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Abstract

This paper presents an approach to modeling and controlling discrete-time non-linear dynamical system on the basis of a
1nite amount of input=output observations. The controller consists of a multiple-step-ahead direct adaptive controller which, at
each time step, 1rst performs a forward simulation of the closed-loop system and then makes an adaptation of the parameters
of the controller. This procedure requires a su3ciently accurate model of the process in order to meet the control requirements.
Takagi–Sugeno fuzzy systems and Lazy Learning are two approaches which have been proposed in control literature as
e4ective ways of identifying a plant. This paper compares these two approaches in two main con1gurations: (i) when the
number of observations is 1xed and (ii) when new observations are collected on-line after each control action. Simulation
examples of the control of the manifold pressure of a car engine are given. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

The challenging task of modeling real phenomena
on the basis of a limited set of observations has been
addressed by several disciplines, ranging from nonlin-
ear regression to machine learning and system identi-
1cation. In the data-driven modeling community, two
main paradigms have emerged: global versus divide
and conquer.
Global modeling builds a single functional model on

the basis of the dataset. This is the traditional approach
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used in linear method [14], neural networks [23], and
other forms of nonlinear statistical regression [21].
The available dataset is used by a learning algorithm
to produce a model of the mapping, then the dataset is
discarded and only the functional description is kept.

Divide and conquer techniques, also known as
multiple model approaches [19], partition a com-
plex problem into simpler ones whose solutions can
be combined to provide a solution of the original
problem. Examples of these approaches are modular
architectures, like Radial Basis Functions [17], Local
Model Networks [18] or Takagi–Sugeno fuzzy sys-
tems [24], where di4erent modules are composed in
order to cover the input space. Although these ap-
proaches propose a combination of local models, the
1nal outcome is again a functional description of the
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process over the whole input domain. For this reason,
global procedures are still required in the structural
identi1cation step, e.g. for the assessment and selec-
tion of the optimal complexity of the approximator.
Another example of multiple model method is the

so-called local modeling technique [12], where the
problem of function estimation is transformed into one
of value estimation. In these approaches the goal is
not to 1nd a model which explains the whole process,
but to 1nd the best output for a speci1c given input
(called query). Local techniques renounce a complete
description of the input–output relation, and aim at ap-
proximating the function only in the neighborhood of
the point to be predicted. The objective of these tech-
niques is to improve the prediction accuracy at the
cost of a reduced readability of the resulting model.
Since an approximation function is never explicitly es-
timated, it is necessary to keep in memory the whole
dataset for each prediction, and therefore the quan-
tity of memory required for these approaches is much
larger than the one necessary in the other cases. Lazy
learning [1] and nearest neighbor are examples of lo-
cal modeling techniques.
The goal of this paper is to compare di4erent di-

vide and conquer techniques in the task of modeling
an unknown dynamic system in the framework of di-
rect adaptive control (DAC) [2]. We consider the case
in which only a limited amount of process data is ini-
tially available, and further examples may be collected
on-line. In the DAC architecture, at each time step
a forward simulation of the system composed by the
controller and plant pair is performed. The results of
this computation are then used to tune the controller
by adapting its parameters. This control technique re-
quires an accurate identi1cation of the plant since the
quality of the model a4ects the 1nal performance of
the closed-loop system.
In particular here we compare two instances of DAC

architecture. The 1rst one adopts a Takagi–Sugeno
fuzzy system as a model of the plant, while the second
is based on the lazy learning technique.
Another comparison between fuzzy systems and

lazy learning as identi1cation modules in a nonlinear
control architecture has been discussed in Bontempi
et al. [10] and in Bontempi [9]. In that work the au-
thors focused on a self-tuning regulator (STR) [3], and
compared the two approaches on an arti1cial bench-
mark. Here, we consider a DAC architecture and we

simulate the control of a real process, namely, an en-
gine model implemented by Siemens Automotive and
proposed within the FAMIMO project 1 (ESPRIT LTR
Project 21911). It is interesting to notice that the ex-
perimental results obtained here appear to be consis-
tent with the ones presented in the previous work.

2. Multiple modeling with Takagi–Sugeno fuzzy
systems and lazy learning

In Takagi–Sugeno (TS) fuzzy systems, an
input=output relation F :�n →� is modeled as a
fuzzy interpolation of a number of linear systems
which approximate the desired function in local re-
gions described by membership functions. These
systems are typically represented by a set of fuzzy
rules which partition the input space:

R( j): IF ’1 IS A( j)1 AND : : :AND ’n IS A( j)n

THEN y = a( j)0 + a( j)1 ’1 + · · ·+ a( j)n ’n:

The system output is a weighted average of the indi-
vidual rule outputs:

y =
M∑
j=1

�A( j) (’) (a
( j)
0 + a( j)1 ’1 + · · ·+ a( j)n ’n)∑M

k=1 �A(k) (’)
;

(1)

where the weights �A( j) (’) are computed according to

�A( j) (’) =
n∏

i=1

�A( j)i
(’i):

This approach allows us to model a system by means
of the decomposition of a nonlinear mapping into
a collection of local linear models. Since this ap-
proach proposes to structure the problem in a series of
local models, Takagi–Sugeno models can be easily
constructed from numerical data, which are used to
identify the number and the attributes of the fuzzy
rules.
In theLazy Learning (LL) approach, the estimation

of the value of the unknown function is performed
giving the whole attention to the region surrounding
the point where the estimation is required.
1 http:==iridia.ulb.ac.be= ∼famimo=.
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Let us consider an unknown mapping f :�n →� of
which we are given a set ofN samples {(’[i]; y[i])}Ni=1.
These examples can be collected in a matrix  of di-
mensionality [N ×m], and in a vector y of dimension-
ality [N × 1].
Given a speci1c query point ’q, the prediction of

the value yq =f(’q) is computed as follows. First,
for each sample (’[i]; y[i]) a weight wi is computed as
a function of the distance d(’[i];’q) from the query
point ’q to the point ’[i]. Each row of  and y is
then multiplied by the corresponding weight creating
the variables Z=W and v=Wy, with W diagonal
matrix having diagonal elements Wii=wi. Finally, a
locally weighted regression model (LWR) is 1tted
solving the equation (ZTZ)�=ZTv and the predic-
tion of the value f(’q) is obtained evaluating such a
model in the query point:

ŷq = ’
T
q (Z

TZ)−1ZTv: (2)

Here, we will focus mainly on the procedural aspects
of the modeling technique. Typically, the data analyst
who adopts a local regression approach, has to take a
set of decisions related to the model (e.g. the number
of neighbors, the weight function, the parametric fam-
ily, the 1tting criterion to estimate the parameters). In
this paper we take advantage of the method described
in Birattari et al. [8], which automatically selects, for
each query point, the adequate con1guration. This is
done by importing tools and techniques from the 1eld
of linear statistical analysis. The most important of
these tools is the PRESS statistic [20], which is a
simple, well-founded and economical way to perform
leave-one-out cross-validation [15] and therefore to
assess the performance in generalization of local lin-
ear models. Due to its short computation time which
allows its intensive use, it is the key element of the
lazy learning approach to modeling data. In this mod-
eling procedure the performance of a model in cross-
validation is the criterion adopted to choose the best
local model con1guration [8]. One of the most im-
portant parameters to be tuned in a local model con-
1guration is the size of the region surrounding ’q, in
which the function f(·) can be conveniently approx-
imated by a linear local model. Such a parameter can
be related to the number of training examples which
fall into the region of linearity. The task of identifying
the region of linearity is therefore akin to the task of

Plant
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Controller
yu

parameter adaptation

r

Fig. 1. Schematic representation of the system.

1nding, among the examples available, the number k
of neighbors of ’q to be used in the local regression
1t. Thus, di4erent models are considered, each 1tted
on a di4erent number of examples, and the leave-one-
out cross-validation is used to compare them and to
select the one for which the predicted error is smaller.
To make the procedure faster and to avoid repeating
for each model the parameter and the PRESS com-
putation, an incremental approach based on recursive
linear techniques is adopted [8].
The reader interested in an analysis of local methods

in terms of approximation and convergence properties
should refer to Cybenko [13].

3. System description

Fig. 1 shows the structure of a closed-loop control
system which is composed of the plant to be con-
trolled, the simulator, and the controller.
Assume that the n-input–m-output plant is ex-

pressed in terms of its input–output representation:

yi(k + 1) = Fi(y(k); : : : ; y(k − py + 1);

u(k); : : : ; u(k − pu + 1));

i = 1; : : : ; m; (3)

where the scalar yi(k) is the ith output of the plant at
time k, u(k) is the input vector [u1(k); : : : ; un(k)]T and
y(k) is the output vector [y1(k); : : : ; ym(k)]T, Fi is an
unknown nonlinear function, and py and pu are the
known structure orders of the system for the output i.
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If the regressor vector �(k) is de1ned as follows:

�(k) = [y(k); : : : ; y(k − py + 1);

u(k − 1); : : : ; u(k − pu + 1)]; (4)

Eq. (3) can be rewritten as

yi(k + 1) = Fi(�(k); u(k)); i = 1; : : : ; m (5)

which in vector notation becomes

y(k + 1) = F(�(k); u(k)): (6)

The control action u(k) is fed into the plant:

u(k) =F(r(k);  (k);w); (7)

where  (k) is a regressor vector obtained from
time delayed values of the inputs and of the out-
puts, w is the set of parameters describing the con-
troller and r(k) is the vector of the reference signals
[r1(k); r2(k); : : : ; rm(k)]T. The controller will produce
a control action u(k) which will drive the plant out-
puts y(k + 1) at the values speci1ed by the vector
r(k). Since the dynamics of the controller is much
faster than the one of the plant to be controlled it is
supposed that the control action at time k is inKuenced
by the output of the plant at time k, without any delay.
The predictor performs a forward simulation of the

system composed by the plant and the controller. Each
predicted output of the plant

ŷi(k + 1) = F̂ i(�(k); u(k)); i = 1; : : : ; m; (8)

where F̂i is the estimate of Fi, learned on the basis
of the available dataset. The results of the forward
simulation are then used to perform the parametric
adaptation of the controller.

4. Multiple-step-ahead adaptive control

Using the structure of the system depicted in Fig.
1 it is possible to design a learning algorithm, based
on the principles de1ned in generalized predictive
control theory [11], which performs an adaptation of
the weights of the controller using information about
the future behavior of the system. The predictor will
provide the controller with information regarding the

future values of ŷ and u up to the prediction horizon.
It is necessary to make the following assumptions:

(1) The state of the process at any time can be
reconstructed using the information inside the
regressor �(k);

(2) A unique series of inputs [u(k); u(k+1); : : : ; u(k+
Hc)] exists, which leads the output signals y
to r at time k + Hp. Hc is the control horizon
(the length of the time horizon where a control
signal is applied) Hp is the prediction horizon
(the length of the time horizon where the future
states of system are simulated). The prediction
horizon must be bigger or equal to the control
horizon (Hp¿Hc). Control actions are consid-
ered constant once the control horizon is reached:
u(t)= u(k + Hc) for t¿k + Hc. Note that this
assumption is required in order to guarantee
the convergence of the gradient-based method
illustrated in the following;

(3) Every @F(· · ·)=@u(t) for t¡k is equal to 0 since
past actions are considered constant;

(4) The controllerF(r(k);  (k);w) can approximate
the series of perfect control actions [u(k); u(k +
1); : : : ; u(k + Hc)] to any degree of accuracy in
the region of interest for some “perfectly tuned”
weights w=w?;

(5) The speed of adaptation of the weights is low in
order to be able to separate, in the measurement of
the error, the e4ects of the parameters adjustment
from the input signal variations [16].

These assumptions allow the design of an adaptation
algorithm based on the gradient descent:

w(k + 1) = w(k)− �
@J
@w

: (9)

In order to train the parameters w the following cost
function is selected:

J =
1
2

k+Hp∑
t=k

(r(t)− ŷ(t))TQ(r(t)− ŷ(t))

+
1
2

k+Hc∑
t=k−1

Ou(t)TROu(t); (10)

where Ou(t)= u(t)− u(t − 1) and u(k − 2)=0. The
matrix Q∈�n×n weights the errors (r(t)− ŷ(t)) while
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the matrix R∈�m×m has the e4ect of penalizing the
large variations of Ou(t) which could destabilize the
system.
Substituting this expression into Eq. (9) and recall-

ing Eq. (6) it is possible to obtain

w(k + 1) =w(k)− �


k+Hp∑

t=k

(r(t)− ŷ(t))TQ@ŷ(t)
@w

+
k+Hc∑
t=k−1

Ou(t)TR
@Ou(t)

@w

)
: (11)

This expression can be calculated by recursively com-
puting the following two expressions:

@u(t − 1)
@w

=
@F(r(t − 1);  (t − 1);w)

@w

=
@F(· · ·)

@w
+

@F(· · ·)
@ (t)

@ (t)
@w

(12)

and

@ŷ(t)
@w

=
@F̂(u(t − 1); �(t − 1))

@w

=
@F̂(· · ·)

@�(t − 1)
@�(t − 1)

@w
+

@F̂(· · ·)
@u(t − 1)

×
(
@F(· · ·)

@w
+

@F(· · ·)
@ (t − 1)

@ (t − 1)
@w

)
:

(13)

The full description of this algorithm can be found in
Bertolissi et al. [6].
The multiple step algorithm is a quite complex al-

gorithm. It allows the control of systems which are not
minimum phase and any desired output does not need
to be reachable in one step, as happens in the case of
the single-step-ahead versions of the same approach
[22]. This comes from the fact that instead of looking
one step in the future in order to select a control pol-
icy, we consider a longer time horizon. This approach
also implies that the learning algorithm can now learn
on the basis of a series of control actions instead of
only one control action in order to reach the desired
system output.

The relaxation of these assumptions has two costs:
a higher computational load and the need for a more
precise model. The 1rst cost is easily understandable
and is due to the simulation at each step of the closed-
loop behavior over a long time horizon. The second
cost comes from the fact that the long term predictions
are more di3cult to achieve and need better precision,
at each step, in order to avoid accumulation of the
errors.
The quality of the model is therefore fundamental

for the implementation of a good controller. Takagi–
Sugeno fuzzy systems and lazy learning can both be
used to produce a model of the plant to be controlled.
However, in all the cases when the dynamics of the

controller plant cannot be completely de1ned from the
available training data, or its dynamics is time variant,
it is useful to add adaptation capabilities to the model
of the plant in order to improve the performance of
the system.
In the case of fuzzy systems, when new data be-

come available a new identi1cation procedure is usu-
ally necessary to incorporate this new knowledge in
the model. An approach which allows the implemen-
tation of on-line learning consists in adapting only the
linear consequents of the fuzzy rules, without modi-
fying the position of the centers and the shape of the
fuzzy rules. Given

yj(’) = a( j)0 + a( j)1 ’1 + · · ·+ a( j)n ’n = l( j)’

and

A( j) =
�A( j) (’)∑M
k=1 �A(k) (’)

Eq. (1) can be rewritten as

y =
M∑
j=1

A( j)yj(’) =
M∑
j=1

A( j)l( j)’ = LT ;

where LT = [l(1) : : : l(M)] and  = [A(1)’ : : : A(M)’]T.
This is a linear system whose parameters L can
be adapted using a a recursive least mean square
algorithm.
This adaptation procedure is not equivalent to a new

identi1cation procedure, since it a4ects only some of
the parameters which are used to describe the fuzzy
model. This means that if new examples bring in-
formation on a dynamics which cannot be character-
ized by the known fuzzy rules, the fuzzy model will
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change the parameters of the linear consequents try-
ing to model the new behavior. A new identi1cation,
on the other hand, could modify also the position and
the shape of some fuzzy rules in addition to the linear
consequents, and it could even lead to the de1nition
of new rules in order to capture the richer dynam-
ics. A new identi1cation would be too expensive from
a computational point of view. It is worth noticing
here that the adaptation of the consequents is a linear
procedure while the adaptation of the positions and
of the shapes of the rules would involve a nonlinear
procedure.
In the case of lazy learning adaptation capabili-

ties can be implemented simply by adding the new
data, as they becomes available, to the database of
examples which will be used to calculate the subse-
quent predictions. This means that the lazy learning
simulator can be easily updated on-line, while the
controller is running. Moreover, the addition of new
points associated with unmodeled dynamics does not
change the prediction accuracy of the model in other
areas.

5. Simulation studies

Due to the constraints concerning pollutant emis-
sions, consumption and e3ciency, car manufacturers
are currently studying new concepts for engines. At
present several e4orts are focused on direct injection
engines (GDI). This novel kind of engine allows two
operation modes, the usual one called homogeneous
mode, and a new one called strati1ed mode, with lean
air fuel mixtures. In this way a signi1cant decrease of
consumption and pollutant emission is expected. En-
gineers should tune and control several parameters in
order to control the engine to achieve the maximum
performance. One of these is the fresh air quantity in-
troduced into the cylinders through an electrical throt-
tle which controls the manifold pressure.
In this paper we propose, as an example of a real

process, the control of the manifold pressure of a
GDI engine. The full engine model has been imple-
mented by Siemens Automotive and it is of one of
the benchmarks de1ned within the FAMIMO project
(ESPRIT LTR Project 21911). The aim of the con-
troller is to set the position of the electrical throt-
tle, MTC ∈ [0 100], which determines the manifold

pressure pman∈ [100 1024]. The pressure also de-
pends on the engine speed N ∈ [900 3500], which is
measured in revolutions per minute (rpm) and is a
noncontrollable input of the system. The process is a
second-order nonlinear system.
Two sets of experiments have been performed. The

1rst set of experiments assessed the control capabili-
ties of the simulator based on the fuzzy and lazy mod-
els without adaptation capabilities. These experiments
have been carried out in noisy and noise-free scenar-
ios, as de1ned in the engine benchmark. The second
set of experiences was targeted to the evaluation of
the performance of the controller in the same scenar-
ios, when adaptation capabilities were added to the
models of the plant. In all the experiments the direct
adaptive controller had to follow a pseudo-sinusoidal
signal which pushes the plant in areas where its dy-
namics are not well described by the training data.
Since the aim of the paper is to show that it is pos-

sible to use a lazy learning approximator when an
insu3cient number of data are available for the mod-
eling of the process, the plant has been identi1ed
using 5000 points collected by exciting the system
with a pseudo-random input. In this way the data pro-
vides information only on part of the system dynam-
ics and therefore cannot be used to obtain a reliable
model. The training data used for the identi1cation
procedures is displayed in Fig. 2.
As far as the noise is concerned, the benchmark

introduced an additive disturbance at the level of
the sensor of the manifold pressure. The readings of
the pressure were disturbed by two di4erent noise
components: a 1rst proportional component which
consisted of a uniform distributed noise bounded
within 2% of the level of the signal, and a second
uniform distributed component which was de1ned
within ±30 mbar. As far as the lazy learning sim-
ulator is concerned, linear local models have been
considered where the number of neighbors vary in the
range between 30 and 60. In addition, the prediction
for each query has been obtained as a combination of
the 6 best local models, according to the PRESS esti-
mate, out of those considered in the above mentioned
range [8]. As far as the Takagi–Sugeno fuzzy system
is concerned, the identi1cation procedure that has
been used [4] automatically generates a fuzzy parti-
tion of the process input space by letting grow the
number of fuzzy rules until an optimum is achieved
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Fig. 2. Training sequences used to identify the model of the manifold pressure. MTC represents the control action, N is a noncontrollable
input of the plant, while pman represents the output of the plant. The noise-free and noisy outputs of the plant are shown in the bottom
graphs. The signals have been sampled for 25 s with a period of 0.005, thus collecting 5000 samples.

with respect to the given performance criteria. In this
particular case 14 rules were de1ned for describing
the dynamical system in the noise-free scenario, while
only 8 in the noisy scenario.

In this particular experience the controller itself has
been implemented as a Takagi–Sugeno fuzzy system.
It is worth noting that any other (di4erentiable) para-
metric controller could have been used as well and



10 E. Bertolissi et al. / Fuzzy Sets and Systems 128 (2002) 3–14

22 24 26 28 30 32 34 36 38 40
0

200

400

600

800

1000

fuzzy model

pr
es

su
re

 (
m

ba
r)

RMSE = 34

noise free scenario

22 24 26 28 30 32 34 36 38 40
0

200

400

600

800

1000

lazy model

pr
es

su
re

 (
m

ba
r)

RMSE = 49

noise free scenario

time (s)

Fig. 3. Performance of the controller based on a fuzzy model, and a lazy model in a noise-free environment. The solid line is the actual
output of the plant, while the reference is represented by the dashed line. The performance is measured in terms of the root mean squared
error (RMSE).

that there is no correlation between the choice of a
particular controller and the choice of the type of
simulator. The control action is the position of the
throttle (MTC), and it is calculated on the basis of
the current value of the manifold pressure (pman),
the desired value of the manifold pressure (pman d),
and the number of revolutions per minute of the en-
gine (N). The sampling time of the system is equal
to 5 ms. The controller is described by 108 Takagi–
Sugeno fuzzy rules, obtained by evenly distributing
the centers of the rules on the four-dimensional input
space (108=3× 3× 3× 4). In the beginning the con-
sequences of all the rules have been initialized to 0.
The adaptation algorithm uses a 5-step-ahead predic-
tion horizon and a learning rate �=10−8.
The graphs of Fig. 3 show the performance of the

controller (solid line) in the temporal window between
22 and 40 s in the noise-free scenario. In the previous
temporal window between 0 and 22 s, the controller
has been following the reference signal in order to
initialize the rules of the controller.
The graphs show the performance of the fuzzy

and lazy models built starting from the initial 5000

input–output pairs. It is possible to notice that in
both cases the controller shows a poor performance
in terms of the observed root mean squared error
(RMSE). The output of controller based on the fuzzy
model of the plant presents a smoother response,
and both the controllers show deviations from the
setpoint on some occasions. In particular it is pos-
sible to notice that both controllers tend to show
de1ciencies in the same areas, but the output of the
controller based on the fuzzy model is smoother.
This means that the prediction and the values of the
derivatives in the lazy model are less reliable, leading
the system to exhibit high frequency components.
The smoother performance of the controller based
on the fuzzy model may be caused by the fact that
when the estimation of the model is done in an area
where limited information is available, the fuzzy sys-
tem o4ers better extrapolation abilities. In the case
of the lazy simulator the use of few points for calcu-
lating the same quantity leads to poor values for the
derivatives.
The graphs of Fig. 4 show the performance of the

controller in the noisy scenario.
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Fig. 4. Performance of the controller based on a fuzzy model, and a lazy model in a noisy environment. The solid line is the actual output
of the plant, while the reference is represented by the dashed line. The output of the controller is measured before addition of the sensor
noise, and gives the real value of the pressure at the manifold level.

The graphs show the readings of the pressure be-
fore the addition of the sensor noise, and therefore
they give its real value at the manifold level. It is
possible to see that the controller shows a poorer
performance in comparison with the noise-free sce-
nario. In this case, the controller based on the fuzzy
model manages to follow the set point, the one based
on the lazy learning shows de1ciencies in several
situations. Even in the noisy scenario it is possi-
ble to notice how the controller based on the fuzzy
model manages to achieve a better performance,
due to the generalization properties of the fuzzy
model.
An important point of this 1rst set of experiments

was to highlight the fact that the given initial data
is insu3cient to build a model of the plant required
to perform a good forward simulation. Therefore, the
second set of experiments focused on the evaluation of
the performance of the controller in the same scenarios
when adaptation capabilities were added to the model
of the plant.
The graphs of Fig. 5 show the performance of the

controller when used in connection with the adaptive

versions of the fuzzy and the lazy model of the plant
in the noise-free scenario.
In both cases it is possible to see an improvement

of the performance of the system; however, it is clear
from the image that the controller based on the adap-
tive lazy system outperforms the one based on the
fuzzy model. In the case of the fuzzy model the re-
cursive least mean square algorithm is used to on-line
update the parameters of the consequences of the rules
of the fuzzy model. In the case of the lazy model the
adaptation procedure consists in adding a new input–
output pair to the database of the examples at each
time step. In the case of the controller based on the
lazy system it is possible to see that the ringing signal
which characterized the nonadaptive version of Fig. 3
disappeared. This is because as new points are added
to the database of examples the lazy model can 1nd
neighbors that are closer to the query point and there-
fore more informative: this increases the stability and
the accuracy of the derivatives.
The graphs of Fig. 6 show the performance of the

controller based on the fuzzy and lazy models of the
plant in the noisy scenario.
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Fig. 5. Performance of the controller based on an adaptive fuzzy model, and an adaptive lazy model in a noise-free environment. The
solid line is the actual output of the plant, while the reference is represented by the dashed line.
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Fig. 6. Performance of the controller based on an adaptive fuzzy model, and an adaptive lazy model in a noisy environment. The solid
line is the actual output of the plant, while the reference is represented by the dashed line. The output of the controller is measured before
addition of the sensor noise, and gives the real value of the pressure at the manifold level.
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It is possible to see that there is no improvement of
the performance of the controller when the adaptive
version of the fuzzy model of the plant was used in-
stead of static version. However, the controller based
on the lazy adaptive version of the model of the plant
shows a great improvement in comparison with the
one based on the static version, and it performs bet-
ter than the one based on the fuzzy model. Therefore,
even in the noisy case it is possible to appreciate the
bene1t of using a controller based on a lazy adaptive
version of the model of the plant.
All the experiments proposed in this section have

been performed with the NLMIMO Toolbox [5], and
with the Lazy Learning Toolbox 2 [7].

5.1. Some considerations on memory requirements
for lazy learning

One of the shortcomings of the adaptive lazy learn-
ing approach is that as time passes the database of
examples grows in size. This obviously leads to an
increase in memory requirements, and also to an in-
crease in computational cost since more points need
to be scanned in order to 1nd the neighbors of each
query. Forgetting strategies could be implemented, but
particular care is necessary in this case since this ap-
proach could lead to the elimination of information
about the dynamics of the systems in some areas of
the state space.
A di4erent approach consists in adding a new point

to the database only when the prediction di4ers more
than a prede1ned threshold from the real output of
the plant. This approach is based on the principle that
if the prediction is su3ciently accurate for a partic-
ular region, there is no need to enrich the database
by adding new examples in that region. We propose
a detailed analysis of the application of this principle
to the case of a noise-free scenario. In this particular
case, it is straightforward to evaluate the accuracy of
a prediction: it is su3cient to compare the prediction
with the reading of the output of the plant. In a more
general noisy scenario, since the reading is a4ected by
sensor noise, such a comparison is meaningless and
must be replaced by some other criterion based for
instance on a statistical test.

2 http://iridia.ulb.ac.be= ∼lazy/.

Table 1
Performance of the system in the noise-free scenario using di4erent
values of the adaptation threshold. Points are added to the database
of the example used by the lazy system only if the di4erence
between the predicted value and the measured value is greater
than the threshold

Threshold (mbar) Points added RMSE

0 8000 9.43
0.01 6756 9.43
0.05 4735 9.16
0.1 3562 9.72
0.5 1153 9.87
1 548 10.10
5 41 16.81
10 28 27.98
50 6 74.35
100 4 62.72
200 1 54.07
∞ 0 49.43

As far as the noise-free scenario is concerned,
Table 1 reports the performance of the system using
di4erent values of the threshold. The second column
reports the number of points added to the database
during the experiment. The table shows, as a general
trend, that the performance decreases as the value
of the threshold is increased. In particular it can be
noticed that the reduction, up to a certain level, of
the number of points added to the database does not
signi1cantly alter the performance of the system. On
the other hand, for larger values of the threshold,
when fewer points are added to the database, the per-
formance of the system decreases more dramatically.

6. Conclusions

Divide and conquer techniques are powerful tech-
niques for learning from a limited amount of data.
We illustrated and analyzed the performance of a
controller used in conjunction with two di4erent ap-
proaches for modeling the plant to be controlled,
starting from a limited amount of input–output data.
When the model of the plant does not take advantage
of examples gathered on-line, it has been seen that the
use of a Takagi–Sugeno model leads the system to
a smoother response. However, when new examples
are gathered on-line the performance of the system
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improves, and the controller based on the lazy system
outperforms the one based on the fuzzy model.
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