

j β̂−j , without explicitly identifying the parameters β̂
−j

from the examples available with the j th removed. The formulation of the PRESS statistic
for the case at hand is the following:

ecv
j = yj − x′

jβ̂−j =
yj − x′

jPZ′v

1 − z′jPzj

=
yj − x′

j β̂

1 − hjj

, (5)

where z′j is the j th row of Z and therefore zj = wjjxj , and where hjj is the j th diagonal
element of the Hat matrix H = ZPZ′ = Z(Z′Z)−1Z′.

3 Recursive Local Regression

In what follows, for the sake of simplicity, we will focus on linear approximator. An
extension to generic polynomial approximators of any degree is straightforward. We will
assume also that a metric on the space <m is given. All the attention will be thus centered
on the problem of bandwidth selection.

If as a weight function K(·) the indicator function

K

(

d(xi,xq)

h

)

=

{

1 if d(xi,xq) ≤ h,
0 otherwise;

(6)

is adopted, the optimization of the parameter h can be conveniently reduced to the opti-
mization of the number k of neighbors to which a unitary weight is assigned in the local
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regression evaluation. In other words, we reduce the problem of bandwidth selection to a
search in the space of h(k) = d(x(k),xq), where x(k) is the kth nearest neighbor of the
query point.

The main advantage deriving from the adoption of the weight function defined in Eq. 6,
is that, simply by updating the parameter β̂(k) of the model identified using the k nearest
neighbors, it is straightforward and inexpensive to obtain β̂(k + 1). In fact, performing a
step of the standard recursive least squares algorithm (Bierman, 1977), we have:































P(k + 1) = P(k) −
P(k)x(k + 1)x′(k + 1)P(k)

1 + x′(k + 1)P(k)x(k + 1)
γ(k + 1) = P(k + 1)x(k + 1)

e(k + 1) = y(k + 1) − x′(k + 1)β̂(k)

β̂(k + 1) = β̂(k) + γ(k + 1)e(k + 1)

(7)

where P(k) = (Z′Z)−1 when h = h(k), and where x(k + 1) is the (k + 1)th nearest
neighbor of the query point.

Moreover, once the matrix P(k + 1) is available, the leave-one-out cross-validation errors
can be directly calculated without the need of any further model identification:

ecv
j (k + 1) =

yj − x′

jβ̂(k + 1)

1− x′

jP(k + 1)xj

, ∀j : d(xj ,xq) ≤ h(k + 1). (8)

It will be useful in the following to define for each value of k the [k × 1] vector ecv(k) that
contains all the leave-one-out errors associated to the model β̂(k).

Once an initialization β̂(0) = β̃ and P(0) = P̃ is given, Eq. 7 and Eq. 8 recursively
evaluate for different values of k a local approximation of the regression function f(·),
a prediction of the value of the regression function in the query point, and the vector of
leave-one-out errors from which it is possible to extract an estimate of the variance of the
prediction error. Notice that β̃ is an a priori estimate of the parameter and P̃ is the covari-
ance matrix that reflects the reliability of β̃ (Bierman, 1977). For non-reliable initialization,
the following is usually adopted: P̃ = λI, with λ large and where I is the identity matrix.

4 Local Model Selection and Combination

The recursive algorithm described by Eq. 7 and Eq. 8 returns for a given query point xq ,
a set of predictions ŷq(k) = x′

qβ̂(k), together with a set of associated leave-one-out error
vectors ecv(k).

From the information available, a final prediction ŷq of the value of the regression function
can be obtained in different ways. Two main paradigms deserve to be considered: the first
is based on the selection of the best approximator according to a given criterion, while the
second returns a prediction as a combination of more local models.

If the selection paradigm, frequently called winner-takes-all, is adopted, the most natural
way to extract a final prediction ŷq, consists in comparing the prediction obtained for each
value of k on the basis of the classical mean square error criterion:

ŷq = x′

qβ̂(k̂), with k̂ = arg min
k

MSE(k) = argmin
k

∑k

i=1
ωi (ecv

i (k))
2

∑k

i=1
ωi

; (9)



Lazy Learning Meets the Recursive Least Squares Algorithm 379

Table 1: A summary of the characteristics of the datasets considered.

Dataset Housing Cpu Prices Mpg Servo Ozone

Number of
examples 506 209 159 392 167 330

Number of
regressors 13 6 16 7 8 8

where ωi are weights than can be conveniently used to discount each error according to the
distance from the query point to the point to which the error corresponds (Atkeson et al.,
1997).

As an alternative to the winner-takes-all paradigm, we explored also the effectiveness of
local combinations of estimates (Wolpert, 1992). Adopting also in this case the mean
square error criterion, the final prediction of the value yq is obtained as a weighted average
of the best b models, where b is a parameter of the algorithm. Suppose the predictions ŷq(k)
and the error vectors ecv(k) have been ordered creating a sequence of integers {ki} so that
MSE(ki) ≤ MSE(kj), ∀i < j. The prediction of ŷq is given by

ŷq =

∑b

i=1
ζiŷq(ki)

∑b

i=1
ζi

, (10)

where the weights are the inverse of the mean square errors: ζi = 1/MSE(ki). This is an
example of the generalized ensemble method (Perrone & Cooper, 1993).

5 Experiments and Results

The experimental evaluation of the incremental local identification and validation algorithm
was performed on six datasets. The first five, described by Quinlan (1993), were obtained
from the UCI Repository of machine learning databases (Merz & Murphy, 1998), while the
last one was provided by Leo Breiman. A summary of the characteristics of each dataset is
presented in Table 1.

The methods compared adopt the recursive identification and validation algorithm, com-
bined with different strategies for model selection or combination. We considered also two
approaches in which k is selected globally:

lb1: Local bandwidth selection for linear local models. The number of neighbors is se-
lected on a query-by-query basis and the prediction returned is the one of the best
model according to the mean square error criterion.

lb0: Local bandwidth selection for constant local models. The algorithm for constant
models is derived directly from the recursive method described in Eq. 7 and Eq. 8.
The best model is selected according to the mean square error criterion.

lbC: Local combination of estimators. This is an example of the method described in
Eq. 10. On the datasets proposed, for each query the best 2 linear local models
and the best 2 constant models are combined.

gb1: Global bandwidth selection for linear local models. The value of k is obtained min-
imizing the prediction error in 20-fold cross-validation on the dataset available.
This value is then used for all the query points.

gb0: Global bandwidth selection for constant local models. As in gb1, the value of k is
optimized globally and kept constant for all the queries.
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Table 2: Mean absolute error on unseen cases.

Method Housing Cpu Prices Mpg Servo Ozone
lb1 2.21 28.38 1509 1.94 0.48 3.52
lb0 2.60 31.54 1627 1.97 0.32 3.33
lbC 2.12 26.79 1488 1.83 0.29 3.31
gb1 2.30 28.69 1492 1.92 0.52 3.46
gb0 2.59 32.19 1639 1.99 0.34 3.19

Cubist 2.17 28.37 1331 1.90 0.36 3.15

Table 3: Relative error (%) on unseen cases.

Method Housing Cpu Prices Mpg Servo Ozone
lb1 12.63 9.20 15.87 12.65 28.66 35.25
lb0 18.06 20.37 22.19 12.64 22.04 31.11
lbC 12.35 9.29 17.62 11.82 19.72 30.28
gb1 13.47 9.93 15.95 12.83 30.46 32.58
gb0 17.99 21.43 22.29 13.48 24.30 28.21

Cubist 16.02 12.71 11.67 12.57 18.53 26.59

As far as the metric is concerned, we adopted a global Euclidean metric based on the
relative influence (relevance) of the regressors (Friedman, 1994). We are confident that the
adoption of a local metric could improve the performance of our lazy learning method.

The results of the methods introduced are compared with those we obtained, in the same
experimental settings, with Cubist, the rule-based tool developed by Quinlan for generating
piecewise-linear models. Each approach was tested on each dataset using the same 10-fold
cross-validation strategy. Each dataset was divided randomly into 10 groups of nearly
equal size. In turn, each of these groups was used as a testing set while the remaining
ones together were providing the examples. Thus all the methods performed a prediction
on the same unseen cases, using for each of them the same set of examples. In Table 2
we present the results obtained by all the methods, and averaged on the 10 cross-validation
groups. Since the methods were compared on the same examples in exactly the same
conditions, the sensitive one-tailed paired test of significance can be used. In what follows,
by “significantly better” we mean better at least at a 5% significance level.

The first consideration about the results concerns the local combination of estimators. Ac-
cording to Table 2, the method lbC performs in average always better than the winner-
takes-all linear and constant. On two dataset lbC is significantly better than both lb1 and
lb0; and on three dataset it is significantly better than one of the two, and better in average
than the other.

The second consideration is about the comparison between our query-by-query bandwidth
selection and a global optimization of the number of neighbors: in average lb1 and lb0
performs better than their counterparts gb1 and gb0. On two datasets lb1 is significantly
better than gb1, while is about the same on the other four. On one dataset lb0 is significantly
better than gb0.

As far as the comparison with Cubist is concerned, the recursive lazy identification and
validation proposed obtains results comparable with those obtained by the state-of-the-art
method implemented in Cubist. On the six datasets, lbC performs one time significantly
better than Cubist, and one time significantly worse.
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The second index of performance we investigated is the relative error, defined as the mean
square error on unseen cases, normalized by the variance of the test set. The relative errors
are presented in Table 3 and show a similar picture to Table 2, although the mean square
errors considered here penalize larger absolute errors.

6 Conclusion and Future Work

The experimental results confirm that the recursive least squares algorithm can be effec-
tively used in a local context. Despite the trivial metric adopted, the local combination
of estimators, identified and validated recursively, showed to be able to compete with a
state-of-the-art approach.

Future work will focus on the problem of local metric selection. Moreover, we will ex-
plore more sophisticated ways to combine local estimators and we will extend this work to
polynomial approximators of higher degree.
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