Incremental Local Search
in Ant Colony Optimization:

Why it Fails for the
Quadratic Assignment Problem

Prasanna Balaprakash, Mauro Birattari, Thomas Stiitzle, and Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{pbalapra,mbiro,stuetzle,mdorigo}@ulb.ac.be

Abstract. Ant colony optimization algorithms are currently among the
best performing algorithms for the quadratic assignment problem. These
algorithms contain two main search procedures: solution construction by
artificial ants and local search to improve the solutions constructed by
the ants. Incremental local search is an approach that consists in re-
optimizing partial solutions by a local search algorithm at regular inter-
vals while constructing a complete solution. In this paper, we investigate
the impact of adopting incremental local search in ant colony optimiza-
tion to solve the quadratic assignment problem. Notwithstanding the
promising results of incremental local search reported in the literature in
a different context, the computational results of our new ACO algorithm
are rather negative. We provide an empirical analysis that explains this
failure.

1 Introduction

Ant colony optimization (ACO) is a recent metaheuristic technique that is in-
spired by the pheromone trail laying and following behavior of some ant species
[1]. In ACO algorithms, artificial ants are stochastic solution construction proce-
dures that generate solutions using artificial pheromones and heuristic informa-
tion; the ants’ solutions are then used to modify the artificial pheromone trails.
This mechanism shifts the stochastic solution construction procedure towards
the construction of solutions similar to the better ones seen previously in the
algorithm. The definition of the ACO metaheuristic includes also the possibility
of using local search [1]: Once ants complete their solution construction phase,
local search algorithms can be used to refine their solutions before using them
for the pheromone update. Various experimental researches have shown that the
combination of solution construction by ants and local search procedures is a
promising approach [1].

There exist a large number of possible choices when using local search in ACO
algorithms. We refer the reader to [1,2] for a recent review of these techniques.
The primary goal of this paper is to investigate the opportunity of adopting
incremental local search in ACO, that is, to improve via a local search algorithm

the ants’ partial solutions at regular intervals during the solution construction
process. Previous works on incremental local search in non-ACO algorithms have
reported promising results: Russel [3] introduced a method for re-optimizing
partial solutions by means of an interchange procedure after every k steps of
the solution construction. Gendreau et al. [4] introduced a generalized insertion
heuristic to solve the traveling salesman problem and extended the same ap-
proach to a vehicle routing problem [5]. In a nutshell, generalized insertion can
be described as an insertion procedure that uses a limited form of incremental
local search. Caseau and Laburthe [6] introduced an approach that applies lo-
cal search after each step of the solution construction process to solve a large
constrained vehicle routing problem. This methodology is compared with a cus-
tomary technique that constructs solutions by greedy insertion and uses local
search at the end to improve solutions. The computational results showed that,
in this particular context, incremental local search was not only faster, but also
produced much better solutions. They conclude that incremental local search
is able to perform some improvements during the construction process that full
local search may not be able to perform once the solution is complete. In the
context of constructive methods, Fleurent and Glover [7] proposed a strategy
called proximate optimality principle that consists in re-optimizing partial solu-
tions of a greedy randomized adaptive search procedure to solve the quadratic
assignment problem. They suggest that imperfections introduced during the con-
struction step of the procedure can be removed by applying local search on the
partial solutions. Since the method we investigate here is very similar to this
experimental study, we have also chosen the quadratic assignment problem for
our analysis.

The main motivation behind our research is that a priori the idea of re-
optimizing the partial solutions of the ants during the solution construction looks
promising, since the use of local search in ACO algorithms has already proven to
often lead to a strong improvement of performance, and incremental local search
has been successfully applied in other settings where constructive methods were
used. However, the results of our computational experiments are negative and,
at least for the quadratic assignment problem (QAP), the inclusion of incre-
mental local search actually worsens the performance. In this paper, we analyse
the possible reasons for this effect by studying the convergence behavior of the
ACO algorithm. In fact, our analysis also gives hints on conditions under which
incremental local search may become useful in ACO algorithms. For instance,
since the empirical analysis shows that the incremental local search introduces
a strong exploration in the search process of the ACO algorithm studied here,
one might try to use it to generate new solutions when the search stagnates.

The paper is organized as follows. Section 2 shows how to use incremental
local search in ACO for solving the quadratic assignment problem. In Section 3,
we report our computational results, which show that incremental local search
in ACO obtains rather poor results. An analysis of why incremental local search
in ACO is not effective for the quadratic assignment problem is presented in
Section 4. Section 5 concludes the paper.

2 Incremental Local Search in Ant Colony Optimization
for the Quadratic Assignment Problem

The QAP can be described in the following way: Consider a set of n facilities
that have to be assigned to n locations. A matrix A = [a,s] gives the distances
between locations, where a..; is the distance between locations r and s. A matrix
B = [bi,] characterizes the flows among facilities, where by, is the flow between
facility ¢ and facility u. An assignment can be represented by a permutation 7 of
{1,---,n}, where m(r) is the facility that is assigned to location r. The problem
is to find a permutation 7* that minimizes the sum of the products of the flows
among facilities by the distance between their locations.

Among the various metaheuristics, ACO has been shown to be particularly
successful on the QAP as best exemplified by the high performance reached
by MAX — MIN ant system (MMAS-QAP) [8,9]. Hence, we have chosen
MMAS-QAP as a starting point for our analysis. MMAS-QAP constructs
solutions by assigning at each construction step a facility to some location.
Pheromone trails 7;; refer to the desirability of assigning facility j to location ¢
and the usual probabilistic choice known from ant system is used; since MMAS-
QAP does not use any form of heuristic information, the probability p;; of assign-
ing facility j to location ¢ is directly proportional to 7;; for feasible assignments.
The pheromone update is done by lowering the pheromone trails by a constant
factor p and depositing pheromone on the individual solution components of ei-
ther the best solution in the current iteration (iteration-best), the best solution
found so far by the algorithm (best-so-far), or the best solution found since the
last re-initialization (restart-best) of the pheromone trails. We refer the reader
to [9] for a more detailed description of MMAS-QAP.

MMAS-QAP uses an iterative improvement algorithm based on the 2-
exchange neighborhood, where the set of neighbors of a permutation 7 comprises
all permutations that can be obtained by exchanging the location of two facil-
ities. This iterative improvement algorithm is referred to as 2-opt. When using
2-opt in MMAS-QAP, each ant constructs a feasible solution and improves it
by this local search.

It is straightforward to include incremental local search in MMAS-QAP.
While in the original MMAS-QAP the local search is applied only to com-
plete solutions, in a version that uses incremental local search, the local search
is performed on an ants’ partial solution. For convenience, let us define some
terminology: We denote for each ant the number of local searches applied to its
(partial) solutions by ¢, where i, 1 < i < n, is a user defined parameter. We call
MMAS-QAP with incremental local search as MMAS-QAP(7). For example,
MMAS-QAP(2) refers to the MMAS-QAP algorithm with an incremental lo-
cal search in which for each of the m ants the (partial) solution is re-optimized
twice; for MMAS-QAP(3) three local searches are applied. For the sake of
uniformity, we denote the original MMAS-QAP algorithm in which a single
local search is performed at the end of the solution construction by MMAS-
QAP(1). We use the convention that the local searches are applied after equal
sized intervals in the solution construction. Let & be the number of assignments;

then, in MMAS-QAP(2) local search is applied after k = 1- |n/2] assignments
and on the complete solutions, while in MMAS-QAP(3), local search is applied
after k =1-|n/3| and k = 2 |n/3] assignments are done, and again once the
assignment is completed.

In the local search on partial solutions, the cost difference for exchanging two
facilities s and r in the partial solution is obtained by the instance data restricted
to the occupied locations and used facilities of the current partial solution. The
current partial solution is replaced if the local search finds a better neighboring
one, and the local search continues until there is no more improvement. From
this locally optimized partial solution, the particular ant continues its solution
construction process. We expect that the computation time for MMAS-QAP (i)
increases with ¢, since more local searches need to be applied. However, each lo-
cal search applies to a smaller instance and the final local search on the complete
solution may start from an already improved solution, hence, requiring less im-
provement steps; this counteracts the effect on the computation time incurred
by the increased number of local searches. Thus, the rate of increase in the
computation time per solution is expected to be less than the rate of increase
of 1.

3 Experiments

We studied the impact of incremental local search in MMAS-QAP on ten in-
stances from QAPLIB [10] ranging in size from n = 60 to n = 150. The tested
instances fall into one of the following groups: (i) instances with the distance
and flow matrix entries generated randomly according to a uniform distribution,
(ii) instances whose distance matrix is defined as Manhattan distance between
points on a grid, and (iii) randomly generated instances in which the matrix en-
tries are similar to those of real-life QAP instances. We allowed 10 independent
trials for each algorithm and the code was run on a dual AMD Opteron™244
1.75GHz processor, 2 GB RAM and 1 MB L2-Cache. The parameter values for
MMAS-QAP are set as proposed in [9] except that the value of p is set to 0.1
which results in slightly better performance than the setting p = 0.8 proposed
in the literature. (We run additional experiments that verified that the conclu-
sions drawn in the following do not depend on the parameter value for p.) For
MMAS-QAP(i), we vary the value of 7 from 1 to 10 and report the solution
quality obtained as the percentage deviation from the best known solutions.
For each instance, we first run MMAS-QAP(1) for 1000 iterations and mea-
sured the average time over 10 trails. This average time is then taken as the
termination criterion for all algorithms to ensure that we compare the algo-
rithms using a same computation time. Table 1 shows the average solution cost
for all values of i as the percentage deviation from the best known solution.
From Table 1, we can observe that the average solution cost obtained by
MMAS-QAP(7), for ¢ > 2 is worse than that of MMAS-QAP(1) for all in-
stances; the only exception is that MMAS-QAP(2) is better than MMAS-
QAP(1) on instance tail50b. In Table 2, we give the average number of itera-

Table 1. Experimental results of MMAS-QAP(i) algorithms on several QAP in-
stances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after the same computation time. Best
results are in bold-face.

1=1 1=2 i1=3 i=4 =5 i=6 i=7 1=8 1=9 1=10
tai60b 0.0004 0.0086 0.0335 0.0449 0.0610 0.0557 0.0428 0.0578 0.0694 0.0690
tai80a 1.2304 1.6836 2.0250 2.1809 2.3091 2.2281 2.2934 2.3209 2.3216 2.3115
tai80b 0.0204 0.0535 0.1294 0.0806 0.0932 0.1052 0.1110 0.1107 0.1176 0.1207
sko81 0.0672 0.1433 0.2556 0.2714 0.2786 0.3114 0.3215 0.3125 0.3415 0.3331
sko90 0.1376 0.2089 0.2382 0.2863 0.3469 0.3477 0.3837 0.3436 0.4042 0.4168
sko100a 0.1222 0.1888 0.2193 0.2826 0.3342 0.3517 0.3536 0.3530 0.3505 0.4477
tail00a 0.3579 0.8090 0.9702 1.2808 1.2440 1.1532 1.1214 1.0984 1.0902 1.1808
tail00b 0.0452 0.1009 0.1289 0.1655 0.2456 0.2432 0.2391 0.2540 0.2632 0.2723
tho150 0.2115 0.2909 0.3530 0.3527 0.4230 0.4336 0.4677 0.5053 0.5104 0.5344
tailb0b 0.2757 0.1935 0.2858 0.2852 0.4685 0.5319 0.5184 0.6217 0.6654 0.6968

Table 2. Experimental results of MMAS-QAP(i) algorithms on several QAP in-
stances; given is, for each instance, and algorithm pair, the average number of iterations
done in a same computation time.

t=1 1=2 =3 t=4 t=5 1=6 =7 =8 =9 ¢=10
tai6Ob 983.1 837.3 711.2 614.9 5444 489.3 373.2 352.0 3549 354.0
tai80a 987.7 788.9 450.2 584.3 517.2 355.1 338.8 3909 338.9 337.9
tai80b 991.2 782.2 460.3 569.6 503.6 353.7 333.9 376.0 3254 325.8
sko81 1082.1 696.4 768.8 482.5 444.3 4194 399.8 361.3 417.7 323.6
sko90 1097.7 909.9 769.1 486.7 591.1 531.7 408.6 363.0 414.6 387.6
sko100a 1070.6 890.1 522.5 653.5 5783 411.5 376.8 363.9 333.8 380.7
tail00a 909.1 757.0 426.6 561.5 501.2 349.3 318.6 309.5 279.2 3279
tail00b 981.7 760.8 455.4 555.5 488.0 344.0 318.2 302.5 280.4 316.2
tho150 998.2 791.2 663.6 416.0 504.7 454.8 329.1 3189 299.1 330.3
tails0b 979.1 793.1 679.6 465.4 439.0 393.4 286.4 2723 257.7 284.5

tions that each of the algorithm variants was able to do in the computation time
that was determined as described above. As we had conjectured in the previous
section, with increasing value of i, generally also the number of iterations done
by MMAS-QAP(i) decreases.

Taking into account this latter observation on the number of iterations run,
we could tentatively attribute the reason for the worse performance of MMAS-
QAP(7) to the fact that it could generate a smaller number of complete solutions
in the same time. Naturally, the question arises: what will happen if all the al-
gorithms are allowed to generate the same number of complete solutions? To
answer this question, we re-run all the MMAS-QAP(7) allowing each to per-
form 500 iterations. These results are given in Table 3. As it can easily been seen,
the average solution quality of MMAS-QAP(1) for most instances is still better
than that of MMAS-QAP(i) for ¢ > 2. There are only two exceptions: instances
tai80b and tail50b. This means that, in general, the usage of incremental lo-

Table 3. Experimental results of MMAS-QAP(i) algorithms on several QAP in-
stances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after 500 iterations.

t=1 1=2 =3 i=4 i=5 1=6 i=7 1=8 =9 =10
tai6Ob 0.0056 0.0195 0.0435 0.0649 0.0564 0.0535 0.0583 0.0729 0.0546 0.0546
tai80a 1.2951 2.0692 2.0393 2.3263 2.3028 2.1805 2.1112 2.2939 2.2204 2.2204
tai80b 0.1287 0.1128 0.1300 0.0734 0.0907 0.0800 0.1495 0.1042 0.1021 0.1021
sko81 0.1279 0.1872 0.2463 0.2573 0.2630 0.3391 0.3224 0.3072 0.3828 0.3074
sko90 0.1391 0.2669 0.2747 0.2925 0.4189 0.3746 0.3730 0.3768 0.3370 0.4409
sko100a 0.1736 0.2115 0.2318 0.3160 0.3307 0.3867 0.3369 0.3849 0.3267 0.3757
tail00a 0.4320 0.8002 1.0031 1.2218 1.3383 1.1167 1.0470 1.0566 1.0507 1.1497
tail00b 0.0748 0.0903 0.1507 0.1397 0.2198 0.2111 0.2164 0.2397 0.2133 0.2555
thol50 0.2347 0.3456 0.3827 0.3633 0.4236 0.4384 0.4236 0.4736 0.4787 0.4615
tails0b 0.3318 0.2598 0.4174 0.3835 0.4508 0.4320 0.4678 0.5603 0.4773 0.6855

cal search is actually causing a deterioration of MMAS-QAP’s performance,
although it is allowed much more computation time. Said in other words, in-
cremental local search is not only computationally expensive but also interferes
negatively with the solution process of the ACO algorithm—at least for the QAP.

One may stop here and simply report this as a negative result. However,
we were wondering as to why there may be a negative influence of incremental
local search into the ACO algorithm’s search process. A possible answer to this
question is given in the next section.

4 Analysis

In this section, we try to explain why the incremental local search produces
a detrimental effect on MMAS-QAP’s performance. For motivating the main
line of attack of this analysis, let us consider first what is known about the
convergence behavior of MMAS-QAP, a high-performing ACO algorithms. Es-
sentially, the search process of MMAS-QAP shows a transition from an explo-
ration phase, which is characterized by iteration-best update (the best solution
in the current iteration is allowed to update the pheromones) and relatively high
branching factor, to an exploitation phase, where the search is directed towards a
search space region whose center is defined by the best-so-far solution seen by the
algorithm. Interestingly, while in the exploration phase good quality solutions
can already be found, typically the highest quality solutions in a trial of MMAS-
QAP are found when the search is in its exploitation phase—characterized by a
low branching factor and by the fact that the solutions generated by the ants
are relatively close to the best-so-far solution. In fact, MAX-MZIN Ant System
was designed with the explicit intention to allow a careful transition between the
exploration and exploitation phases and to further avoid search stagnation in the
exploitation phase [11,8].

We suspected that the local changes introduced by the incremental local
search disturb the behavior of MMAS-QAP in the exploitation phase. This

suspicion is based on the fact that the local search on the partial solution does
not take into account the pheromone trails and, hence, may lead to significant
changes to the partial solution. As an effect of this, the final complete solution
before the final local search phase may actually be rather far from the best-so-far
solution and, thus, hinder the exploitation phase from being effective. This effect
is certainly increased for an increased frequency of partial re-optimizations. Dif-
ferently, if ants do not apply partial re-optimization, the solutions they construct
are relatively close to the best-so-far solution.

Hence, we decided to examine more carefully the variability of the generated
solutions by the various settings of i in MMAS-QAP(7). The main idea of
our analysis is to examine the distance of the complete solutions generated in
the current iteration from the best-so-far solution before and after the final
application of the local search algorithm on the complete solutions. This is done
for all the 10 settings of i. Since MMAS-QAP(1) has proven to be a state-of-the-
art ACO algorithm for the QAP, we use the computed distance as a yardstick
for the analysis. For our analysis, we compute the distance d(m,7") between
two solutions w and 7’ as the minimum number of applications of 2-exchange
moves that are required to convert one solution into the other one. This distance
measure reflects that deviations in the individual assignments from the best-so-
far solution can be undone by exchanging facilities between locations. Note that
this distance measure can easily be computed using a linear time algorithm [12].

To make our analysis simpler, we consider a variant of MMAS-QAP, de-
noted as rbMMAS-QAP. In this variant, only the restart-best solution, the
best solution found since the last re-initialization of the pheromones, is allowed
to update the pheromones. (Hence, the best-so-far and iteration-best solutions
are not taken into account in the pheromone deposit.) To justify the usage of
rbMMAS-QAP in the analysis, we first tested whether the versions rb MM AS-
QAP(i), ¢ = 1,...,10 shows the same type of behavior as MMAS-QAP(i),
using as stopping criterion again 500 iterations. Table 4 shows that this is es-
sentially the case, although rb MMAS-QAP gives overall slightly worse results
than MMAS-QAP. Nevertheless, we can conclude that rb M MAS-QAP cap-
tures the same trend as MMAS-QAP and that it is safe to limit the analysis
to Ttb MMAS-QAP.

In our analysis, we compute at each iteration of b MMAS-QAP(i), i =
1,...,10, the distance between an ants’ complete solution and the restart-best
solution before and after the final local search on the complete solution has been
applied. These distances are then averaged across the m = 5 ants. We denote
these two measures as d~ (average distance before the final local search) and d*
(average distance after the final local search), respectively. Figure 1 illustrates
the observed results for the values of d~ and d* obtained by 18 MMAS-QAP(7),
1 =1,...,10, over 500 iterations for the instance sko100a. The trend shown in
these plots is representative for all the other instances we tested. (We used
Tukey’s (Running Median) Smoothing [13] for plotting the curves. If no differ-
ences among the curves are visible in the plots, this essentially means that d~
and d* are about the same.)

Before Local Search(d-)

skol100a —— After Local Search(d+)
° i=1 o i=6
g g

8
1
80
1

60
1
60
1

40

20
20

0 50 100 150 200 250 500 0 50 100 150 200 250 500
o i=2 o i=7
S IS
— —

o o
© ©
o | o |
< <
o
ST T T T T T T ST T T T T T T
0 50 100 150 200 250 500 0 50 100 150 200 250 500
o i=3 o i=8
S 3 A
— —

60
1
60
1

40
1
40

20
20

0 50 100 150 200 250 500 0 50 100 150 200 250 500
o i=4 o i=9
[Sh o o
— —

|
{

60
1
60
1

40

20
20

distance between the ants’ solutions and the restart—best solution

0 50 100 150 200 250 500 0 50 100 150 200 250 500
o i=5 o i=10
S 8 4
- —

o | o
© ©
o | o
< <
o
N T T T T T T T N T T T T T T T
0 50 100 150 200 250 500 0 50 100 150 200 250 500
iterations

Fig. 1. Experimental results of 76 MMAS-QAP on instance sko100a. Each plot rep-
resents the average distance between the ants’ solutions and the restart-best solution
before and after the final local search on a completed solution for rb MMAS-QAP(i),
i =1,...,10. The stopping criterion is set to 500 iterations.

Table 4. Experimental results of rb MMAS-QAP(3) algorithms on several QAP in-
stances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after 500 iterations.

t=1 1=2 =3 i=4 1=5 1=6 1=7 =8 =9 1=10
tai6Ob 0.0168 0.0473 0.0562 0.0620 0.0540 0.0745 0.0643 0.0638 0.0585 0.0585
tai80a 1.7958 1.9787 2.1666 2.3629 2.4193 2.1998 2.1897 2.2693 2.2188 2.2188
tai80b 0.1708 0.0952 0.0999 0.1062 0.1342 0.0987 0.1069 0.1454 0.1448 0.1448
sko81 0.1789 0.2312 0.3063 0.2773 0.3072 0.3303 0.3459 0.3134 0.3749 0.3417
sko90 0.2288 0.2835 0.3000 0.3290 0.3664 0.4189 0.3875 0.3720 0.4062 0.4620
sko100a 0.1982 0.2830 0.2665 0.3414 0.3768 0.3519 0.3353 0.3942 0.3725 0.4135
tail00a 0.6073 0.9753 0.9763 1.3606 1.3204 1.1283 1.0974 1.1031 1.0001 1.1883
tail00b 0.0938 0.1231 0.1583 0.2297 0.2368 0.2242 0.2450 0.2811 0.3014 0.3303
tho150 0.2800 0.3405 0.4061 0.3990 0.4490 0.4966 0.4540 0.4924 0.4653 0.5229
tails0b 0.3076 0.3318 0.3907 0.3681 0.4677 0.5531 0.5978 0.6605 0.5857 0.6691

Several important observations can be made from Figure 1. Firstly, the low-
est values for d~ and d* are reached by rbMMAS-QAP(1). The difference to
the other configurations with ¢ > 2 is smallest for ¢ = 2 but then rises quickly
with 7. (Recall that roMMAS-QAP(2) performs best among the versions that
use incremental local search, as can be seen from Table 1.) Hence, we can con-
clude that incremental local search on the partial solutions eventually leads to
solutions which are very different from restart-best solution. Interestingly, for
rbMMAS-QAP(1) the values for d* are much larger than d~, which indicates
that 70 MMAS-QAP(1) can still explore a significant part of the search space,
despite the fact that it converges quickly to the exploitation phase, as indicated
by the low values of d~.

Overall, these results confirm our hypothesis that the incremental local search
interferes negatively with the exploitation phase of the ACO algorithm and in-
duces a too strong exploration of the search space. For example, for rb M MAS-
QAP(1) we have that d~ is around 30 for instance sko100a, while for rbMMAS-
QAP(2) it increases to about 60—roughly double. Hence, already one incremen-
tal local search that is applied after k = n/2 assignments have been done, leads to
a rather strong perturbation in the exploitation phase, that is, to solutions that
are rather distant from the restart-best one. The raise in the values of d is not
as strong as for d~; however, for Th MMAS-QAP(2) d* is already significantly
larger than for ro MMAS-QAP(1), explaining also roMMAS-QAP(2)’s worse
behavior, in general. As said, these observations also hold for all other instances;
detailed results are available from http://iridia.ulb.ac.be/supp/IridiaSupp2006-
002/.

Finally, we run also experiments for the incremental local search when start-
ing from random initial solutions, to check whether in such an environment the
incremental local search can have some contribution. (We have chosen random
initial solutions, since for the QAP no high-performing construction heuristics
are available.) We run the random restart local search algorithm for the same
average computation time as needed for MMAS-QAP(1) to perform 1000 it-

Table 5. Experimental results of the random-restart local search on several QAP
instances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after the same computation time as the
algorithms in Table 1. The best results are in bold-face.

i=1 1=2 =3 i=4 i=5 i=6 i=7 1=8 1=9 =10
tai6Ob 0.1461 0.1833 0.1991 0.2210 0.1956 0.2202 0.2254 0.2298 0.1716 0.1716
tai80a 2.5402 2.5403 2.4038 2.5176 2.4891 2.2537 2.2732 2.2674 2.3156 2.3156
tai80b 0.6667 0.3876 0.6568 0.6274 0.6334 0.5372 0.6372 0.5625 0.6668 0.6668
sko81 0.7602 0.7085 0.7545 0.6219 0.6211 0.6041 0.6094 0.5591 0.6448 0.6006
sko90 0.8148 0.7860 0.7625 0.7026 0.7263 0.7559 0.7137 0.6285 0.6880 0.6734
sko100a 0.7448 0.7449 0.6419 0.6831 0.6356 0.6355 0.5878 0.6528 0.5590 0.6494
tail00a 1.4651 1.5655 1.2888 1.3980 1.4050 1.1792 1.1433 1.0761 1.0518 1.2299
tail00b 0.6754 0.6708 0.6458 0.5898 0.6056 0.5688 0.6294 0.5817 0.5809 0.5914
tho150 0.9266 0.8679 0.8999 0.8185 0.8746 0.8444 0.7996 0.7739 0.7825 0.8564
tailb0b 1.1589 1.2146 1.2039 1.1491 1.234 1.1430 1.1819 1.1388 1.0972 1.0522

erations. Table 5 shows the average solution cost as the percentage deviation
from the best known solution, obtained by this random restart local search with
different numbers of local searches performed on the (partial) solutions. These
results clearly show that for almost all instances, the usage of the incremental
local search improves the performance over the version where only once a local
search is run on a complete solutions. Hence, these results agree with the compu-
tational results reported in the literature [3,4,6,7] and indicate that the usage
of incremental local search can be, in some situations, helpful. In fact, random
restart has no means to exploit the possibility of learning and exploiting the
most promising region of the search space. This suggests that the usefulness of
the incremental local search depends strongly on the context where it is applied
and the solution construction procedure.

5 Conclusions

Motivated by the promising results of incremental local search reported in the
literature [3,4,6, 7], we have investigated its behavior and performance in an
ACO algorithm for solving the QAP. Our computational study has shown, how-
ever, rather poor results for this idea. Next, we have carried out an analysis that
can explain this failure. In fact, we have shown that the incremental local search
somehow destroys the behavior of the ACO algorithm in its exploitation phase
by not allowing it to generate solutions that are rather close to the restart-best
or global-best solutions.

Certainly, our results and explanation is limited to the QAP. However, we
conjecture that the very same issue arises also in applications of ACO algorithms
to other challenging combinatorial problems. More in general, our results also in-
dicate that probably a more careful study of the behavior of ACO algorithms in
the exploitation phase should be done to understand, which techniques may be
more promising for improving the performance of ACO algorithms. Finally, our

results indicate that incremental local search could be useful for increasing the
exploration in convergence situations of ACO algorithms. Although this was not
useful on the QAP, it may well be that the careful, occasional addition of incre-
mental local searches in specific situation, could possibly result in improvements
for ACO algorithms.

Acknowledgments. This research has been supported by COMP?SYS, a Marie
Curie Early Stage Research Training Site funded by the European Community’s
Sixth Framework Programme under contract number MEST-CT-2004-505079,
and by the ANTS project, an Action de Recherche Concertée funded by the
Scientific Research Directorate of the French Community of Belgium. Thomas
Stiitzle and Marco Dorigo acknowledge support from the Belgian FNRS of which
they are a Research Associate and a Research Director, respectively. The infor-
mation provided is the sole responsibility of the authors and does not reflect the
opinion of the sponsors. The European Community is not responsible for any
use that might be made of data appearing in this publication.

References

1. Dorigo, M., Stiitzle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA
(2004)

2. Stiitzle, T., Hoos, H.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann (2005)

3. Russell, R.: Hybrid Heuristics for the Vehicle Routing Problem with Time Win-
dows. Transportation Science 29 (1995) 156-166

4. Gendreau, M., Hertz, A., Laporte, G.: New Insertion and Postoptimization Pro-
cedures for the Traveling Salesman Problem. Operations Research 40(6) (1992)

5. Gendreau, M., Hertz, A., Laporte, G.: A Tabu Search Heuristic for the Vehicle
Routing Problem. Management Science 40 (1994) 1276-1290

6. Caseau, Y., Laburthe, F.: Heuristics for Large Constrained Vehicle Routing Prob-
lems. Journal of Heuristics 5(3) (1999) 281-303

7. Fleurent, C., Glover, F.: Improved Constructive Multistart Strategies for the
Quadratic Assignment Problem Using Adaptive Memory. INFORMS Journal on
Computing 11(2) (1999) 198-204

8. Stiitzle, T., Hoos, H.: MAX-MZIN Ant System. Future Generation Computer
Systems 16(8) (2000) 889-914

9. Stiitzle, T., Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem.
In Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-
Hill, London, UK (1999) 33-50

10. Burkard, R., Karisch, S., Rendl, F.: (http://www.seas.upenn.edu/qaplib)

11. Stiitzle, T., Hoos, H.H.: Improving the Ant System: A Detailed Report on the
MAX-MIN Ant System. Technical Report AIDA-96-12, FG Intellektik, FB
Informatik, TU Darmstadt (1996)

12. Schiavinotto, T., Stiitzle, T.: Metrics on Permutations for Search Space Analysis.
Computers & Operations Research (In press)

13. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press, Cambridge,
MA (1995)

