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Summary. In this article, we describe the steps that have been followed in the de-
velopment of a high performing stochastic local search algorithm for the probabilis-
tic travelling salesman problem, a paradigmatic combinatorial stochastic optimization
problem. In fact, we have followed a bottom-up algorithm engineering process that
starts from basic algorithms (here, iterative improvement) and adds complexity step-
by-step. An extensive experimental campaign has given insight into the advantages
and disadvantages of the prototype algorithms obtained at the various steps and di-
rected the further algorithm development. The final stochastic local search algorithm
was shown to substantially outperform the previous best algorithms known for this
problem. Besides the systematic engineering process for the development of stochastic
local search algorithms followed here, the main reason for the high performance of our
final algorithm is the innovative adoption of techniques for the estimation of the cost
of neighboring solutions using delta evaluation.
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4.1 Introduction

Stochastic local search (SLS) algorithms are powerful tools for tackling computa-
tionally hard decision and optimization problems that arise in many application
areas. The field of SLS is rather vast and there exists a large variety of algorith-
mic techniques and strategies. They range from simple constructive and iterative
improvement algorithms to general purpose SLS methods such as iterated local
search, tabu search, and ant colony optimization.

A frequently used approach for the development of SLS algorithms appears to
be that the algorithm designer takes his favorite general-purpose SLS method.
Then, this method is adapted in a sometimes more, often less organized way
to the problem under consideration, guided by the researcher’s intuitions and
previous experiences.

There is an increasing awareness that the development of SLS algorithms
should be done in a more structured way, ideally in an engineering style
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following a well-defined process and applying a set of well established proce-
dures. One possibility is to follow a bottom-up engineering process that starts
from basic algorithms and adds complexity step-by-step. Such a process could
be organized as follows. First, start by analyzing the problem under concern
and gaining insights into its structure and possibly previous work on it. Second,
develop basic constructive and iterative improvement algorithms and analyze
them experimentally. Third, integrate these basic heuristics into simple SLS
methods to improve upon their performance. Fourth, if deemed necessary, add
more advanced concepts to extend the SLS algorithm by, for example, consider
populations. Clearly, such an approach is to be considered an iterative one where
insights gained through experiments at one level may lead to further refinements
at the same or at previous levels.

In this chapter, we illustrate the steps that we have followed in the devel-
opment of new state-of-the-art algorithms for the PROBABILISTIC TRAVELLING
SALESMAN PROBLEM (PTSP). In fact, we were following a bottom-up approach,
which in this case was mainly focused on the implementation and refinement of
a very effective iterative improvement algorithm. As it will be shown later, this
process was supported by a comprehensive experimental analysis, the usage of
the automatic tuning of some algorithm parameters, an efficient implementation
of supporting data structures, and an integration of the iterative improvement
algorithm into an iterated local search.

The high-level steps of the adopted bottom-up approach materialize in the
following main elements. The main underlying ideas contributing to the suc-
cess of this research were (i) the inclusion of speed-up techniques known from
the deterministic TSP to the PTSP local search algorithms, and (ii) the use of
empirical estimation in the evaluation of local search moves. These ideas have
been implemented into a new estimation-based iterative improvement algorithm
for the PTSP. Experimental results with the final iterated local search algo-
rithm show that we actually have obtained a new state-of-the-art algorithm that
outperforms the previous best algorithm for this problem.

4.2 The Probabilistic Travelling Salesman Problem

The PTSP [70] is a paradigmatic example of routing problems under uncer-
tainty. It is similar to the TSP with the only difference that each node has a
probability of requiring being visited. The a priori optimization approach [71]
for the PTSP consists in finding an a priori solution that visits all the nodes and
that minimizes the expected cost of a posteriori solutions. The a priori solution
must be found prior to knowing which nodes are to be visited. The associated
a posteriori solution is computed after knowing which nodes need to be vis-
ited. It is obtained by skipping the nodes that do not require being visited and
visiting the others in the order in which they appear in the a priori solution.
An illustration is given in Figure LIl Formally, a PTSP instance is defined on
a complete graph G = (V, A,C, P), where V = {1,2,...,n} is a set of nodes,
A= {{i,j) : i,j € V,i # j} is the set of edges that completely connects the
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Fig. 4.1. An a prior: solution for a PTSP instance with 8 nodes. The nodes in the
a priori solution are visited in the order 1, 2, 3, 4, 5, 6, 7, 8, and 1. Assume that a
realization of w prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The a posteriori
solution visits then nodes in the order in which they appear in the a priori solution
and skips nodes 2, 5, and 6 since they do not require being visited.

nodes, C' = {¢;; : (i,j) € A} is a set of costs associated with edges, and P =
{pi : i € V'} is a set of probabilities that for each node i specifies its probability
p; of requiring being visited. Hence, for the PTSP the stochastic element of the
problem is defined by a random variable w that is distributed according to an
n-variate Bernoulli distribution and a realization of w is a binary vector of size
n where a ’1’ in position ¢ indicates that node ¢ requires being visited and a ’0’
indicates that it does not. We assume that the costs are symmetric. The goal
in the PTSP is to find an a priori solution that minimizes the expected cost of
the a posteriori solution, where the expectation is computed with respect to the
given n-variate Bernoulli distribution.

4.3 Iterative Improvement Algorithms for the PTSP

Iterative improvement algorithms start from some initial solution and repeatedly
try to move from a current solution x to a lower cost neighboring one. An iterative
improvement search terminates in a local optimum, that is, a solution that does
not have any improving neighbor. In the PTSP literature, mainly 2-exchange
and node-insertion neighbourhood structures were considered (see Figure
for examples).

Crucial to the performance of many iterative improvement algorithms is the
possibility of performing delta evaluation, that is, of computing the cost of a
neighbor by only considering the cost contribution of the solution components
in which the two solutions differ. For example, in the case of a 2-exchange move
that deletes edges (a,b) and (c,d) and adds edges (a,c) and (b,d), the cost
difference is given by cq.c + ¢pd — Ca,p — Ce,d-

2-p-opt and 1-shift, the current state-of-the-art iterative improvement al-
gorithms for the PTSP, use analytical computations, that is, closed-form expres-
sions based on heavy mathematical derivations, for correctly taking into account
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Fig. 4.2. Plot 2(a) shows a 2-ezchange move that is obtained by deleting two edges
(1,2) and (5,6) of the solution and by replacing them with (1,5) and (2,6). Plot 2(b)
shows a node-insertion move obtained by deleting node 1 from its current position in
the solution and inserting it between nodes 5 and 6.

the random variable w in such a delta evaluation [T2[73,[74]. Unfortunately, to
allow the re-use of already computed expressions and, thus, to make the delta
evaluation more efficient, 2-p-opt and 1-shift require to scan the neighbour-
hood in a fixed lexicographic order.

4.4 Engineering an Iterative Improvement Algorithm for
the PTSP

We now present the main steps that we followed for engineering an iterative
improvement algorithm for the PTSP. It is based on two main hypotheses.

Hypothesis 1: Exploiting known TSP speed-up techniques can increase com-
putation speed.

Hypothesis 2: We can use estimations of the costs for the delta evaluation to
make the local search faster.

4.4.1 Introducing TSP Speed-Up Techniques

Iterative improvement algorithms for the TSP strongly exploit neighbourhood
reduction techniques such as fixed radius search, candidate lists, and don’t look
bits [7BU76]. These techniques allow the local search to focus on the most relevant
part for obtaining improvements by pruning a large part of the neighbourhood.
While reducing very strongly the number of neighbors, the exploitation of these
techniques does not allow to scan the neighbourhood in the lexicographic order,
which is required to use the speed-ups of the delta evaluation as it is used in
2-p-opt and 1-shift.

We implemented an iterative improvement algorithm using the three above
mentioned TSP speed-up techniques. For doing so, we have to compute the cost
difference between two neighboring solutions from scratch. This is done by using
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the closed-form expressions proposed for the 2-exchange and the node-insertion
neighbourhood structures [74]. In fact, we implemented an iterative improve-
ment algorithm based on the 2.5-ezchange neighbourhood [(7]. The 2.5-exchange
neighbourhood is well-known in TSP solving and it combines the node-insertion
neighbourhood and the 2-exchange meighbourhood structure into a hybrid one.
We call the resulting algorithm 2.5-opt-ACs, where AC and s stand for analytical
computation and speedup, respectively.

2.5-opt-ACs was experimentally compared to 2-p-opt and 1-shift. Our
analysis is based on PTSP instances that we obtained from TSP instances gen-
erated with the DIMACS instance generator [78]. They are homogeneous PTSP
instances, where all nodes of an instance have a same probability p of appearing
in a realization. We carried out experiments on clustered instances of 300 nodes,
where the nodes are arranged in a number of clusters, in a 105 x 10 square. We
considered the following probability levels: [0.1,0.9] with a step size of 0.1. All
algorithms were implemented in C and the source codes were compiled with gec,
version 3.3. Experiments were carried out on AMD Opteron™244 1.75 GHz
processors with 1 MB L2-Cache and 2 GB RAM, running under the Rocks Clus-
ter GNU/Linux. Each iterative improvement algorithm is run until it reaches a
local optimum. (In the following we present only some of the most important
results; more details are given in [79].)

The results given in Figure[3] which illustrate the development of the average
cost obtained, show that 2.5-opt-ACs dominates 2-p-opt and 1-shift. Irre-
spective of the probability value, 2.5-opt-ACs reaches local optima about four
times faster than 2-p-opt. Compared to 1-shift, the same holds when p > 0.5;
for small p, however, the speed difference between 2.5-opt-ACs and 1-shift is
small. Concerning the average cost of local optima found, 2.5-opt-ACs is be-
tween 2% and 5% better than 2-p-opt. The same trend is true when compared
to 1-shift, except for p < 0.3, where the difference between 2.5-opt-ACs and
1-shift is small. All the observed cost differences are statistically significant,
as shown by the ¢-test; an exception is for p < 0.2, where the difference between
2.5-opt-ACs and 1-shift is not significant.

4.4.2 Estimation-Based Local Search

Empirical estimation is a technique for estimating the expectation through
Monte Carlo simulation. Empirical estimation can also be applied to estimate
the cost for the delta evaluation. This has the advantage that one can use any
neighbourhood structure without requiring complex mathematical derivations.
In particular, the 2.5-exchange neighbourhood can easily be used. Clearly, an
estimation-based delta evaluation procedure also does not impose constraints on
the order of exploring the neighbourhood. Thus, it is easy to integrate the T'SP
neighbourhood reduction techniques. Given these advantages, our hypothesis is
that the estimation-based delta evaluation procedure can lead to a very fast and
highly effective iterative improvement algorithms.

In empirical estimation, an unbiased estimator of F(z) for a solution z can
be computed using M independent realizations of the random variable w and
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Fig. 4.3. Experimental results on clustered homogeneous PTSP instances of size 300.
The plots represent the development of the average cost of the solutions obtained by
2-p-opt and 1-shift normalized by the one obtained by 2.5-opt-ACs. Each algorithm
is stopped when it reaches a local optimum.

the resulting costs of these a posteriori solutions [80,[79]. The cost difference
between a solution z and a neighboring solution 2’ can then be estimated by
Fyr(a') — Far(z), which is given by:

M

Farla') — Fue() = 37 (" 00) = Tl 00)- (41)

r=1

We use the same M realizations for all steps of the iterative improvement algo-
rithms. Alternatively, one may sample for each comparison M new realizations;
however, this was proven to be not effective in our experiments (for details
see [9]).

For estimating the cost differences between two neighboring a prior: solutions
by a realization w, one needs to identify the edges that are not common in the
two a posteriori solutions. This is done as follows. For every edge (i, j) that is
deleted from x, one needs to find the corresponding edge (i*,j*) that is deleted
in the a posteriori solution of x. This so-called a posteriori edge is obtained
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Fig. 4.4. Experimental results on clustered homogeneous PTSP instances of size 300.
The plots represent the average solution cost obtained by 2.5-opt-EEs-100 normalized
by the one obtained by 2.5-opt-ACs. Each algorithm is stopped upon reaching a local
optimum.

as follows. If node i requires being visited, we have i* = i; otherwise, ¢* is the
first predecessor of ¢ in x such that w[i*] = 1, that is, the first predecessor that
requires being visited. If node j requires being visited, then j* = j; otherwise,
j* is the first successor of j such that w[j*] = 1. In a 2-exchange move that
deletes the edges (a,b) and (¢, d) from z and replaces them by (a,¢) and (b, d),
hence, first the corresponding a posteriori edges (a*,b*) and (c*,d*) for a given
realization w are to be identified. The cost difference between the two a posteriori
solutions is then given by ¢y« ¢ + Cpx g+ — Ca p» — Cex g+ . and Eq. ] then simply
sums the cost differences for each of the M realizations. This procedure can be
directly extended to node-insertion moves. Furthermore, the algorithm adopts
the neighbourhood reduction techniques fized-radius search, candidate lists, and
don’t look bits [81],[77,[75]. We call the resulting first-improvement algorithm
2.5-opt-EEs. (See [79] for more details).

As a default, we use 100 realizations in 2.5-opt-EEs, which is indicated by
denoting this version as 2.5-opt-EEs-100. Next, we compare 2.5-opt-EEs-
-100 with 2.5-0pt-ACs; these two algorithms differ only in the delta evaluation
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Fig. 4.5. Experimental results on clustered homogeneous PTSP instances of size
1000. The plots give the solution cost obtained by 2.5-opt-EEs-10, 2.5-opt-EEs-
-100, 2.5-0pt-EEs-1000, 1-shift, and 2-p-opt normalized by the one obtained by
2.5-opt-ACs. Each algorithm stops upon reaching a local optimum.

procedure: empirical estimation versus analytical computation. Figure 4] gives
the experimental results. Both algorithms reach similar average costs with the
only exception of p = 0.1, where 2.5-0opt-EEs-100 returns local optima with
an average cost that is approximately 2% higher than that of 2.5-opt-ACs.
However, 2.5-0opt-EEs-100 is much faster than 2.5-opt-ACs; it reaches local
optima, irrespective of the probability value, approximately 1.5 orders of mag-
nitude faster.

The poorer solution cost of 2.5-opt-EEs-100 for p = 0.1 can be attributed
to the number of realizations used to estimate the cost difference between two
solutions. Since the variance of the cost difference estimator is very high at low
probability levels, the adoption of 100 realizations is not sufficient to obtain
a good estimate of the cost difference. We therefore added experiments to ex-
amine the impact of the number of realizations considered on the performance
of 2.5-opt-EEs. For this purpose, we consider samples of size 10, 100, and
1000 and we denote the algorithms 2.5-opt-EEs-10, 2.5-opt-EEs-100, and
2.5-0opt-EEs-1000. We considered PTSP instances with 1000 nodes, which are
generated in the same way as described before, to study the performance of the
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algorithms when applied to large instances. (For a PTSP instance size of 1000,
2.5-opt-ACs, 2-p-opt, and 1-shift suffer from numerical problems and they
need to resort to an arbitrary precision arithmetic for p > 0.5 [79], which makes
them even slower.) The results are given in Figure

As conjectured, the use of a large number of realizations, in our case M =
1000, is effective with respect to the cost of the local optima for low probabil-
ity values. Even though larger sample sizes incur more computation time, the
total search time is very short compared to the analytical computation algo-
rithms. On the other hand, the use of few realizations, in our case M = 10, does
not lead to a further very significant reduction of computation time: concerning
the average computation time, 2.5-opt-EEs-10 is faster than 2.5-opt-EEs-
-100 approximately by a factor of two, while 2.5-0pt-EEs-1000 is slower than
2.5-0opt-EEs-100 by a factor of four. Nonetheless, an important observation is
that 2.5-opt-EEs-1000 is approximately 1.5 orders of magnitude faster than
2.5-opt-ACs. Concerning the average solution cost, 2.5-opt-EEs-1000 is simi-
lar to 2.5-0opt-EEs-100 and 2.5-opt-ACs with the exception of p = 0.1, where
the average cost of the local optima obtained by 2.5-opt-EEs-1000 is approxi-
mately 3% lower than that of 2.5-0opt-EEs-100 and comparable with the one of
2.5-0opt-ACs. 2.5-0opt-EEs-10 reaches clearly much worse costs than the other
estimation-based algorithms; only for high probability values it appears to be
competitive.

With respect to the instance size, the trends concerning the relative perfor-
mance of 2.5-opt-EEs-100 and 2.5-opt-ACs are similar as for instances of size
300. However, the differences between the computation times of the two algorithms
are larger and 2.5-opt-EEs-100 reaches, irrespective of the value of p, local op-
tima approximately 2.3 orders of magnitude faster than 2.5-opt-ACs. Similarly,
for the comparison between 2.5-opt-ACs and 1-shift and 2-p-opt, respectively,
the results for instance size 1000 are analogous to those for instance size 300.

4.4.3 Improving the Estimation-Based Local Search

The results of the previous section clearly show that the performance of
2.5-opt-EEs depends on the number of realizations and the probabilities as-
sociated with the nodes. In particular, for low probability values, 2.5-opt-EEs
is less effective with few realizations. This insight led to our third hypothesis:

Hypothesis 3: 2.5-opt-EEs can be improved by choosing an appropriate
sample size and a special treatment of the low probability cases.

Two main ideas were developed to improve 2.5-opt-EEs. The first is to use an
adaptive sampling procedure that selects the appropriate number of realizations
with respect to the variance of the cost estimator. In fact, as shown in [82], the
variance of the cost of the a posteriori solutions depends strongly on the proba-
bilities associated with the nodes: the smaller the probability values, the higher
the variance. The increased variance could be handled by increasing the sample
size since averaging over a large number of realizations reduces the variance of
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the estimator. However, for high probability values using a large number of re-
alizations is a waste of time. For addressing this issue, we adopted an adaptive
sampling procedure that makes use of Student’s t-test in the following way: Given
two neighboring a priori solutions, the cost difference between their correspond-
ing a posteriori solutions is sequentially computed on a number of realizations.
Once the t-test rejects the null hypothesis of zero cost difference, the compu-
tation is stopped; if the null hypothesis cannot be rejected, the computation
is stopped after a maximum of M realizations, where M is a parameter. The
sign of the estimator determines the solution of lower cost. The estimation-based
iterative improvement algorithm that adds adaptive sampling to 2.5-opt-EEs
will be called 2.5-opt-EEas.

The second main idea is to adopt the importance sampling technique for re-
ducing the variance of the estimator when dealing with highly stochastic problem
instances: given two neighboring a priori solutions, this technique considers, in-
stead of realizations from the given distribution w, realizations from another
distribution w*—the so-called biased distribution. w™* forces the nodes involved
in the cost difference computation to occur more frequently. The resulting cost
difference between two a posteriori solutions for each realization is corrected
for the adoption of the biased distribution and the correction is given by the
likelihood ratio of the original distribution with respect to the biased distribu-
tion. We denote 2.5-opt-EEais the algorithm that adds to 2.5-opt-EEas the
above described importance sampling procedure. Note that the adoption of the
importance sampling technique in 2.5-opt-EEas requires additional parame-
ters for defining the biased distribution. These parameters have been tuned by
Iterative F-Race [83]. We refer the reader to [82] for a more detailed descrip-
tion of 2.5-opt-EEais and its tuning.

Next, we compared the performance of 2.5-opt-EEas and 2.5-opt-EEais
to 2.5-opt-EEs, which does not use an adaptive sample size and importance
sampling. In the case of 2.5-opt-EEs, we again consider samples of size 10, 100,
and 1000. The clustered instances of 1000 nodes are used for the experiments
with the probability levels [0.050,0.200] with a step size of 0.025 and [0.3,0.9]
with a step size of 0.1. Results of the comparison are given in Figure .Gl where
2.5-0pt-EEs-1000 is taken as a reference. (We only highlight the most impor-
tant results; more details are given in [82].)

The computational results show that, especially for low probabilities,
2.5-opt-EEais is more effective than the other algorithms. For what concerns
the comparison of 2.5-opt-EEais and 2.5-opt-EEas, the results show that
the adoption of importance sampling allows the former to achieve high quality
solutions for very low probabilities, that is, for p < 0.2—the average cost of
the local optima obtained by 2.5-opt-EEais is between 1% and 3% less than
that of 2.5-opt-EEas. The observed differences are significant according to the
paired t-test. For p > 0.3, the average solution cost and the computation time
of 2.5-opt-EEais are comparable to the ones of 2.5-opt-EEas.

Concerning the comparison to 2.5-opt-EEs, the following results are most
noteworthy. 2.5-opt-EEais reaches an average solution similar to that of
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Fig. 4.6. Experimental results on clustered homogeneous PTSP instances of size 1000.
The plots represent the cost of the solutions obtained by 2.5-opt-EEas, 2.5-opt-—
EEais, 2.5-opt-EEs-10, and 2.5-opt-EEs-100 normalized by the one obtained by
2.5-0pt-EEs-1000. Each algorithm is stopped when it reaches a local optimum.

2.5-0pt-EEs-1000, but it does so approximately four times faster. Compared to
2.5-0opt-EEs-100, 2.5-opt-EEais reaches for low probability values, p < 0.2,
an average cost that is between 1% and 3% lower (the differences are statistically
significant according to the paired ¢-test), while for p > 0.3 the two algorithms
are comparable. Taking into account both the computation time and the cost
of the solutions obtained, we can see that 2.5-opt-EEais emerges as a clear
winner among the considered estimation-based algorithms.

Finally, we compared 2.5-opt-EEais with 2.5-opt-ACs. In order to avoid
over-tuning [84], we generated 100 new instances for each probability level. The
results are shown in Figure[7l The computational results show that 2.5-opt--
EEais is very competitive. Regarding the time required to reach local optima,
irrespective of the probability levels, 2.5-opt-EEais is approximately 2 orders of
magnitude faster than 2.5-opt-ACs. The average cost of local optima obtained
by 2.5-opt-EEais is comparable to the one of 2.5-opt-ACs.
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Fig. 4.7. Experimental results on clustered homogeneous PTSP instances of size 1000.
The plots represent the solution cost obtained by 2.5-opt-EEais normalized by the
one obtained by 2.5-opt-ACs. Each algorithm stops upon reaching a local optimum.

4.5 FEstimation Based Iterated Local Search

As a final step, we tried to derive a new state-of-the-art SLS algorithm for the
PTSP. Clearly, the significant performance gains obtained by 2.5-opt-EEais
over the previous state-of-the-art iterative improvement algorithms should make
this feasible. Given the very high performance of iterated local search (ILS) [85]
algorithms for the TSP, we decided to adopt this general-purpose SLS method
also for the PTSP. That is, we implement our fourth hypothesis:

Hypothesis 4: 2.5-opt-EEais is a good candidate procedure to derive a new
state-of-the-art SLS algorithm for the PTSP.

Our ILS algorithm is a straightforward adaptation of ILS algorithms for the
TSP. It starts from a nearest neighbor tour and uses 2.5-opt-EEais as the
subsidiary local search algorithm. The acceptance criterion compares two local
optima by using the t-test with up to a maximum of n realizations. If no statis-
tically significant difference is detected, the solution with lower cost estimate is
accepted. The perturbation consists of a number of simple moves. In particular,
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Fig. 4.8. Experimental results on clustered homogeneous PTSP instances of size 1000.
Each algorithm is allowed to run for 10000 seconds. The plots give the solution cost
obtained by ILS-2.5-opt-EEais normalized by the one obtained by ACS/1-shift.

we perform two random double-bridge moves and perturbe the position of ps%
of the nodes, where ps is a parameter. This change of the position is done by
picking uniformly at random ps% of nodes, removing them from the tour and
then re-inserting them again according to the farthest insertion heuristic. This
composite perturbation is motivated by the change of the usefulness of edge
exchange moves and insertion moves, as indicated by the crossover in the rel-
ative performance of 2-p-opt and 1-shift. We denote the final algorithm by
ILS-2.5-opt-EEais.

We first tuned the parameter ps of ILS-2.5-opt-EEais using Iterative
F-Race, resulting in a value of ps = 6. Next, we compared its performance to
ACS/1-shift [80], an ant colony optimization algorithm [87] that uses 1-shift
as the underlying local search and was shown to be a state-of-the-art stochastic
local search algorithm for the PTSP. For this task, we adopted the parameter
settings of ACS/1-shift that were fine-tuned in [86]. We compared the two
algorithms on clustered instances with 1000 nodes using 10000 seconds as a
stopping criterion.
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The experimental results in Figure show that ILS-2.5-opt-EEais out-
performs ACS/1-shift both in terms of final solution quality and computation
time to reach a specific bound on the solution quality. In fact, the final average
solution cost of ILS-2.5-opt-EEais is between 1% and 5% lower that that of
ACS/1-shift; all observed differences are statistically significant according to a
paired t-test with aw = 0.05.

4.6 Conclusions

In this chapter, we presented a case study in engineering an effective SLS al-
gorithm for the PTSP. Our approach has used a bottom-up process. It had the
particularity that it focused very strongly on the development and refinement
of the underlying iterative improvement algorithm. We do not claim that this
strong focus on this element of the process is always necessary. In fact, this pro-
cess required, in this particular case, a significant number of new ideas. However,
we strongly believe that this bottom-up approach is a potentially very successful
way of deriving very high performing algorithms.

SLS engineering is relatively a new area of research in SLS algorithms and it
is receiving considerable attention in recent years. Therefore, it has a number
of avenues open for further contributions. One of the main focus of research
in SLS engineering is to develop a framework of principled procedures for SLS
design, implementation, analysis, and in-depth experimental studies. Moreover,
SLS engineering needs a tight integration with tools that support the algorithm
development process such as software frameworks, statistical tools, experimental
design, automated tuning, search space analysis, and efficient data structures.
Given researchers’ and practitioners’ quest for high performing algorithms, we
strongly believe that SLS engineering is going to play a major role in designing
SLS algorithms.
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