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Abstract: This paper presents an approach for modeling and controlling discrete-time
non-linear dynamical system. Our approach is well suited in the cases when a model of
the system is not given a priori and has to be learned from a limited amount of data,
or when the system possesses a time varying dynamics. The controller consists of a
multiple step ahead direct adaptive controller. At each time step a forward simulation
of the system composed by the controller and the plant model is performed. This
dynamic information is then used to adapt the parameters of the controller. In order
to obtain good results it is necessary to have a good model of the process to control.
Takagi-Sugeno fuzzy systems and lazy learning, are two approaches which can be
successfully used to simulate the process to control. Simulation examples of the control
of thg manifold pressure of a car engine are given.
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1. INTRODUCTION

The idea of employing linear techniques in a
nonlinear setting is not new in control litera-
ture but had recently gained popularity thanks to
methods for combining multiple estimators and
controllers in different operating regimes of the
system Murray-Smith and Johansen (1997); Bon-
tempi et al. (1999b).

The goal of this paper is to compare a Takagi-
Sugeno Takagi and Sugeno (1985) fuzzy systems
with lazy learning Aha (1997) on the task of mod-
eling an unknown dynamic system in the frame-
work of the implementation of a direct adaptive
controller (DAC). In this type of controllers, at
each time step a forward simulation of the sys-
tem composed by the controller plus the plant is
performed. The results of this computation are
then used to tune the controller by adapting its
parameters. In order to perform the forward simu-

lation a model of the plant is required. Its quality
is directly related with the performance of the
controller, since errors in the model could lead to
incorrect updates of its parameters.

The problem of modeling a process from a limited
amount of observed data has been the object of
several disciplines from nonlinear regression to
machine learning and system identification. In the
literature dealing with this problem, two main
paradigms have emerged: global versus divide and
congquer.

Global modeling builds a single functional model
on the basis of the dataset. This has traditionally
been the approach taken in neural network model-
ing and other form of nonlinear statistical regres-
sion. The available dataset is used by a learning
algorithm to produce a model of the mapping and
then the dataset is discarded and only the model
is kept.



Multiple model approaches Murray-Smith and Jo-
hansen (1997), also known as divide and conquer
techniques, partition a complex problem into sim-
pler ones whose solutions can be combined to
provide a solution of the original problem. An
example of these approaches are the modular ar-
chitectures where different modules are composed
in order to cover the input space. Even if these
approaches use the combination of local models,
the learning procedure remains a functional esti-
mation problem, and requires the same procedures
used for generic global models. Takagi-Sugeno
fuzzy systems represent a well known example of
this approach.

Another example of multiple model methods are
the so called local modeling techniques, where the
problem of function estimation is transformed into
one of value estimation. In these approaches the
goal is not to find a model which explains the
whole process, but to find the best output for
a specific given input (called guery). Local tech-
niques renounce to a complete description of the
input-output relation, and aim at approximating
the function only in the neighborhood of the point
to be predicted. The objective of these techniques
is to improve the prediction accuracy at the cost of
a reduced readability of the resulting model. Since
an approximation function is not calculated, it is
necessary to keep into memory the whole dataset
for each prediction, and therefore the quantity of
memory required for these approaches is much
larger than the one necessary in the other cases.
Lazy learning is one of these local modeling tech-
niques.

Takagi-Sugeno fuzzy systems and lazy learning
can be successfully used within DAC for the mod-
eling of the controlled plant. In particular the
advantages of the latter become evident if it is
necessary to perform a prediction when an ini-
tially limited amount of process data is available,
but further examples can be collected on line. An-
other comparison between a fuzzy system and lazy
learning as identification modules in a different
nonlinear control framework has been proposed
in Bontempi et al. Bontempi et al. (1999a).

2. LOCAL MODELING AS AN
OPTIMIZATION PROBLEM

In Takagi-Sugeno fuzzy systems the computation
of the value of the unknown function is performed
by the fuzzy interpolation of a set of linear systems
which locally approximate the desired function.
These systems define a set of fuzzy rules which
partition the input space:

RM :IF ¢; IS AP AND ... AND ¢, IS 4D

THEN y = ag) + agl)gol +-- 4 ag)(Pn

The system output is a weighted average of the
individual rule outputs:

M paw(p) (aff) +aflor+-- +ad wn)

-3

M
1=1 Zk:l H Ak (‘P)

where the weights p 4 () are computed accord-
ing to:
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This approach allows to model a system by means
of the decomposition of a nonlinear mapping into
a collection of local linear models. Since this ap-
proach imposes to structure the problem in a
series of local models, Takagi-Sugeno models can
be easily constructed from numerical data, which
is used to identify the number and the attributes
of the fuzzy rules.
In the lazy learning approach, the estimation of
the value of the unknown function is performed
giving the whole attention to the region surround-
ing the point where the estimation is required.

Let us consider an unknown mapping f: ™ —
R of which we are given a set of N samples
{(90[1], y[l]), (‘P[z], y[z]), ) (SD[N], y[N])}- These ex-
amples can be collected in a matrix ® of dimen-
sionality [N x m], and in a vector y of dimension-
ality [N x 1].

Given a specific query point ¢,, the prediction
of the value y, = f(¢,) is computed as follows.
First, for each sample (.(p[i],y{,-]) a weight w; is
computed as a function of the distance d(¢;, )
from the query point ¢, to the point Pl Each
row of ® and y is then multiplied by the corre-
sponding weight creating the variables Z = W&
and v = Wy, with W diagonal matrix having
diagonal elements W;; = w;. Finally, a locally
weighted regression model (LWR) is fitted solving
the equation (ZTZ)B = ZTv and the prediction
of the value f(¢,) is obtained evaluating such a
model in the query point:

¢ = oy (27Z)71 27 v. (1)

Here, we will focus mainly on the procedural as-
pects of the modeling technique. Typically, the
data analyst who adopts a local regression ap-
proach, has to take a set of decisions related
to the model (e.g. the number of neighbors, the
weight function, the parametric family, the fitting
criterion to estimate the parameters). In this pa-
per we take advantage of the method described
in Birattari et al. Birattari et al. (1999), which
automatically selects, for each query point, the
adequate configuration. This is done by import-
ing tools and techniques from the field of linear
statistical analysis. The most important of these
tools is the PRESS statistic Myers (1994), which
is a simple, well-founded and economical way to
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Fig. 1. Schematic representation of the system

perform leave-one-out cross validation Efron and
Tibshirani (1993) and therefore to assess the per-
formance in generalization of local linear models.
Due to its short computation time which allows
its intensive use, it is the key element of the
lazy learning approach to modeling data. In this
modeling procedure the performance of a model in
cross validation is the criterion adopted to choose
the best local model configuration Birattari et al.
(1999). One of the most important parameters to
be tuned in a local model configuration is the
size of the region surrounding ¢,, in which the
function f(-) can be conveniently approximated
by a linear local model. Such a parameter can
be related to the number of training examples
which- fall into the region of linearity. The task
of identifying the region of linearity is therefore
akin to the task of finding, among the examples
available, the number k of neighbors of ¢, to be
used in the local regression fit. Thus, different
models are considered, each fitted on a different
number of examples, and the leave-one-out cross-
validation is used to compare them and to select
the one for which the predicted error is smaller. To
make the procedure faster and to avoid repeating
for each model the parameter and the PRESS
computation, an incremental approach based on
recursive linear techniques is adopted Birattari
et al. (1999).

3. SYSTEM DESCRIPTION

Figure 1 shows the structure of a closed loop con-
trol system which is composed by: the plant to be
controlled, the simulator, and the controller. As-
sume that the n input m output plant is expressed
in terms of its input-output representation:

vi(k+1) = F(y(k),...,y(k — py + 1),u(k),... ,)u(k
@

where the scalar y;(k) is the i*" output of
the plant at time k, u(k) is the input vector
[ui(k),u2(k), ..., un(k)]T and y(k) is the out-
put vector [y1(k),y2(k), - .., ym(k)]T, F; is an un-
known nonlinear function, and p, and p, are the
known structure orders of the system for the out-

put .
If the regressor vector ¢(k) is defined as follows:

¢(k) = [y(k), - -

3)
equation (2) can be rewritten as:
yi(k+1)=Fi(¢(k),u(k)), i=1,...,m (4)
which in vector notation becomes:
y(k) = F(¢(k), u(k)) (5)
The control action u(k) is fed into the plant:
u(k) = F(x(k), (k) w) (6)

where (k) is a regressor vector obtained from
time delayed values of the inputs and of the out-
puts, w is the set of parameters describing the
controller and r(k) is the vector of the reference
signals [r1(k),72(k),...,™m(k)]T. The controller
will produce a control action u(k) which will drive
the plant outputs y(k + 1) at the values specified
by the vector r(k). Since the dynamics of the
controller is much faster than the one of the plant
to be controlled it is supposed that the control
action at time k is influenced by the output of the
plant at time k, without any delay.

The predictor performs a forward simulation of
the system composed by the plant and the con-
troller. Each predicted output of the plant is equal
to:

9i(k +1) = Fi(8(k), u(k)),

where E} is the estimate of F;, learned on the
basis of the available dataset. The results of the
forward simulation are then used to perform the
parametric adaptation of the controller.

i=1,...,m (7)

4. MULTIPLE STEP AHEAD ADAPTIVE
CONTROL

Using the structure of the system depicted in
figure 1 it is possible to design a learning algo-
rithm, based on the principles defined in general-
ized predictive control theory Clarke et al. (1987),
which performs an adaptation of the weights of
the controller using information about the future
behaviour of the system. The predictor will pro-
vide the controller with information regarding the
futures values of the ¥ and u up to the prediction
horizon. It is necessary to make the following
assumptions:

—pu+1)), i=1,...,m
f)lu) Th)e) state of the process at any time can

be reconstructed using the information inside
the regressor ¢(k);

(2) It exists a unique series of inputs [u(k) u(k +
1) ... u(k + H.)] which leads the output
signals y towards r at time k + H,. H. is
the control horizon (the length of the time
horizon where a control signal is applied) H,

aY(k_py+1)7u(k—1)a"‘,u(k—pu+1)]



is the prediction horizon (the length of the
time horizon where the future states of sys-
tem are simulated). The prediction horizon
must be bigger or equal to the control horizon
(Hp > H.). Control actions are considered
constant once the control horizon is reached:
u(t) =ulk+ H,) fort > k + H;

(3) Every BTI';(%, for t < k is equal to O since
past actions are considered constant;

(4) The controller F(r(k),(k); w) can approx-
imate the series of perfect control actions
[u(k)u(k +1)...u(k + H.)] to any degree of
accuracy in the region of interest for some
“perfectly tuned” weights w = w*;

(5) The speed of adaptation of the weights is
low in order to be able to separate in the
measurement of the error the effects of the
parameters adjustment from the input signal
variations Landau (1979).

These assumptions allow the design of an adapta-
tion algorithm based on the gradient descent:

BJ
wk+1)=w(k) - (8)
In order to train the parameters w the following
cost function is selected:

1 ks r 1 ke
J=5 > (0 -3() Q) -

t=k t—k—

(9)

where Au(t) =u(t) —u(t—1) and u(k—2) =0.
The matrix Q € R™*™ weights the errors (r(t) —
$(t)) while the matrix R € R™*™ has the effect to
penalize the large variations of Au(t) which could
destabilize the system.

Substituting this expression in equation 8 and
recalling equation 5 it is possible to obtain:

k+Hy 5
wik+ 1) =wk) -7 3 () - 3()) @22
t=k
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This expression can be calculated by recursively
compute the following two expressions:

Fig. 2. Training sequence used to identify the
model of the manifold pressure

The multiple step algorithm is a quite complex
algorithm. It allows to control system which are
not minimum phase and any desired output does
not need to be reachable in one step, as happens
in the case of the single step ahead versions of
the same approach. This comes from the fact that
instead of looking one step in the future in order
to select a control policy, we consider a longer
time honzon This approach also implies that the

¥(t) + Z A{e(a‘.@un@ (dgefiyhm can now learn on the basis of a

series of control actions instead of only one control
action in order to reach the desired system output.
The relaxation of these assumption has two costs:
a higher computational load and the need for a
more precise model. The first cost is easily un-
derstandable and is due to the simulation at each
step of the closed loop behaviour over a long time
horizon. The second cost comes from the fact that
the long term predictions are more difficult to
achieve and need better precision, at each step,
in order to avoid errors accumulation.
xFhe quality of the m is therefore fundamen-
C(IAﬁ_h@j)l)lﬂ ipbn of a good controller.
gi-Sugeno fuzéy’ sygtems and lazy learning,
can both be used to produce a model of the
plant to be controlled. However lazy learning rep-
resents an ideal solution in all the cases when
the dynamics of the system cannot be completely
the available training data, or the
%Zi ‘the system is time variant. In the
O n@ural networks, or fuzzy systems, when
new data becomes available a new identification
procedure is usually necessary to incorporate this
new knowledge in the model. In the case of lazy
learning it is just necessary to add the new data to
the database which will be used to calculate the

OF (- supsBgpfént pyddictions. This means that the lazy

du(t—1)  OF(r(t—1),%(t—1);w) a}'(
oew ow
(11)

and

83(t) _ OF (u(t—1),(t - 1))

ow ow
_ OF(.) og(t-1)  OF(-:) (BF(---)

6¢(t——1) ow

Bu(t -1)
: (12)

The full description of this algorithm can be found
in Bertolissi et al. Bertolissi et al. (2000b).

ow 01 (t leayningygmulgtor can be updatéd on line, while

the controller is running. The implementation of
forgetting strategies is also straightforward since
it is only necessary to delete the old points from
the database.



5. SIMULATION STUDIES

Due to the constraints concerning pollutant emis-
sions, consumption and efficiency, car manufac-
turers are currently studying new concepts for
engines. At present several efforts are focused on
direct injection engines (GDI). This novel kind of
engine allows two operation modes, the usual one
called homogeneous mode, and a new one called
stratified mode, with lean air fuel mixtures. In this
way a significant decrease of consumption and pol-
lutant emission is expected. Engineers should tune
and control several parameters in order to control
the engine to achieve the maximum performance.
One of this is the fresh air quantity introduced
into the cylinders through an electrical throttle
which control the manifold pressure.

In this paper we propose, as an example, a subsec-
tion of one of the benchmarks defined within the
FAMIMO project (ESPRIT LTR Project 21911).
The aim of the controller is to set the position
of the electrical throttle which determines the the
manifold pressure pman € [2001024]. The process
in a second order highly nonlinear system. The
control action is evaluated on the basis of the
fresh air throttle control MTC € [0 100], which
indicates the position of the throttle, and the
engine speed N € [800 3400], which indicates the
number of revolutions per minute (rpm) of the
engine.

Since. the aim of the paper is to show that it is
possible to use a lazy learning approximator when
an insufficient number of data is available for the
modeling of the process, the plant has been iden-
tified using only the first 10000 points of a 50000
points sequence collected by exciting the system
with a pseudo random input which had been suc-
cessfully used to identify the system. In this way
the data provides information only on part of the
system dynamics. The training data used for the
identification procedures is displayed in figure 2.
Two different simulators have been implemented,
one based on a lazy learning approximator, and
one based on a Takagi-Sugeno fuzzy system. As far
as the lazy learning simulator is concerned, linear
local models had been considered, and the number
of neighbors varied in the range between 30 and
60. In addition the prediction for each query had
been obtained as a combination of the 4 best local
models, according to the PRESS estimate, out of
those considered in the above mentioned range
Birattari et al. (1999). As far as the Takagi-Sugeno
fuzzy system is concerned, an incremental identi-
fication procedure had been used. Bersini et al.
(1997). This procedure automatically generates
a fuzzy partition of the process input space by
letting grow the number of fuzzy rules until an
optimum is achieved with respect to the given
performance criteria. In this particular case 13
rules were defined for describing the dynamical
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Fig. 3. Performance of the adaptive controller
based on a fuzzy model (top), a lazy model
(center) and a lazy adaptive model (bottom).
The solid line is the actual output of the
plant, while the reference is represented by
the dashed line.

system.

In this particular experience the controller itself

had been implemented as a Takagi-Sugeno fuzzy

system. It is worth noting that any other (dif-
ferentiable) parametric controller could have been
used as well and that there is no correlation be-
tween the choice of a particular controller and the
choice of the type of simulator. The control action
is the position of the throttle (MTC), and it is
calculated on the basis of the current value of the
manifold pressure (pman), the desired value of the
value of the manifold pressure (pman_d), and the
number of revolutions per minute of the engine

(N). The sampling time of the system is equal to

5 milliseconds. The controller is described by 108

Takagi-Sugeno fuzzy rules which cover the input

space. At the beginning the consequences of all the

rules have been initialized to 0. The adaptation
algorithm uses a 5 step ahead prediction horizon

and a learning rate = 108,

Figure 3 shows the performance of the adap-
tive controllers (solid line) after 68 seconds of
training. The top part of the figure displays the
results obtained when a fuzzy model was used
for modeling the controlled plant. It is possible
to see that performance is sometime quite poor
and the controller is not able to drive the output

.of the plant to the desired values. The graph in

the middle shows the performance of the adaptive
controller using the lazy learning approximator.
It is apparent that the performance is quite poor.
The problems arise in the-same places where the
fuzzy controller displays deficiencies, but the re-
sulting output is less smooth. This means that the
prediction and the values of the derivatives are
less reliable, leading the system to exhibit high
frequency components. It is possible to conclude
that the fuzzy system in this case offered better
generalization capabilities in comparison to the
lazy learning approach. This may be caused by the
fact that when the estimation of the model is done
in an area where limited information is available,
the fuzzy system offers better extrapolation abil-



ities. In the case of the lazy simulator the use of
few points for calculating the same quantity leads
to poor values for the derivatives. It is possible to
see that this type of problems can be overcome by
means of an adaptive lazy learning approximator
whose performance is reported in the graph at the
bottom of figure 3. The adaptation procedure is
performed every time the prediction differ more
than 0.1% from the output of the system. In this
case the input-output regressor is added to the
database of the examples, thus adding information
in areas of the space which do not host enough
points. In his way a larger number of points is
used for the computations of the queries which
increases the stability of the derivatives. At the
beginning of the displayed sequence the dimen-
sions of the database of the adaptive lazy learning
approximator were increased of about 8%.

All the experiments have been performed taking
advantage of the NLMIMO Toolbox Bertolissi
et al. (2000a), which integrates the Lazy Learning
Toolbox ! Birattari and Bontempi (1999) as one
of its components.

6. CONCLUSIONS AND FUTURE
DEVELOPMENTS

Divide and conquer techniques are powerful tech-
niques for learning from a limited amount of data.
We illustrated and analyzed the performance of
an adaptive controller used in conjunction with
three different approaches for simulating the plant
to be controlled. When the model of the plant
is not adaptive it has been seen that the use
of a Takagi-Sugeno model leads the controller to
better results. However when adaptation capabil-
ities are added to the lazy learning simulator, the
performance of the controller improves. This is
due to that fact that the adaptation overcomes
the problems related with the unmodeled dynam-
ics of the system. The main advantage of this
adaptation process consists in the fact that it is
easy to implement and does not require further
computations. .

Future developments will mainly focus on the im-
plementation of more sophisticated forward sim-
ulators, and on the introduction of more refined
adaptation techniques for what concerns the lazy
learning simulator.
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