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eral possible strategies for applying these procedures to the given problem and we identify the most
effective one. Experimental results show that a particular heuristic customization of the two procedures
increases significantly the effectiveness of the estimation-based local search.
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1. Introduction

The probabilistic traveling salesman problem (PTSP) (Jaillet,
1985) is a paradigmatic example of a stochastic combinatorial opti-
mization problem. The PTSP models a number of practical prob-
lems in the areas of strategic planning, routing, transportation,
and scheduling (Bertsimas, 1988). The PTSP is similar to the TSP
with the difference that each node has a probability of requiring
a visit. The a priori optimization approach (Jaillet, 1985; Bertsimas
et al., 1990) for the PTSP consists in finding an a priori solution that
visits all the nodes such that the expected cost of a posteriori solu-
tions is minimized: the a priori solution must be found prior to
knowing which nodes are to be visited; the associated a posteriori
solution, which is computed after knowing which nodes need to be
visited, is obtained by visiting the nodes that require being visited
in the order prescribed by the a priori solution, while skipping the
nodes that do not require being visited.

Two classes of techniques for tackling the PTSP by a priori opti-
mization have been proposed in the literature: analytical computa-
tion and empirical estimation. The former exactly computes the
expected cost of the a posteriori solutions using a complex analyt-
ical development. The latter estimates the expected cost through
Monte Carlo simulation.

2.5-opt-EEs (Birattari et al., 2008) is an estimation-based lo-
cal search algorithm for tackling the PTSP. It is an iterative
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improvement algorithm that starts from some initial solution
and then iteratively moves to improved neighbor solutions until
a local optimum is found. A particularity of 2.5-opt-EEs is that
the cost of the neighbor solutions are estimated using delta evalu-
ation, a technique that considers only the cost contribution of solu-
tion components that are not common between two neighbor
solutions. The results from Birattari et al. (2008) show that the per-
formance of 2.5-o0pt-EEs depends on the probability associated
with the nodes of the given PTSP instance. In particular, for low
probabilities, where the coefficient of variation of the PTSP solution
cost is high, 2.5-opt-EEs is less effective.

The goal of this paper is to increase the effectiveness of 2.5-
opt-EEs for PTSP instances with low probabilities by using two
procedures that reduce the variance of the cost estimator. The first
is an adaptive sampling procedure that selects the appropriate size
of the sample with respect to the variance of the cost estimator;
the second is a procedure that adopts the importance sampling
technique in order to reduce the variance of the cost estimator.

There exists a number of prior publications where adaptive
sampling and importance sampling have been studied in the con-
text of stochastic combinatorial optimization. Alkhamis et al.
(1999), Gutjahr (2004), Homem-de-Mello (2003), Pichitlamken
and Nelson (2003), and Birattari et al. (2006) investigated adaptive
sample size procedures that make use of statistical tests to deter-
mine the number of samples to be chosen. The adoption of impor-
tance sampling to reduce the variance of the cost estimator has
been investigated in Gutjahr et al. (2000a) and Gutjahr et al.
(2000b). In all these works, the adaptive sample size and the
importance sampling techniques have been used in the context
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of full evaluation, where the cost of each solution is estimated from
scratch. This is mainly due to the fact that the usage of delta eval-
uation is either ignored or not feasible for the given stochastic
combinatorial optimization problem. The adoption of adaptive
sample size and of importance sampling procedures in delta eval-
uation has never been investigated. For the PTSP, where delta eval-
uation is feasible, we expect that the adoption of the two particular
techniques will increase the effectiveness of 2.5-opt-EEs. How-
ever, as we show in this paper, the adoption is not trivial and a
main contribution of the paper consists in customizing the adap-
tive sample size and the importance sampling procedures for the
delta evaluation applied to the PTSP. In particular, we investigate
several ways of applying these procedures in the PTSP delta evalu-
ation and we use a design of experiments approach to identify the
most effective one.

The paper is organized as follows: in Section 2, we introduce the
proposed approach; in Section 3, we study its performance; and in
Section 4, we conclude the paper.

2. An estimation-based iterative improvement algorithm for
the PTSP

In order to make this section self-contained, we first give a for-
mal description of the PTSP and then we sketch the 2.5-opt-
EEs algorithm; finally, we describe the procedures introduced in
this paper.

2.1. The probabilistic traveling salesman problem

A PTSP instance is defined through a graph G =(V,A,C,P), with
V={1,2,...,n} being a set of nodes, A= {(i,j) : i,j € V,i #j} being a
set of edges that completely connects the nodes, C={c;: (i,j) € A}
being the set of edge costs, and P = {p; : i € V} being a set of proba-
bilities where p; specifies the probability that a node i requires
being visited. The events that two distinct nodes i and j require
being visited are independent. The stochastic information can be
modeled using a random variable w, which follows an n-variate
Bernoulli distribution. A realization of w is a vector of size n com-
posed of ¢1°sand ¢0’s: the value ¢1° in position i indicates that
node i requires being visited, whereas the value ‘0’ indicates that
it does not. The costs are assumed to be symmetric, that is, for all
pairs of nodes i, j we have c; = ¢j;. A solution to the PTSP is a permu-
tation of the nodes.

The most widely used approach to tackle the PTSP is a priori
optimization (Jaillet, 1985; Bertsimas et al., 1990). This approach
consists of two stages. First, an a priori solution—a permutation
of the nodes—is determined before the realization of w is known.
Once the realization is known in the second stage, an a posteriori
solution is derived from the a priori solution by visiting the nodes
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of the realization in the same order as prescribed by the a priori
solution and by skipping the nodes that do not require being vis-
ited. Fig. 1 shows an example.

The goal in the PTSP is to find an a priori solution that produces
the minimum expected a posteriori solution cost.

On the basis of probability values associated with the nodes,
PTSP instances can be classified as follows. If P={p;=p:ieV},
the PTSP instance is said to be homogeneous, otherwise, if for at
least two nodes i and j we have p;#p; it is said to be
heterogeneous.

The usage of effective delta evaluation procedures is of crucial
importance for a fast local search for the PTSP. So far, the state-of-
the-art iterative improvement algorithms for the PTSP, 2-p-opt
and 1-shift, have used for the delta evaluation recursive
closed-form expressions based on heavy mathematical derivations
(Bertsimas, 1988; Chervi, 1988; Bianchi et al., 2005; Bianchi, 2006;
Bianchi and Campbell, 2007). Recently, we introduced a more effec-
tive algorithm called 2.5-0opt-ACs (Birattari et al., 2008). This
algorithm also uses closed-form expressions but adopts the classi-
cal TSP neighborhood reduction techniques; this is not possible in
2-p-opt and 1-shift since these algorithms require to search
the neighborhood in a fixed lexicographic order. 2.5-0opt-EEs
(Birattari et al., 2008), the algorithm on which we focus in this pa-
per, makes use of empirical estimation techniques and of the clas-
sical TSP neighborhood reduction techniques. The experimental
results have shown that this algorithm is much faster than 2.5-
opt-ACs. However, for instances where the probability of visiting
nodes is very low, the cost of the solutions obtained by 2.5-opt -
EEs is significantly worse than that of 2.5-0opt-ACs. The meth-
odology that we propose in this paper addresses this issue.

2.2. The 2. 5-opt-EEs algorithm

In iterative improvement algorithms for the PTSP, we need to
compare two neighbor solutions x and x’ to select the one of lower
cost. An unbiased estimator of the cost F(x) of a solution x can be
computed on the basis of a sample of costs of a posteriori solutions
obtained from M independent realizations of the random variable
. Using the method of common random numbers, an unbiased
estimator of F(x') can be estimated analogously to F(x) using the
same set of M independent realizations of w. The estimator
Fu(x') — Fy(x) of the cost difference is given by

T ! - 1 M /
Fu) = Fu(X) = 37 >_(F(x, ) = f(x, o). (1)
r=1
We implemented iterative improvement algorithms that use
this way of estimating cost differences exploiting a neighborhood

structure that consists of a node-insertion neighborhood on top
of a two-exchange neighborhood structure, that is, the well-known
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Fig. 1. This figure shows an a priori solution for a PTSP instance with 10 nodes. The order in which the nodes are visited in the a priori solution is: 1, 2, 3,4, 5,6, 7, 8,9, 10, 1.
Let us assume that the nodes 1, 3, 5, 7, and 9 are prescribed to be visited by a realization of w. The a posteriori solution visits the nodes following the a priori solution but

skipping the nodes 2, 4, 6, 8, and 10.
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Fig. 2. Figure (a) shows a two-exchange move that is obtained by deleting the two edges (1,2) and (6,7) of the solution and by replacing them with (1,6) and (2,7). Figure (b)
shows a node-insertion move obtained by deleting node 1 from its current position in the solution and inserting it between nodes 6 and 7.

2.5-exchange neighborhood: when checking for a two-exchange
move on any two edges (a,b) and (c,d), it is also checked whether
deleting any one of the nodes of an edge, say for example a, and
inserting it between nodes c and d results in an improved solution
(Bentley, 1992)—see Fig. 2. Given two neighboring a priori solu-
tions and a realization o, the algorithm needs to identify the edges
that are not common to the two a posteriori solutions, that is, for
every edge (i,j) that is deleted from x, one needs to find the corre-
sponding edge (i',j") that is deleted in the a posteriori solution of x.
This edge is called the a posteriori edge. It can efficiently be found as
follows. If node i requires being visited, then i" = i; otherwise, i is
the first predecessor of i in x such that w[i'] =1, that is, the first
predecessor for which the realization is one, indicating it requires
being visited. If node j requires being visited, then j* =j; otherwise,
j" is the first successor of j such that w[j] = 1. Recall that in a two-
exchange move, the edges (a,b) and (c,d) are deleted from x and re-
placed by (a,c) and (b,d). For a given realization  and the corre-
sponding a posteriori edges (a’,b") and (c’,d"), the cost difference
between the two a posteriori solutions is given by
Car et + Cp g+ — Cq-pr — Ce- ¢~ This procedure can be directly extended
to node-insertion moves. Furthermore, the algorithm searches the
neighborhood using a first-improvement rule and it also exploits
the following neighborhood reduction techniques: fixed-radius
search, candidate lists, and don’t look bits (Bentley, 1992; Johnson
and McGeoch, 1997). This algorithm is called 2.5-0opt-EEs. For a
more detailed explanation of 2.5-opt-EEs, we refer the reader
to Birattari et al. (2008).

2.3. Advanced sampling methods

In this section, we focus on the main contribution of the paper,
that is, the customization of the two procedures for the delta eval-
uation of the PTSP in order to increase the effectiveness of 2.5-
opt-EEs.

2.3.1. Adaptive sampling

For PTSP instances with low probability values, the estimator of
the cost of solutions has a very high coefficient of variation. In this
case, averaging over a large number of realizations improves the
estimation. However, using a large number of realizations for high
probability values results in a waste of computation time. To ad-
dress this issue, we adopt an adaptive sampling procedure that
saves computation time by selecting the most appropriate number
of realizations for each estimation. This procedure is realized using
Student’s t-test in the following way: given two neighboring a pri-
ori solutions, the cost difference between their corresponding a
posteriori solutions is sequentially computed on a number of real-
izations. As soon as the t-test rejects the null hypothesis that the
value of the estimated cost difference is equal to zero, the compu-
tation is stopped. If no statistical evidence is gathered, then the
computation is continued until a maximum number M of realiza-
tions is considered, where M is a parameter of the procedure.

The sign of the estimated difference determines the solution of
lower cost. Note that the significance level of Student’s t-test is also
a parameter of the procedure.

The estimation-based iterative improvement algorithm that
adds the adaptive sampling procedure to 2.5-opt-EEs will be
called 2.5-0pt-EEas.

2.3.2. Importance sampling

A difficulty in the adoption of the t-test is that for low probabil-
ity values often the test statistic cannot be computed: since the
nodes involved in the cost difference computation may not require
being visited in the realizations considered, all cost differences be-
tween two a posteriori solutions are zero; therefore, the sample
mean and the sample variance of the cost difference estimator
are zero. Some degenerate cases in which this problem appears
are the following. In a two-exchange move that deletes the generic
edges (a,b) and (c,d), and where no node between the nodes b and
c (or between a and d) requires being visited, the difference be-
tween the two a posteriori solutions is zero—see Fig. 3a for an illus-
tration. In particular, this case is very frequent when the number of
nodes in the tour segment between b and c (or between the tour
segment a and d) is small. In a node-insertion move, if the insertion
node does not require being visited, the cost difference between
the two a posteriori solutions is zero—see Fig. 3b. A naive strategy
to handle this problem consists in postponing the t-test until non-
zero sample mean and sample variance are obtained. However, this
might increase the number of realizations needed for the cost dif-
ference computation. The key idea to address this issue consists in
forcing the nodes involved in the cost difference computation to
appear frequently in the realizations. More in general, we need
to reduce the variance of the cost difference estimator for low
probability values. For this purpose, we use the variance reduction
technique known as importance sampling (Rubinstein, 1981).

In order to compute the cost difference between two a posteriori
solutions, importance sampling, instead of using realizations of the
given variable @ parameterized by P, considers realizations of an-
other variable @" parameterized by P’; this so-called biased distri-
bution P* biases the nodes involved in the cost difference
computation to occur more frequently. This is achieved by choos-
ing probabilities in P* larger than the probabilities in P. The result-
ing biased cost difference between two a posteriori solutions for the
rth biased realization wj is then corrected for the adoption of the
biased distribution: the correction is given by the likelihood ratio
LR, of the original distribution with respect to the biased distribu-
tion and it is obtained from the following equation:

n AU _ o 1-orl]
LR, = H (px)w’[i] (1 px*) T

i (P - (T=p;)
where p; and p; are the original and biased probabilities of a node i,

respectively. Finally, the unbiased cost difference is obtained as
follows:

(2)
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Fig. 3. Some degenerate cases that can occur in the evaluation of cost differences. (a) Assume that a realization of @ prescribes that nodes 1,7, 8,9, and 10 are to be visited. In
this example, the generic edges (a,b) and (c,d) considered for the two-exchange move correspond to (1,2) and (6,7). The two-exchange neighbor solutions shown in Fig. 2a
lead to the same a posteriori solution. The cost difference is therefore zero. (b) Assume that a realization of @ prescribes that nodes 2, 3,4, 5, 6, 7, 8,9, and 10 are to be visited.
The node-insertion neighbor solutions shown in Fig. 2b lead to the same a posteriori solution. Since the two a posteriori solutions are the same, the cost difference is zero.

N . M
FuX) = Fu(x) =$ZU%-(f(X’ﬁwﬁ)*f(wa?)) 3)
r=1

The main contribution of this paper consists in adopting impor-
tance sampling for the delta evaluation. Recall that in the delta
evaluation, given a deleted edge (i,j), the algorithm needs to iden-
tify the corresponding a posteriori edge (i',j’). In order to apply
importance sampling in the delta evaluation, only the nodes that
are involved in finding the a posteriori edge, (i',j’) are biased.
Now, we discuss several ways of realizing this idea.

Uniform biasing. This is a simple variant in which all the nodes
involved in finding the a posteriori edge are biased with a probabil-
ity p/, where p’ is a parameter. This variant does not take into ac-
count any problem-specific knowledge.

Geometric biasing. In this variant, the nodes involved in find-
ing the a posteriori edge are biased with probabilities according
to a geometric schedule, 4" - p’: the node i is biased with probability
p', its hth predecessor takes the biased probability value of A" - p'.
Similarly, the node j is biased with probability p’, and its hth suc-
cessor takes the biased probability value of A" p’. Note that p’
and 0 < 4 <1 are parameters of this variant and, similar to the pre-
vious variant, this variant does not use any problem-specific
knowledge.

Strong greedy biasing. This variant uses k-exchange specific
knowledge to bias the nodes. In the case of a two-exchange move,
the cost difference computation involves four distinct nodes. If
these four nodes require being visited in all the realizations, then
there is no need for finding the predecessor and the successor of
the starting nodes i and j, respectively. This variant is designed
for biasing only those four nodes and their biased probability val-
ues are set to a same value p'. In the same way, for a node-insertion
move only the five nodes that are involved in the cost difference
computation are biased to appear in a given realization. Out of
the five nodes, the biased probability of the insertion node is set
to p” and the biased probability values of the other four nodes
are set to a same value p'. The reason for choosing a different value
for the insertion node is that the appearance of the insertion node
is more crucial than that of the other nodes, as illustrated in Fig. 3b.
Note that p’ and p” are parameters of this variant.

Weak greedy biasing. This variant differs from the strong gree-
dy biasing with respect to the biasing scheme in the node-insertion
move: the insertion node is biased with a value p” and the other
four nodes are not biased. This variant is designed for the following
purpose: by comparing this variant with the previous one, we can
study the necessity for biasing the four nodes with p’ in the node-
insertion move.

Heuristic biasing. This variant is similar to the weak greedy
biasing except the fact that in the two-exchange move the nodes
involved in finding the a posteriori edge are biased. As illustrated
in Fig. 3, in a two-exchange move, the nodes in the shorter tour

segment (either between b and c or between a and d) are more
important than other nodes for the cost difference computation.
Therefore, the nodes in the shorter segment are biased with a prob-
ability p/, if the number of nodes in the shorter segment is less than
min;% of n, the number of nodes in the PTSP instance; min;s is a
parameter of the procedure.

For PTSP instances with very low probability values, the compu-
tational results of the state-of-the-art iterative improvement algo-
rithms show that the two-exchange neighborhood relation is not
very effective (Bianchi, 2006; Birattari et al., 2008; Birattari et al.,
2007): often the improvements obtained with a two-exchange
move are rather small and therefore the time needed to reach a lo-
cal optimum is high. The estimation-based local search might suf-
fer from the aforementioned problem when all the nodes in the
shorter segment are biased. In order to address this issue, the
importance sampling in the two-exchange move is used only occa-
sionally: instead of biasing all the nodes in the shorter segment,
only a certain number of nodes, determined by another parameter
u, are biased in the shorter segment. This parameter is used in the
following way: let us assume that [b,b+1,b+2,...,c+2,c+1,c] is
the shorter segment; let us denote the number of nodes in this seg-
ment as seg; this variant biases u% of seg nodes, on each side of this
segment. To give a concrete example, let us assume that seg is 50. If
u is set to 2, then the nodes that are biased are b and c (2% of 50,
that is, 1 node on each side of the segment is biased); if u is set
to 4, then the nodes that are biased are b, b+ 1 and ¢, c+1 (4% of
50, that is, 2 nodes on each side of the segment are biased). In
the same way, the nodes are biased if [g,a+1,a+2,...,d+2,
d +1,d] is the shorter segment. The usage of min;; and u is illus-
trated in Fig. 4. For the node-insertion move, only the insertion
node is biased with a value p”. The parameters of this variant are
p', p”, ming, and u.

2.3.3. General remarks on the importance sampling variants

The computation of the cost difference between two a posteriori
solutions using any of the importance sampling variants proceeds
as follows: given a deleted edge (i,j), the nodes are biased with prob-
abilities according to a selected variant. A biased realization is sam-
pled with respect to the biased probabilities, on which the a
posteriori edge (i',j’) and the biased cost difference between two a
posteriori solutions are obtained. The overall likelihood ratio for
the biased realization is obtained by the product of the likelihood ra-
tio of each biased node [, which is used in finding the a posteriori edge
(i",j"). Note that the likelihood ratio of each biased node [ is given by

()" (1 —py
(p?)m;[l] . (1 7pf)l—w;[l] ’

where p; and p; are the original and the biased probability of node [
and w;[l] is sampled with the biased probability p;. The unbiased

IR = 4)
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Fig. 4. This figure illustrates heuristic biasing. In this example, a two-exchange
move is obtained by deleting the two edges (1,2) and (6,7) and by replacing them
with (1,6) and (2,7). Assume that the parameter min;, is set to 50. Since the number
of nodes in the segment [2,...,6] is less than 50% of 16, that is eight, importance
sampling is used to bias the nodes. However, instead of biasing all the nodes
between 2 and 6, only a certain number of nodes that are close to them are biased.
We assume u to be 40; therefore 40% of 5, that is, two nodes are biased on each side
of the segment. The nodes that are biased are 2, 3, 5, and 6.

cost difference between two a posteriori solutions is simply given by
the product of the overall likelihood ratio and the biased cost differ-
ence between two a posteriori solutions.

The values of the biased probabilities of the aforementioned
importance sampling variants are crucial for the variance reduc-
tion. In particular, if those values are inappropriate, then the adop-
tion of importance sampling variants will increase the variance of
the cost estimator. We address this issue using a parameter tuning
algorithm in Section 3.

We denote 2.5-opt-EEais the algorithm that adds to 2.5-
opt-EEas any of the described importance sampling variants.

2.4. Implementation-specific details

In order to implement 2.5-opt-EEais efficiently, we use the
same data structure as that of 2.5-opt-EEs, which is composed
of a doubly circularly linked list and some auxiliary arrays as de-
scribed in Birattari et al. (2008). In 2.5-opt-EEais with strong
greedy, weak greedy and heuristic biasing, for each node three real-
ization arrays, o, @', and " are stored, each of size M, indexed from
1 to M. Element r of a realization array is either 1 or O indicating
whether node i requires being visited or not in a realization and it
is obtained as follows: first a random number between 0 and 1 is
generated; if this number is less than or equal to p;, p;, or p/, node
i requires being visited in realization w,, w,, or w!, respectively.
In 2.5-0opt-EEais with uniform biasing, each node has two real-
ization arrays, m, o', each of size M. In 2.5-opt-EEais with geo-
metric biasing, given 4 and p’, it is possible to compute the set of all
possible biased probability values that a node can take. Therefore,
each node has a set of biased realizations, where each of them is
sampled with respect to a possible biased probability. In all the
variants, when the biased probability value of a node is less than
the original probability, the former is set to the latter. Given p;
and the set of all biased probability values of a node i, the likelihood
ratio is pre-computed and stored when the algorithm starts.

2.5-opt-EEais usesasame set of realizations for all iterative
improvement steps. In the context of the PTSP, this strategy is more
effective than changing realizations for each improvement or for
each comparison (Birattari et al., 2008). However, for each two-ex-
change and node-insertion move, the realizations are selected ran-
domly from this set until the t-test rejects the null hypothesis.

The following techniques are used to speed up the computa-
tions involved in the t-test: the critical values of Student’s t-distri-
bution are pre-computed and stored in a lookup table; the sample
mean and the sample variance of the cost difference estimator are
computed recursively.

The implementation of 2.5-opt-EEas is identical to 2.5-
opt-EEais except for the fact that the importance sampling pro-
cedure and the pre-computations required for 2.5-opt-ERais
are excluded.

3. Experimental analysis

In this section, we present the experimental setting considered
and the empirical results. Our goal is to show that the integration
of the adaptive sample size and the importance sampling proce-
dures into the estimation-based local search increases significantly
its effectiveness.

3.1. Experimental setup

We generate TSP instances with the DIMACS instance generator
(Johnson et al., 2001) from which the PTSP instances are obtained
by associating a probability value to each node. We use uniform
and clustered instances of 1000 nodes: in the former, the nodes
are distributed uniformly and in the latter the nodes are arranged
in a number of clusters, both in a 10% x 10° square. We use two
classes of instances: homogeneous and heterogeneous PTSP in-
stances. For the homogeneous instances, we consider probability
values starting from 0.050 to 0.200 with an increment of 0.025
and from 0.3 to 0.9 with an increment of 0.1. The probability values
in the heterogeneous instances are generated using a beta distribu-
tion as described in Bianchi (2006): each instance is characterized
by two parameter values: mean probability p,, and a percentage of
maximum variance per,, . The two parameter values have the fol-
lowing meaning: if an instance is generated with mean probability
Pm of 0.05 and percentage of maximum variance per,, of 50, then
the mean of the probability values is approximately equal to 0.05
and the variance of the probability values is approximately equal
to 50% - 0.05(1 — 0.05). For the sake of convenience, we denote a
heterogeneous instance with p =0.100(50) when it has the mean
probability of 0.100 and percentage of maximum variance of 50.
We consider the values for p,, from 0.050 to 0.200 with an incre-
ment of 0.025 and from 0.3 to 0.5 with an increment of 0.1; for
each value of p, we consider three values for per, in
{16,50,83}. We generate 50 instances for each combination of p,
and per,, .

For PTSP instances of size 1000, the algorithms 2.5-0pt-ACs,
2-p-opt,and 1-shi ft suffer from numerical problems such as
overflow and underflow for high and low probability values (Birat-
tari et al.,, 2008). Therefore, these algorithms use MPFR (Fousse
et al., 2007), a state-of-the-art library for arbitrary precision arith-
metics, to overcome the numerical problems. Note that algorithms
based on empirical estimation do not suffer from this problem. Due
to space limitations, we highlight only the results obtained for
probability values up to 0.200. The trends of the results obtained
for the higher probability values are very similar; we refer the
reader to Balaprakash et al. (2007b) and Balaprakash et al. (2008)
for the complete set of results.

All algorithms are implemented in C and the source code is
compiled with gcec, version 3.3. Experiments are carried out on
AMD Opteron™244 1.75 GHz processors with 1 MB L2-Cache and
2 GB RAM, running under Rocks Cluster GNU/Linux.

The nearest-neighbor heuristic is used to generate initial solu-
tions. The candidate list is set to size 40 and is constructed with
the quadrant nearest-neighbor strategy (Penky and Miller, 1994;
Johnson and McGeoch, 1997). Each iterative improvement algo-
rithm is run until it reaches a local optimum.

In 2.5-0opt-EEas and 2.5-opt-EEais, the minimum
number of realizations used in the adaptive sampling procedure
before applying the t-test is set to five. The null hypothesis is
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rejected at a significance level of 0.05. If the test statistic cannot be
computed after five realizations, then the cost difference computa-
tion is stopped and the algorithm considers the next neighbor solu-
tion. The maximum number M of realizations is set to one
thousand.

For a PTSP instance of size n, given an a priori solution x, the ex-
act cost F(x) of x can be computed using a closed-form expression
given in Jaillet (1985) and Bertsimas (1988). We use this formula
for the post-evaluation of the best-so-far solutions found by each
algorithm according to its evaluation procedure.

In addition to tables, we visualize the results using runtime
development plots. These plots show how the cost of solutions
develops over computation time. We report one such plot for each
probability level under consideration and the results are averaged
over 50 instances.

For the homogeneous PTSP with p > 0.1, 2.5-0opt-ACs has
already been shown to be more effective than 1-shift and 2-
p-opt (Birattari et al., 2008; Birattari et al., 2007). We carried
out some preliminary experiments to verify that the same ten-
dency holds also for low probability values, that is, for p <0.1. In
these experiments, 2.5-opt-ACs outperforms both 1-shift
and 2-p-opt and, therefore, we take 2.5-0opt-ACs as a yard-
stick for measuring the effectiveness of the proposed algorithms.
The computational results for p<0.1 are given in Balaprakash
et al. (2007b).

3.2. Parameter tuning

Finding appropriate values for the parameters—in particular the
biased probability values—of the importance sampling variants
adopted in 2.5-opt-EEais is crucial for the variance reduction.
For this purpose, we use a parameter tuning algorithm, Itera-
tive F-Race (Balaprakash et al., 2007a), to identify suitable val-
ues for the parameters of each importance sampling variant. We
tune each importance sampling variant separately for the homoge-
neous and the heterogeneous clustered instances of size 1000. We
use 210 instances (7 levels of probability x 30 instances) for the
homogeneous case and 210 instances (7 levels of probability x 3
levels of percentage of maximum variance x 10 instances) for the
heterogeneous case. Table 1 shows, for each importance sampling
variant, the range of each parameter given to the tuning algorithm
and the selected value.

From the parameter values of strong greedy biasing, weak gree-
dy biasing, and heuristic biasing, we can observe the following
trend: low biased probability values are appropriate for the nodes
involved in the two-exchange moves, whereas high biased proba-
bility values are selected for the nodes involved in the node-inser-

Table 1
Parameter values considered for tuning the importance sampling variants in
2.5-opt-EEais and the values selected by Iterative/F-Race.

Variant Parameter Range Selected value
Homogeneous Heterogeneous
Uniform biasing P [0.0,1.0] 0.23 0.08
Geometric biasing P [0.0,1.0] 0.39 0.18
h [0.0,1.0] 0.25 0.12
Strong greedy biasing p’ [0.0,1.0] 0.20 0.12
p’ [0.0,1.0] 0.76 0.60
Weak greedy biasing  p’ [0.0,1.0] 0.24 0.08
p’ [0.0,1.0] 0.79 0.64
Heuristic biasing p [0.0,1.0] 0.11 0.07
p’ [0.0,1.0] 0.60 0.57
min;s [0.0,20.0] 0.55 1.30
u [0,100] 72.00 10.00

tion moves. In particular, under our experimental setting, the
appropriate ranges for the biased probability values, p’, in two-ex-
change moves for homogeneous and heterogeneous PTSP instances
are [0.11,0.2] and [0.07,0.12], respectively. This low range of val-
ues is due to the ineffectiveness of the two-exchange neighbor-
hood relation for low probability values as discussed in Section
2.4. We also made some tests in which importance sampling is
completely disabled for two-exchange moves. The results show
that indeed the usage of importance sampling in two-exchange
moves results in solution costs that were slightly better than the
ones in which importance sampling was completely disabled.
The biased probability values for the nodes involved in the node-
insertion moves are relatively high. In the current experimental
setting, the appropriate range for the biased probability values,
p’, are [0.57,0.79] for both homogeneous and heterogeneous PTSP
instances. For what concerns uniform and geometric biasing,
which do not use a separate biased probability value for two-ex-
change and node-insertion moves, the tuning algorithm tries to
find a good biased probability that is suitable for both types of
moves. Eventually, this results in values that are higher than those
for the two-exchange moves and lower than those for the node-
insertion moves in the greedy and heuristic biasing.

3.3. A study on the parameters of 2.5-opt-EEais

In this section, we study the impact of the parameters of 2.5-
opt-EEais on solution quality and computation time. The main
aim of this analysis is to identify an appropriate significance level
for the adaptive sample size procedure and to determine the most
promising importance sampling variant. Moreover, we also study
the robustness of 2.5-opt-EEais with respect to instance size
and the way in which the nodes are distributed in the instances.
For this purpose, we use the analysis of variance (ANOVA) tech-
nique. In ANOVA terminology, the parameters of 2.5-opt-
EEais are called factors and the solution quality and computation
time are called response variables. In this analysis, we use 2.5-
opt-EEs-1000 (2.5-opt-EEs that uses 1000 realizations
without adaptive sample size and importance sampling) as a refer-
ence algorithm: we study the solution quality of a given algorithm
as the percentage deviation from the cost of 2.5-0pt-EEs-
1000. The computation time of a given algorithm is normalized
with respect to the computation time of 2.5-0pt-EEs-1000.
We perform an ANOVA analysis for each of the response variables.
In order to apply ANOVA, it is necessary to check three main
assumptions on the distribution of the response variables, namely,
normality, homogeneity of variance, and independence of residu-
als. Since grouping over all probability levels results in violation
of the assumptions, the ANOVA analysis is done for each level. Even
in this setting, there are a few probability levels for which the AN-
OVA assumptions are violated. In such cases, we use the non-para-
metric Wilcoxon rank sum test to verify the results of the ANOVA
analysis. For the complete ANOVA results, we refer the reader to
Balaprakash et al. (2008); here, we highlight some main results
of the analysis.

3.3.1. Importance sampling variants

In this analysis, we study the effect of importance sampling
variants in 2.5-opt-EEais on the solution quality and compu-
tation time. The results are shown as box plots in Fig. 5. Note that
the significance level in the adaptive sample size procedure is set
to 0.05. For what concerns the homogeneous instances, the F-ratio
and the p-values from the ANOVA table show that importance
sampling has a significant impact on the solution quality for prob-
ability levels less than 0.150. The p-values from the pairwise t-test
indicate that strong greedy, weak greedy and heuristic biasing are
significantly better than the uniform and the geometric biasing.
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Fig. 5. Analysis of different importance sampling variants on clustered PTSP instances of size 1000. Plots (a) and (b) show the cost of the solutions of 2.5-opt-EEais with
uniform biasing (ub), geometric biasing (gb), strong greedy biasing (sb), weak greedy (wb), and heuristic biasing (hb) as the percentage deviation from the cost of
2.5-0pt-EEs-1000 on homogeneous and heterogeneous PTSP instances. Plots (c) and (d) show the normalized computation time of 2.5-opt-EEais with different
importance sampling variants, where the normalization is done with respect to the computation time of 2.5-0opt-EEs-1000 for homogeneous and heterogeneous

instances, respectively.

However, there is no significant difference among strong greedy,
weak greedy and heuristic biasing. For what concerns the hetero-
geneous instances, the F-ratio and the p-values from the ANOVA
table show that there is no significant difference among the differ-
ent importance sampling variants. Nevertheless, the heuristic bias-
ing obtains local optima whose average is slightly better than that
of the other variants.

Concerning the computation time, the F-ratio and the p-values
from the ANOVA table show the following general trend for the
probability values less than 0.150: the heuristic biasing and the
week greedy biasing are significantly faster than other variants
for both homogeneous and heterogeneous instances. Also note
that, although there is no significant difference between heuristic
biasing and week greedy biasing, the computation time of the for-
mer is slightly lower than that of the latter.

Taking into account both solution quality and computation
time, we select the heuristic biasing as the most promising variant
and we use it as a basis for the following analyses.

3.3.2. Significance level
In this analysis, we study the effect of the significance level used
in the adaptive sample size procedure on the solution quality and
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on the computation time. We use 2.5-opt-EEais with heuristic
biasing for the experimental analysis. We consider four signifi-
cance levels: [0.01,0.02,0.05,0.10]. The F-ratio and the p-values
from the ANOVA table show that the significance level does not
have a significant impact on the solution quality; however, it has
a significant impact on the computation time. The results on the
computation time are shown as box plots in Fig. 6: at significance
levels 0.01 and 0.02, the algorithm needs more realizations, thus
more computation time, to reject the null hypothesis at each step
than for significance level 0.05. Nevertheless, the computation
time of 2.5-opt-EEais at significance level 0.10 is higher than
for other significance levels for low probability values. This can be
attributed to the fact that the estimates of the cost differences are
less precise for low probability values and as a consequence the
algorithm with significance level 0.10 incorrectly moves to a num-
ber of non-improving neighbor solutions before reaching a local
optimum. However, for high probability levels, where the variance
of the cost estimate is low, the computation time of 2.5-opt-
EEais at significance level 0.10 is lower than for other signifi-
cance levels. Taking into account both low and high probability
values, we can see that the significance level 0.05 is appropriate
for 2.5-opt-EEais.
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Fig. 6. Analysis of different significance levels on clustered PTSP instances of size 1000. Plots (a) and (b) show the normalized computation time of 2.5-opt-EEais with
different significance levels, where the normalization is done with respect to the computation time of 2.5-o0pt-EEs-1000 for homogeneous and heterogeneous instances,

respectively.
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Table 2

Experimental results on variance reduction by heuristic biasing on clustered instances
of size 1000. The algorithm is allowed to explore 1000 solutions. The table gives, for
each probability level, the average of the variances computed for 1000 delta
estimations with and without importance sampling. The last column shows the
percentage reduction of the cost estimator variance when using heuristic biasing (hb).
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3.3.3. Instance size and distribution of nodes

In this analysis, we study the robustness of 2.5-opt-EEais
that adopts heuristic biasing with respect to instance size and
nodes distribution. Note that the significance level in the adaptive
sample size procedure is set to 0.05. We consider three levels
[100,300,1000] for instance size and two levels for nodes distribu-
tion, namely, uniform and clustered. The F-ratio and the p-values
from the ANOVA table show that these factors do not have any sig-
nificant impact on the relative solution quality and computation
time. Note that the instance size will always have a significant im-
pact on the absolute solution cost and computation time; however,
recall that in this analysis, we always study the relative solution
quality with respect to 2.5-opt-EEs-1000.

Even though the parameter tuning for 2.5-opt-EEais with
heuristic biasing is performed only on the clustered instances of
size 1000, it achieves good solutions also for other levels of in-
stance size. This is mainly attributed to the ineffectiveness of
two-exchange moves for small instances: min;; and u are the two
parameters of 2.5-opt-EEais that depend on the instance size;
under the given parameter setting, for instance sizes 100 and 300,
importance sampling is completely disabled for two-exchange
moves; from the results it seems that the usage of importance sam-
pling in two-exchange moves is not crucial for small instances.

3.4. Experiments to assess variance reduction
In this section, we study the magnitude of reduction in variance
obtained using heuristic biasing. For this purpose, we analyze the

variance under two settings: 2.5-opt-EEs that adopts a fixed
sample size without importance sampling and 2.5-opt-EEs
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1000 1.57e+05 9.94e+04 36.81
0.200 00 10 9.90e+07 2.31e+07 76.72
100 1.24e+07 3.87e+06 68.71
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Fig. 7. Experimental results on clustered PTSP instances of size 1000. The plots represent the cost of the solutions obtained by 2.5-opt-EEas, 2.5-opt-EEais,
2.5-0pt-EEs-10,and 2.5-0pt-EEs-100 normalized by those obtained by 2.5-o0pt-EEs-1000. Each algorithm is stopped when it reaches a local optimum. The
normalization is done on an instance by instance basis for 50 instances; the normalized solution cost and the computation time are then aggregated.
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that adopts a fixed sample size and heuristic biasing. We consider
three sample size: 10, 100, and 1000. The two algorithms are then
allowed to explore 1000 solutions. The variance of the cost differ-
ence estimator for each estimation in two-exchange and node-
insertion moves is recorded. The results for node-insertion moves
are shown in Table 2. Since the computational results for two-ex-
change moves show that the reduction in variance is rather small
and less than 1%, we do not list the values in a table.

The magnitude of reduction in variance is very high for the
node-insertion moves, in particular for low probability values: on
average, the variance of the cost estimator when using heuristic
biasing is about 97% to 14% less than when not using importance
sampling. Another important observation is that a reduction in var-
iance is achieved by increasing the size of the sample; however, the
percentage reduction does not follow a same trend. For example,
consider the case at p,,, = 0.200 and per,, = 0: the average variance
is reduced from 2.31e+07 to 3.35e+06 by increasing the realiza-
tions from 10 to 1000; however, the percentage reduction does
not show a strictly decreasing trend as it goes from 76.72 to
68.71, and finally 70.50.

3.5. Experiments on estimation-based algorithms

In this section, we study the performance of 2.5-opt-EEas
and 2.5-o0pt-EEais by comparing their solution cost and com-
putation time to 2.5-opt-EEs. Inthe caseof 2.5-0pt-EEs, we
consider samples of size 10, 100, and 1000; we denote these algo-
rithms by 2.5-0pt-EEs-10, 2.5-opt-EEs-100, and 2.5-
opt-EEs-1000, respectively. Note that these algorithms do not
use the adaptive sample size and the importance sampling proce-
dures. The results of the comparison of the five algorithms are gi-
ven in Fig. 7, where 2.5-0pt-EEs-1000 is taken as a reference.
Table 3 shows the absolute values.

The computational results show that 2.5-opt-EEais is more
effective than the other algorithms—in particular, for low probabil-
ity levels. For what concerns the comparison of 2.5-opt-EEais
and 2.5-opt-EEas, the results show that the adoption of impor-
tance sampling allows the former to achieve high quality solutions
for very low probability levels, that is, for p and p,,, < 0.2: the aver-
age cost of the local optima obtained by 2.5-opt-EEais is be-
tween 1% and 3% less than that of 2.5-opt-EEas. The
observed differences are significant in a statistical sense. The poor
solution cost of 2.5-opt-EEas can be mainly attributed to the
following reason: since this algorithm considers the next neighbor
solution when the test statistic cannot be computed after five real-
izations (see Section 2.3.2), it rejects moves which are likely to be
accepted. However, the adoption of importance sampling in 2.5-
opt-EEais reduces the effect of this problem. For high probabil-
ity levels, the average cost of the solutions and the computation
time of 2.5-opt-EEais are comparable to those of 2.5-opt-
EEas.

Concerning the comparison of 2.5-opt-EEais and 2.5-
opt-EEs-1000, on average they have very similar costs. How-
ever, the advantage of 2.5-opt-EEais is the computation time:
2.5-opt-ERais is faster than 2.5-0pt-EEs-1000 approxi-
mately by a factor of four.

Regarding the comparison of 2.5-opt-EEais and 2.5-
opt-EEs-100, for low probability levels the average cost of the
solutions obtained by the former is between 1% and 3% lower than
that of 2.5-0pt-EEs-100. This clearly shows that the adoption
of 100 realizations is not sufficient for these probability levels.
Note that these differences are significant according to the paired
t-test. On the other hand, for high probability levels, the two algo-
rithms are comparable to one another with respect to solution
quality and computation time.

Although faster, 2.5-0opt-EEs-10 achieves a very poor solu-
tion quality: the average cost of the solutions obtained by 2.5-
opt-EEs-10 is between 17% and 2% higher than that of 2.5-
opt-EEais.

The experimental results for p > 0.5 are reported in Balaprakash
et al. (2007b). These results show that the algorithms achieve
equivalent results with respect to solution quality. Moreover, the
results of 2.5-o0pt-EEs-10 show that a sample size of 10 is suf-
ficient to tackle instances with p > 0.5. For what concerns compu-
tation time, 2.5-opt-EEais and 2.5-opt-EEs-100 are
comparable to 2.5-opt-EEs-10. However, 2.5-opt-ERais
is faster than 2.5-o0pt-EEs-1000 by a factor of three. Note that
2.5-opt-ERais and 2.5-opt-EEas are essentially the same
for these probability levels.

Taking into account both the computation time and the cost of
the solutions obtained, we can see that 2.5-opt-EEais emerges
as a clear winner among the considered estimation-based
algorithms.

Table 3

Experimental results for 2.5-opt-EEas, 2.5-opt-EEais, 2.5-opt-EEs-10, 2.5-
opt-EEs-100, and 2.5-opt-EEs-1000 on clustered instances of size 1000. Each
algorithm is allowed to run until it reaches a local optimum. The table gives, for each
probability level, the mean and the standard deviation (s.d.) of the final solution cost
and of the computation time in seconds over 50 instances.

Algorithm Solution cost Computation time
Mean s.d. Mean s.d.
Homogeneous PTSP
p=0.050 2.5-opt-EEais 4,020,433 437,996 11.100 1.794
2.5-opt-EEas 4,137,855 430,945 2.970 0.497
2.5-0opt-EEs-1000 4,014,200 455410 41.104 6.821
2.5-0pt-EEs-100 4,168,788 434,760 4.309 0.713
2.5-opt-EEs-10 4,713,400 491,452 0.482 0.035
p=0.100 2.5-opt-EEais 5,103,869 508,867 4.119 0.451
2.5-opt-EEas 5,179,648 486,450 2.230 0.249
2.5-opt-EEs-1000 5,108,555 503,921 14.096 1.972
2.5-0opt-EEs-100 5,183,844 470,288 2.629 0.306
2.5-0opt-EEs-10 5,922,935 509,627 0.591 0.053
p=0.150 2.5-opt-EEais 5,959,120 496,566 2.495 0.301
2.5-opt-EEas 6,050,183 505,229 1.702 0.161
2.5-0opt-EEs-1000 5,966,002 479,174 8.104 1.172
2.5-0opt-EEs-100 6,007,125 500,754 1.827 0.187
2.5-opt-EEs-10 6,808,184 555,047 0.648 0.045
p=0.200 2.5-opt-EEais 6,701,562 545,366 1.776 0.147
2.5-opt-EEas 6,734,587 558,760 1.407 0.120
2.5-0opt-EEs-1000 6,720,197 543,464 5.596 0.574
2.5-0pt-EEs-100 6,758,117 563,812 1.349 0.114
2.5-0opt-EEs-10 7,416,077 612,763 0.661 0.053
Heterogeneous PTSP
p=0.050(16) 2.5-opt-EEais 3,949,356 409,824 13.494 3.379
2.5-opt-EEas 4,119,370 461,810 1.473 0.207
2.5-0opt-EEs-1000 3,984,725 441,295 38.069 7.455
2.5-0opt-EEs-100 4,082,128 435,499 2.806 0.405
2.5-opt-EEs-10 4,449,540 447,232 0.418 0.028
p=0.050(83) 2.5-opt-EEais 3,876,139 483,153 6.251 2.457
2.5-opt-EEas 4,005,424 550,905 0.511 0.054
2.5-0opt-EEs-1000 3,914,341 522,037 19.476 3.409
2.5-0opt-EEs-100 3,990,014 519,289 1.033 0.163
2.5-opt-EEs-10 3,996,970 531,437 0.305 0.011
p=0.200(16) 2.5-opt-EEais 6,589,342 537,399 1.910 0.203
2.5-opt-EEas 6,641,879 547,318 1.283 0.118
2.5-opt-EEs-1000 6,601,665 537,940 6.674 0.890
2.5-0opt-EEs-100 6,620,425 553,190 1.447 0.114
2.5-opt-EEs-10 7,100,032 569,439 0.579 0.049
p=0.200(83) 2.5-opt-EEais 6,244,761 605,180 1.991 0.284
2.5-opt-EEas 6,348,075 607,690 0.546 0.039
2.5-0opt-EEs-1000 6,230,550 602,679 7.217 1.128
2.5-0opt-EEs-100 6,306,303 604,002 0.811 0.090
2.5-0opt-EEs-10 6,375,420 613,433 0.367 0.020
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3.6. Comparison with the analytical computation algorithm

In this section, we compare 2.5-opt-EEais with heuristic
biasing to 2.5-opt-ACs. For this purpose, we generate 50 new
instances for each probability level. The rationale behind the adop-
tion of a new set of instances is the following: 2.5-opt-EEais
and 2.5-opt-ACs are selected as winners from a set of five
and three algorithms, respectively, where all of them are evaluated
on a same set of instances. Basing the comparison of 2.5-opt-
EEais and 2.5-opt-ACs on the same set of instances might
possibly introduce a bias in favor of 2.5-opt-EEais. This issue
is known as over-tuning; we refer the reader to Birattari (2004 ) for
further discussion.

The computational results given in Fig. 8 show that 2.5-opt-
EEais is very competitive. Regarding the time required to reach
local optima, irrespective of the probability levels, 2.5-opt-
EEais is approximately two orders and three orders of magnitude
faster than 2.5-opt-ACs, for homogeneous and heterogeneous
instances, respectively. This very large speed difference in the het-
erogeneous case—approximately one order of magnitude more
than the difference in speed between the algorithms for the homo-
geneous case—can be attributed to the computational overhead in-
volved in the adoption of the arbitrary precision arithmetics. We
refer the reader to Balaprakash et al. (2007b) for the absolute
values.

The average cost of local optima obtained by 2.5-opt-EEais
is comparable to the one of 2.5-0pt-ACs. In Table 4, we report
the observed relative difference between the cost of the local opti-
ma obtained by the two algorithms and a 95% confidence bound on
this relative difference. This bound is obtained through a two sided
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paired t-test. Table 4 confirms that, concerning the average cost of
the local optima found, 2.5-opt-EEais is essentially equivalent
to 2.5-opt-ACs. Nevertheless, with 95% confidence, under the
current experimental setting, we can state that, should ever the
average cost obtained by 2.5-opt-EEais be higher than the
one obtained by 2.5-0pt-ACs, the difference would be at most
1.2% and 2.1% for the homogeneous and the heterogeneous in-
stances, respectively.

3.7. Experiments with iterated local search

In this section, we study the behavior of 2.5-0pt-EEais and
2.5-0opt-EEs-100 integrated into iterated local search (ILS)
(Lourenco et al., 2002), a metaheuristic on which many state-of-
the-art algorithms for the TSP are based (Hoos and Stiitzle,
2005). We denote the two algorithms ILS-2.5-opt-EEais
and ILS-2.5-0pt-EEs-100. The goal is to find the most effec-
tive algorithm for tackling the PTSP. It is interesting to note that,
for a given computation time, the two algorithms behave differ-
ently. ILS-2.5-opt-EEais finds at each iteration a high qual-
ity local optimum because of its use of the 2.5-opt-EEais local
search; however, this is obtained at the expense of performing rel-
atively few iterations. On the contrary, ILS-2.5-0opt-EEs-100,
which uses the faster though less effective 2.5-0pt-EEs-100
local search, produces at each iteration lower quality local optima
but performs more iterations than ILS-2.5-opt-EEais.

We implemented standard ILS algorithms in which new starting
solutions for the subsequent local search are generated by perturb-
ing the incumbent local optimum s". For the perturbation, we adopt
a hybrid scheme that consists in first performing two random dou-
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Table 4

Comparison of the average cost obtained by 2.5-opt-EEais and by 2.5-opt-
ACs on clustered instances of size 1000. For each level of probability, the table
reports the observed relative difference and a 95% confidence interval (CI) obtained
through the t-test on the relative difference. Concerning the relative difference, if the
value is positive, 2.5-opt-EEais obtained an average cost that is larger than the
one obtained by the other algorithm considered; if it is negative, 2.5-opt-EEais
reached solutions of lower average cost. In both cases, a value is typeset in boldface if
it is significantly different from zero according to the t-test at a confidence of 95%.

p 2.5-opt-EEais vs. 2.5-0pt-ACs
95% CI

Difference

Homogeneous PTSP

0.050 +0.546% [-0.157,+1.248]%
0.075 +0.232% [-0.675,+1.139]%
0.100 +0.284% [-0.645,+1.214]%
0.125 —0.333% [-1.122,+0.456]%
0.150 -0.327% [-1.132,+0.478]%
0.200 +0.422% [-0.386,+1.231]%
Heterogeneous PTSP

0.050(16) +0.472% [-0.243,+1.187]%
0.050(50) +0.812% [+0.147,+1.478]%

0.050(83) +0.390% [—0.648,+1.428]%
0.075(16) +0.998% [—0.081,+2.077]%
0.075(50) +0.191% [-0.372,+0.754]%
0.075(83) +0.780% [-0.128,+1.688]%
0.100(16) —0.037% [-0.868,+0.795]%
0.100(50) —0.199% [-1.091,+0.693]%
0.100(83) +0.352% [-0.494,+1.199]%
0.200(16) —0.514% [—1.394,+0.366]%
0.200(50) —1.052% [-1.781,-0.323]%
0.200(83) —0.086% [-0.800,+0.629]%

ble-bridge moves and then changing the position of ps% of the
nodes, where ps is a parameter. A change of the position is done

by picking uniformly at random ps% of nodes, removing them from
the tour and then re-inserting them again according to the farthest
insertion heuristic. In our experiments, the parameter ps is set to
10. From the solution obtained after the perturbation, a new local
search is started. If the newly identified local optimum has a lower
cost than s, it is accepted as the new incumbent solution.

We include two more algorithms in the analysis: an ILS algo-
rithm built on top of 2.5-opt-EEs that uses a sample size sche-
dule proposed by Gutjahr (2004). In this schedule, the number of
realizations is increased on the basis of the iteration counter. We
denote this algorithm as ILS-2.5-opt-EEs-sss, where sss
stands for sample size schedule. The second algorithm is ITS-
2.5-0pt-EEs-1000, which adopts 2.5-0opt-EEs-1000; this
algorithm is used as a reference algorithm.

In ILS-2.5-opt-EEais, the acceptance criterion compares
two local optima by using the t-test with a maximum of 1000 real-
izations, which are unchanged throughout all the iterations. In
ILS-2.5-0pt-EEs-100 and ILS-2.5-0pt-EEs-1000, the
acceptance criterion compares two local optima based on 100
and 1000 realizations, respectively. In ILS-2.5-opt-EEs-
sss, the sample size schedule determines the number of realiza-
tions for comparing the two local optima.

The stopping criterion for the considered algorithms is set to
100 seconds. We use 50 instances for each probability level. The re-
sults on clustered instances with 1000 nodes are given in Fig. 9 and
Table 5.

From the computational results, we can see that the ILS algo-
rithm that uses 2.5-opt-EEais for each iteration is very effec-
tive. The average cost of the solutions obtained by ILS-2.5-
opt-EEais is between 4% and 0.7% (homogeneous case), 2%
and 0.8% (heterogeneous case), lower than ILS-2.5-opt-
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Fig. 9. Experimental results on clustered PTSP instances of size 1000. The plots represent the cost of the solutions obtained by ILS-2.5-opt-EEais,
ILS-2.5-0opt-EEs-100, and ILS-2.5-0opt-EEs-sss normalized by the one obtained by ILS-2.5-0pt-EEs-1000. The normalization is done on an instance
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Table 5

Experimental results for ILS-2.5-opt-EEais, ILS-2.5-opt-EEs-100, ILS-2.5-
opt-EEs-1000,and ILS-2.5-0opt-EEs-sss on clustered instances of size 1000. The
table gives mean and standard deviation (s.d.) of final solution cost and computation
time in seconds. The results are given for 50 instances at each probability level. Each
algorithm is allowed to run for 100 seconds.

Algorithm Solution cost
Mean s.d.
Homogeneous PTSP
p=0.050 ILS-2.5-opt-EEais 3,929,167 391,155
ILS-2.5-opt-EEs-1000 4,101,042 525,937
ILS-2.5-0opt-EEs-100 4,124,123 402,049
ILS-2.5-opt-EEs-sss 4,591,082 621,302
p=0.100 ILS-2.5-opt-EEais 4,882,334 416,657
ILS-2.5-0opt-EEs-1000 4,919,269 420,385
ILS-2.5-opt-EEs-100 4,983,033 424,849
ILS-2.5-0opt-EEs-sss 5,550,812 776,072
p=0.150 ILS-2.5-opt-EEais 5,645,487 438,838
ILS-2.5-0opt-EEs-1000 5,689,150 446,088
ILS-2.5-0opt-EEs-100 5,724,625 450,742
ILS-2.5-opt-EEs-sss 6,148,684 748,337
p=0.200 ILS-2.5-opt-EEais 6,306,761 461,408
ILS-2.5-0pt-EEs-1000 6,365,820 469,658
ILS-2.5-0opt-EEs-100 6,356,017 457,958
ILS-2.5-opt-EEs-sss 6,939,857 997,612
Heterogeneous PTSP
p=0.050(16) ILS-2.5-opt-EEais 3,913,474 356,073
ILS-2.5-0pt-EEs-1000 4,177,331 658,040
ILS-2.5-0opt-EEs-100 4,026,444 350,354
ILS-2.5-opt-EEs-sss 4,333,535 531,310
p=0.050(83) ILS-2.5-opt-EEais 3,829,801 404,242
ILS-2.5-0opt-EEs-1000 3,962,324 522,985
ILS-2.5-0opt-EEs-100 3,892,286 361,572
ILS-2.5-opt-EEs-sss 4,006,539 452,628
p=0.200(16) ILS-2.5-opt-EEais 6,317,297 404,523
ILS-2.5-0opt-EEs-1000 6,290,327 387,254
ILS-2.5-0opt-EEs-100 6,270,120 385,406
ILS-2.5-0opt-EEs-sss 6,766,163 784,251
p=0.200(83) ILS-2.5-opt-EEais 5,933,131 375,063
ILS-2.5-0opt-EEs-1000 5,999,728 494,003
ILS-2.5-0opt-EEs-100 5,980,738 382,930
ILS-2.5-opt-EEs-sss 6,312,369 709,112

EEs-100. Note that the observed differences between the
algorithms are statistically significant according to a t-test, at a sig-
nificance level of 0.05. For what concerns the comparison of ILS-
2.5-opt-EEais with the reference algorithm ILS-2.5-opt-
EEs-1000, the average solution cost of the former is between
4% and 0.09% (homogeneous case), 6% and 0.1% (heterogeneous
case), lower than ILS-2.5-0pt-EEs-1000. There is only one
exception to this general trend: for p,=0.200 and per, =16,
ILS-2.5-0pt-EEs-100 and ILS-2.5-0pt-EEs-1000 ob-
tain average solution costs which are 0.7% and 0.4% lower than that
of ILS-2.5-opt-EEais, respectively.

An interesting observation concerning the comparison of ILS-
2.5-0pt-EEs-100 and ILS-2.5-0pt-EEs-1000 is that the
average cost reached by the former is either better than or compa-
rable to the latter. This is due to the fact that the use of 100 real-
izations instead of 1000 allows ILS-2.5-0opt-EEs-100 to
perform more iterations than ILS-2.5-0pt-EEs-1000, which
in turn results in solutions of higher quality.

For what concerns the performance of ILS-2.5-0opt-EEs-
sss, the average solution cost is rather poor and significantly
worse than all the other algorithms. This can be attributed to the
fact that the particular sample size schedule is designed for a meta-
heuristic that is allowed to run for a relatively long computation
time without an effective local search.

For the instances with high probability values (p >0.5), the
average cost obtained by ILS-2.5-opt-EEais is comparable
to the one obtained by ILS-2.5-0pt-EEs-100 and ILS-
2.5-0pt-EEs-1000.

Finally, we study the behavior of 2.5-0pt-EEais with heu-
ristic biasing and 2.5-opt-ACs integrated into ILS, namely,
ILS-2.5-0pt-EEais and ILS-2.5-opt-ACs. Since 2.5-
opt-ACs is rather slow when compared to 2.5-opt-EEais,
we use the following stopping criterion: ILS-2.5-opt-EEais
is run until it performs 15 perturbations and the time needed for
completion is recorded. The time limit for ILS-2.5-0opt-ACs
is then set to 100 times the time taken by ILS-2.5-opt-EEais.
The computational results obtained on the homogeneous and the
heterogeneous instances show that ILS-2.5-opt-EEais is
very effective with respect to both solution quality and computa-
tion time. In spite of the fact that ILS-2.5-opt-EEais is al-
lowed to run for a computation time that is two orders of
magnitude less than the one of ILS-2.5-0pt-ACs, the average
cost of the solutions obtained by the former is between 0.4-8% and
0.8-26% lower than that of the latter, for the homogeneous and
heterogeneous cases, respectively. We refer the reader to Balaprak-
ash et al. (2007b) for the complete results.

4. Conclusion and future work

In this paper, we integrated two widely known variance reduc-
tion techniques, adaptive sample size and importance sampling,
into an estimation-based local search to tackle the PTSP. We inves-
tigated several ways of using the two procedures in the PTSP delta
evaluation. In particular, we customized the two procedures by
taking into account problem-specific knowledge. Moreover, we
showed that an offline parameter tuning algorithm can be used
effectively for finding the biased probability distribution of the
importance sampling procedure for the PTSP. The computational
results show that the heuristic customization of the adaptive sam-
ple size and the importance sampling procedures allows the esti-
mation-based local search to achieve high quality solutions for
the PTSP instances with high and low probability values in a rela-
tively short computation time. In virtue of this speed advantage,
we have obtained a new state-of-the-art iterative improvement
algorithm for the PTSP.

Further research will be devoted to assess the behavior of the
proposed algorithm when used as an embedded heuristic in other
metaheuristics such as ant colony optimization and memetic algo-
rithms. From an application perspective, the estimation-based lo-
cal search will be extended to solve more complex problems
such as stochastic vehicle routing problems.
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