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Abstract: This paper presents an approach for modeling and controlling discrete-time
non-linear dynamical system. The controller consists of a multiple step ahead direct
adaptive controller. At each time step a forward simulation of the system composed
by the controlier and the plant model is performed. This dynamic information is then
used to adapt the parameters of the controller. In order to obtain good results it is
necessary to have a good model of the process to control. Takagi-Sugeno fuzzy systems
and lazy learning, are two approaches which can be successfully used to model the
controller plant. This paper focuses on case when a model of the plant is not given @
prior: and has to be learned starting from a limited amount of data and it is necessary
to add some adaptation capabilities to perform on-line learning. Simulation examples
of the control of the manifold pressure of a car engine using adaptive and non-adaptive

versions of Takagi-Sugeno and Lazy models are given. Copyright © 2000 IFAC
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1. INTRODUCTION

A system can be modeled in many different ways,
and the choice of a particular modeling and iden-
tification approach depends on the particular ap-
plication. The idea of using linear techniques in
a nonlinear setting is not new in control litera-
ture, but had recently gained popularity thanks
to methods for combining multiple estimators and
controllers in different operating regimes of the
system (Murray-Smith and Johansen, 1997; Bon-
tempi et al., 1999).

The problem of modeling a process from a limited
amount of observed data has been the object
of several disciplines from nonlinear regression
to machine learning and system identification.
In the literature dealing with this problem, two
main paradigms have emerged: global versus di-
vide and conguer. Global modeling builds a sin-
gle functional model on the basis of the dataset.
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This is the traditional approach used in neural
networks and other form of nonlinear statistical
regression. The available dataset is used by a
learning algorithm to produce a model of the .
mapping. Then the dataset is discarded and only
the functional description is kept. Multiple model
approaches (Murray-Smith and Johansen, 1997),
also known as divide and conquer techniques,
partition a complex problem into simpler ones,
whose solutions can be combined to provide a
solution of the original problem. An example of
these approaches are the modular architectures
where different modules are composed in order to
cover the input space. Even if these approaches
use the combination of local models, the learning
procedure remains a functional estimation prob-
lem, and requires the same procedures used for
generic global models. Takagi-Sugeno fuzzy sys-
tems (Takagi and Sugeno, 1985) represent a well
known example of this approach. Another exam-



ple of multiple model methods are the so called
local modeling techniques, where the problem of
function estimation is transformed into one of
value estimation. In these approaches the goal
is not to find a model which explains the whole
process, but to find the best output for a spe-
cific given input (called guery). Local techniques
renounce to a complete description of the input-
output relation, and aim at approximating the
function only in the neighborhood of the point to
be predicted. The objective of these techniques is
to improve the prediction accuracy at the cost of
a reduced readability of the resulting model. Since
an approximation function is not calculated, it is
necessary to keep into memory the whole dataset
for each prediction, and therefore the quantity of
memory required for these approaches is much
larger than the one necessary in the other cases.
Lazy learning (Aha, 1997) is one of these local
modeling techniques.

The goal of this paper is to compare a Takagi-
Sugeno fuzzy systems with lazy learning on the
task of modeling;an unknown dynamic system in
the framework of the implementation of a direct
adaptive controller (DAC). In this type of con-
trollers, at each time step a forward simulation of
the system composed by the controller and plant
pair is performed. The results of this computation
are then used to tune the controller by adapting
its parameters. In order to perform the forward
simulation a model of the plant is required. Its
quality is directly related with the performance
of the controller, since errors in the model could
lead to incorrect updates of its parameters. This
paper focuses on case when initially only a limited
amount of process data is available, but further
examples can be collected on line. In this case it
is useful to add adaptation capabilities to model
of the plant in order to capture its unmodeled
dynamics. Takagi-Sugeno fuzzy systems and lazy
learning can be successfully used within DAC for
the modeling of the controlled plant, and they can
be modified to be suitable for performing on line
adaptation.

2..LOCAL MODELING AS AN
OPTIMIZATION PROBLEM

In Takagi-Sugeno fuzzy systems the computation
of the value of the unknown function is performed
by the fuzzy interpolation of a set of linear systems
which locally approximate the desired function.
These systems define a set of fuzzy rules which
partition the input space:
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The system output is a weighted average of the
individual rule outputs:

(v) (a(()j) + agj)% 4ot ag)go,,)
Yohr s bao (@)

M pai

y=>

=1

1)

where the weights 1 4¢) (@) are computed accord-
ing to:
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This approach allows to model a system by means
of the decomposition of a nonlinear mapping into
a collection of local linear models. Since this ap-
proach imposes to structure the problem in a
series of local models, Takagi-Sugeno models can
be easily constructed from numerical data, which
is used to identify the number and the attributes
of the fuzzy rules.

In the lazy learning approach, the estimation of
the value of the unknown function is performed
giving the whole attention to the region surround-
ing the point where the estimation is required.
Let us consider an unknown mapping f: R™ —
R of which we are given a set of N samples
{(gp[,-],y[,-])}ﬁ__l. These examples can be collected
in a matrix @ of dimensionality [N x m], and
in a vector y of dimensionality [N x 1]. Given a
specific query point ¢, the prediction of the value
¥, = f(4p,) is computed as follows. First, for each
sample (g1,y}]) & weight w; is computed as a
function of the distance d(¢y;, ¢,) from the query
point o, to the point ;. Each row of @ and
y is then multiplied by the corresponding weight
creating the variables Z = W&® and v = Wy,
with W diagonal matrix having diagonal elements
Wi;; = w;. Finally, a locally weighted regres-
sion model (LWR) is fitted solving the equation
(ZTZ)B = ZTv and the prediction of the value
f(sp,) is obtained evaluating such a model in the
query point:

=1 (27Z)7 2TV, (@)
Here, we will focus mainly on the procedural as-
pects of the modeling technique. Typically, the
data analyst who adopts a local regression ap-
proach, has to take a set of decisions related
to the model (e.g- the number of neighbors, the
weight function, the parametric family, the fitting
criterion to estimate the parameters). In this pa-
per we take advantage of the method described
in (Birattari et al., 1999), which automatically
selects, for each query point, the adequate config-
uration. This is done by importing tools and tech-
niques from the field of linear statistical analysis.
The most important of these tools is the PRESS
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Fig. 1. Schematic representation of the system

statistic (Myers, 1994), which is a simple, well-
founded and economical way to perform leave-
one-out cross validation and therefore to assess
the performance in generalization of local linear
models. Due to its short computation time which
allows its intensive use, it is the key element of the
lazy learning approach to modeling data. In this
modeling procedure the performance of a model in
cross validation is the criterion adopted to choose
the best local model configuration (Birattari et
al., 1899). One of the most important parameters
to be tuned in a local model configuration is the
size of the region surrounding ¢, in which the
function f(-) can be conveniently approximated
by a linear local model. Such a parameter can
be related to the number of training examples
which fall into the region of linearity. The task
of identifying the region of linearity is therefore
akin to the task of finding, among the examples
available, the number k of neighbors of p, to be
used in the local regression fit. Thus, different
models are considered, each fitted on a different
number of examples, and the leave-one-out cross-
validation is used to compare them and to select
the one for which the predicted error is smaller. To
make the procedure faster and to avoid repeating
for each model the parameter and the PRESS
computation, an incremental apprcach based on
recursive linear techniques is adopted (Birattari
et al., 1999).

3. SYSTEM DESCRIPTION

Figure 1 shows the structure of a closed loop con-
trol system which is composed by: the plant to be
controlled, the simulator, and the controller. As-
- sume that the n input m output plant is expressed
in terms of its input-output representation:

vi(k+1) = Fi(y(k),-..,y(k — py + 1),
u(k),...,u(k—=py +1)), i=1,...,m (3)

where the scalar y;(k) is the it output of
the plant at time k, u(k) is the input vector
[ur (K), ua(K),...,un(k)]T and y(k) is the out-
put vector [y1 (k) y2(k), .- ., ym(k)]¥, Fi is an un-
known nonlinear function, and p, and p, are the
known structure orders of the system for the out-
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put 4. If the regressor vector ¢(k) is defined as
follows:

¢(k) = [}’(k),...,}’(k—py +1)1
uk=1),...,u(k—p,+1)] (4

equation (3) can be rewritten as:
vi(k +1) = F;(¢(k), u(k)),

which in vector notation becomes:

i=1,...,m (§)

y(k +1) = F(¢(k), u(k)) (6)
The control action u(k) is fed into the plant:
u(k) = F (r(k), p(k); w) )

where 1(k) is a regressor vector obtained from
time delayed values of the inputs and of the out-
puts, w is the set of parameters describing the
controller and r(k) is the vector of the reference
signals [ry(k),r2(k),.-.,m(k)]Z. The controller
will produce a control action u(k) which will drive
the plant outputs y(k + 1) at the values specified
by the vector r(k). Since the dynamics of the
controller is much faster than the one of the plant
to be controlled it is supposed that the control
action at time & is influenced by the output of the
plant at time k, without any delay.

The predictor performs a forward simulation of
the system composed by the plant and the con-
troller. Each predicted output of the plant is equal
to: -

§i(k+1) = Fy(¢(k), u(k)),

where F; is the estimate of Fj, learned on the
basis of the available dataset. The results of the
forward simulation are then used to perform the
parametric adaptation of the controller.

b

i=1,...,m (8)

4. MULTIPLE STEP AHEAD ADAPTIVE
CONTROL

Using the structure of the system depicted in fig-
ure 1 it is possible to design a learning algorithm,
based on the principles defined in generalized pre-
dictive control theory (Clarke et al., 1987), which
performs an adaptation of the weights of the con-
troller using information about the future behav-
ior of the system. The predictor will provide the
controller with information regarding the futures
values of the § and u up to the prediction horizon.
On the basis of these predictions, we can design
an adaptation algorithm based on the gradient
descent:

wE+)=wE) -n2s @)

In order to train the parameters w the following
cost function is selected:
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where Au(t) = u(t) —u(t - 1) and u(k - 2) =
The matrix Q € R"*" weights the errors (r(t) -
¥(t)) while the matrix R € R™*™ has the effect
to penalize the large variations of Au(f) which
could destabilize the system. Substituting this
expression in equation 9 and reca.llmg equation
6 it is possible to obtaxn

k+Hp B9(2)

w(k+1) = w(k)-1 ( ; () - 70) Q=
k+H=

+Y (8u@)’R a‘;‘;‘t’) (1)

, t=k~1

This expression can be calculated by recursively
compute the following two expressions:
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(13)

The full description of this algorithm can be found
in (Bertolissi et al., 20000).

The multiple step algorithm is a quite complex
algorithm. Unlike the one step ahead version of
this algorithm, it allows to control system which
are not minimum phase and where any desired
output is not reachable in one step. The approach
looks on a longer time horizon and takes into
account a series of control actions in order to
derive a control policy. The drawbacks of -the
method are a higher computational load and the
need for a more precise model. The first cost is
easily understandable and is due to the simulation
at each step of the closed loop behavior over a long
time horizon. The second cost comes from the fact
that the long term predictions are more difficult to
achieve and need better precision in order to avoid
errors accumulation. The quality of the model is
therefore fundamental for the implementation of a
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good controller. Takagi-Sugeno fuzzy systems and
lazy learning, can both be used to produce a model
of the plant to be controlled. However in all the
cases when the dynamics of the controller plant
cannot be completely defined from the available
training data, or its dynamics is time variant, it is
useful to add adaptation capabilities to the model
of the plant in order to improve the performance
of the system.

In the case of fuzzy systems, when new data be-
comes available, a new identification procedure is
usually necessary to incorporate this new knowl-
edge in the model. However an approach which
allows the implementation of on-line learning con-
sists in adapting only the linear consequences of
the fuzzy rules, without modifying the position of
the centers and the shape of the fuzzy rules. Given

(@) =af) + o+ 4y,

A = __Pa (@)
Zf:l Ba (@)
equation 1 can be rewritten as:
M 3 . M - -
y= ZA(J)yJ (p) = ZA(J)I(J),P =T
Jj=1 j=1
with LT = 10 ...100] and & = [AW s ... AMD]T,

This is a linear system whose parameters L are
adapted using a recursive least mean square al-
gorithm. This adaptation procedure is not equiv-
alent to a new identification procedure, since it
affects only the parameters which are used to
describe the consequences of the fuzzy model. A
real identification procedure would add rules or
move them in order to capture the new unknown
underlying dynamics.

In the case of lazy learning models, adaptation
capabilities are implemented by adding the new
data, as it becomes available, to the database
of examples used to calculate the subsequent
predictions. This means that the lazy learning
simulator can be easily updated on line, while
the controller is running. Moreover the addition of
new points associated with unmodeled dynamics
do not change the prediction accuracy of the
model in other areas.

5. SIMULATION STUDIES

In this paper we propose, as an example, a subsec-
tion of one of the benchmarks defined within the
FAMIMO project (ESPRIT LTR Project 21911).
The aim of the controller -is to set the position
of the electrical throttle of a direct injection en-
gine (GDI) which determines the the manifold
pressure pman € [100 1024]. The process in a
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Fig. 2. Training sequence used to identify the
model of the manifold pressure

second order highly nonlinear system. The control
action is evaluated on the basis of the fresh air
throttle control MTC € [0 100], which indicates
the position of the throttle, and the engine speed
N € [900 3400], which indicates the number of
revolutions per minute (rpm) of the engine.

Since the aim of the paper is to show that it
is possible to use a lazy learning approximator
when an insufficient number of data is available
for the modeling of the process, the plant has been
identified using a reduced data set (5000 points)
covering sparsely the state space. In this way the
data provides information only on a part of the
system dynamics. The training data used for the
identification procedures is displayed in figure 2.

A Takagi-Sugeno and a lazy learning mode! of the

plant havé been identified starting from the data.
For the lazy learning simulator, a combination of
the 6 best (according to the PRESS estimate)
linear local models built using between 30 and 60
neighbors has been used (Birattari et al., 1999).
For Takagi-Sugeno fuzzy system an incremental
identification procedure has been used (Bersini et
al., 1997). This procedure automatically generates
a fuzzy partition of the process input space by
letting grow the number of fuzzy rules until an
optimum (here 13 rules) is achieved with respect
to the given performance criteria.

In this particular experience the controller itself
has been implemented as a Takagi-Sugeno fuzzy
gystem. It is worth noting that any other (dif-
ferentiable) parametric controller could have been
used as well and that there is no correlation be-
tween the choice of a particular controller and the
choice of the type.of simulator. The control action
is the position of the throttle (MTC), and it is
calculated on the basis of the current value of the
manifold pressure (pman), the desired value of the
value of the manifold pressure (pman.d), and the
number of revolutions per minute of the engine
(N). The sampling time of the system is equal to
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Fig. 3. Starting from the top, performance of
the direct adaptive controller based on a
fuzzy model, a lazy model, a fuzzy adaptive
model, and a lazy adaptive model (bottom).
The solid line is the actual output of the
plant, while the reference is represented by
the dashed line.

5 milliseconds. The controller is described by 108
Takagi-Sugeno fuzzy rules which cover the input
space. At the beginning the consequences of all the
rules have been initialized to 0. The adaptation
algorithm uses a 5 step ahead prediction horizon
and a learning rate n = 10~8.

Two sets of experiments were performed. The first
two experiences assessed the control capabilities of
the simulator based on the fuzzy and lazy model
without adaptation capabilities, while in the fol-
lowing set of experiences adaptation capabilities
have been added to the models. In all the experi-
ments the direct adaptive controller has to follow a
pseudo sinusoidal signal which pushes the plant in
areas where its dynamic are not well described by
the training data. Figure 3 shows the performance
of the direct adaptive controller adaptive (solid
line) after 22 seconds of training. The first two
graphs show the performance of the fuzzy and
lazy models built starting from the initial 5000
input-output pairs. It is possible to notice that in
both cases the adaptive controller shows a poor
performance. In particular it is possible to notice
that both controllers tend to show deficiencies in
the same areas, but the output of the controller
based on the fuzzy model is smoother. This means
that the prediction and the values of the deriva-
tives in the lazy model are less reliable, leading the
system to exhibit high frequency components. The
smoother performance of the controller based on
the fuzzy model may be caused by the fact that
when the estimation of the model is done in an
area where limited information is available, the
fuzzy system offers better extrapolation abilities
than the lazy system. However the main point of
these two graphs is to highlight the fact that the
given initial data is insufficient to build a model of



the plant required to perform a good forward sim-
ulation. The two bottom graphs of figure 3 show
the performance of the direct adaptive controller
when used in connection with the adaptive ver-
sions of the fuzzy and the lazy model of the plant.
In both cases it is possible to see an improvement
of the performance of the system, however it is
clear from the image that the controller based
on the adaptive lazy system outperforms the one
based on the fuzzy model. In the case of the fuzzy
model the recursive least mean square algorithm
is used to constantly update the parameters of
the consequences of the rules of the fuzzy model.
In the case of the lazy model the input-output
regressor is added to the database each time the
prediction differs more than 0.02% from the out-
put of the system. In the case of controller based
on the lazy system it is possible to see that the
ringing signal which characterized the controller
build in conjunction with its non adaptive version
disappears. This is because as new points are
added to the database of examples (a 15% increase
in this particular simulation) the lazy model can
find neighbors that are closer to the query point,
and does not need to extrapolate: it increases the
stability and the accuracy of the derivatives.

All the experiments have been performed taking
advantage of the NLMIMO Toolbox (Bertolissi et
al., 2000a), which integrates the Lazy Learning
Toolbox! (Birattari and Bontempi, 1999) as one
of its components.

6. CONCLUSIONS

Divide and conquer techniques are powerful tech-
niques for learning from a limited amount of data.
We illustrated and analyzed the performance of
an adaptive controller used in conjunction with
four different approaches for modeling the plant
to be controlled, starting from a limited amount
of input-output data. When the model of the
plant is not adaptive it has been seen that the
use of a Takagi-Sugeno model leads the system to
a smoother response. However when adaptation
capabilities are added to the lazy and fuzzy mod-
els the performance of the system improves, and
the controller based on the lazy adaptive system
outperforms the one based on the fuzzy adaptive
model. The adaptation procedures performed on
the two models of the plant are not equivalent: in
the case of the fuzzy system the model of the plant
is stretched to take into account the new dynam-
ics, in the case of lazy system new points which
describe a new dynamics are added to the existing
model. The two adaptation strategies also require
a different level of computational effort, in the
case of the adaptive fuzzy system it is necessary to

1 nttp://iridia.ulb.ac.be/-lazy/
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perform a recursive least mean square adaptation
of the parameters of the linears of the fuzzy rules,
while in the case of the lazy adaptive system it
is just necessary to add point to the database of
examples without additional computations.
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